
LU FACTORIZATION WITH PANEL RANK REVEALING
PIVOTING AND ITS COMMUNICATION AVOIDING VERSION

AMAL KHABOU ∗, JAMES W. DEMMEL† , LAURA GRIGORI‡ , AND MING GU §

Abstract. We present the LU decomposition with panel rank revealing pivoting (LU PRRP),
an LU factorization algorithm based on strong rank revealing QR panel factorization. LU PRRP is
more stable than Gaussian elimination with partial pivoting (GEPP), with a theoretical upper bound

of the growth factor of (1+ τb)
n
b , where b is the size of the panel used during the block factorization,

τ is a parameter of the strong rank revealing QR factorization, and n is the number of columns of the
matrix. For example, if the size of the panel is b = 64, and τ = 2, then (1+2b)n/b = (1.079)n � 2n−1,
where 2n−1 is the upper bound of the growth factor of GEPP. Our extensive numerical experiments
show that the new factorization scheme is as numerically stable as GEPP in practice, but it is more
resistant to pathological cases and easily solves the Wilkinson matrix and the Foster matrix. The
LU PRRP factorization does only O(n2b) additional floating point operations compared to GEPP.

We also present CALU PRRP, a communication avoiding version of LU PRRP that minimizes
communication. CALU PRRP is based on tournament pivoting, with the selection of the piv-
ots at each step of the tournament being performed via strong rank revealing QR factorization.
CALU PRRP is more stable than CALU, the communication avoiding version of GEPP, with a the-
oretical upper bound of the growth factor of (1 + τb)

n
b
(H+1)−1, where b is the size of the panel used

during the factorization, τ is a parameter of the strong rank revealing QR factorization, n is the
number of columns of the matrix, and H is the height of the reduction tree used during tournament
pivoting. The upper bound of the growth factor of CALU is 2n(H+1)−1. CALU PRRP is also more
stable in practice and is resistant to pathological cases on which GEPP and CALU fail.

Key words. LU factorization, numerical stability, communication avoiding, strong rank reveal-
ing QR factorization

1. Introduction. The LU factorization is an important operation in numerical
linear algebra since it is widely used for solving linear systems of equations, computing
the determinant of a matrix, or as a building block of other operations. It consists
of the decomposition of a matrix A into the product A = ΠLU , where L is a lower
triangular matrix, U is an upper triangular matrix, and Π a permutation matrix.
The performance of the LU decomposition is critical for many applications, and it
has received a significant attention over the years. Recently large efforts have been
invested in optimizing this linear algebra kernel, in terms of both numerical stability
and performance on emerging parallel architectures.

The LU decomposition can be computed using Gaussian elimination with partial
pivoting, a very stable operation in practice, except for several pathological cases,
such as the Wilkinson matrix [21, 14], the Foster matrix [7], or the Wright matrix
[23]. Many papers [20, 17, 19] discuss the stability of the Gaussian elimination, and
it is known [14, 9, 8] that the pivoting strategy used, such as complete pivoting, par-
tial pivoting, or rook pivoting, has an important impact on the numerical stability

∗ Laboratoire de Recherche en Informatique, Université Paris-Sud 11, INRIA Saclay - Ile de France
(amal.khabou@inria.fr).
†Computer Science Division and Mathematics Department, UC Berkeley, CA 94720-1776, USA.

This work has been supported in part by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional sup-
port comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung.
This work has also been supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-
05CH11231 (demmel@cs.berkeley.edu).
‡INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique, Université Paris-Sud

11, France. This work has been supported in part by the French National Research Agency (ANR)
through COSINUS program (project PETALH no ANR-10-COSI-013). (laura.grigori@inria.fr).
§Mathematics Department, UC Berkeley, CA 94720-1776, USA (mgu@math.berkeley.edu).

1

of this method, which depends on a quantity referred to as the growth factor. How-
ever, in terms of performance, these pivoting strategies represent a limitation, since
they require asympotically more communication than established lower bounds on
communication indicate is necessary [4, 1].

Technological trends show that computing floating point operations is becoming
exponentially faster than moving data from the memory where they are stored to
the place where the computation occurs. Due to this, the communication becomes in
many cases a dominant factor of the runtime of an algorithm, that leads to a loss of
its efficiency. This is a problem for both a sequential algorithm, where data needs to
be moved between different levels of the memory hierarchy, and a parallel algorithm,
where data needs to be communicated between processors.

This challenging problem has prompted research on algorithms that reduce the
communication to a minimum, while being numerically as stable as classic algorithms,
and without increasing significantly the number of floating point operations performed
[4, 11]. We refer to these algorithms as communication avoiding. One of the first such
algorithms is the communication avoiding LU factorization (CALU) [11, 10]. This
algorithm is optimal in terms of communication, that is it performs only polylog-
arithmic factors more than the theoretical lower bounds on communication require
[4, 1]. Thus, it brings considerable improvements to the performance of the LU factor-
ization compared to the classic routines that perform the LU decomposition such as
the PDGETRF routine of ScaLAPACK, thanks to a novel pivoting strategy referred
to as tournament pivoting. It was shown that CALU is faster in practice than the
corresponding routine PDGETRF implemented in libraries as ScaLAPACK or vendor
libraries, on both distributed [11] and shared memory computers [5]. While in prac-
tice CALU is as stable as GEPP, in theory the upper bound of its growth factor is
worse than that obtained with GEPP. One of our goals is to design an algorithm that
minimizes communication and that has a smaller upper bound of its growth factor
than CALU.

In the first part of this paper we present the LU PRRP factorization, a novel LU
decomposition algorithm based on that we call panel rank revealing pivoting (PRRP).
The LU PRRP factorization is based on a block algorithm that computes the LU de-
composition as follows. At each step of the block factorization, a block of columns
(panel) is factored by computing the strong rank revealing QR (RRQR) factorization
[12] of its transpose. The permutation returned by the panel rank revealing factor-
ization is applied on the rows of the input matrix, and the L factor of the panel is
computed based on the R factor of the strong RRQR factorization. Then the trailing
matrix is updated. In exact arithmetic, the LU PRRP factorization computes a block
LU decomposition based on a different pivoting strategy, the panel rank revealing
pivoting. The factors obtained from this decomposition can be stored in place, and
so the LU PRRP factorization has the same memory requirements as standard LU
and can easily replace it in any application.

We show that LU PRRP is more stable than GEPP. Its growth factor is upper
bounded by (1 + τb)

n
b , where b is the size of the panel, n is the number of columns

of the input matrix, and τ is a parameter of the panel strong RRQR factorization.
This bound is smaller than 2n−1, the upper bound of the growth factor for GEPP.
For example, if the size of the panel is b = 64, then (1 + 2b)n/b = (1.079)n � 2n−1.
In terms of cost, it performs only O(n2b) more floating point operations than GEPP.
In addition, our extensive numerical experiments on random matrices and on a set of
special matrices show that the LU PRRP factorization is very stable in practice and

2

leads to modest growth factors, smaller than those obtained with GEPP. It also solves
easily pathological cases, as the Wilkinson matrix and the Foster matrix, on which
GEPP fails. While the Wilkinson matrix is a matrix constructed such that GEPP
has an exponential growth factor, the Foster matrix [8] arises from a real application.

We also discuss the backward stability of LU PRRP using three metrics, the
relative error ‖PA − LU‖/‖A‖, the normwise backward error (2.7), and the compo-
nentwise backward error (2.8). For the matrices in our set, the relative error is at
most 5.26 × 10−14, the normwise backward error is at most 1.09 × 10−14, and the
componentwise backward error is at most 3.3 × 10−14 (with the exception of three
matrices, sprandn, compan, and Demmel, for which the componentwise backward er-
ror is 1.3×10−13, 6.9×10−12, and 1.16×10−8 respectively). Later in this paper, figure
2.2 displays the ratios of these errors versus the errors of GEPP, obtained by dividing
the maximum of the backward errors of LU PRRP and the machine epsilon (2−53) by
the maximum of those of GEPP and the machine epsilon. For all the matrices in our
set, the growth factor of LU PRRP is always smaller than that of GEPP (with the
exception of one matrix, the compar matrix). For random matrices, the relative error
of the factorization of LU PRRP is always smaller than that of GEPP. However, for
the normwise and the componentwise backward errors, GEPP is slightly better, with
a ratio of at most 2 between the two. For the set of special matrices, the ratio of the
relative error is at most 1 in over 75% of cases, that is LU PRRP is more stable than
GEPP. For the rest of the 25% of the cases, the ratio is at most 3, except for one
matrix (hadamard) for which the ratio is 23 and the backward error is on the order of
10−15. The ratio of the normwise backward errors is at most 1 in over 75% of cases,
and always 3.4 or smaller. The ratio of the componentwise backward errors is at most
2 in over 81% of cases, and always 3 or smaller (except for one matrix, the compan
matrix, for which the componentwise backward error is 6.9×10−12 for LU PRRP and
6.2× 10−13 for GEPP).

In the second part of the paper we introduce the CALU PRRP factorization, the
communication avoiding version of LU PRRP. It is based on tournament pivoting, a
strategy introduced in [10] in the context of CALU, a communication avoiding version
of GEPP. With tournament pivoting, the panel factorization is performed in two steps.
The first step selects b pivot rows from the entire panel at a minimum communication
cost. For this, sets of b candidate rows are selected from blocks of the panel, which
are then combined together through a reduction-like procedure, until a set of b pivot
rows are chosen. CALU PRRP uses the strong RRQR factorization to select b rows
at each step of the reduction operation, while CALU is based on GEPP. In the second
step of the panel factorization, the pivot rows are permuted to the diagonal positions,
and the QR factorization with no pivoting of the transpose of the panel is computed.
Then the algorithm proceeds as the LU PRRP factorization. Note that the usage of
the strong RRQR factorization ensures that bounds are respected locally at each step
of the reduction operation, but it does not ensure that the growth factor is bounded
globally as in LU PRRP.

To address the numerical stability of the communication avoiding factorization,
we show that performing the CALU PRRP factorization of a matrix A is equivalent
to performing the LU PRRP factorization of a larger matrix, formed by blocks of A
and zeros. This equivalence suggests that CALU PRRP will behave as LU PRRP
in practice and it will be stable. The dimension and the sparsity structure of the
larger matrix also allows us to upper bound the growth factor of CALU PRRP by
(1 + τb)

n
b (H+1)−1, where in addition to the parameters n, b, and τ previously defined,

3

H is the height of the reduction tree used during tournament pivoting.

This algorithm has two significant advantages over other classic factorization al-
gorithms. First, it minimizes communication, and hence it will be more efficient than
LU PRRP and GEPP on architectures where communication is expensive. Here com-
munication refers to both latency and bandwidth costs of moving data between levels
of the memory hierarchy in the sequential case, and the cost of moving data between
processors in the parallel case. Second, it is more stable than CALU. Theoretically,
the upper bound of the growth factor of CALU PRRP is smaller than that of CALU,
for a reduction tree with a same height. More importantly, there are cases of interest
for which it is smaller than that of GEPP as well. Given a reduction tree of height
H = logP , where P is the number of processors on which the algorithm is executed,
the panel size b and the parameter τ can be chosen such that the upper bound of
the growth factor is smaller than 2n−1. Extensive experimental results show that
CALU PRRP is as stable as LU PRRP, GEPP, and CALU on random matrices and
a set of special matrices. Its growth factor is slightly smaller than that of CALU. In
addition, it is also stable for matrices on which GEPP fails.

As for the LU PRRP factorization, we discuss the stability of CALU PRRP using
three metrics. For the matrices in our set, the relative error is at most 9.14×10−14, the
normwise backward error is at most 1.37 × 10−14, and the componentwise backward
error is at most 1.14 × 10−8 for Demmel matrix. Figure 3.3 displays the ratios of
the errors with respect to those of GEPP, obtained by dividing the maximum of the
backward errors of CALU PRRP and the machine epsilon by the maximum of those
of GEPP and the machine epsilon. For random matrices, all the backward error ratios
are at most 2.4. For the set of special matrices, the ratios of the relative error are at
most 1 in over 62% of cases, and always smaller than 2, except for 8% of cases, where
the ratios are between 2.4 and 24.2. The ratios of the normwise backward errors are at
most 1 in over 75% of cases, and always 3.9 or smaller. The ratios of componentwise
backward errors are at most 1 in over 47% of cases, and always 3 or smaller, except
for 7 ratios which have values up to 74.

We also discuss a different version of LU PRRP that minimizes communication,
but can be less stable than CALU PRRP, our method of choice for reducing com-
munication. In this different version, the panel factorization is performed only once,
during which its off-diagonal blocks are annihilated using a reduce-like operation, with
the strong RRQR factorization being the operator used at each step of the reduction.
Every such factorization of a block of rows of the panel leads to the update of a block
of rows of the trailing matrix. Independently of the shape of the reduction tree, the
upper bound of the growth factor of this method is the same as that of LU PRRP.
This is because at every step of the algorithm, a row of the current trailing matrix is
updated only once. We refer to the version based on a binary reduction tree as block
parallel LU PRRP, and to the version based on a flat tree as block pairwise LU PRRP.
There are similarities between these two algorithms, the LU factorization based on
block parallel pivoting (an unstable factorization), and the LU factorization based
on block pairwise pivoting (whose stability is still under investigation) [18, 20, 2].
All these methods perform the panel factorization as a reduction operation, and the
factorization performed at every step of the reduction leads to an update of the trail-
ing matrix. However, in block parallel pivoting and block pairwise pivoting, GEPP is
used at every step of the reduction, and hence U factors are combined together during
the reduction phase. While in the block parallel and block pairwise LU PRRP, the
reduction operates always on original rows of the current panel.

