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Abstract
High performance computing applications must be resilient to faults, which are common

occurrences especially in post-petascale settings. The traditional fault-tolerance solution is
checkpoint-recovery, by which the application saves its state to secondary storage throughout
execution and recovers from the latest saved state in case of a failure. An oft studied re-
search question is that of the optimal checkpointing strategy: when should state be saved?
Unfortunately, even using an optimal checkpointing strategy, the checkpointing frequency must
increase as platform scale increases, leading to higher checkpointing overhead. This overhead
precludes high parallel efficiency for large-scale platforms, thus mandating other more scalable
fault-tolerance mechanisms. One such mechanism is replication, which can be used in addition
to checkpoint-recovery. Using replication, multiple processors perform the same computation
so that a processor failure does not necessarily imply application failure. While at first glance
replication may seem wasteful, it may be significantly more efficient than using solely checkpoint-
recovery at large scale. In this work we investigate a simple approach where entire application
instances are replicated. We provide a theoretical study of checkpoint-recovery with replication
in terms of expected application execution time, under an exponential distribution of failures.
We design dynamic-programming based algorithms to define checkpointing dates that work un-
der any failure distribution. We also conduct simulation experiments assuming that failures
follow Exponential or Weibull distributions, the latter being more representative of real-world
systems, and using failure logs from production clusters. Our results show that replication is
useful in a variety of realistic application and checkpointing cost scenarios for future exascale
platforms.

1 Introduction
As plans are made for deploying post-petascale high performance computing (HPC) systems [10, 22],
solutions need to be developed to ensure resilience to failures that occur because not all faults
can be automatically detected and corrected in hardware. For instance, the 224,162-core Jaguar
platform is reported to experience on the order of 1 failure per day [20, 2], and its scale is modest
compared to platforms in the plans for the next decade. For applications that enroll large numbers
of, or perhaps all, processors a failure is the common case rather than the exception. One can
recover from a failure by resuming execution from a previously saved fault-free execution state, or
checkpoint. Checkpoints are saved to resilient storage throughout execution (usually periodically).
More frequent checkpoints lead to less loss when a failure occurs but to higher overhead during
fault-free execution. A checkpointing strategy specifies when checkpoints should be taken.
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A large literature is devoted to developing efficient checkpointing strategies, i.e., ones that
minimize expected job execution time, including both theoretical and practical efforts. The former
typically rely on assumptions regarding the probability distributions of times to failure of the
processors (e.g., Exponential, Weibull), while the latter rely on simulations driven by failure datasets
obtained on real-world platforms. In a previous paper [4], we have made several contributions in this
context, including optimal solutions for Exponential failures and dynamic programming solutions
in the general case.

A major issue with checkpoint-recovery is scalability: the necessary checkpoint frequency for
tolerating failures in large-scale platforms is so large that processors spend more time saving state
than computing. It is thus expected that future platforms will lead to unacceptably low parallel
efficiency if only checkpoint-recovery is used, no matter how good the checkpointing strategy.
Consequently, additional mechanisms must be used. In this work we focus on replication: several
processors perform the same computation synchronously, so that a fault on one of these processors
does not lead to an application failure. Replication is an age-old fault-tolerant technique, but it
has gained traction in the HPC context only relatively recently. While replication wastes compute
resources in fault-free executions, it can alleviate the poor scalability of checkpoint-recovery.

Consider a parallel application that is moldable, meaning that it can be executed on an arbitrary
number of processors, which each processor running one application process. In our group replication
approach, multiple application instances are executed. One could, for instance, execute 2 distinct
n-process application instances on a 2n-processor platform. Each instance runs at a smaller scale,
meaning that it has better parallel efficiency than a single 2n-process instance due to a lower
checkpointing frequency. Furthermore, once an instance saves a checkpoint, the other instance can
use this checkpoint immediately. Given the above, our contributions in this work are:
• A theoretical analysis of the optimal number of processors to use for a checkpoint-recovery
execution of a parallel application, for various parallel workload models for Exponential failure
distributions;
• An effective approach for group replication, with a theoretical analysis bounding expected ex-
ecution time for Exponential failure distribution, and several dynamic programming solutions
working for general failure distributions;
• Extensive simulations showing that group replication can indeed lower application running
times, and that some of our proposed strategies deliver good performance.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 defines
the theoretical framework and states key assumptions. Section 4 discusses the optimal number of
processors for a checkpoint-recovery execution of a parallel application under an Exponential distri-
bution of failures. Section 5 provides several approaches for group replication, and the theoretical
analysis of one of them. Section 6 describes the experimental methodology and Section 7 presents
simulation results. Finally, Section 8 concludes with a summary of our findings and with future
perspectives.

2 Related work
Checkpointing policies have been widely studied in the literature. In [9], Daly studies periodic
checkpointing policies for Exponentially distributed failures, generalizing the well-known bound
obtained by Young [28]. Daly extended his work in [15] to study the impact of sub-optimal check-
pointing periods. In [25], the authors develop an “optimal” checkpointing policy, based on the
popular assumption that optimal checkpointing must be periodic. In [6], Bouguerra et al. prove
that the optimal checkpointing policy is periodic when checkpointing and recovery overheads are
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constant, for either Exponential or Weibull failures. But their results rely on the unstated assump-
tion that all processors are rejuvenated after each failure and after each checkpoint. In our recent
work [4], we have shown that this assumption is unreasonable for Weibull failures. We have devel-
oped optimal solutions for Exponential failures and dynamic programming solutions for any failure
distribution, demonstrating performance improvements over checkpointing approaches proposed in
the literature in the case of Weibull and log-based failures. The Weibull distribution is recognized
as a reasonable approximation of failures in real-world systems [14, 24]. The work in this paper
relates to checkpointing policies in the sense that we study a replication mechanism that is used as
an addition to checkpointing. Part of our results build on the algorithms and results in [4].

In spite of all the above advances, several studies have questioned the feasibility of pure
checkpoint-recovery for large-scale systems (see [12] for a discussion of this issue and for references
to such studies). In this work, we study the use of replication as a mechanism complementary to
checkpoint-recovery. Replication has long been used as a fault-tolerance mechanism in distributed
systems [13] and more recently in the context of volunteer computing [17]. The idea to use replica-
tion together with checkpoint-recovery has been studied in the context of grid computing [27].One
concern about replication in HPC is the induced resource waste. However, given the scalability
limitations of pure checkpoint-recovery, replication has recently received more attention in the HPC
literature [23, 29, 11].

In this work we study “group replication,” by which multiple application instances are exe-
cuted on different groups of processors.An orthogonal approach, “process replication,” was recently
studied by Ferreira et al. [12] in the context of MPI applications. To achieve fault-tolerance, each
MPI process is replicated in a way that is transparent to the application developer. While this
approach can lead to good fault-tolerance, one of its drawbacks is that it increases the number and
the volume of communications. Let Vtot be the total volume of inter-processor communications for
a traditional execution. With process replication using g replicas per replica-groups, each original
communication now involves g sources and g destinations, hence the total communication volume
becomes Vtot × g2. Instead, with group replication using g groups, each original communication
takes place g times, hence the total communication volume increases only to Vtot × g. Another
drawback of process replication is that it requires the use of a customized MPI library (such as the
prototype developed by the authors in [12]). By contrast, group replication is completely agnostic
to the parallel runtime system and thus does not even require MPI. Nevertheless, even for MPI
applications, group replication provides an out of the box fault-tolerance solution that can be used
until process replication possibly becomes a mainstream feature in MPI implementations.