4

Despite having better bounds, the block parallel LU PRRP based on a binary
reduction tree of height H = logP is unstable for certain values of the panel size b
and the number of processors P . The block pairwise LU PRRP based on a flat tree
of height H = n

b appears to be more stable. The growth factor is larger than that of
CALU PRRP, but it is smaller than n for the sizes of the matrices in our test set.
Hence, potentially this version can be more stable than block pairwise pivoting, but
requires further investigation.

The remainder of the paper is organized as follows. Section 2 presents the al-
gebra of the LU PRRP factorization, discusses its stability, and compares it with
that of GEPP. It also presents experimental results showing that LU PRRP is more
stable than GEPP in terms of worst case growth factor, and it is more resistant
to pathological matrices on which GEPP fails. Section 3 presents the algebra of
CALU PRRP, a communication avoiding version of LU PRRP. It describes similar-
ities between CALU PRRP and LU PRRP and it discusses its stability. The com-
munication optimality of CALU PRRP is shown in section 4, where we also compare
its performance model with that of the CALU algorithm. Section 5 discusses two
alternative algorithms that can also reduce communication, but can be less stable in
practice. Section 6 concludes and presents our future work.

2. LU PRRP Method. In this section we introduce the LU PRRP factoriza-
tion, an LU decomposition algorithm based on panel rank revealing pivoting strategy.
It is based on a block algorithm, that factors at each step a block of columns (a panel),
and then it updates the trailing matrix. The main difference between LU PRRP and
GEPP resides in the panel factorization. In GEPP the panel factorization is computed
using LU with partial pivoting, while in LU PRRP it is computed by performing a
strong RRQR factorization of its transpose. This leads to a different selection of pivot
rows, and the obtained R factor is used to compute the block L factor of the panel. In
exact arithmetic, LU PRRP performs a block LU decomposition with a different piv-
oting scheme, which aims at improving the numerical stability of the factorization by
bounding more efficiently the growth of the elements. We also discuss the numerical
stability of LU PRRP, and we show that both in theory and in practice, LU PRRP
is more stable than GEPP.

2.1. The algebra. LU PRRP is based on a block algorithm that factors the
input matrix A of size m× n by traversing blocks of columns of size b. Consider the
first step of the factorization, with the matrix A having the following partition,

A =

[
A11 A12

A21 A22

]
, (2.1)

where A11 is of size b× b, A21 is of size (m− b)× b, A12 is of size b× (n− b), and A22

is of size (m− b)× (n− b).
The main idea of the LU PRRP factorization is to eliminate the elements below

the b × b diagonal block such that the multipliers used during the update of the
trailing matrix are bounded by a given threshold τ . For this, we perform a strong
RRQR factorization on the transpose of the first panel of size m × b to identify a
permutation matrix Π, that is b pivot rows,

[
A11

A21

]T
Π =

[
Â11

Â21

]T
= Q

[
R(1 : b, 1 : b) R(1 : b, b+ 1 : m)

]
= Q

[
R11 R12

]
,

5

where Â denotes the permuted matrix A. The strong RRQR factorization ensures that
the quantity RT12(R−111)T is bounded by a given threshold τ in the max norm. The
strong RRQR factorization, as described in Algorithm 2 in Appendix A, computes
first the QR factorization with column pivoting, followed by additional swaps of the
columns of theR factor and updates of the QR factorization, so that ‖RT12(R−111)T ‖max ≤
τ .

After the panel factorization, the transpose of the computed permutation Π is
applied on the input matrix A, and then the update of the trailing matrix is performed,

Â = ΠTA =

[
Ib
L21 Im−b

] [
Â11 Â12

Âs22

]
, (2.2)

where

Âs22 = Â22 − L21Â12. (2.3)

Note that in exact arithmetic, we have L21 = Â21Â
−1
11 = RT12(R−111)T . Hence the

factorization in equation (2.2) is equivalent to the factorization

Â = ΠTA =

[
Ib

Â21Â
−1
11 Im−b

] [
Â11 Â12

Âs22

]
,

where

Âs22 = Â22 − Â21Â
−1
11 Â12, (2.4)

and Â21Â
−1
11 was computed in a numerically stable way such that it is bounded in

max norm by τ .
Since the block size is in general b ≥ 2, performing LU PRRP on a given matrix

A first leads to a block LU factorization, with the diagonal blocks Âii being square
of size b × b. An additional Gaussian elimination with partial pivoting is performed
on the b × b diagonal block Â11 as well as the update of the corresponding trailing
matrix Â12. Then the decomposition obtained after the elimination of the first panel
of the input matrix A is

Â = ΠTA =

[
Ib
L21 Im−b

] [
Â11 Â12

Âs
22

]
=

[
Ib
L21 Im−b

] [
L11

Im−b

] [
U11 U12

Âs
22

]
,

where L11 is a lower triangular b× b matrix with unit diagonal and U11 is an upper
triangular b × b matrix. We show in section 2.2 that this step does not affect the
stability of the LU PRRP factorization. Note that the factors L and U can be stored
in place, and so LU PRRP has the same memory requirements as the standard LU
decomposition and can easily replace it in any application.

Algorithm 1 presents the LU PRRP factorization of a matrix A of size n × n
partitioned into n

b panels. The number of floating-point operations performed by this
algorithm is

#flops =
2

3
n3 +O(n2b),

which is only O(n2b) more floating point operations than GEPP. The detailed counts
are presented in Appendix C. When the QR factorization with column pivoting is
sufficient to obtain the desired bound for each panel factorization, and no additional
swaps are performed, the total cost is

#flops =
2

3
n3 +

3

2
n2b.

6

Algorithm 1 LU PRRP factorization of a matrix A of size n× n
1: for j from 1 to n

b do
2: Let Aj be the current panel Aj = A((j − 1)b+ 1 : n, (j − 1)b+ 1 : jb).
3: Compute panel factorization ATj Πj := QjRj using strong RRQR factorization,

4: L2j := (Rj(1 : b, 1 : b)
−1
Rj(1 : b, b+ 1 : n− (j − 1)b))T .

5: Pivot by applying the permutation matrix ΠT
j on the entire matrix, A = ΠT

j A.
6: Update the trailing matrix,
7: A(jb+ 1 : n, jb+ 1 : n)− = L2jA((j − 1)b+ 1 : jb, jb+ 1 : n).
8: Let Ajj be the current b× b diagonal block,
9: Ajj = A((j − 1)b+ 1 : jb, (j − 1)b+ 1 : jb).

10: Compute Ajj = ΠjjLjjUjj using GEPP.
11: Compute U((j−1)b+1 : jb, jb+1 : n) = L−1jj ΠT

jjA((j−1)b+1 : jb, jb+1 : n).
12: end for

2.2. Numerical stability. In this section we discuss the numerical stability
of the LU PRRP factorization. The stability of an LU decomposition depends on
the growth factor. In his backward error analysis [21], Wilkinson proved that the
computed solution x̂ of the linear system Ax = b, where A is of size n× n, obtained
by Gaussian elimination with partial pivoting or complete pivoting satisfies

(A+ ∆A)x̂ = b, ‖∆A‖∞ ≤ p(n)gWu‖A‖∞.

In the formula, p(n) is a cubic polynomial, u is the machine precision, and gW is the
growth factor defined by

gW =
maxi,j,k|a(k)

i,j |
maxi,j |ai,j | ,

where a
(k)
i,j denotes the entry in position (i, j) obtained after k steps of elimination.

Thus the growth factor measures the growth of the elements during the elimination.
The LU factorization is backward stable if gW is of order O(1) (in practice the method
is stable if the growth factor is a slowly growing function of n). Lemma 9.6 of [13]
(section 9.3) states a more general result, showing that the LU factorization with-
out pivoting of A is backward stable if the growth factor is small. Wilkinson [21]
showed that for partial pivoting, the growth factor gW ≤ 2n−1, and this bound is
attainable. He also showed that for complete pivoting, the upper bound satisfies
gW ≤ n1/2(2.31/2......n1/(n−1))1/2 ∼ cn1/2n1/4 logn. In practice the growth factors are
much smaller than the upper bounds.

In the following, we derive the upper bound of the growth factor for the LU PRRP
factorization. We use the same notation as in the previous section and we assume
without loss of generality that the permutation matrix is the identity. It is easy to
see that the growth factor obtained after the elimination of the first panel is bounded
by (1 + τb). At the k-th step of the block factorization, the active matrix A(k) is of
size (m− (k− 1)b)× (n− (k− 1)b), and the decomposition performed at this step can
be written as

A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
=

[
Ib

L
(k)
21 Im−(k+1)b

][
A

(k)
11 A

(k)
12

A
(k)s
22

]
.

7

The active matrix at the (k+1)-th step is A
(k+1)
22 = A

(k)s
22 = A

(k)
22 − L

(k)
21 A

(k)
12 . Then

maxi,j |a(k+1)
i,j | ≤ maxi,j |a(k)i,j |(1 + τb) with maxi,j |L(k)

21 (i, j)| ≤ τ and we have

gW
(k+1) ≤ gW (k)(1 + τb). (2.5)

Induction on equation (2.5) leads to a growth factor of LU PRRP performed on the
n
b panels of the matrix A that satisfies

gW ≤ (1 + τb)n/b. (2.6)

As explained in the algebra section, the LU PRRP factorization leads first to a block
LU factorization, which is completed with additional GEPP factorizations of the
diagonal b × b blocks and updates of corresponding blocks of rows of the trailing
matrix. These additional factorizations lead to a growth factor bounded by 2b on the
trailing blocks of rows. Since we choose b� n, we conclude that the growth factor of
the entire factorization is still bounded by (1 + τb)n/b.

The improvement of the upper bound of the growth factor of LU PRRP with
respect to GEPP is illustrated in Table 2.1, where the panel size varies from 8 to 128,
and the parameter τ is equal to 2. The worst case growth factor becomes arbitrarily
smaller than for GEPP, for b ≥ 64.

Table 2.1
Upper bounds of the growth factor gW obtained from factoring a matrix of size m × n using

LU PRRP with different panel sizes and τ = 2.

b gW
8 (1.425)n−1

16 (1.244)n−1

32 (1.139)n−1

64 (1.078)n−1

128 (1.044)n−1

Despite the complexity of our algorithm in pivot selection, we still compute an
LU factorization, only with different pivots. Consequently, the rounding error analysis
for LU factorization still applies (see, for example, [3]), which indicates that element
growth is the only factor controlling the numerical stability of our algorithm.

2.3. Experimental results. We measure the stability of the LU PRRP factor-
ization experimentally on a large set of test matrices by using several metrics, as the
growth factor, the normwise backward stability, and the componentwise backward
stability. The tests are performed in Matlab. In the tests, in most of the cases, the
panel factorization is performed by using the QR with column pivoting factorization
instead of the strong RRQR factorization. This is because in practice RT12(R−111)T is
already well bounded after performing the RRQR factorization with column pivoting
(‖RT12(R−111)T ‖max is rarely bigger than 3). Hence no additional swaps are needed to
ensure that the elements are well bounded. However, for the ill-conditionned special
matrices (condition number ≥ 1014), to get small growth factors, we perform the
panel factorization by using the strong RRQR factorization. In fact, for these cases,
QR with column pivoting does not ensure a small bound for RT12(R−111)T .

We use a collection of matrices that includes random matrices, a set of special
matrices described in Table 6.1, and several pathological matrices on which Gaussian
elimination with partial pivoting fails because of large growth factors. The set of

8

special matrices includes ill-conditioned matrices as well as sparse matrices. The
pathological matrices considered are the Wilkinson matrix and two matrices arising
from practical applications, presented by Foster [7] and Wright [23], for which the
growth factor of GEPP grows exponentially. The Wilkinson matrix was constructed
to attain the upper bound of the growth factor of GEPP [21, 14], and a general layout
of such a matrix is

A = diag(±1)



1 0 0 · · · 0 1
−1 1 0 ... 0 1

−1 −1 1
. . .

...
...

...
...

. . .
. . . 0 1

−1 −1 · · · −1 1 1
−1 −1 · · · −1 −1 1


×


0

T
...
0

0 · · · 0 θ

 ,

where T is an (n−1)×(n−1) non-singular upper triangular matrix and θ = max|aij |.
We also test a generalized Wilkinson matrix, the general form of such a matrix is

A =



1 0 0 · · · 0 1
0 1 0 ... 0 1

1
. . .

...
...

...
. . .

. . . 0 1
1 1

0 · · · 0 1


+ TT ,

where T is an n× n upper triangular matrix with zero entries on the main diagonal.
The matlab code of the matrix A is detailed in Appendix F.

The Foster matrix represents a concrete physical example that arises from using
the quadrature method to solve a certain Volterra integral equation and it is of the
form

A =



1 0 0 · · · 0 − 1
c

−kh2 1− kh
2 0 ... 0 − 1

c

−kh2 −kh 1− kh
2

. . .
...

...
...

...
. . . 0 − 1

c

−kh2 −kh · · · −kh 1− kh
2 − 1

c

−kh2 −kh · · · −kh −kh 1− 1
c −

kh
2


.

Wright [23] discusses two-point boundary value problems for which standard so-
lution techniques give rise to matrices with exponential growth factor when Gaussian
elimination with partial pivoting is used. This kind of problems arise for example from
the multiple shooting algorithm. A particular example of this problem is presented
by the following matrix,

A =



I I
−eMh I 0

−eMh I
...

. . .
. . . 0
−eMh I

 ,
9

where eMh = I +Mh+O(h2).
The experimental results show that the LU PRRP factorization is very stable.

Figure 2.1 displays the growth factor of LU PRRP for random matrices of size varying
from 1024 to 8192 and for sizes of the panel varying from 8 to 128. We observe that
the smaller the size of the panel is, the bigger the element growth is. In fact, for a
smaller size of the panel, the number of panels and the number of updates on the
trailing matrix is bigger, and this leads to a larger growth factor. But for all panel
sizes, the growth factor of LU PRRP is smaller than the growth factor of GEPP. For
example, for a random matrix of size 4096 and a panel of size 64, the growth factor
is only about 19, which is smaller than the growth factor obtained by GEPP, and as
expected, much smaller than the theoretical upper bound of (1.078)4095.