3 Framework
We consider the execution of a tightly-coupled parallel application, or job, on a platform composed
of p processors. We use the term processor to indicate any individually scheduled compute resource
(a core, a multi-core processor, a cluster node) so that our work applies regardless of the granularity
of the platform. We assume that system-level checkpoint-recovery is enabled.

The job must complete W units of (divisible) work, which can be split arbitrarily into separate
chunks. The job can execute on any number q ≤ p processors. Letting W(q) be the time required
for a failure-free execution on q processors, we use three models:
• Perfectly parallel jobs: W(q) =W/q.
• Generic parallel jobs: W(q) = (1−γ)W/q+γW. As in Amdahl’s law [1], γ < 1 is the fraction
of the work that is inherently sequential.
• Numerical kernels: W(q) =W/q+γW2/3/

√
q. This is representative of a matrix product or a
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LU/QR factorization of size N on a 2D-processor grid, where W = O(N3). In the algorithm
in [3], q = r2 and each processor receives 2r blocks of size N2/r2 during the execution. Here
γ is the communication-to-computation ratio of the platform.

Each participating processor is subject to failures. A failure causes a downtime period of the
failing processor, of duration D. When a processor fails, the whole execution is stopped, and
all processors must recover from the previous checkpoint. We let C(q) denote the time needed
to perform a checkpoint, and R(q) the time to perform a recovery. The downtime accounts for
software rejuvenation (i.e., rebooting [16, 8]) or for the replacement of the failed processor by a
spare. Regardless, we assume that after a downtime the processor is fault-free and begins a new
lifetime at the beginning of the recovery period. This recovery period corresponds to the time
needed to restore the last checkpoint. Assuming that the application’s memory footprint is V
bytes, with each processor holding V/q bytes, we consider two scenarios:
• Proportional overhead: C(q) = R(q) = αV/q = C/q with α some constant, for cases where

the bandwidth of the network card/link at each processor is the I/O bottleneck.
• Constant overhead: C(q) = R(q) = αV = C with α some constant, for cases where the
bandwidth to/from the resilient storage system is the I/O bottleneck.

We assume coordinated checkpointing [26], meaning that no message logging/replay is needed when
recovering from failures. We assume that failures can happen during recovery or checkpointing, but
not during a downtime (otherwise, the downtime period could be considered part of the recovery
period). We assume that the parallel job is tightly coupled, meaning that all q processors operate
synchronously throughout the job execution. These processors execute the same amount of work
W(q) in parallel, chunk by chunk. The total time (on one processor) to execute a chunk of size ω,
and then checkpointing it, is ω+C(q). Finally, we assume that failure arrivals at all processors are
independent and identically distributed (iid).

4 Optimal number of processors for execution
Let E(q) be the expectation of the execution time, or makespan, when using q processors, and qopt
the value of q that minimizes E(q). Is it true that the optimal solution is to use all processors,
i.e., qopt = p? If not, what can we say about the value of qopt? This question was partially and
empirically addressed in [25], via experiments for 4 MPI applications for up to 35 processors. Our
approach here is radically different since we target large-scale platforms and seek theoretical results
in the form of optimal solutions. The main objective of this section is to show analytically that,
for Exponential failures, E(q) may reach its minimum for some finite value of q (implying that qopt
is not necessarily equal to p).

Assume that failure inter-arrival times follow an Exponential distribution with parameter λ. In
our recent work [4], we have shown that the optimal strategy to minimize the expected makespan
E(q) is to splitW into K∗ = max(1, bK0(q)c) or K∗ = dK0(q)e same-size chunks, whichever leads to
the smaller value, where K0(q) = qλW(q)

1+L(−e−qλC(q)−1) is the optimal (non integer) number of chunks.
L denotes the Lambert function, defined as L(z)eL(z) = z. This result shows that the optimal
strategy is periodic and that the optimal expectation of the makespan is:

E∗(q) = K∗(q)
( 1
qλ

+ E(XD(q))
)
eqλR(q)

(
e
qλW(q)
K∗(q) +qλC(q) − 1

)
(1)

where E(XD(q)) denotes the expectation of the downtime. It turns out that, although we can com-
pute the optimal number of chunks (and thus the chunk size), we cannot compute E∗(q) analytically
because E(XD(q)) is difficult to compute. This is because a processor can fail while another one is
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down, thus prolonging the downtime. With a single processor (q = 1), XD(q) has constant value D,
but with several processors there could be cascading downtimes. It turns out that we can compute
the following lower and upper bounds for E(XD(q)):

Proposition 1. Let XD(q) denote the downtime of a group of q processors. Then

D ≤ E(XD(q)) ≤ e(q−1)λD − 1
(q − 1)λ (2)

Proof. In [4], we have shown that th optimal expectation of the makespan is computed as:

E∗(q) = K∗(q)
( 1
qλ

+ E(Trec(q))
)(

e
qλW(q)
K∗(q) +qλC(q) − 1

)
(3)

where E(Trec(q)) denotes the expectation of the recovery time, i.e., the time spent recovering from
failure during the computation of a chunk. All chunks have the same recovery time because they
all have the same size and because of the memoryless property of the Exponential distribution.
It turns out that although we can compute the optimal number of chunks (and thus the chunk
size), we cannot compute E∗(q) analytically because E(Trec(q)) is difficult to compute. We write
the following recursion:

Trec(q) =


XD(q) +R(q) if no processor fails

during R(q) units of time,
XD(q) + Tlost(R(q)) + Trec(q) otherwise.

(4)

XD(q) is the downtime of a group of q processors, that is the time between the first failure of one
of the processors and the first time at which all of them are available (accounting for the fact a
processor can fail while another one is down, thus prolonging the downtime). Tlost(R(q)) is the
amount of time spent computing by these processors before a first failure, knowing that the next
failure occurs within the next R(q) units of time. In other terms, it is the compute time that is
wasted because checkpoint recovery was not completed. The time until the next failure of a group
of q processors is the minimum of q iid Exponentially distributed variables, and is thus Exponential
with parameter qλ. We can compute E(Tlost(R(q))) = 1

qλ −
R(q)

eqλR(q)−1 (see [4] for details). Plugging
this value into Equation 4 leads to:

E(Trec(q)) = e−qλR(q)(E(XD(q)) +R(q))

+ (1− e−qλR(q))
(
E(XD(q)) + 1

qλ
− R(q)
eqλR(q) − 1

+ E(Trec(q))
)

(5)

Equation 5 reads as follows: after the downtime XD(q), either the recovery succeeds for everybody,
or there is a failure during the recovery and another attempt must be made. Both events are
weighted by their respective probabilities. Simplifying the above expression we get:

E(Trec(q)) = E(XD(q))eqλR(q) + 1
qλ

(eqλR(q) − 1) (6)

Plugging back this expression in Equation 3, we obtain the value given in Equation 1.

Now we establish the desired bounds on E(XD(q)) We always have XD(q) ≥ XD(1) ≥ D, hence
the lower bound. For the upper bound, consider a date at which one of the q processors, say
processor i0, just had a failure and initiates its downtime period for D time units. Some other
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processors might be in the middle of their downtime period: for each processor i, 1 ≤ i ≤ q, let ti
denote the remaining duration of the downtime of processor i. We have 0 ≤ ti ≤ D for 1 ≤ i ≤ q,
ti0 = D, and ti = 0 means that processor i is up and running. Let Xt1,..,tq

D (q) be the remaining
downtime of a group of q processors, knowing that processor i, 1 ≤ i ≤ q, will still be down for a
duration of ti, and that a failure just happened (i.e., there exists i0 such that ti0 = D). Given the
values of the ti’s, we have the following equation for the random variable Xt1,..,tq

D (q):

X
t1,..,tq
D (q) =



D

if none of the processors of the group
fails during the next D units of time

T
t1,..,tq
lost (D) +X

t′1,..,t
′
q

D (q)
otherwise.

In the second case of the equation, consider the next D time-units. Processor i can only fail
in the last D − ti of these time-units. Here the values of the t′i’s depend on the ti’s and on
T
t1,..,tq
lost (D). Indeed, except for the last processor to fail, say i1, for which t′i1 = D, we have
t′i = max{t′i − T

t1,..,tq
lost (D), 0}. More importantly we always have T t1,..,tqlost (D) ≤ TD,0,...,0lost (D) and

X
t1,..,tq
D (q) ≤ XD,0,..,0

D (q) because the probability for a processor to fail during D time units is
always larger than that to fail during D − ti time-units. Thus, E(Xt1,..,tq

D (q)) ≤ E(XD,0,..,0
D (q)).

Following the same line of reasoning, we derive an upper-bound for XD,0,..,0
D (q):

XD,0,..,0
D (q) ≤



D

if none of the q − 1 running processors of the group
fails during the downtime D

TD,0,..,0lost (D) +XD,0,..,0
D (q)

otherwise.

Weighting both cases by their probability and taking expectations, we obtain

E
(
XD,0,..,0
D (q)

)
≤ e−(q−1)λDD + (1− e−(q−1)λD)

(
E
(
TD,0,..,0lost (D)

)
+ E

(
XD,0,..,0
D (q)

))
hence E

(
XD,0,..,0
D (q)

)
≤ D + (e(q−1)λD − 1)E

(
TD,0,..,0lost (D)

)
, with

E
(
TD,0,..,0lost (D)

)
= 1

(q − 1)λ −
D

e(q−1)λD − 1
.

We derive
E
(
X
t1,..,tq
D (q)

)
≤ E

(
XD,..,0
D (q)

)
≤ e(q−1)λD − 1

(q − 1)λ .

which concludes the proof. As a sanity check, we observe that the upper bound is at least D, using
the identity ex ≥ 1 + x for x ≥ 0.

While in a failure-free environment E∗(q) would always decrease as q increases, using the above
lower bound on E(XD(q)) we obtain the following results:

6



Theorem 1. When the failure distribution follows an Exponential law, E∗(q) reaches its minimum
for some finite value of q in the following scenarios: all job types (perfectly parallel, generic and
numerical) with constant overhead, and generic or numerical jobs with proportional overhead.

Note that the only open scenario is with perfectly parallel jobs and proportional overhead. In
this case the lower bound on E∗(q) decreases to some constant value while the upper bound goes
to +∞ as q increases.

Proof. We show that limq→+∞ E∗(q) = +∞ for the relevant scenarios. We first plug the lower-
bound of Equation 2 into Equation 6 and obtain:

E(Trec(q)) ≥ DeqλR(q) + 1
qλ

(
eqλR(q) − 1

)
.

From Equation 1 we then derive the lower-bound:

E∗(q) ≥ K0(q)
( 1
qλ

+D

)
eqλR(q)

(
e
qλW(q)
K0(q) +qλC(q) − 1

)
using the fact that, by definition, the expression in the right hand-side of Equation 1 is minimized
by K0, where K0(q) = qλW(q)

1+L(−e−qλC(q)−1) .

With constant overhead. Let us consider the case of perfectly parallel jobs (W(q) = W/q)
with constant checkpointing overhead (C(q) = R(q) = C). We get the lower bound:

E∗(q) ≥ K0(q)
( 1
qλ

+D

)
eqλC

(
e

λW
K0(q) +qλC − 1

)

whereK0(q) = λW
1+L(−e−qλC−1) . When q tends to +∞,K0(q) goes to λW, while ( 1

qλ+D)eqλC
(
e

λW
K0(q) +qλC − 1

)
goes to +∞. Consequently, E∗(q) is bounded below by a quantity that goes to +∞, which con-
cludes the proof. This result also implies that E∗(q) reaches a minimum for a finite q value for other
job types (generic, numerical) with constant overhead, just because the execution time is larger in
those cases than with perfectly parallel jobs.

Generic parallel job with proportional overhead. Here we assume thatW(q) =W/q+γW,
and use proportional overhead: C(q) = R(q) = C

q . We get the lower bound:

E∗(q) ≥ K0(q)
( 1
qλ

+D

)
eλC

(
e
λW+qλγW
K0(q) +λC − 1

)
where K0(q) = λW+qλγW

1+L(−e−λC−1) . As before, we show that limq→+∞ E∗min(q) = +∞ to get the result.

When q tends to +∞, K0(q) tends to +∞, while ( 1
qλ +D)eλC

(
e
λW+qλγW
K0(q) +λC − 1

)
tends to some

positive constant. This concludes the proof. Note that this proof also serves for generic parallel
jobs with constant overhead, simply because the execution time is larger in that case than with
proportional overhead.
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Numerical kernels with proportional overhead. Here we assume that W(q) = W/q +
γW2/3/

√
q, and use proportional overhead: C(q) = R(q) = C

q . We get the lower bound:

E∗(q) ≥ K0(q)
( 1
qλ

+D

)
eλC

(
e
λW+λγW2/3√q

K0(q) +λC − 1
)

where K0(q) = λW+λγW2/3√q
1+L(−e−λC−1) . As before, we show that limq→+∞ E∗min(q) = +∞ to get the result.

When q tends to +∞, K0(q) tends to +∞, while ( 1
qλ + D)eλC

(
e
λW+λγW2/3√q

K0(q) +λC − 1
)

tends to

some positive constant. This concludes the proof.