Fig. 2.1. Growth factor gW of the LU PRRP factorization of random matrices.

Tables 6.2 and 6.4 in Appendix B present more detailed results showing the
stability of the LU PRRP factorization for random matrices and a set of special
matrices. There, we include different metrics, such as the norm of the factors, the
value of their maximum element and the backward error of the LU factorization.
We evaluate the normwise backward stability by computing three accuracy tests as
performed in the HPL (High-Performance Linpack) benchmark [6], and denoted as
HPL1, HPL2 and HPL3.

HPL1 = ||Ax− b||∞/(ε||A||1 ∗N),

HPL2 = ||Ax− b||∞/(ε||A||1||x||1),

HPL3 = ||Ax− b||∞/(ε||A||∞||x||∞ ∗N).

In HPL, the method is considered to be accurate if the values of the three quan-
tities are smaller than 16. More generally, the values should be of order O(1). For
the LU PRRP factorization HPL1 is at most 8.09, HPL2 is at most 8.04× 10−2 and
HPL3 is at most 1.60 × 10−2. We also display the normwise backward error, using
the 1-norm,

η :=
||r||

||A|| ||x||+ ||b||
, (2.7)

10

and the componentwise backward error

w := max
i

|ri|
(|A| |x|+ |b|)i

, (2.8)

where the computed residual is r = b−Ax. For our tests residuals are computed with
double-working precision.

Figure 2.2 summarizes all our stability results for LU PRRP. This figure dis-
plays the ratio of the maximum between the backward error and machine epsilon of
LU PRRP versus GEPP. The backward error is measured using three metrics, the
relative error ‖PA − LU‖/‖A‖, the normwise backward error η, and the componen-
twise backward error w of LU PRRP versus GEPP, and the machine epsilon. We
take the maximum of the computed error with epsilon since smaller values are mostly
roundoff error, and so taking ratios can lead to extreme values with little reliability.
Results for all the matrices in our test set are presented, that is 20 random matrices
for which results are presented in Table 6.2, and 37 special matrices for which results
are presented in Tables 6.3 and 6.4. This figure shows that for random matrices,
almost all ratios are between 0.5 and 2. For special matrices, there are few outliers,
up to 23.71 (GEPP is more stable) for the backward error ratio of the special matrix
hadamard and down to 2.12×10−2 (LU PRRP is more stable) for the backward error
ratio of the special matrix moler.

Fig. 2.2. A summary of all our experimental data, showing the ratio between max(LU PRRP’s
backward error, machine epsilon) and max(GEPP’s backward error, machine epsilon) for all the
test matrices in our set. Each vertical bar represents such a ratio for one test matrix. Bars above
100 = 1 mean that LU PRRP’s backward error is larger, and bars below 1 mean that GEPP’s
backward error is larger. For each matrix and algorithm, the backward error is measured 3 ways.
For the first third of the bars, labeled ‖PA− LU‖/‖A‖, the metric is the backward error, using the
Frobenius norm. For the middle third of the bars, labeled “normwise backward error”, the metric
is η in equation (2.7). For the last third of the bars, labeled “componentwise backward error”, the
metric is w in equation (2.8). The test matrices are further labeled either as “randn”, which are
randomly generated, or “special”, listed in Table 6.1.

We consider now pathological matrices on which GEPP fails. Table 2.2 presents
results for the linear solver using the LU PRRP factorization for a Wilkinson matrix
[22] of size 2048 with a size of the panel varying from 8 to 128. The growth factor is 1

and the relative error ||PA−LU ||||A|| is on the order of 10−19. Table 2.3 presents results for

the linear solver using the LU PRRP algorithm for a generalized Wilkinson matrix of
size 2048 with a size of the panel varying from 8 to 128.

For the Foster matrix, it was shown that when c = 1 and kh = 2
3 , the growth

factor of GEPP is (2
3)(2n−1 − 1), which is close to the maximum theoretical growth

factor of GEPP of 2n−1. Table 2.4 presents results for the linear solver using the

11

Table 2.2
Stability of the LU PRRP factorization of a Wilkinson matrix on which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 1.02e+03 6.09e+00 1 1.95e+00 4.25e-20
64 1 1.02e+03 6.09e+00 1 1.95e+00 5.29e-20
32 1 1.02e+03 6.09e+00 1 1.95e+00 8.63e-20
16 1 1.02e+03 6.09e+00 1 1.95e+00 1.13e-19
8 1 1.02e+03 6.09e+00 1 1.95e+00 1.57e-19

Table 2.3
Stability of the LU PRRP factorization of a generalized Wilkinson matrix on which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.69 1.23e+03 1.39e+02 1.21e+03 1.17e+03 1.05e-15
64 2.61 9.09e+02 1.12e+02 1.36e+03 1.15e+03 9.43e-16
32 2.41 8.20e+02 1.28e+02 1.39e+03 9.77e+02 5.53e-16
16 4.08 1.27e+03 2.79e+02 1.41e+03 1.19e+03 7.92e-16
8 3.35 1.36e+03 2.19e+02 1.41e+03 1.73e+03 1.02e-15

LU PRRP factorization for a Foster matrix of size 2048 with a size of the panel
varying from 8 to 128 (c = 1, h = 1 and k = 2

3). According to the obtained results,
LU PRRP gives a modest growth factor of 2.66 for this practical matrix, while GEPP
has a growth factor of 1018 for the same parameters.

Table 2.4
Stability of the LU PRRP factorization of a practical matrix (Foster) on which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.66 1.28e+03 1.87e+00 1.92e+03 1.92e+03 4.67e-16
64 2.66 1.19e+03 1.87e+00 1.98e+03 1.79e+03 2.64e-16
32 2.66 4.33e+01 1.87e+00 2.01e+03 3.30e+01 2.83e-16
16 2.66 1.35e+03 1.87e+00 2.03e+03 2.03e+00 2.38e-16
8 2.66 1.35e+03 1.87e+00 2.04e+03 2.02e+00 5.36e-17

For matrices arising from the two-point boundary value problems described by
Wright, it was shown that when h is chosen small enough such that all elements of eMh

are less than 1 in magnitude, the growth factor obtained using GEPP is exponential.

For our experiment the matrix M =

[
− 1

6 1
1 − 1

6

]
, that is eMh ≈

[
1− h

6 h
h 1− h

6

]
,

and h = 0.3. Table 2.5 presents results for the linear solver using the LU PRRP
factorization for a Wright matrix of size 2048 with a size of the panel varying from 8
to 128. According to the obtained results, again LU PRRP gives minimum possible
pivot growth 1 for this practical matrix, compared to the GEPP method which leads
to a growth factor of 1095 using the same parameters.

All the previous tests show that the LU PRRP factorization is very stable for
random, and for more special matrices, and it also gives modest growth factor for the
pathological matrices on which GEPP fails. We note that we were not able to find
matrices for which LU PRRP attains the upper bound of (1 + τb)

n
b for the growth

factor.

12

Table 2.5
Stability of the LU PRRP factorization on a practical matrix (Wright) on which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
64 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
32 1 3.25e+00 8.00e+00 2.05e+00 2.07e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.44e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 3.65e+00 1.26e-16

3. Communication avoiding LU PRRP. In this section we present a com-
munication avoiding version of the LU PRRP algorithm, that is an algorithm that
minimizes communication, and so it will be more efficient than LU PRRP and GEPP
on architectures where communication is expensive. We show in this section that this
algorithm is more stable than CALU, an existing communication avoiding algorithm
for computing the LU factorization [10]. More importantly, its parallel version is also
more stable than GEPP (under certain conditions).

3.1. Matrix algebra. CALU PRRP is a block algorithm that uses tournament
pivoting, a strategy introduced in [10] that allows to minimize communication. As in
LU PRRP, at each step the factorization of the current panel is computed, and then
the trailing matrix is updated. However, in CALU PRRP the panel factorization is
performed in two steps. The first step, which is a preprocessing step, uses a reduction
operation to identify b pivot rows with a minimum amount of communication. The
strong RRQR factorization is the operator used at each node of the reduction tree
to select a new set of b candidate rows from the candidate rows selected at previous
stages of the reduction. The b pivot rows are permuted into the diagonal positions,
and then the QR factorization with no pivoting of the transpose of the entire panel
is computed.

In the following we illustrate tournament pivoting on the first panel, with the
input matrix A partitioned as in equation (2.1). Tournament pivoting considers that
the first panel is partitioned into P = 4 blocks of rows,

A(:, 1 : b) =


A00

A10

A20

A30

 .
The preprocessing step uses a binary reduction tree in our example, and we number
the levels of the reduction tree starting from 0. At the leaves of the reduction tree,
a set of b candidate rows are selected from each block of rows Ai0 by performing
the strong RRQR factorization on the transpose of each block Ai0. This gives the
following decomposition,


AT

00Π00

AT
10Π10

AT
20Π20

AT
30Π30

 =


Q00R00

Q10R10

Q20R20

Q30R30

 ,
13

which can be written as

A(:, 1 : b)T Π̄0 = A(:, 1 : b)T


Π00

Π10

Π20

Π30

 =


Q00R00

Q10R10

Q20R20

Q30R30

 ,

where Π̄0 is an m×m permutation matrix with diagonal blocks of size m
P ×

m
P , Qi0 is

an orthogonal matrix of size b× b, and each factor Ri0 is an b× m
P upper triangular

matrix.
There are now P = 4 sets of candidate rows. At the first level of the binary tree,

two matrices A01 and A11 are formed by combining together two sets of candidate
rows,

A01 =

[
(AT00Π00)(:, 1 : b)
(AT10Π10)(:, 1 : b)

]
A11 =

[
(AT20Π20)(:, 1 : b)
(AT30Π30)(:, 1 : b)

]
.

Two new sets of candidate rows are identified by performing the strong RRQR fac-
torization of each matrix A01 and A11,

AT01Π01 = Q01R01,

AT11Π11 = Q11R11,

where Π10, Π11 are permutation matrices of size 2b × 2b, Q01, Q11 are orthogonal
matrices of size b× b, and R01, R11 are upper triangular factors of size b× 2b.

The final b pivot rows are obtained by performing one last strong RRQR factor-
ization on the transpose of the following b× 2b matrix :

A02 =

[
(AT01Π01)(:, 1 : b)
(AT11Π11)(:, 1 : b)

]
,

that is

AT02Π02 = Q02R02,

where Π02 is a permutation matrix of size 2b × 2b, Q02 is an orthogonal matrix of
size b × b, and R02 is an upper triangular matrix of size b × 2b. This operation is
performed at the root of the binary reduction tree, and this ends the first step of the
panel factorization. In the second step, the final pivot rows identified by tournament
pivoting are permuted to the diagonal positions of A,

Â = Π̄TA = Π̄T
2 Π̄T

1 Π̄T
0 A,

where the matrices Π̄i are obtained by extending the matrices Π̄ to the dimension
m×m, that is

Π̄1 =

[
Π̄01

Π̄11

]
,

14

with Π̄i1, for i = 0, 1 formed as

Π̄i1 =


Πi1(1 : b, 1 : b) Πi1(1 : b, b+ 1 : 2b)

Im
P −b

Πi1(b+ 1 : 2b, 1 : b) Πi1(b+ 1 : 2b, b+ 1 : 2b)
Im

P −b

 ,
and

Π̄2 =


Π02(1 : b, 1 : b) Π02(1 : b, b+ 1 : 2b)

I2m
P −b

Π02(b+ 1 : 2b, 1 : b) Π02(b+ 1 : 2b, b+ 1 : 2b)
I2m

P −b

 .
Once the pivot rows are in the diagonal positions, the QR factorization with no

pivoting is performed on the transpose of the first panel,

ÂT (1 : b, :) = QR =
[
R11 R12

]
.

This factorization is used to update the trailing matrix, and the elimination of the first
panel leads to the following decomposition (we use the same notation as in section 2),

Â =

[
Ib

Â21Â
−1
11 Im−b

] [
Â11 Â12

Âs22

]
,

where

Âs22 = Â22 − Â21Â
−1
11 Â12.

As in the LU PRRP factorization, the CALU PRRP factorization computes a block
LU factorization of the input matrix A. To obtain the full LU factorization, an
additional GEPP is performed on the diagonal block Â11, followed by the update of
the block row Â12. The CALU PRRP factorization continues the same procedure on
the trailing matrix Âs22.

Note that the factors L and U obtained by the CALU PRRP factorization are
different from the factors obtained by the LU PRRP factorization. The two algorithms
use different pivot rows, and in particular the factor L of CALU PRRP is no longer
bounded by a given threshold τ as in LU PRRP. This leads to a different worst case
growth factor for CALU PRRP, that we will discuss in the following section.

The following figure displays the binary tree based tournament pivoting performed
on the first panel using an arrow notation (as in [10]). The function f(Aij) computes
a strong RRQR of the matrix ATij to select a set of b candidate rows. At each node of
the reduction tree, two sets of b candidate rows are merged together and form a matrix
Aij , the function f is applied on Aij , and another set of b candidate rows is selected.
While in this section we focused on binary trees, tournament pivoting can use any
reduction tree, and this allows the algorithm to adapt on different architectures. Later
in the paper we will consider also a flat reduction tree.

A30

A20

A10

A00

→
→
→
→

f(A30)

f(A20)

f(A10)

f(A00)

↗
↘

↗
↘

f(A11)

f(A01)

↗
↘
f(A02)

15

3.2. Numerical Stability of CALU PRRP. In this section we discuss the
stability of the CALU PRRP factorization and we identify similarities with the LU PRRP
factorization. We also discuss the growth factor of the CALU PRRP factorization,
and we show that its upper bound depends on the height of the reduction tree. For
the same reduction tree, this upper bound is smaller than that obtained with CALU.
More importantly, for cases of interest, the upper bound of the growth factor of
CALU PRRP is also smaller than that obtained with GEPP.