5 Group replication
Since using all processors to run a single application instance may not make sense in light of
Theorem 1, the group replication approach consists in executing multiple application instances
on different processor groups, where the number of processors in a group is closer to qopt. All
groups compute the same chunk simultaneously, and do so until one of them succeeds, potentially
after several failed trials. Then all other groups stop executing that chunk and recover from the
checkpoint stored by the successful group. All groups then attempt to compute the next chunk.
Group replication can be implemented easily with no modification to the application, provided that
the recovery implementation allows a group to recover immediately from a checkpoint produced by
another group. In this section we formalize group replication as an execution protocol called ASAP
(As Soon As Possible), and analyze its performance for Exponential failures. We then introduce
dynamic programming solutions that work with general failure distributions.

5.1 The ASAP execution protocol

We consider g groups, where each group has q processors, with g × q ≤ p. A group is available for
execution if and only if all its q processors are available. In case of a failure, the downtime of a
group is a random variable XD(q) ≥ D, whose expectation is bounded in Proposition 1. If a group
encounters a first processor failure at time t, the group is down between t and t+XD(q).

The ASAP algorithm proceeds in k macro-steps. During macro-step j, 1 ≤ j ≤ k, each group
independently attempts to execute the j-th chunk of size ωj and to checkpoint, restarting as soon
as possible in case of a failure. As soon as one of the groups succeeds, say at time tend

j , all the other
groups are immediately stopped, macro-step j is over, and macro-step (j + 1) starts (if j < k).
Note that the value of k, the total number of chunks, as well as the chunk sizes, the ωj ’s, are inputs
to the algorithm (we always have

∑k
j=1 ωj =W(q)). We provide an analytical evaluation of ASAP

for Exponential failure laws, and discuss how to choose these values, in Section 5.2.
Two important aspects must be mentioned. First, before being able to start macro-step (j+ 1),

a group that has been stopped must execute a recovery, in order to restart from the checkpoint of a
successful group. Second, this recovery may start later than time tend

j , in the case where the group
is down at time tend

j . An example is shown in Figure 1, in which group 1 cannot start the recovery
at time tend

j . The only groups that do not need to recover at the beginning of the next step are the
groups that were successful for the previous step, except during the first step at which all groups
can start computing right away.

We now provide an analytical evaluation of ASAP for Exponential failure laws, and show how
to compute the number of macro-steps k and the values of the chunk sizes ωj .

8



Downtine (of a group)

Recover

Downtine (of a processor)

Failure

ω1

ω2

Group 1

Group 2

Group 3 R(q)

C(q)R(q)

C(q)

tend
1 tend

2

Figure 1: Execution of chunks ω1 and ω2 (macro-steps 1 and 2) using the ASAP protocol. At time
tend
1 , Group 1 is not ready, and Group 2 is the only one that does not need to recover.

5.2 Exponential failures

Let use assume that the failure rate of each processor obeys an Exponential law of parameter
λ. For the sake of the theoretical analysis, we introduce a slightly modified version of the ASAP
protocol in which all groups, including the successful ones, execute a recovery at the beginning of
all macro-steps, including the first one. This new version of ASAP is described in Algorithm 1. It
is completely symmetric, which renders its analysis easier: for macro-step j to be successful, one
of the groups must be up and running for a duration of R(q) + ωj + C(q).

Algorithm 1: ASAP (ω1, . . . , ωk)
1 for j = 1 to k do
2 for each group do in parallel
3 repeat
4 Finish current downtime (if any)
5 Try to perform a recovery, then a chunk of size ωj , and finally to checkpoint
6 if execution successful then
7 Signal other groups to immediately stop their attempts
8 until one of the groups has a successful attempt

Consider the j-th macro step, number the attempts of all groups by their start time, and let Nj

be the index of the earliest started attempt that successfully computes chunk ωj . In Figure 2, we
have j = 2, the successful chunk of size R+ ω2 +C is the fourth attempt, so N2 = 4. To represent
each attempt, we sample random variables Xj

i and Y j
i , 1 ≤ i ≤ Nj , that correspond respectively to

the ith tentative execution of the chunk and to the ith downtime that follows it (if i 6= Nj). Note
that Xj

i < R+ωj +C for i < Nj , and Xj
Nj
≥ R+ωj +C. All the Xj

i ’s follow the same distribution
DX , namely an Exponential law of parameter qλ. And all the Y j

i ’s follow the same distribution
DXD(q), that of the the random variable XD(q) corresponding to the downtime of a group of q
processors.

The main idea here is to view the Nj execution attempts as jobs, where the size of job i is
Xj
i + Y j

i , and to distribute them across the g groups using the classical online list scheduling
algorithm for independent jobs [21, section 5.6]. This formulation (see Proposition 2) allows us to
provide an upper bound for the starting time of job Nj , and hence for the length of macro-step j,
using a well-known scheduling argument (see Proposition 3). We then derive an upper bound for
the expected execution time of ASAP (see Theorem 2).

9



X2
1 X2

3L

Group 1

Group 2

Group 3

and is followed by a downtime of size Y 2
i

Attempt i (of step 2) has size X2
i

R(q) + ω2 + C(q)

tend
1 tend

2

Job1

Job2

Job3

Job4

Y 2
2X2

2Y 2
1 Y 2

3

Figure 2: Zoom on macro-step 2 of the execution depicted in Figure 1, using the (X,Y ) notation of
Algorithm 2. Recall that Jobi has size X2

i + Y 2
i for 1 ≤ i ≤ 3, and Job4 has size R(q) + ω2 +C(q).

Algorithm 2: Step j of ASAP (ω1, . . . , ωk)
1 i← 1 /* i represents the number of attempts for the job */
2 L ← ∅ /* L represents the list of attempts for the job */
3 Sample Xj

i and Y j
i using DX and DXD(q) respectively

4 while Xj
i < R(q) + ωj + C(q) do

5 Add Jobi, with processing time Xj
i + Y j

i , to L
6 i← i+ 1
7 Sample Xj

i and Y j
i using DX and DXD(q) respectively

8 Nj ← i
9 Add JobNj

, with processing time R(q) + ωj + C(q), to L
/* the first successful job has size R(q) + ωj + C(q), not Xj

Nj
+ Y j

Nj
*/

10 From time tend
j−1 on, execute a List Scheduling algorithm to distribute jobs of L to the different groups

(recall that some groups may not be ready at time tend
j−1)

10



tend
j−1

T
(R(q)+ωj+C(q))
truestart R(q) + ωj + C(q)

Xj
Nj

tend
j

tend
j − tend

j−1

Figure 3: Notations used in Proposition 3.

Proposition 2. The j-th macro-step of the ASAP protocol can be simulated using Algorithm 2:
the last job scheduled by Algorithm 2 ends exactly at time tend

j .

Proof. The List Scheduling algorithm distributes the next job to the first available group. Because
of the memoryless property of Exponential laws, it is equivalent (i) to generate the attempts a
priori and greedily schedule them, or (ii) to generate them independently within each group.

Proposition 3. Let T (R(q)+ωj+C(q))
truestart be the time elapsed between tend

j−1 and the beginning of JobNj

(see Figure 3). We have E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y )+ E(Nj)E(X)−E(X

Nj
j )+(E(Nj)−1)E(Y )
g where X and

Y are random variables corresponding to an attempt (sampled using DX and DXD(q) respectively).
Moreover, we have E(Nj) = eλq(R(q)+ωj+C(q)) and E(XNj

j ) = 1
qλ +R(q) + ωj + C(q).

Proof. For group x, 1 ≤ x ≤ g, let Ỹx denote the time elapsed before it is ready for macro-step j.
For example in Figure 2, we have Ỹ1 > 0 (group 1 is down at time tend

j−1), while Ỹ2 = Ỹ3 = 0 (groups
2 and 3 are ready to compute at time tend

j−1). Proposition 2 has shown that executing macro-step j
can be simulated by executing a List Schedule on a job list L (see Algorithm 2). We now consider
g “jobs” ˜Jobx, x = 1, . . . , g, so that ˜Jobx has duration Ỹx. We now consider the augmented job list
L′ = L ∪

⋃g
x=1

˜Jobx. Note that L′ may contain more jobs than macro-step j: the jobs that start
after the successful job JobNj are discarded from the list L′. However, both schedules have the same
makespan, and jobs common to both systems have the same start and completion dates. Thus,

we have T (R(q)+ωj+C(q))
truestart ≤

∑g

x=1(Ỹx)+
∑Nj−1

i=1 (Xj
i +Y ji )

g : this key inequality is due to the property of
list scheduling: the group which is assigned the last job is the least loaded when this assignment
is decided, hence its load does not exceed the average load (which is the total load divided by the
number of groups). Given that E(Ỹx) ≤ E(Y ), we derive

E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y ) +

E
(∑Nj−1

i=1 Xj
i

)
+ E

(∑Nj−1
i=1 (Y j

i )
)

g

But Nj is the stopping criterion of the (Xj
i ) sequence, hence using Wald’s theorem we have

E(
∑Nj
i=1X

j
i ) = E(Nj)E(X) which leads to E(

∑Nj−1
i=1 Xj

i ) = E(Nj)E(X) − E(XNj
j ). Moreover, as

11



Nj and Y j
i are independent variables, we have E(

∑Nj−1
i=1 Y j

i ) = (E(Nj) − 1)E(Y ), and we get the
desired bound for E(T (R(q)+ωj+C(q))

truestart ).
Finally, as the expected number of attempts when repeating independently until success an

event of probability α is 1
α (geometric law), we get E(Nj) = eλq(R(q)+ωj+C(q)). The value of E(XNj

j )
can be directly computed from the definition, recalling that XNj

j ≥ R(q) + ωj +C(q) and each Xi
j

follows an Exponential distribution of parameter qλ.

Theorem 2. The expected execution time of ASAP has the following upper bound:

g − 1
g
W(q) + 1

g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q))k∗eλq

W(q)
k∗

+ k∗
(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
which is obtained when using k∗ = max(1, bk0c) or k∗ = dk0e same-size chunks, whichever leads to
the smaller value, where:

k0 = λqW(q)
1 + L

((
g − 1 + (g−1)qλ(R(q)+C(q))−g

1+qλE(Y )

)
e−(1+λq(R(q)+C(q)))

) ·
Proof. From Proposition 3, the expected execution time of ASAP has upper bound TASAP =∑k
j=1 αj , where

αj = E(Y ) +
E(Nj)E(X)− E(XNj

j ) + (E(Nj)− 1)E(Y )
g

+ (R(q) + ωj + C(q)).

Our objective now is to find the inputs to the ASAP algorithm, namely the number k of macro-steps
together with the chunk sizes (ω1, . . . , ωk), that minimize this TASAP bound.

We first have to prove that any optimal (in expectation) policy uses only a finite number of
chunks. Let α be the expectation of the ASAP makespan using a unique chunk of size W(q).
According to Proposition 3,

α = E(T (R(q)+W(q)+C(q))
truestart ) + C(q) +W(q) +R(q),

and is finite. Thus, if an optimal policy uses k∗ chunks, we must have k∗C(q) ≤ α, and thus k∗ is
bounded.

In the proof of Theorem 1 in [4], we have shown that any deterministic strategy uses the same
sequence of chunk sizes, whatever the failure scenario, thanks to the memoryless property of the
Exponential distribution. We cannot prove such a result in the current context. For instance, the
number of groups performing a downtime at time tend

1 depends on the scenario. There is thus no
reason a priori for the size of the second chunk to be independent of the scenario. To overcome this
difficulty, we restrict our analysis to strategies that use the same sequence of chunk sizes whatever
the failure scenario. We optimize TASAP in that context, at the possible cost of finding a larger
upper bound.

We thus suppose that we have a fixed number of chunks, k, and a sequence of chunk sizes
(ω1, . . . , ωk), and we look for the values of (ω1, . . . , ωk) that minimize TASAP =

∑k
j=1 αj . Let us

first compute one of the αj term. Replacing E(Nj) and E(XNj
j ) by the values given in Proposition 3,

12



and E(X) by 1
qλ , we get

αj = g − 1
g

ωj + 1
g
eλq(R(q)+ωj+C(q))

( 1
qλ

+ E(Y )
)

+ g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

TASAP = g − 1
g
W + 1

g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q))

k∑
j=1

eλqωj

+ k

(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
By convexity, the expression

∑k
j=1 e

λqωj is minimal when all ωj ’s are equal (to W(q)/k). Hence all
the chunks should be equal for TASAP to be minimal. We obtain:

TASAP = g − 1
g
W + 1

g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q))keλq

W(q)
k

+ k

(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
.

Let f(x) = τ1xe
λq
W(q)
x + τ2x, where

τ1 = 1
g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q)) and

τ2 =
(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
.

A simple analysis using differentiation shows that f has a unique minimum, and solving f ′(x) = 0
leads to τ1e

λq
W(q)
k

(
1− λqW(q)

k

)
+ τ2 = 0, and thus to k = λqW(q)

1+L
(

τ2
τ1·e

) = k∗, which concludes the

proof.

Using the upper bound of E(Y ) = E(XD(q)) in Proposition 1, we can compute numerically the
number of chunks and the expectation of the upper bound given by Theorem 2.

5.3 Group replication heuristics for general failure distributions

The results of the previous section are limited to Exponential failures. We now address turn to the
general case. In Section 5.3.1 we recall the dynamic program designed in [4] to define checkpointing
dates in a context without replication. We then discuss how to use this dynamic program in the
context of ASAP (Section 5.3.2). Finally, in Section 5.3.3 we propose heuristics that correspond to
more general execution protocols than ASAP.