To address the numerical stability of CALU PRRP, we show that performing
CALU PRRP on a matrix A is equivalent to performing LU PRRP on a larger matrix
ALU PRRP , which is formed by blocks of A (sometimes slightly perturbed) and blocks
of zeros. This reasoning is also used in [10] to show the same equivalence between
CALU and GEPP. While this similarity is explained in detail in [10], here we focus
only on the first step of the CALU PRRP factorization. We explain the construction
of the larger matrix ALU PRRP to expose the equivalence between the first step of the
CALU PRRP factorization of A and the LU PRRP factorization of ALU PRRP .

Consider a nonsingular matrixA of sizem×n and the first step of its CALU PRRP
factorization using a general reduction tree of height H. Tournament pivoting selects
b candidate rows at each node of the reduction tree by using the strong RRQR fac-
torization. Each such factorization leads to an L factor which is bounded locally by a
given threshold τ . However this bound is not guaranteed globally. When the factor-
ization of the first panel is computed using the b pivot rows selected by tournament
pivoting, the L factor will not be bounded by τ . This results in a larger growth factor
than the one obtained with the LU PRRP factorization. Recall that in LU PRRP,
the strong RRQR factorization is performed on the transpose of the whole panel, and
so every entry of the obtained lower triangular factor L is bounded by τ .

However, we show now that the growth factor obtained after the first step of
the CALU PRRP factorization is bounded by (1 + τb)H+1. Consider a row j, and
let As(j, b + 1 : n) be the updated row obtained after the first step of elimination
of CALU PRRP. Suppose that row j of A is a candidate row at level k − 1 of the
reduction tree, and so it participates in the strong RRQR factorization computed at
a node sk at level k of the reduction tree, but it is not selected as a candidate row by
this factorization. We refer to the matrix formed by the candidate rows at node sk as
Āk. Hence, row j is not used to form the matrix Āk. Similarly, for every node i on the
path from node sk to the root of the reduction tree of height H, we refer to the matrix
formed by the candidate rows selected by strong RRQR as Āi. Note that in practice
it can happen that one of the blocks of the panel is singular, while the entire panel
is nonsingular. In this case strong RRQR will select less than b linearly independent
rows that will be passed along the reduction tree. However, for simplicity, we assume
in the following that the matrices Āi are nonsingular. For a more general solution,
the reader can consult [10].

Let Π be the permutation returned by the tournament pivoting strategy per-
formed on the first panel, that is the permutation that puts the matrix ĀH on diag-
onal. The following equation is satisfied,

(
ĀH ÂH

A(j, 1 : b) A(j, b+ 1 : n)

)
=

(
Ib

A(j, 1 : b)Ā−1
H 1

)
·
(
ĀH ÂH

As(j, b+ 1 : n)

)
, (3.1)

where

16

ĀH = (ΠA)(1 : b, 1 : b),

ÂH = (ΠA)(1 : b, b+ 1 : n).

The updated row As(j, b + 1 : n) can be also obtained by performing LU PRRP
on a larger matrix ALU PRRP of dimension ((H − k + 1)b+ 1)× ((H − k + 1)b+ 1),

ALU PRRP =



ĀH ÂH

ĀH−1 ĀH−1

ĀH−2 ĀH−2

. . .
. . .

Āk Āk

(−1)H−kA(j, 1 : b) A(j, b+ 1 : n)



=



Ib
ĀH−1Ā

−1
H Ib

ĀH−2Ā
−1
H−1 Ib

. . .
. . .

ĀkĀ
−1
k+1 Ib

(−1)H−kA(j, 1 : b)Ā−1
k 1



·



ĀH ÂH

ĀH−1 ÂH−1

ĀH−2 ÂH−2

. . .
...

Āk Âk

As(j, b+ 1 : n)


, (3.2)

where

ÂH−i =

{
ĀH if i = 0,

−ĀH−iĀ
−1
H−i+1ÂH−i+1 if 0 < i ≤ H − k. (3.3)

Equation (3.2) can be easily verified, since

As(j, b+ 1 : n) = A(j, b+ 1 : n)− (−1)H−kA(j, 1 : b)Ā−1k (−1)H−kÂk

= A(j, b+ 1 : n)−A(j, 1 : b)Ā−1k ĀkĀ
−1
k+1 . . . ĀH−2Ā

−1
H−1ĀH−1Ā

−1
H ÂH

= A(j, b+ 1 : n)−A(j, 1 : b)Ā−1H ÂH .

Equations (3.1) and (3.2) show that the Schur complement obtained after each
step of performing the CALU PRRP factorization of a matrix A is equivalent to the
Schur complement obtained after performing the LU PRRP factorization of a larger
matrix ALU PRRP , formed by blocks of A (sometimes slightly perturbed) and blocks
of zeros. More generally, this implies that the entire CALU PRRP factorization of A
is equivalent to the LU PRRP factorization of a larger and very sparse matrix, formed
by blocks of A and blocks of zeros (we omit the proofs here, since they are similar
with the proofs presented in [10]).

Equation (3.2) is used to derive the upper bound of the growth factor of CALU PRRP
from the upper bound of the growth factor of LU PRRP. The elimination of each row
of the first panel using CALU PRRP can be obtained by performing LU PRRP on a

17

matrix of maximum dimension m× b(H + 1). Hence the upper bound of the growth
factor obtained after one step of CALU PRRP is (1 + τb)H+1. This leads to an upper
bound of (1 + τb)

n
b (H+1)−1 for a matrix of size m× n.

Table 3.1 summarizes the bounds of the growth factor of CALU PRRP derived
in this section, and also recalls the bounds of LU PRRP, GEPP, and CALU the
communication avoiding version of GEPP. It considers the growth factor obtained
after the elimination of b columns of a matrix of size m× (b+ 1), and also the general
case of a matrix of size m× n. As discussed in section 2 already, LU PRRP is more
stable than GEPP in terms of worst case growth factor. From Table 3.1, it can be
seen that for a reduction tree of a same height, CALU PRRP is more stable than
CALU.

In the following we show that CALU PRRP can be more stable than GEPP in
terms of worst case growth factor. Consider a parallel version of CALU PRRP based
on a binary reduction tree of height H = log(P), where P is the number of processors.

The upper bound of the growth factor becomes (1 + τb)
n(logP+1)

b −1, which is smaller
than 2n(logP+1)−1, the upper bound of the growth factor of CALU. For example, if
the threshold is τ = 2, the panel size is b = 64, and the number of processors is
P = 128 = 27, then gWCALU PRRP = (1.7)n. This quantity is much smaller than
27n the upper bound of CALU, and even smaller than the worst case growth factor
of GEPP of 2n−1. In general, the upper bound of CALU PRRP can be smaller than
the one of GEPP, if the different parameters τ , H, and b are chosen such that the
condition

H ≤ b

(log b+ log τ)
(3.4)

is satisfied. For a binary tree of height H = logP , it becomes logP ≤ b
(log b+log τ) .

This is a condition which can be satisfied in practice, by choosing b and τ appropriately
for a given number of processors P . For example, when P ≤ 512, b = 64, and τ = 2,
the condition (3.4) is satisfied, and the worst case growth factor of CALU PRRP is
smaller than the one of GEPP.

However, for a sequential version of CALU PRRP using a flat tree of height H =

n/b, the condition to be satisfied becomes n ≤ b2

(log b+log τ) , which is more restrictive.

In practice, the size of b is chosen depending on the size of the memory, and it might
be the case that it will not satisfy the condition in equation (3.4).

Table 3.1
Bounds for the growth factor gW obtained from factoring a matrix of size m × (b + 1) and a

matrix of size m×n using CALU PRRP, LU PRRP, CALU, and GEPP. CALU PRRP and CALU
use a reduction tree of height H. The strong RRQR used in LU PRRP and CALU PRRP is based
on a threshold τ . For the matrix of size m × (b + 1), the result corresponds to the growth factor
obtained after eliminating b columns.

matrix of size m× (b+ 1)
TSLU(b,H) LU PRRP(b,H) GEPP LU PRRP

gW upper bound 2b(H+1) (1 + τb)H+1 2b 1 + τb

matrix of size m× n
CALU CALU PRRP GEPP LU PRRP

gW upper bound 2n(H+1)−1 (1 + τb)
n(H+1)

b
−1 2n−1 (1 + τb)

n
b

18

3.3. Experimental results. In this section we present experimental results and
show that CALU PRRP is stable in practice and compare them with those obtained
from CALU and GEPP in [10]. We present results for both the binary tree scheme
and the flat tree scheme.

As in section 2, we perform our tests on matrices whose elements follow a normal
distribution. In Matlab notation, the test matrix is A = randn(n, n), and the right
hand side is b = randn(n, 1). The size of the matrix is chosen such that n is a power
of 2, that is n = 2k, and the sample size is 10 if k < 13 and 3 if k ≥ 13. To
measure the stability of CALU PRRP, we discuss several metrics, that concern the
LU decomposition and the linear solver using it, such as the growth factor, normwise
and componentwise backward errors. We also perform tests on several special matrices
including sparse matrices, they are described in Appendix B.

Figure 3.1 displays the values of the growth factor gW of the binary tree based
CALU PRRP, for different block sizes b and different number of processors P . As
explained in section 3.1, the block size determines the size of the panel, while the
number of processors determines the number of block rows in which the panel is
partitioned. This corresponds to the number of leaves of the binary tree. We observe
that the growth factor of binary tree based CALU PRRP is in the most of the cases
better than GEPP. The curves of the growth factor lie between 1

2n
1/2 and 3

4n
1/2 in our

tests on random matrices. These results show that binary tree based CALU PRRP is
stable and the growth factor values obtained for the different layouts are better than
those obtained with binary tree based CALU. The figure 3.1 includes also the growth
factor of the LU PRRP method with a panel of size b = 64. We note that that results
are better than those of binary tree based CALU PRRP.

Fig. 3.1. Growth factor gW of binary tree based CALU PRRP for random matrices.

Figure 3.2 displays the values of the growth factor gW for flat tree based CALU PRRP
with a block size b varying from 8 to 128. The growth factor gW is decreasing with
increasing the panel size b. We note that the curves of the growth factor lie between
1
4n

1/2 and 3
4n

1/2 in our tests on random matrices. We also note that the results ob-
tained with the LU PRRP method with a panel of size b = 64 are better than those

19

of flat tree based CALU PRRP.

Fig. 3.2. Growth factor gW of flat tree based CALU PRRP for random matrices.

The growth factors of both binary tree based and flat tree based CALU PRRP
have similar (sometimes better) behavior than the growth factors of GEPP.

Table 6.5 in Appendix B presents results for the linear solver using binary tree
based CALU PRRP, together with binary tree based CALU and GEPP for compara-
ison and Table 6.6 in Appendix B presents results for the linear solver using flat tree
based CALU PRRP, together with flat tree based CALU and GEPP for comparaison.
We note that for the binary tree based CALU PRRP, when m

P = b, for the algorithm
we only use P1 = m

(b+1) processors, since to perform a Strong RRQR on a given block,

the number of its rows should be at least the number of its columns +1. Tables 6.5
and 6.6 also include results obtained by iterative refinement used to improve the ac-
curacy of the solution. For this, the componentwise backward error in equation (2.8)
is used. In the previous tables, wb denotes the componentwise backward error before
iterative refinement and NIR denotes the number of steps of iterative refinement. NIR
is not always an integer since it represents an average. For all the matrices tested
CALU PRRP leads to results as accurate as the results obtained with CALU and
GEPP.

In Appendix B we present more detailed results. There we include some other
metrics, such as the norm of the factors, the norm of the inverse of the factors, their
conditioning, the value of their maximum element, and the backward error of the LU
factorization. Through the results detailed in this section and in Appendix B we show
that binary tree based and flat tree based CALU PRRP are stable, have the same
behavior as GEPP for random matrices, and are more stable than binary tree based
and flat tree based CALU in terms of growth factor.

Figure 3.3 summarizes all our stability results for the CALU PRRP factorization
based on both binary tree and flat tree schemes. As figure 2.2, this figure displays the
ratio of the maximum between the backward error and machine epsilon of LU PRRP
versus GEPP. The backward error is measured as the relative error ‖PA−LU‖/‖A‖,

20

the normwise backward error η, and the componentwise backward error w. Results
for all the matrices in our test set are presented, that is 25 random matrices for bi-
nary tree base CALU PRRP from Table 6.9, 20 random matrices for flat tree based
CALU PRRP from Table 6.7, and 37 special matrices from Tables 6.8 and 6.10.
As it can be seen, nearly all ratios are between 0.5 and 2.5 for random matrices.
However there are few outliers, for example the relative error ratio has values be-
tween 24.2 for the special matrix hadamard (GEPP is more stable than binary tree
based CALU PRRP), and 5.8× 10−3 for the special matrix moler (binary tree based
CALU PRRP is more stable than GEPP).

Fig. 3.3. A summary of all our experimental data, showing the ratio of max(CALU PRRP’s
backward error, machine epsilon) to max(GEPP’s backward error, machine epsilon) for all the test
matrices in our set. Each vertical bar represents such a ratio for one test matrix. Bars above
100 = 1 mean that CALU PRRP’s backward error is larger, and bars below 1 mean that GEPP’s
backward error is larger. For each matrix and algorithm, the backward error is measured using three
different metrics. For the last third of the bars, labeled “componentwise backward error”, the metric
is w in equation (2.8). The test matrices are further labeled either as “randn”, which are randomly
generated, or “special”, listed in Table 6.1. Finally, each test matrix is factored using CALU PRRP
with a binary reduction tree (labeled BCALU for BCALU PRRP) and with a flat reduction tree
(labeled FCALU for FCALU PRRP).