5.3.1 Solution without replication

According to [4], the most efficient algorithm to define checkpointing dates, for general failure dis-
tributions and when no replication is used, is the dynamic programming approach called DPNext-
Failure, shown in Algorithm 3. This algorithm works on a failure by failure basis, maximizing
the expectation of the amount of work completed (and checkpointed) before the next failure oc-
curs. This algorithm only provides an approximation of the optimal solution as it relies on a time
discretization. (For the sake of simplicity, we present all dynamic programs as recursive algorithms.)
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Algorithm 3: DPNextFailure (W ,τ1, ..., τp)
1 if W = 0 then return 0
2 best ← 0; chunksize ← 0
3 for ω = quantum to W step quantum do
4 (expected_work, 1st_chunk)← DPNextFailure(W − ω, τ1 + ω + C(p), ..., τp + ω + C(p))
5 cur_exp_work ← Psuc(τ1 + ω + C(p), ..., τp + ω + C(p) | τ1, ..., τp)× (ω + expected_work)
6 if cur_exp_work > best then best← cur_exp_work; chunksize ← ω

7 return (best, chunksize)

5.3.2 Implementing the ASAP execution protocol

A key question when implementing ASAP is that of the chunk size. A naive approach would be
to use DPNextFailure. Each group would call DPNextFailure to compute what would be
the optimal chunk size for itself, as if there were no other groups. Then we have to merge these
individual chunk sizes to obtain a common chunk size. This heuristic, DPNextFailureAsap, is
shown in Algorithm 4 (the Alive function returns, for a list of q processors, the amount of time
each has been up and running since its last downtime). For the Merge operator, one could be
pessimistic and take the minimum of the chunk sizes, or be optimistic and take the maximum, or
attempt a trade-off by taking the average. Two important limitations of this heuristic are: 1) the
Merge operator that has no theoretical justification; and 2) the use of chunk sizes defined using an
obsolete failure history. The latter limitation shows after a group is victim of a failure: the failure
history has changed significantly but the chunk size is not recomputed (this has no consequences
with an Exponential distribution as the Exponential is memoryless).

Algorithm 4: DPNextFailureAsap(W ).
1 while W 6= 0 do
2 for each group x = 1..g do in parallel
3 (τ(x−1)q+1, . . . , τ(x−1)q+q)← Alive((x− 1)q + 1, ..., (x− 1)q + g)
4 (exp_workx, ωx)← DPNextFailure(W, τ(x−1)q+1, . . . , τ(x−1)q+q)
5 ω ←Merge(ω1, . . . , ωg)
6 for each group do in parallel
7 repeat
8 Try to execute a chunk of size ω and then checkpoint
9 if successful then

10 Signal other groups to immediately stop their attempts
11 else if failure then Complete downtime and perform recovery
12 until One of the groups signals its success
13 W ←W − ω
14 for each group do in parallel
15 if not successful on last chunk then Perform recovery from last successfully completed

checkpoint

5.3.3 Other execution protocols

In order to circumvent both limitations of DPNextFailureAsap, we relax the constraint that
all groups work with the same chunk size. Each group now works with its own chunk size that is
recomputed each time the group fails, and each time one of the groups successfully complete its
own chunk. This leads to the heuristic DPNextFailureSynchro in Algorithm 5. Each time a
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group successfully works for the duration of its chunk size and checkpoints its work, it signals its
success to all groups which then interrupt their own work. This behavior is clearly sub-optimal if
the successful completion is for a very small chunk and an interrupted group that was computing
a large chunk was close to completion. The problems are that: 1) chunk sizes are defined as if each
group was alone; and 2) the definition of the chunk sizes does not account for the fact that the first
group to complete its checkpoint defines a mandatory checkpointing date for all groups.

Algorithm 5: DPNextFailureSynchro(W ).
1 for each group x = 1..g do in parallel
2 while W 6= 0 do
3 (τ(x−1)q+1, . . . , τ(x−1)q+q)← Alive((x− 1)q + 1, ..., (x− 1)q + g)
4 (exp_workx, ωx)← DPNextFailure(W, τ(x−1)q+1, . . . , τ(x−1)q+q)
5 Try to execute a chunk of size ωx and then checkpoint
6 if successful then
7 Signal other groups to immediately stop their attempts
8 W ←W − ωx

9 if failure then Complete downtime
10 if failure or signal then
11 Perform recovery from last successfully completed checkpoint

To address these problems, rather than doing another attempt at reusing DPNextFailure,
we design a brand new dynamic program. In [4], without replication, we found that a dynamic
program that minimizes the expectation of the makespan would require an intractable exponential
number of states to record which processors fail and when. Hence we aimed instead at maximizing
the expectation of the work completed before the next failure. We now extend this approach to the
context of replication. The first failure will only interrupt a single group. Therefore, the objective
should be to maximize the expectation of the work completed before all groups have failed. This
approach ignores that once a group has failed, it will eventually restart and resume computing.
However, keeping track of such restarts would require recording which processors have failed and
when, thus once again leading to an exponential number of states.

To avoid having the first completed checkpoint force a checkpoint for all other groups we design
a new dynamic program, DPNextCheckpoint (Algorithm 6). DPNextCheckpoint does not
define chunk sizes, i.e., amount of work to be processed before a checkpoint is taken, but instead it
defines checkpoint dates. The rationale is that one checkpointing date can correspond to different
amounts of work for each group, depending on when the group has started to process its chunk,
after either its last failure and recovery, or its last checkpoint, or its last recovery based on another
group’s checkpoint. The function WorkAlreadyDone (Line 3) returns, for each group, the time
since it started processing its current chunk.

DPNextCheckpoint proceeds as follows. At the checkpointing date, the amount of work
completed is the maximum of the amount of work done by the different groups that successfully
complete the checkpoint. Therefore, we consider all the different cases (Line 8), that is, which
group x, among the successful groups, has done the most work. We compute the probability of
each case (Line 11). All groups that started to work earlier than group x have failed (i.e., at least
one processor in each of them has failed) but not group x (i.e., none of its processors have failed).
We compute the expectation of the amount of work completed in each case (Lines 12 and 13). We
then sum the contributions of all the cases (Line 14) and record the checkpointing date leading to
the largest expectation (Line 15). Note that the probability computed at Line 11 explicitly states
which groups have successfully completed the checkpoint and which groups have not. We choose not
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to take this information into account when computing the expectation (recursive call at Line 13).
This is to avoid keeping track of which group had failed, thereby lowering the complexity of the
dynamic program. This explains why the conditions do not evolve in the conditional probability
at Line 11.