We consider now the same set of pathological matrices as in section 2 on which
GEPP fails. For the Wilkinson matrix, both CALU and CALU PRRP based on flat
and binary tree give modest element growth. For the generalized Wilkinson matrix,
the Foster matrix, and Wright matrix, CALU fails with both flat tree and binary tree
reduction schemes.

Tables 3.2 and 3.3 present the results obtained for the linear solver using the
CALU PRRP factorization based on flat and binary tree schemes for a generalized
Wilkinson matrix of size 2048 with a size of the panel varying from 8 to 128 for the
flat tree scheme and a number of processors varying from 128 to 32 for the binary

tree scheme. The growth factor is of order 1 and the quantity ||PA−LU ||||A|| is on the

order of 10−16. Both flat tree based CALU and binary tree based CALU fail on this
pathological matrix. In fact for a generalized Wilkinson matrix of size 1024 and a
panel of size b = 128, the growth factor obtained with flat tree based CALU is of size
10234.

For the Foster matrix, we have seen in the section 2 that LU PRRP gives modest
pivot growth, whereas GEPP fails. Both flat tree based CALU and binary tree based
CALU fail on the Foster matrix. However flat tree based CALU PRRP and binary
tree based CALU PRRP solve easily this pathological matrix.

Tables 3.4 and 3.5 present results for the linear solver using the CALU PRRP
factorization based on the flat tree scheme and the binary tree scheme, respectively.

21

Table 3.2
Stability of the flat tree based CALU PRRP factorization of a generalized Wilkinson matrix on

which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.01 1.01e+03 1.40e+02 1.31e+03 9.76e+02 9.56e-16
64 2.02 1.18e+03 1.64e+02 1.27e+03 1.16e+03 1.01e-15
32 2.04 8.34e+02 1.60e+02 1.30e+03 7.44e+02 7.91e-16
16 2.15 9.10e+02 1.45e+02 1.31e+03 8.22e+02 8.07e-16
8 2.15 8.71e+02 1.57e+02 1.371e+03 5.46e+02 6.09e-16

Table 3.3
Stability of the binary tree based CALU PRRP factorization of a generalized Wilkinson matrix

on which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 2.10e+00 1.33e+03 1.29e+02 1.34e+03 1.33e+03 1.08e-15

64
16 2.04e+00 6.85e+02 1.30e+02 1.30e+03 6.85e+02 7.85e-16
8 8.78e+01 1.21e+03 1.60e+02 1.33e+03 1.01e+03 9.54e-16

32
32 2.08e+00 9.47e+02 1.58e+02 1.41e+03 9.36e+02 5.95e-16
16 2.08e+00 1.24e+03 1.32e+02 1.35e+03 1.24e+03 1.01e-15
8 1.45e+02 1.03e+03 1.54e+02 1.37e+03 6.61e+02 6.91e-16

We test a Foster matrix of size 2048 with a panel size varying from 8 to 128 for the
flat tree based CALU PRRP and a number of processors varying from 128 to 32 for
the binary tree based CALU PRRP. We use the same parameters as in section 2, that
is c = 1, h = 1 and k = 2

3 . According to the obtained results, CALU PRRP gives a
modest growth factor of 1.33 for this practical matrix.

Table 3.4
Stability of the flat tree based CALU PRRP factorization of a practical matrix (Foster) on

which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1.33 1.71e+02 1.87e+00 1.92e+03 1.29e+02 6.51e-17
64 1.33 8.60e+01 1.87e+00 1.98e+03 6.50e+01 4.87e-17
32 1.33 4.33e+01 1.87e+00 2.01e+03 3.30e+01 2.91e-17
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

As GEPP, both the flat tree based and the binary tree based CALU fail on the
Wright matrix. In fact for a matrix of size 2048, a parameter h = 0.3, with a panel of
size b = 128, the flat tree based CALU gives a growth factor of 1098. With a number
of processors P = 64 and a panel of size b = 16, the binary tree based CALU also
gives a growth factor of 1098. Tables 3.6 and 3.7 present results for the linear solver
using the CALU PRRP factorization for a Wright matrix of size 2048. For the flat
tree based CALU PRRP, the size of the panel is varying from 8 to 128. For the binary
tree based CALU PRRP, the number of processors is varying from 32 to 128 and the
size of the panel from 16 to 64 such that the number of rows in the leaf nodes is
equal or bigger than two times the size of the panel. The obtained results, show that
CALU PRRP gives a modest growth factor of 1 for this practical matrix, compared

22

Table 3.5
Stability of the binary tree based CALU PRRP factorization of a practical matrix (Foster) on

which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

64
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

32
32 1.33 4.33e+01 1.87e+00 2.01e+03 3.300e+01 2.91e-17
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

to the CALU method.

Table 3.6
Stability of the flat tree based CALU PRRP factorization of a practical matrix (Wright) on

which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
64 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
32 1 3.25e+00 8.00e+00 2.05e+00 2.02e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

Table 3.7
Stability of the binary tree based CALU PRRP factorization of a practical matrix (Wright) on

which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

64
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

32
32 1 3.25e+00 8.00e+00 2.05e+00 2.02e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

All the previous tests show that the CALU PRRP factorization is very stable for
random and more special matrices, and it also gives modest growth factor for the
pathological matrices on which CALU fails, this is for both binary tree and flat tree
based CALU PRRP.

4. Lower bounds on communication. In this section we focus on the parallel
CALU PRRP algorithm based on a binary reduction tree, and we show that it min-
imizes the communication between different processors of a parallel computer. For
this, we use known lower bounds on the communication performed during the LU

23

factorization of a dense matrix of size n× n, which are

words moved = Ω

(
n3√
M

)
, (4.1)

messages = Ω

(
n3

M
3
2

)
, (4.2)

where # words moved refers to the volume of communication, # messages refers to
the number of messages exchanged, and M refers to the size of the memory (the
fast memory in the case of a sequential algorithm, or the memory per processor in
the case of a parallel algorithm). These lower bounds were first introduced for dense
matrix multiplication [15], [16], generalized later to LU factorization [4], and then to
almost all direct linear algebra [1]. Note that these lower bounds apply to algorithms
based on orthogonal transformations under certain conditions [1]. However, this is
not relevant to our case, since CALU PRRP uses orthogonal transformations only to
select pivot rows, while the update of the trailing matrix is still performed as in the
classic LU factorization algorithm. Hence the lower bounds from equations (4.1) and,
(4.2) are valid for CALU PRRP.

We estimate now the cost of computing in parallel the CALU PRRP factorization
of a matrix A of size m × n. The matrix is distributed on a grid of P = Pr × Pc
processors using a two-dimensional (2D) block cyclic layout. We use the following
performance model. Let γ be the cost of performing a floating point operation, and
let α+βw be the cost of sending a message of size w words, where α is the latency cost
and β is the inverse of the bandwidth. Then, the total running time of an algorithm
is estimated to be

α · (# messages) + β · (# words moved) + γ · (# flops),

where #messages, #words moved, and #flops are counted along the critical path of
the algorithm.

Table 4.1 displays the performance of parallel CALU PRRP (a detailed estimation
of the counts is presented in Appendix D). It also recalls the performance of two
existing algorithms, the PDGETRF routine from ScaLAPACK which implements
GEPP, and the CALU factorization. All three algorithms have the same volume of
communication, since it is known that PDGETRF already minimizes the volume of
communication. However, the number of messages of both CALU PRRP and CALU
is smaller by a factor of the order of b than the number of messages of PDGETRF.
This improvement is achieved thanks to tournament pivoting. In fact, partial pivoting,
as used in the routine PDGETRF, leads to an O(n logP) number of messages, and
because of this, GEPP cannot minimize the number of messages.

Compared to CALU, CALU PRRP sends a small factor of less messages (depend-

ing on Pr and Pc) and performs 1
Pr

(
2mn− n2

)
b+ nb2

3 (5 log2 Pr+1) more flops (which
represents a lower order term). This is because CALU PRRP uses the strong RRQR
factorization at every node of the reduction tree of every panel factorization, while
CALU uses GEPP.

Despite this additional communication cost, we show now that CALU PRRP is
optimal in terms of communication. We choose optimal values of the parameters
Pr, Pc, and b, as used in CAQR [4] and CALU [10], that is,

Pr =

√
mP

n
, Pc =

√
nP

m
and b =

1

4
log−2

(√
mP

n

)
·
√
mn

P
= log−2

(
mP

n

)
·
√
mn

P
.

24

Table 4.1
Performance estimation of parallel (binary tree based) CALU PRRP, parallel CALU, and

PDGETRF routine when factoring an m × n matrix, m ≥ n. The input matrix is distributed
using a 2D block cyclic layout on a Pr×Pc grid of processors. Some lower order terms are omitted.

Parallel CALU PRRP

messages 3n
b

log2 Pr + 2n
b

log2 Pc

words
(
nb+ 3

2
n2

Pc

)
log2 Pr + 1

Pr

(
mn− n2

2

)
log2 Pc

flops 1
P

(
mn2 − n3

3

)
+ 2

Pr

(
2mn− n2

)
b+ n2b

2Pc
+ 10nb2

3
log2 Pr

Parallel CALU

messages 3n
b

log2 Pr + 3n
b

log2 Pc

words
(
nb+ 3n2

2Pc

)
log2 Pr + 1

Pr

(
mn− n2

2

)
log2 Pc

flops 1
P

(
mn2 − n3

3

)
+ 1

Pr

(
2mn− n2

)
b+ n2b

2Pc
+ nb2

3
(5 log2 Pr − 1)

PDGETRF

messages 2n
(
1 + 2

b

)
log2 Pr + 3n

b
log2 Pc

words
(

nb
2

+ 3n2

2Pc

)
log2 Pr + log2 Pc

1
Pr

(
mn− n2

2

)
flops 1

P

(
mn2 − n3

3

)
+ 1

Pr

(
mn− n2

2

)
b+ n2b

2Pc

For a square matrix of size n× n, the optimal parameters are,

Pr =
√
P , Pc =

√
P and b =

1

4
log−2

(√
P
)
· n√

P
= log−2 (P) · n√

P
.

Table 4.2 presents the performance estimation of parallel CALU PRRP and par-
allel CALU when using the optimal layout. It also recalls the lower bounds on com-
munication from equations (4.1) and (4.2) when the size of the memory per processor
is on the order of n2/P . Both CALU PRRP and CALU attain the lower bounds on
the number of words and on the number of messages, modulo polylogarithmic factors.
Note that the optimal layout allows to reduce communication, while keeping the num-
ber of extra floating point operations performed due to tournament pivoting as a lower
order term. While in this section we focused on minimizing communication between
the processors of a parallel computer, it is straightforward to show that the usage of a
flat tree during tournament pivoting allows CALU PRRP to minimize communication
between different levels of the memory hierarchy of a sequential computer.

Table 4.2
Performance estimation of parallel (binary tree based) CALU PRRP and CALU with an opti-

mal layout. The matrix factored is of size n× n. Some lower-order terms are omitted.

Parallel CALU PRRP with optimal layout Lower bound

messages 5
2

√
P log3 P Ω(

√
P)

words n2
√
P

(
1
2

log−1 P + logP
)

Ω(n2
√
P

)

flops 1
P

2n3

3
+ 5n3

2P log2 P
+ 5n3

3P log3 P
1
P

2n3

3

Parallel CALU with optimal layout Lower bound

messages 3
√
P log3 P Ω(

√
P)

words n2
√
P

(
1
2

log−1 P + logP
)

Ω(n2
√
P

)

flops 1
P

2n3

3
+ 3n3

2P log2 P
+ 5n3

6P log3 P
1
P

2n3

3

25

5. Less stable factorizations that can also minimize communication. In
this section, we present briefly two alternative algorithms that are based on panel
strong RRQR pivoting and that are conceived such that they can minimize commu-
nication. But we will see that they can be unstable in practice. These algorithms are
also based on block algorithms, that factor the input matrix by traversing panels of
size b. The main difference between them and CALU PRRP is the panel factorization,
which is performed only once in the alternative algorithms.

We present first a parallel alternative algorithm, which we refer to as block par-
allel LU PRRP. At each step of the block factorization, the panel is partitioned into
P block-rows [A0;A1; . . . ;AP−1]. The blocks below the diagonal b × b block of the
current panel are eliminated by performing a binary tree of strong RRQR factoriza-
tions. At the leaves of the tree, the elements below the diagonal block of each block
Ai are eliminated using strong RRQR. The elimination of each such block row is
followed by the update of the corresponding block row of the trailing matrix. The
algorithm continues by performing the strong RRQR factorization of pairs of b × b
blocks stacked atop one another, until all the blocks below the diagonal block are
eliminated and the corresponding trailing matrices are updated. The algebra of the
block parallel LU PRRP algorithm is detailed in Appendix E, while in figure 5.1 we
illustrate one step of the factorization by using an arrow notation, where the function
g(Aij) computes a strong RRQR on the matrix ATij and updates the trailing matrix
in the same step.

g(A30)

g(A20)

g(A10)

g(A00)

↗
↘

↗
↘

g(A11)

g(A01)

↗
↘
g(A02)

Fig. 5.1. Block parallel LU PRRP

A sequential version of the algorithm is based on the usage of a flat tree, and we
refer to this algorithm as block pairwise LU PRRP. Using the arrow notation, the
figure 5.2 illustrates the elimination of one panel.

A30

A20

A10

A00

���
���

���
���

�:

���
���

���:��
���:

-g(A00)-g(A01)- g(A02)- g(A03)

Fig. 5.2. Block pairwise LU PRRP

The block parallel LU PRRP and the block pairwise LU PRRP algorithms have
similarities with the block parallel pivoting and the block pairwise pivoting algorithms.
These two latter algorithms were shown to be potentially unstable in [10]. There is a
main difference between all these alternative algorithms and algorithms that compute
a classic LU factorization as GEPP, LU PRRP, and their communication avoiding
variants. The alternative algorithms compute a factorization in the form of a product
of lower triangular factors and an upper triangular factor. And the elimination of
each column leads to a rank update of the trailing matrix larger than one. It is
thought in [20] that the rank-1 update property of algorithms that compute an LU

26

factorization inhibits potential element growth during the factorization, while a large
rank update might lead to an unstable factorization.