Algorithm 6: DPNextCheckpoint(W , T , T0, τ1, ..., τgq)
1 if W = 0 then return 0
2 best_work ← 0; next_chkpt ← date
3 (W1, ...,Wg)←WorkAlreadyDone(T ) /* Time since last recovery or checkpoint */
4 Reorder groups in non-increasing availabilities (W1 is maximum)
5 for t = T to T +W −Wg step quantum /* Loop on checkpointing date */
6 do
7 cur_work ← 0
8 for x = 1 to g /* Loop on the first group to successfully work until t+ C(q) */
9 do

10 δ ← (t+ C(q))− T0 /* Total time elapsed until the checkpoint completion */

11
proba ←

∏x−1
y=1 Pfail(τ(y−1)q+1 + δ, ..., τ(y−1)q+p + δ | τ(y−1)q+1, ..., τ(y−1)q+p)
×Psuc(τ(x−1)q+1 + δ, ..., τ(x−1)q+p + δ | τ(x−1)q+1, ..., τ(x−1)q+p)

12 ω ← min{W −Wx, t− T} /* Work done between T and t by group x */
13 (rec_ω, rec_t)← DPNextCheckpoint(W −Wx − ω, T + ω + C(q) +R(q), T0, τ1, ..., τp)
14 cur_work ← cur_work + proba × (Wx + ω + rec_ω)
15 if cur_work > best_work then best_work ← cur_work; next_chkpt← t

16 return (best_work, next_chkpt)

Algorithm 7: DPNextFailureGlobal(W ).
1 for each group x = 1..g do in parallel
2 while W 6= 0 do
3 (τ1, ..., τgq)← Alive(1, ..., gq)
4 T0 ← Time() /* Current time */
5 date ← DPNextCheckpoint(W, T0, T0, τ1, . . . , τgq)
6 Signal all processors that the next checkpoint date is now date
7 Try to work until date and then checkpoint
8 if successful work until date and checkpoint then
9 Let y be the longest running group without failure among the successful groups

10 Let ω be the work performed by y since its last recovery or checkpoint
11 W ←W − ω
12 if group x last recovery or checkpoint was strictly later than that of y then
13 Perform a recovery
14 if failure then Complete downtime
15 if failure or signal then Perform recovery from last successfully completed checkpoint

Finally, Algorithm 7 shows the algorithm, called DPNextFailureGlobal, that uses DP-
NextCheckpoint. Each time a group is affected by an event (a failure, a successful checkpoint
by itself or by another group), it computes the next checkpoint date and signals the result of its
computation to the other groups (e.g., by broadcasting it to the g group leaders). Hence, a group
may have computed the next checkpoint date to be t, and that date can be either un-modified, or
postponed, or advanced by events occurring on other groups and by their re-computation of the
best next checkpoint date. In practice, as these algorithms rely on a time discretization, at each
time quantum a group can check whether the current time is a checkpoint date or not.
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6 Simulation framework
In this section we detail our simulation methodology. We use both synthetic and real-world failure
distributions. The source code and all simulation results are publicly available at: http://perso.
ens-lyon.fr/frederic.vivien/Data/Resilience/SPAA2012/.

6.1 Heuristics

Our simulator implements the following eight checkpointing policies:
• Two versions of the ASAP protocol: OptExp, that uses the optimal and periodic policy

established in [4] for Exponential failure distributions and no replication; OptExpGroup,
that uses the periodic policy defined by Theorem 2 for Exponential distributions.
• The six dynamic programming approaches in Section 5.3: DPNextFailure, the 3 variants
of DPNextFailureAsap, DPNextFailureSynchro, and DPNextFailureGlobal.

Our simulator also implements PeriodLB, which is a numerical search for the optimal period
for ASAP. We evaluate each candidate period on 50 randomly generated scenarios. To build the
candidate periods, the period computed for OptExp is multiplied and divided by 1 + 0.05× i with
i ∈ {1, ..., 180}, and by 1.1j with j ∈ {1, ..., 60}. PeriodLB corresponds to the periodic policy that
uses the best period found by the search. The evaluation of PeriodLB on a configuration requires
running 24,000 simulations (which would be prohibitive in practice), but we include it for reference.
Based on the results in [4], we do not consider any additional checkpointing policy, such as those
defined by Young [28] or Daly [9] for instance. We point out that OptExp and OptExpGroup
compute the checkpointing period based solely on the MTBF, implicitly assuming that failures are
exponentially distributed. For the sake of completeness we nevertheless include them in all our
simulations, simply using the MTBF value even when failures are not exponentially distributed.
To use OptExp with g groups we use the period from [4] computed with bp/gc processors.

6.2 Platforms

We target two types of platforms, depending on the type of the failure distribution. For synthetic
distributions, we consider platforms containing from 32,768 to 1,048,576 processors. For platforms
with failures based on failure logs from production clusters, because of the limited scale of those
clusters, we restrict the size of the platforms to a maximum of 131,072 processors, starting with
4,096 processors. For both platform types, we determine the job size W so that a job using the
whole platform would use it for a significant amount of time in the absence of failures, namely
≈ 3.5 days on the largest platforms for synthetic failures (W = 10, 000 years), and ≈ 2.8 days on
those for log-based failures (W = 1, 000 years). Otherwise, we use the same parameters as in [4]:
C = R = 600 s, D = 60 s, γ = 10−6 for generic parallel jobs, and γ = 0.1 for numerical kernels.
Note that the checkpointing overheads come from the scenarios in [7] and are smaller than those
used in [12].

6.3 Failure scenarios

Synthetic failure distributions – To choose failure distribution parameters that are representa-
tive of realistic systems, we use failure statistics from the Jaguar platform. Jaguar contains 45, 208
processors and is said to experience on the order of 1 failure per day [20, 2]. Assuming a 1-day
platform MTBF gives us a processor MTBF equal to 45,208

365 ≈ 125 years. For the Exponential
distribution, we then have λ as λ = 1

MTBF and for Weibull, which requires two parameters k and
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λ, we have λ = MTBF/Γ(1+1/k) and we fix k to 0.7 based on the results of [24]. (We have shown
in [4] that the general trends were not influenced by the exact values used for k nor for the MTBF.)
Log-based failure distributions – We also consider failure distributions based on failure logs
from production clusters. We used logs from the largest clusters among the preprocessed logs in
the Failure trace archive [18], i.e., from clusters at the Los Alamos National Laboratory [24]. In
these logs, each failure is tagged by the node —and not just the processor— on which the failure
occurred. Among the 26 possible clusters, we opted for the only two clusters with more than 1,000
nodes, as we needed a sample history sufficiently large to simulate platforms with more than 10,000
nodes. The two chosen logs are for clusters 18 and 19 in the archive (referred to as 7 and 8 in [24]).
For each log, we record the set S of availability intervals. A discrete failure distributionfor the
simulation is then generated as follows: the conditional probability P(X ≥ t | X ≥ τ) that a node
stays up for a duration t, knowing that it has been up for a duration τ , is set to the ratio of the
number of availability durations in S greater than or equal to t, over the number of availability
durations in S greater than or equal to τ .
Scenario generation – Given a p-processor job, a failure trace is a set of failure dates for each
processor over a fixed time horizon h (set to 2 years). The job start time is assumed to be 1 year
for synthetic distribution platforms, and 0.25 year for log-based distribution platforms. We use a
non-null start time to avoid side-effects related to the synchronous initialization of all processors.
Given the distribution of inter-arrival times at a processor, for each processor we generate a trace
via independent sampling until the target time horizon is reached.For simulations where the only
varying parameter is the number of processors a ≤ p ≤ b, we first generate traces for b processors.
For experiments with p processors we then simply select the first p traces. This ensures that
simulation results are coherent when varying p. Finally, the two clusters used for computing our
log-based failure distributions consist of 4-processor nodes. Hence, to simulate a 131,072-processor
platform we generate 32,768 failure traces, one for each four-processor node.