Note however that at each step of the factorization, block parallel and block
pairwise LU PRRP use at each level of the reduction tree original rows of the active
matrix. Block parallel pivoting and block pairwise pivoting algorithms use U factors
previously computed to achieve the factorization, and this could potentially lead to a
faster propagation of ill-conditioning.

Fig. 5.3. Growth factor of block parallel LU PRRP for varying block size b and number of
processors P .

The upper bound of the growth factor of both block parallel and block pairwise
LU PRRP is (1+τb)

n
b , since for every panel factorization, a row is updated only once.

Hence they have the same bounds as the LU PRRP factorization, and smaller than
that of the CALU PRRP factorization. Despite this, they are less stable than the
CALU PRRP factorization. Figures 5.3 and 5.4 display the growth factor of block
parallel LU PRRP and block pairwise LU PRRP for matrices following a normal dis-
tribution. In figure 5.3, the number of processors P on which each panel is partitioned
is varying from 16 to 32, and the block size b is varying from 2 to 16. The matrix
size varies from 64 to 2048, but we have observed the same behavior for matrices of
size up to 8192. When the number of processors P is equal to 1, the block parallel
LU PRRP corresponds to the LU PRRP factorization. The results show that there
are values of P and b for which this method can be very unstable. For the sizes of
matrices tested, when b is chosen such that the blocks at the leaves of the reduction
tree have more than 2b rows, the number of processors P has an important impact,
the growth factor increases with increasing P , and the method is unstable.

In Figure 5.4, the matrix size varies from 1024 to 8192. For a given matrix size, the
growth factor increases with decreasing the size of the panel b, as one could expect. We
note that the growth factor of block pairwise LU PRRP is larger than that obtained
with the CALU PRRP factorization based on a flat tree scheme presented in Table
6.7. But it stays smaller than the size of the matrix n for different panel sizes. Hence
this method is more stable than block parallel LU PRRP. Further investigation is
required to conclude on the stability of these methods.

27

Fig. 5.4. Growth factor of block pairwise LU PRRP for varying matrix size and varying block
size b.

6. Conclusions. This paper introduces LU PRRP, an LU factorization algo-
rithm based on panel rank revealing pivoting. This algorithm is more stable than
GEPP in terms of worst case growth factor. It is also very stable in practice for
various classes of matrices, including pathological cases on which GEPP fails.

Its communication avoiding version, CALU PRRP, is also more stable in terms of
worst case growth factor than CALU, the communication avoiding version of GEPP.
More importantly, there are cases of interest for which the upper bound of the growth
factor of CALU PRRP is smaller than that of GEPP for several cases of interest.
Extensive experiments show that CALU PRRP is very stable in practice and leads to
results of the same order of magnitude as GEPP, sometimes even better.

Our future work focuses on two main directions. The first direction investigates
the design of a communication avoiding algorithm that has smaller bounds on the
growth factor than that of GEPP in general. The second direction focuses on es-
timating the performance of CALU PRRP on parallel machines based on multicore
processors, and comparing it with the performance of CALU.

REFERENCES

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in linear
algebra, SIMAX, 32 (2011), pp. 866–90.

[2] D. W. Barron and H. P. F. Swinnerton-Dyer, Solution of Simultaneous Linear Equations
using a Magnetic-Tape Store, Computer Journal, 3 (1960), pp. 28–33.

[3] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[4] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel

and sequential QR and LU factorizations, SIAM Journal on Scientific Computing, (2011).
short version of UCB/EECS-2008-89.

[5] S. Donfack, L. Grigori, and A.K. Gupta, Adapting Communication-avoinding LU and QR
factorizations to multicore architectures, Proceedings of the IPDPS Conference, (2010).

[6] J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK Benchmark: Past, Present and
Future, Concurrency: Practice and Experience, 15 (2003), pp. 803–820.

[7] Leslie V. Foster, Gaussian Elimination with Partial Pivoting Can Fail in Practice, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 1354–1362.

[8] L. V. Foster, The growth factor and efficiency of Gaussian elimination with rook pivoting, J.
Comput. Appl. Math., 86 (1997), pp. 177–194.

28

[9] N. I. M. Gould, On growth in Gaussian elimination with complete pivoting, SIAM J. Matrix
Anal. Appl., 12 (1991), pp. 354–361.

[10] L. Grigori, J. Demmel, and H. Xiang, CALU: A communication optimal LU factorization
algorithm, SIAM Journal on Matrix Analysis and Applications, (2011).

[11] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[12] M. Gu and S. C. Eisenstat, Efficient Algorithms For Computing A Strong Rank Reaviling
QR Factorization, SIAM J. SCI.COMPUT., 17 (1996), pp. 848–896.

[13] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, second ed., 2002.
[14] N. Higham and D. J. Higham, Large Growth Factors in Gaussian Elimination with Pivoting,

SIMAX, 10 (1989), pp. 155–164.
[15] J.-W. Hong and H. T. Kung, I/O complexity: The Red-Blue Pebble Game, in STOC ’81:

Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, New
York, NY, USA, 1981, ACM, pp. 326–333.

[16] D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory
matrix multiplication, J. Parallel Distrib. Comput., 64 (2004), pp. 1017–1026.

[17] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math.
Comp., 35 (1980), pp. 817–831.

[18] D. C. Sorensen, Analysis of pairwise pivoting in Gaussian elimination, IEEE Transactions
on Computers, 3 (1985), p. 274278.

[19] G. W. Stewart, Gauss, statistics, and Gaussian elimination, J. Comput. Graph. Statist., 4
(1995).

[20] L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination, SIAM
J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

[21] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput.
Mach., 8 (1961), pp. 281–330.

[22] , The algebric eigenvalue problem, Oxford University Press, (1985).
[23] S. J. Wright, A collection of problems for which Gaussian elimination with partial pivoting

is unstable, SIAM J. SCI. STATIST. COMPUT., 14 (1993), pp. 231–238.

29

Appendix A. We describe briefly strong RRQR introduced by M. Gu and S.
Eisenstat in [12]. This factorization will be used in our new LU decomposition algo-
rithm, which aims to obtain an upper bound of the growth factor smaller than GEPP
(see Section 2.) Consider a given threshold τ > 1 and an h× p matrix B with p > h,
a Strong RRQR factorization on a matrix B gives (with an empty (2, 2) block)

BTΠ = QR = Q
[
R11 R12

]
,

where ‖R−111 R12‖max ≤ τ , with ‖ . ‖max being the biggest entry of a given matrix in
absolute value. This factorization can be computed by a classical QR factorization
with column pivoting followed by a limited number of additional swaps and QR up-
dates if necessary.

Algorithm 2 Strong RRQR

1: Compute BTΠ = QR using the classical RRQR with column pivoting
2: while there exist i and j such that |(R−111 R12)ij | > τ do

3: Set Π = ΠΠij and compute the QR factorization of R Πij (QR updates)
4: end while

Ensure: BTΠ = QR with ‖R−111 R12‖max ≤ τ

The while loop in Algorithm 2 interchanges any pairs of columns that can increase
|det(R11)| by at least a factor τ . At most O(logτ n) such interchanges are necessary
before Algorithm 2 finds a strong RRQR factorization. The QR factorization of
BTΠ can be computed numerically via efficient and numerically stable QR updating
procedures. See [12] for details.

Appendix B. We present experimental results for the LU PRRP factorization,
the binary tree based CALU PRRP, and the flat tree based CALU PRRP. We show
results obtained for the LU decomposition and the linear solver. Tables 6.2, 6.7,
and 6.9 display the results obtained for random matrices. They show the growth
factor, the norm of the factor L and U and their inverses, and the relative error of the
decomposition.
Tables 6.3, 6.4, 6.8, and 6.10 display the results obtained for the special matrices
presented in Table 6.1. The size of the tested matrices is n = 4096. For LU PRRP
and flat tree based CALU PRRP, the size of the panel is b = 8. For binary tree based
CALU PRRP we use P = 64 and b = 8, this means that the size of the matrices used
at the leaves of the reduction tree is 64× 8.
Tables 6.5 and 6.6 present results for the linear solver using binary tree based and flat
tree based CALU PRRP, together with CALU and GEPP for comparison.
The tables are presented in the following order.

• Table 6.2: Stability of the LU decomposition for LU PRRP and GEPP on
random matrices.

• Table 6.3: Stability of the LU decomposition for GEPP on special matrices.
• Table 6.4: Stability of the LU decomposition for LU PRRP on special matri-

ces.
• Table 6.5: Stability of the linear solver using binary tree based CALU PRRP,

binary tree based CALU, and GEPP.
• Table 6.6: Stability of the linear solver using flat tree based CALU PRRP,

flat tree based CALU, and GEPP.

30

• Table 6.7: Stability of the LU decomposition for flat tree based CALU PRRP
and GEPP on random matrices.

• Table 6.8: Stability of the LU decomposition for flat tree based CALU PRRP
on special matrices.

• Table 6.9: Stability of the LU decomposition for binary tree based CALU PRRP
and GEPP on random matrices.

• Table 6.10: Stability of the LU decomposition for binary tree based CALU PRRP
on special matrices.

Table 6.1: Special matrices in our test set.

No. Matrix Remarks
1 hadamard Hadamard matrix, hadamard(n), where n, n/12, or n/20 is power of

2.
2 house Householder matrix, A = eye(n) − β ∗ v ∗ v′, where [v, β, s] =

gallery(’house’, randn(n, 1)).
3 parter Parter matrix, a Toeplitz matrix with most of singular values near π.

gallery(’parter’, n), or A(i, j) = 1/(i− j + 0.5).
4 ris Ris matrix, matrix with elements A(i, j) = 0.5/(n− i− j + 1.5). The

eigenvalues cluster around −π/2 and π/2. gallery(’ris’, n).
5 kms Kac-Murdock-Szego Toeplitz matrix. Its inverse is tridiagonal.

gallery(’kms’, n) or gallery(’kms’, n, rand).
6 toeppen Pentadiagonal Toeplitz matrix (sparse).
7 condex Counter-example matrix to condition estimators. gallery(’condex’, n).
8 moler Moler matrix, a symmetric positive definite (spd) matrix.

gallery(’moler’, n).
9 circul Circulant matrix, gallery(’circul’, randn(n, 1)).
10 randcorr Random n × n correlation matrix with random eigenvalues from

a uniform distribution, a symmetric positive semi-definite matrix.
gallery(’randcorr’, n).

11 poisson Block tridiagonal matrix from Poisson’s equation (sparse), A =
gallery(’poisson’,sqrt(n)).

12 hankel Hankel matrix, A = hankel(c, r), where c=randn(n, 1), r=randn(n, 1),
and c(n) = r(1).

13 jordbloc Jordan block matrix (sparse).
14 compan Companion matrix (sparse), A = compan(randn(n+1,1)).
15 pei Pei matrix, a symmetric matrix. gallery(’pei’, n) or gallery(’pei’, n,

randn).
16 randcolu Random matrix with normalized cols and specified singular values.

gallery(’randcolu’, n).
17 sprandn Sparse normally distributed random matrix, A = sprandn(n, n,0.02).
18 riemann Matrix associated with the Riemann hypothesis. gallery(’riemann’, n).
19 compar Comparison matrix, gallery(’compar’, randn(n), unidrnd(2)−1).
20 tridiag Tridiagonal matrix (sparse).
21 chebspec Chebyshev spectral differentiation matrix, gallery(’chebspec’, n, 1).
22 lehmer Lehmer matrix, a symmetric positive definite matrix such that

A(i, j) = i/j for j ≥ i. Its inverse is tridiagonal. gallery(’lehmer’,
n).

23 toeppd Symmetric positive semi-definite Toeplitz matrix. gallery(’toeppd’, n).
24 minij Symmetric positive definite matrix with A(i, j) = min(i, j).

gallery(’minij’, n).
25 randsvd Random matrix with preassigned singular values and specified band-

width. gallery(’randsvd’, n).
26 forsythe Forsythe matrix, a perturbed Jordan block matrix (sparse).

31

27 fiedler Fiedler matrix, gallery(’fiedler’, n), or gallery(’fiedler’, randn(n, 1)).
28 dorr Dorr matrix, a diagonally dominant, ill-conditioned, tridiagonal matrix

(sparse).

29 demmel A = D∗(eye(n) + 10−7∗rand(n)), where D = diag(1014∗(0:n−1)/n) [3].
30 chebvand Chebyshev Vandermonde matrix based on n equally spaced points on

the interval [0, 1]. gallery(’chebvand’, n).
31 invhess A=gallery(’invhess’, n, rand(n−1, 1)). Its inverse is an upper Hessen-

berg matrix.
32 prolate Prolate matrix, a spd ill-conditioned Toeplitz matrix. gallery(’prolate’,

n).
33 frank Frank matrix, an upper Hessenberg matrix with ill-conditioned eigen-

values.
34 cauchy Cauchy matrix, gallery(’cauchy’, randn(n, 1), randn(n, 1)).
35 hilb Hilbert matrix with elements 1/(i+ j − 1). A =hilb(n).
36 lotkin Lotkin matrix, the Hilbert matrix with its first row altered to all ones.

gallery(’lotkin’, n).
37 kahan Kahan matrix, an upper trapezoidal matrix.

32

T
a
b
l
e
6
.2

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

L
U

P
R

R
P

a
n

d
G

E
P

P
o

n
ra

n
d

o
m

m
a

tr
ic

es
.