7 Simulation results
In this section we discuss simulation results, but only show graphs for perfectly parallel applications
under the constant overhead scenario. All results can be found in the appendix. All simulations with
replication are for two groups (using three groups never leads to improvements in our experiments).

Optimal number of processors for execution – For Weibull and log-based failures with the
constant overhead scenario, using all the available processors to run a single application instance
leads to significantly larger makespans. This is seen in Figures 5-7 where the curves for OptExp,
PeriodLB, and DPNextFailure, the no-replication strategies, shoot upward when p reaches a
large enough value. For instance, with traces based on the logs of LANL cluster 18, the increase in
makespan is more than 37% when going from p = 216 to p = 217. This behavior is in line with the
result in Theorem 1. However, in our experiments with Exponential failures the lowest makespan
when running a single application instance is obtained when using all the processors, regardless
of the application model. This is seen plainly in Figure 4 at least up to 220 processors. This
likely means that our experimental scenarios have not reached the scale at which the makespan
would increase. Furthermore, running a single application instance is not always best in our results
even for Exponential failures. For instance, for generic parallel jobs OptExp (with g = 1) begins
being outperformed by strategies that use replication at 220 processors (see the full results in [5]).
We conclude that on exascale platforms the optimal makespan may not be obtained by running a
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Figure 7: Failures based on the failure log of
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single application instance. This is similar to the result obtained in [12] in the context of process
replication.

The ASAP protocol with Exponential – Considering only those results obtained for Ex-
ponential failures and using group replication, we find that OptExpGroup with g = 2 delivers
performance very close to that of the numerical lower bound on any periodic policy under ASAP
(PeriodLB with g = 2) and slightly better than the performance of OptExp with g = 2.These re-
sults corroborates our theoretical study. Therefore, determining chunk sizes according to Theorem 2
is more efficient than using two instances that each use the chunk size determined by OptExp.

The dynamic programming approaches - The performance of the three variants of DP-
NextFailureAsap (with Merge being the minimum, the average, or the maximum) are indis-
tinguishable on Exponential and Weibull failure distributions. For log-based failure distributions,
their performance are still very close, with the average and the maximum seemingly achieving
better performance (the performance differences, however, may not be significant in light of the
standard deviations).

DPNextFailureSynchro achieves worse performance than DPNextFailureAsap for Ex-
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ponential andWeibull failure distributions. For log-based failure distributions, in some rare settings,
the opposite is true. Overall, this heuristic provides disappointing results. By contrast, depending
on the scenario, DPNextFailureGlobal is equivalent to the other dynamic programming ap-
proaches or outperforms them significantly. Furthermore, its performance is relatively close to that
of PeriodLB with g = 2.

The very perplexing result here is that, regardless of the underlying failure distribution, DP-
NextFailureGlobal is outperformed by the periodic policy OptExp with g = 2. Recall that
this policy erroneously assumes Exponential failures and computes the checkpointing period ignor-
ing that replication is used! By contrast, DPNextFailureGlobal is based on strong theoret-
ical foundations and was designed specifically to handle multiple groups efficiently. And yet, in
non-Exponential failure cases, OptExp with g = 2 outperforms DPNextFailureGlobal (see
Figures 5-7). In the case of log-based experiments (Figures 6 and 7), it may be that our datasets
are not sufficiently large. We use failure data from the largest production clusters in the Failure
trace archive [18], but these clusters are orders of magnitude smaller than our simulated platforms.
Consequently, we are forced to “replay” the same failure data many times for many of our simulated
nodes, which biases experiments. In the case of Weibull failures with k = 0.7 (Figure 5), it turns
out that the failure distribution is sufficiently close to an Exponential, i.e., that k is sufficiently close
to 1, so that OptExp does well. However, smaller values of k are reasonable as seen for instance
in [19] (k ≈ 0.5) and in [24] (0.33 ≤ k ≤ 0.49). In Table 1 we show results for smaller values of k
for a platform with 220 processors. We see that, as k decreases, the performance of OptExp with
g = 2 degrades when compared to PeriodLB, reaching more than 100% degradation for k = 0.5.
However, DPNextFailureGlobal still achieves close-to-optimal makespans in such cases, as can
be seen on Figure 8 (for k = 0.5). Overall, DPNextFailureGlobal achieves good to very good
performance all across the board. Finally, remark on Figure 8 that PeriodLB achieves better
performance using a replication factor of 3 (g = 3) than with a replication factor of 2.

8 Conclusion
In this paper we have presented a study of replication techniques for large-scale platforms. These
platforms are subject to failures, the frequency of which increase dramatically with platform scale.
For a variety of job types (perfectly parallel, generic, or numerical) and checkpoint cost models
(constant or proportional overhead), we have shown that using the largest possible number of
processors does not always lead to the smallest execution time. This is because using more resources
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implies facing more failures during execution, hence wasting more time tolerating them (via an
increase in checkpointing frequency) and recovering from them. This waste results in a slow-down
despite the additional hardware resources.

This observation led us to investigate replication as a technique to better use all the resources
provided by the platform. While others have studied process replication [12], in this work we have
focused on group replication, a more general and less intrusive approach. Group replication consists
in partitioning the platform into several groups, which each executes an instance of the application
concurrently. All groups coordinate to take advantage of the most advanced application state
available. We have conducted an analytical study of group replication for Exponential failures
when using the ASAP execution protocol, using an analogy with a list schedule to bound the
number of attempts and the execution time of each group. This analogy makes it possible to
compute an upper bound on the expected execution time, which can be computed numerically. We
have also proposed several dynamic programming algorithms to minimize application makespan,
whatever the failure distribution. We have compared all these approaches, along with no-replication
approaches proposed in previous work, in simulation for both synthetic failure distributions and
failure data from production clusters. Our main findings are 1) that replication can significantly
lower the execution time of applications on very large scale platforms, for failure and checkpointing
characteristics corresponding to today’s platforms; 2) that our DPNextFailureGlobal dynamic
programming approach is close to the optimal periodic solution (in fact close to PeriodLB, which
uses a prohibitively expensive numerical search for the best period).

A clear direction for future work, which we are currently exploring and that could lead to results
in the final version of the article, is the reasons for the unexpected good results for OptExp with
g = 2. In terms of longer-term objectives, it would be interesting to generalize this work beyond
the case of coordinated checkpointing. For instance, we plan to study hierarchical checkpointing
schemes with message logging. Another interesting direction would be to study process replication
and compare it to group replication, both theoretically and through simulations.
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(3) Numerical kernels.

Figure 9: Evaluation of the different heuristics on a platform with Exponential failures
(MTBF = 125 years).
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(3) Numerical kernels.

Figure 10: Evaluation of the different heuristics on a platform with Weibull failures (MTBF =
125 years, and k = 0.70).
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(3) Numerical kernels.

Figure 11: Evaluation of the different heuristics on a platform with failures based on the failure log
of LANL cluster 18.
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(3) Numerical kernels.

Figure 12: Evaluation of the different heuristics on a platform with failures based on the failure log
of LANL cluster 19.
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