L
U

P
R

R
P

n
b

g W
||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

H
P

L
1

H
P

L
2

H
P

L
3

81
92

12
8

2.
38

E
+

0
1

9
.9

4
E

+
0
4

3
.3

4
E

+
0
2

5
.2

6
E

-1
4

4
.1

3
E

-0
2

2
.3

5
E

-0
2

4
.6

8
E

-0
3

64
2.

76
E

+
0
1

1
.0

7
E

+
0
5

1
.0

6
E

+
0
3

5
.2

4
E

-1
4

5
.3

8
E

-0
2

2
.0

8
E

-0
2

4
.3

6
E

-0
3

32
3.

15
E

+
0
1

1
.2

0
E

+
0
5

3
.3

8
E

+
0
2

5
.1

4
E

-1
4

3
.9

5
E

-0
2

2
.2

7
E

-0
2

4
.5

4
E

-0
3

16
3.

63
E

+
0
1

1
.3

2
E

+
0
5

3
.2

0
E

+
0
2

4
.9

1
E

-1
4

3
.2

9
E

-0
2

1
.8

9
E

-0
2

3
.7

9
E

-0
3

8
3.

94
E

+
0
1

1
.4

1
E

+
0
5

2
.6

5
E

+
0
2

4
.8

4
E

-1
4

2
.9

5
E

-0
2

1
.6

9
E

-0
2

3
.3

7
E

-0
3

40
96

12
8

1.
75

E
+

0
1

3
.7

4
E

+
0
4

4
.3

4
E

+
0
2

2
.6

9
E

-1
4

3
.2

8
E

-0
2

2
.2

1
E

-0
2

4
.5

8
E

-0
3

64
1.

96
E

+
0
1

4
.0

9
E

+
0
4

1
.0

2
E

+
0
3

2
.6

2
E

-1
4

2
.1

0
E

-0
1

2
.1

7
E

-0
2

4
.6

4
E

-0
3

32
2.

33
E

+
0
1

4
.5

1
E

+
0
4

2
.2

2
E

+
0
3

2
.5

6
E

-1
4

5
.7

8
E

-2
2
.1

0
E

-0
2

4
.5

1
E

-0
3

16
2.

61
E

+
0
1

4
.8

9
E

+
0
4

1
.1

5
E

+
0
3

2
.5

7
E

-1
4

2
.9

8
E

-0
1

1
.9

9
E

-0
2

4
.0

8
E

-0
3

8
2.

91
E

+
0
1

5
.3

6
E

+
0
4

1
.9

3
E

+
0
3

2
.6

0
E

-1
4

2
.3

6
E

-0
1

1
.8

2
E

-0
2

3
.9

0
E

-0
3

20
48

12
8

1.
26

E
+

0
1

1
.3

9
E

+
0
4

5
.6

1
E

+
0
2

1
.4

6
E

-1
4

4
.3

7
E

-0
2

2
.2

5
E

-0
2

5
.1

6
E

-0
3

64
1.

46
E

+
0
1

1
.5

2
E

+
0
4

1
.8

6
E

+
0
2

1
.4

2
E

-1
4

4
.2

5
E

-0
2

2
.2

4
E

-0
2

5
.0

5
E

-0
3

32
1.

56
E

+
0
1

1
.6

7
E

+
0
4

3
.4

8
E

+
0
3

1
.3

8
E

-1
4

7
.5

3
E

-1
2
.1

5
E

-0
2

4
.6

5
E

-0
3

16
1.

75
E

+
0
1

1
.8

0
E

+
0
4

2
.5

9
E

+
0
2

1
.3

8
E

-1
4

2
.5

1
E

-0
2

2
.0

3
E

-0
2

4
.5

9
E

-0
3

8
2.

06
E

+
0
1

2
.0

0
E

+
0
4

5
.0

0
E

+
0
2

1
.4

0
E

-1
4

4
.4

6
E

-0
2

1
.9

3
E

-0
2

4
.3

3
E

-0
3

10
24

12
8

8.
04

E
+

0
0

5
.1

9
E

+
0
3

5
.2

8
E

+
0
2

7
.7

1
E

-1
5

9
.9

2
E

-0
2

2
.2

6
E

-0
2

5
.4

5
E

-0
3

64
9.

93
E

+
0
0

5
.6

8
E

+
0
3

5
.2

8
E

+
0
2

7
.7

3
E

-1
5

4
.3

6
E

-0
2

2
.1

3
E

-0
2

4
.8

8
E

-0
3

32
1.

13
E

+
0
1

6
.2

9
E

+
0
3

3
.7

5
E

+
0
2

7
.5

1
E

-1
5

7
.9

0
E

-0
2

2
.0

9
E

-0
2

4
.7

4
E

-0
3

16
1.

31
E

+
0
1

6
.9

1
E

+
0
3

1
.5

1
E

+
0
2

7
.5

5
E

-1
5

2
.1

0
E

-0
2

1
.9

3
E

-0
2

4
.0

8
E

-0
3

8
1.

44
E

+
0
1

7
.5

4
E

+
0
3

4
.1

6
E

+
0
3

7
.5

5
E

-1
5

1
.3

4
E

+
0
0

1
.8

4
E

-0
2

4
.2

5
E

-0
3

G
E

P
P

81
92

-
5.

47
E

+
0
1

8
.7

1
E

+
0
3

6
.0

3
E

+
0
2

7
.2

3
E

-1
4

1
.3

4
E

-0
2

1
.3

6
E

-0
2

2
.8

4
E

-0
3

40
96

-
3.

61
E

+
0
1

1
.0

1
E

+
0
3

1
.8

7
E

+
0
2

3
.8

8
E

-1
4

1
.8

3
E

-0
2

1
.4

3
E

-0
2

2
.9

0
E

-0
3

20
48

-
2.

63
E

+
0
1

5
.4

6
E

+
0
2

1
.8

1
E

+
0
2

2
.0

5
E

-1
4

2
.8

8
E

-0
2

1
.5

4
E

-0
2

3
.3

7
E

-0
3

10
24

-
1.

81
E

+
0
1

2
.8

1
E

+
0
2

4
.3

1
E

+
0
2

1
.0

6
E

-1
4

5
.7

8
E

-0
2

1
.6

2
E

-0
2

3
.7

4
E

-0
3

33

T
a
b
l
e
6
.3

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

G
E

P
P

o
n

sp
ec

ia
l

m
a

tr
ic

es
.

m
at

ri
x

co
n

d
(A

,2
)

g W
||L
|| 1

||L
−
1
|| 1

m
a
x

ij
|U
ij
|

m
in
k
k
|U
k
k
|

co
n

d
(U

,1
)

||P
A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

well-conditioned
h

ad
am

ar
d

1.
0E

+
0

4.
1E

+
3

4
.1

E
+

3
4
.1

E
+

3
4
.1

E
+

3
1
.0

E
+

0
5
.3

E
+

5
0
.0

E
+

0
3
.3

E
-1

6
4
.6

E
-1

5
2

h
ou

se
1.

0E
+

0
5.

1E
+

0
8
.9

E
+

2
2
.6

E
+

2
5
.1

E
+

0
5
.7

1
.4

E
+

4
2
.0

E
-1

5
5
.6

E
-1

7
6
.3

E
-1

5
3

p
ar

te
r

4.
8E

+
0

1.
6E

+
0

4
.8

E
+

1
2
.0

E
+

0
3
.1

E
+

0
2
.0

E
+

0
2
.3

E
+

2
2
.3

E
-1

5
8
.3

E
-1

6
4
.4

E
-1

5
3

ri
s

4.
8E

+
0

1.
6E

+
0

4
.8

E
+

1
2
.0

E
+

0
1
.6

E
+

0
1
.0

E
+

0
2
.3

E
+

2
2
.3

E
-1

5
7
.1

E
-1

6
4
.7

E
-1

5
2

k
m

s
9.

1E
+

0
1.

0E
+

0
2
.0

E
+

0
1
.5

E
+

0
1
.0

E
+

0
7
.5

E
-1

3
.0

E
+

0
2
.0

E
-1

6
1
.1

E
-1

6
6
.7

E
-1

6
1

to
ep

p
en

1.
0E

+
1

1.
1E

+
0

2
.1

E
+

0
9
.0

E
+

0
1
.1

E
+

1
1
.0

E
+

1
3
.3

E
+

1
1
.1

E
-1

7
7
.2

E
-1

7
3
.0

E
-1

5
1

co
n

d
ex

1.
0E

+
2

1.
0E

+
0

2
.0

E
+

0
5
.6

E
+

0
1
.0

E
+

2
1
.0

E
+

0
7
.8

E
+

2
1
.8

E
-1

5
9
.7

E
-1

6
6
.8

E
-1

5
3

m
ol

er
1.

9E
+

2
1.

0E
+

0
2
.2

E
+

1
2
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
4
.4

E
+

1
3
.8

E
-1

4
2
.6

E
-1

6
1
.7

E
-1

5
2

ci
rc

u
l

3.
7E

+
2

1.
8E

+
2

1
.0

E
+

3
1
.4

E
+

3
6
.4

E
+

2
3
.4

E
+

0
1
.2

E
+

6
4
.3

E
-1

4
2
.1

E
-1

5
1
.2

E
-1

4
1

ra
n

d
co

rr
1.

4E
+

3
1.

0E
+

0
3
.1

E
+

1
5
.7

E
+

1
1
.0

E
+

0
2
.3

E
-1

5
.0

E
+

4
1
.6

E
-1

5
7
.8

E
-1

7
8
.0

E
-1

6
1

p
oi

ss
on

1.
7E

+
3

1.
0E

+
0

2
.0

E
+

0
3
.4

E
+

1
4
.0

E
+

0
3
.2

E
+

0
7
.8

E
+

1
2
.8

E
-1

6
1
.4

E
-1

6
7
.5

E
-1

6
1

h
an

ke
l

2.
9E

+
3

6.
2E

+
1

9
.8

E
+

2
1
.5

E
+

3
2
.4

E
+

2
4
.5

E
+

0
2
.0

E
+

6
4
.2

E
-1

4
2
.5

E
-1

5
1
.6

E
-1

4
2

jo
rd

b
lo

c
5.

2E
+

3
1.

0E
+

0
1
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
8
.2

E
+

3
0
.0

E
+

0
2
.0

E
-1

7
8
.3

E
-1

7
0

co
m

p
an

7.
5E

+
3

1.
0E

+
0

2
.0

E
+

0
4
.0

E
+

0
7
.9

E
+

0
2
.6

E
-1

7
.8

E
+

1
0
.0

E
+

0
2
.0

E
-1

7
6
.2

E
-1

3
1

p
ei

1.
0E

+
4

1.
0E

+
0

4
.1

E
+

3
9
.8

E
+

0
1
.0

E
+

0
3
.9

E
-1

2
.5

E
+

1
7
.0

E
-1

6
6
.6

E
-1

8
2
.3

E
-1

7
0

ra
n

d
co

lu
1.

5E
+

4
4.

6E
+

1
9
.9

E
+

2
1
.4

E
+

3
3
.2

E
+

0
5
.6

E
-0

2
1
.1

E
+

7
4
.0

E
-1

4
2
.3

E
-1

5
1
.4

E
-1

4
1

sp
ra

n
d

n
1.

6E
+

4
7.

4E
+

0
7
.4

E
+

2
1
.5

E
+

3
2
.9

E
+

1
1
.7

E
+

0
1
.3

E
+

7
3
.4

E
-1

4
8
.5

E
-1

5
9
.3

E
-1

4
2

ri
em

an
n

1.
9E

+
4

1.
0E

+
0

4
.1

E
+

3
3
.5

E
+

0
4
.1

E
+

3
1
.0

E
+

0
2
.6

E
+

6
5
.7

E
-1

9
2
.0

E
-1

6
1
.7

E
-1

5
2

co
m

p
ar

1.
8E

+
6

2.
3E

+
1

9
.8

E
+

2
1
.4

E
+

3
1
.1

E
+

2
3
.1

E
+

0
2
.7

E
+

7
2
.3

E
-1

4
1
.2

E
-1

5
8
.8

E
-1

5
1

tr
id

ia
g

6.
8E

+
6

1.
0E

+
0

2
.0

E
+

0
1
.5

E
+

3
2
.0

E
+

0
1
.0

E
+

0
5
.1

E
+

3
1
.4

E
-1

8
2
.6

E
-1

7
1
.2

E
-1

6
0

ch
eb

sp
ec

1.
3E

+
7

1.
0E

+
0

5
.4

E
+

1
9
.2

E
+

0
7
.1

E
+

6
1
.5

E
+

3
4
.2

E
+

7
1
.8

E
-1

5
2
.9

E
-1

8
1
.6

E
-1

5
1

le
h

m
er

1.
8E

+
7

1.
0E

+
0

1
.5

E
+

3
2
.0

E
+

0
1
.0

E
+

0
4
.9

E
-4

8
.2

E
+

3
1
.5

E
-1

5
2
.8

E
-1

7
1
.7

E
-1

6
0

to
ep

p
d

2.
1E

+
7

1.
0E

+
0

4
.2

E
+

1
9
.8

E
+

2
2
.0

E
+

3
2
.9

E
+

2
1
.3

E
+

6
1
.5

E
-1

5
5
.0

E
-1

7
3
.3

E
-1

6
1

m
in

ij
2.

7E
+

7
1.

0E
+

0
4
.1

E
+

3
2
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
8
.2

E
+

3
0
.0

E
+

0
7
.8

E
-1

9
4
.2

E
-1

8
0

ra
n

d
sv

d
6.

7E
+

7
4.

7E
+

0
9
.9

E
+

2
1
.4

E
+

3
6
.4

E
-0

2
3
.6

E
-7

1
.4

E
+

1
0

5
.6

E
-1

5
3
.4

E
-1

6
2
.0

E
-1

5
2

fo
rs

y
th

e
6.

7E
+

7
1.

0E
+

0
1
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
1
.5

E
-8

6
.7

E
+

7
0
.0

E
+

0
0
.0

E
+

0
0
.0

E
+

0
0

ill-conditioned

fi
ed

le
r

2.
5E

+
10

1.
0E

+
0

1
.7

E
+

3
1
.5

E
+

1
7
.9

E
+

0
4
.1

E
-7

2
.9

E
+

8
1
.6

E
-1

6
3
.3

E
-1

7
1
.0

E
-1

5
1

d
or

r
7.

4E
+

10
1.

0E
+

0
2
.0

E
+

0
3
.1

E
+

2
3
.4

E
+

5
1
.3

E
+

0
1
.7

E
+

1
1

6
.0

E
-1

8
2
.3

E
-1

7
2
.2

E
-1

5
1

d
em

m
el

1.
0E

+
14

2.
5E

+
0

1
.2

E
+

2
1
.4

E
+

2
1
.6

E
+

1
4

7
.8

E
+

3
1
.7

E
+

1
7

3
.7

E
-1

5
7
.1

E
-2

1
4
.8

E
-9

2
ch

eb
va

n
d

3.
8E

+
19

2.
0E

+
2

2
.2

E
+

3
3
.1

E
+

3
1
.8

E
+

2
9
.0

E
-1

0
4
.8

E
+

2
2

5
.1

E
-1

4
3
.3

E
-1

7
2
.6

E
-1

6
1

in
v
h

es
s

4.
1E

+
19

2.
0E

+
0

4
.1

E
+

3
2
.0

E
+

0
5
.4

E
+

0
4
.9

E
-4

3
.0

E
+

4
8

1
.2

E
-1

4
1
.7

E
-1

7
2
.4

E
-1

4
(1

)
p

ro
la

te
1.

4E
+

20
1.

2E
+

1
1
.4

E
+

3
4
.6

E
+

3
5
.3

E
+

0
5
.9

E
-1

3
4
.7

E
+

2
3

1
.6

E
-1

4
4
.7

E
-1

6
6
.3

E
-1

5
(1

)
fr

an
k

1.
7E

+
20

1.
0E

+
0

2
.0

E
+

0
2
.0

E
+

0
4
.1

E
+

3
5
.9

E
-2

4
1
.9

E
+

3
0

2
.2

E
-1

8
4
.9

E
-2

7
1
.2

E
-2

3
0

ca
u

ch
y

5.
5E

+
21

1.
0E

+
0

3
.1

E
+

2
1
.9

E
+

2
1
.0

E
+

7
2
.3

E
-1

5
2
.1

E
+

2
4

1
.4

E
-1

5
6
.1

E
-1

9
5
.2

E
-1

5
(1

)
h

il
b

8.
0E

+
21

1.
0E

+
0

3
.1

E
+

3
1
.3

E
+

3
1
.0

E
+

0
4
.2

E
-2

0
2
.2

E
+

2
2

2
.2

E
-1

6
6
.0

E
-1

9
2
.0

E
-1

7
0

lo
tk

in
5.

4E
+

22
1.

0E
+

0
2
.6

E
+

3
1
.3

E
+

3
1
.0

E
+

0
3
.6

E
-1

9
2
.3

E
+

2
2

8
.0

E
-1

7
3
.0

E
-1

8
2
.3

E
-1

5
(1

)
ka

h
an

1.
1E

+
28

1.
0E

+
0

1
.0

E
+

0
1
.0

E
+

0
1
.0

E
+

0
2
.2

E
-1

3
4
.1

E
+

5
3

0
.0

E
+

0
9
.7

E
-1

8
4
.3

E
-1

6
1

34

T
a
b
l
e
6
.4

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

L
U

P
R

R
P

o
n

sp
ec

ia
l

m
a

tr
ic

es
.

m
at

ri
x

co
n

d
(A

,2
)

g W
||L
|| 1

||L
−
1
|| 1

||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

well-conditioned
h

ad
am

ar
d

1.
0E

+
0

5.
1E

+
0
2

5
.1

E
+

0
2

2
.5

E
+

1
6

5
.6

E
+

0
6
.0

E
+

0
0

5
.2

E
-1

5
1
.1

E
-1

5
9
.0

E
-1

5
2

h
ou

se
1.

0E
+

0
7.

4E
+

0
0

8
.3

E
+

0
2

7
.9

E
+

0
2

3
.7

E
+

0
2

5
.0

E
+

0
1

5
.8

E
-1

6
4
.2

E
-1

7
4
.8

E
-1

5
(2

)
p

ar
te

r
4.

8E
+

0
1.

5E
+

0
0

4
.7

E
+

0
1

3
.7

E
+

0
0

1
.4

E
+

0
1

3
.6

E
+

0
1

8
.5

E
-1

6
6
.8

E
-1

6
4
.4

E
-1

5
3

ri
s

4.
8E

+
0

1.
5E

+
0
0

4
.7

E
+

0
1

1
.1

E
+

0
1

7
.3

E
+

0
0

7
.2

E
+

0
1

8
.5

E
-1

6
7
.6

E
-1

6
4
.6

E
-1

5
2

k
m

s
9.

1E
+

0
1.

0E
+

0
0

6
.7

E
+

0
0

4
.0

E
+

0
0

4
.1

E
+

0
0

1
.2

E
+

0
1

1
.4

E
-1

6
6
.8

E
-1

7
3
.7

E
-1

6
1

to
ep

p
en

1.
0E

+
1

1.
3E

+
0
0

2
.3

E
+

0
0

3
.4

E
+

0
0

3
.6

E
+

0
1

1
.0

E
+

0
0

1
.3

E
-1

6
8
.3

E
-1

7
2
.2

E
-1

5
1

co
n

d
ex

1.
0E

+
2

1.
0E

+
0
0

1
.9

E
+

0
0

5
.5

E
+

0
0

5
.9

E
+

0
2

1
.2

E
+

0
0

6
.5

E
-1

6
7
.4

E
-1

6
5
.1

E
-1

5
(2

)
m

ol
er

1.
9E

+
2

1.
0E

+
0
0

2
.7

E
+

0
3

3
.9

E
+

0
2

1
.3

E
+

0
5

3
.0

E
+

1
5

8
.1

E
-1

6
3
.9

E
-1

9
3
.4

E
-1

7
0

ci
rc

u
l

3.
7E

+
2

1.
4E

+
0
2

1
.0

E
+

0
3

6
.7

E
+

1
7

7
.4

E
+

0
4

1
.3

E
+

0
1

3
.7

E
-1

4
3
.2

E
-1

5
2
.1

E
-1

4
2

ra
n

d
co

rr
1.

4E
+

3
1.

0E
+

0
0

3
.0

E
+

0
1

3
.7

E
+

0
1

3
.5

E
+

0
1

2
.4

E
+

0
4

5
.8

E
-1

6
5
.9

E
-1

7
5
.5

E
-1

6
1

p
oi

ss
on

1.
7E

+
3

1.
0E

+
0
0

1
.9

E
+

0
0

2
.0

E
+

0
1

7
.3

2
E

+
0
0

2
.0

E
+

0
1

1
.6

E
-1

6
9
.1

E
-1

7
1
.8

E
-1

5
1

h
an

ke
l

2.
9E

+
3

5.
0E

+
0
1

1
.0

E
+

0
3

1
.8

E
+

1
7

5
.7

E
+

0
4

3
.3

E
+

0
1

3
.5

E
-1

4
2
.8

E
-1

5
1
.7

E
-1

4
2

jo
rd

b
lo

c
5.

2E
+

3
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

2
.0

E
+

0
0

4
.0

E
+

0
3

0
.0

E
+

0
0

1
.9

E
-1

7
6
.1

E
-1

7
0

co
m

p
an

7.
5E

+
3

1.
0E

+
0
0

2
.9

E
+

0
0

3
.9

E
+

0
1

6
.8

E
+

0
2

4
.1

E
+

0
0

6
.7

E
-1

6
5
.5

E
-1

6
6
.9

E
-1

2
1

p
ei

1.
0E

+
4

4.
9E

+
0
0

2
.8

E
+

0
3

1
.6

E
+

0
1

1
.7

E
+

0
1

1
.7

E
+

0
1

6
.5

E
-1

6
1
.4

E
-1

7
3
.2

E
-1

7
0

ra
n

d
co

lu
1.

5E
+

4
3.

3E
+

0
1

1
.1

E
+

0
3

1
.5

E
+

1
7

8
.8

E
+

0
2

1
.3

E
+

0
4

3
.5

E
-1

4
2
.9

E
-1

5
1
.8

E
-1

4
2

sp
ra

n
d

n
1.

6E
+

4
4.

9E
+

0
0

7
.8

E
+

0
2

1
.4

E
+

1
7

8
.8

E
+

0
3

5
.4

E
+

0
3

3
.1

E
-1

4
1
.0

E
-1

4
1
.3

E
-1

3
2

ri
em

an
n

1.
9E

+
4

1.
0E

+
0
0

4
.0

E
+

0
3

1
.0

E
+

0
3

3
.1

E
+

0
6

1
.4

E
+

0
2

4
.5

E
-1

6
1
.5

E
-1

6
2
.0

E
-1

5
1

co
m

p
ar

1.
8E

+
6

9.
0E

+
0
2

1
.7

E
+

0
3

9
.8

E
+

1
6

9
.0

E
+

0
5

8
.0

E
+

0
2

1
.4

E
-1

4
1
.1

E
-1

5
7
.7

E
-1

5
1

tr
id

ia
g

6.
8E

+
6

1.
0E

+
0
0

1
.9

E
+

0
0

2
.0

E
+

0
2

4
.0

E
+

0
0

1
.6

E
+

0
4

3
.2

E
-1

6
2
.8

E
-1

7
2
.4

E
-1

6
0

ch
eb

sp
ec

1.
3E

+
7

1.
0E

+
0
0

5
.2

E
+

0
1

1
.6

E
+

2
4

9
.7

E
+

0
6

1
.7

E
+

0
0

5
.9

E
-1

6
1
.0

E
-1

8
5
.0

E
-1

5
1

le
h

m
er

1.
8E

+
7

1.
0E

+
0
0

1
.5

E
+

0
3

9
.5

E
+

0
0

8
.9

0
E

+
0
0

8
.1

E
+

0
3

5
.6

E
-1

6
1
.0

0
E

-1
7

6
.1

E
-1

7
0

to
ep

p
d

2.
1E

+
7

1.
0E

+
0
0

4
.2

E
+

0
1

1
.2

E
+

0
2

6
.6

9
E

+
0
4

7
.2

E
+

0
1

5
.8

E
-1

6
2
.6

E
-1

7
1
.6

E
-1

6
0

m
in

ij
2.

7E
+

7
1.

0E
+

0
0

4
.0

E
+

0
3

1
.1

E
+

0
3

1
.7

E
+

0
6

4
.0

E
+

0
0

5
.3

E
-1

6
1
.1

E
-1

8
1
.3

E
-1

6
0

ra
n

d
sv

d
6.

7E
+

7
3.

9E
+

0
0

1
.1

E
+

0
3

3
.2

E
+

1
7

5
.4

E
+

0
0

2
.5

E
+

0
9

5
.0

E
-1

5
4
.6

E
-1

6
2
.9

E
-1

5
2

fo
rs

y
th

e
6.

7E
+

7
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

6
.7

E
+

0
7

0
.0

E
+

0
0

0
.0

E
+

0
0

0
.0

E
+

0
0

0

ill-conditioned

fi
ed

le
r

2.
5E

+
10

1.
0E

+
0
0

9
.3

E
+

0
2

3
.0

6
E

+
0
3

6
.5

E
+

0
1

1
.5

E
+

0
7

2
.4

E
-1

6
9
.9

E
-1

7
2
.0

E
-1

5
1

d
or

r
7.

4E
+

10
1.

0E
+

0
0

2
.0

E
+

0
0

5
.4

E
+

0
1

6
.7

E
+

0
5

2
.5

E
+

0
5

1
.6

E
-1

6
3
.4

E
-1

7
4
.0

E
-1

5
1

d
em

m
el

1.
0E

+
14

1.
3E

+
0
0

1
.1

E
+

0
2

1
.7

E
+

1
6

5
.0

E
+

1
5

2
.5

E
+

0
1

3
.2

E
-1

5
9
.1

E
-2

1
1
.1

E
-0

8
2

ch
eb

va
n

d
3.

8E
+

19
1.

8E
+

0
2

1
.4

E
+

0
3

1
.2

E
+

1
7

7
.3

E
+

0
4

4
.3

E
+

1
9

5
.3

E
-1

4
4
.0

E
-1

7
2
.3

E
-1

6
0

in
v
h

es
s

4.
1E

+
19

2.
1E

+
0
0

4
.0

E
+

0
3

7
.4

E
+

0
3

5
.8

E
+

0
3

1
.0

E
+

2
2

1
.4

E
-1

5
2
.5

E
-1

7
3
.3

E
-1

4
1

p
ro

la
te

1.
4E

+
20

8.
9E

+
0
0

1
.3

E
+

0
3

1
.4

E
+

1
8

1
.4

E
+

0
3

9
.7

E
+

2
0

1
.9

E
-1

4
1
.0

E
-1

5
2
.6

E
-1

4
1

fr
an

k
1.

7E
+

20
1.

0E
+

0
0

1
.9

E
+

0
0

1
.9

E
+

0
0

4
.1

E
+

0
6

2
.3

E
+

1
6

1
.6

E
-1

7
1
.8

E
-2

0
6
.2

E
-1

7
0

ca
u

ch
y

5.
5E

+
21

1.
0E

+
0
0

3
.3

E
+

0
2

2
.0

E
+

0
6

6
.9

E
+

0
7

1
.8

E
+

2
0

6
.0

E
-1

6
3
.9

E
-1

9
1
.5

E
-1

4
1

h
il

b
8.

0E
+

21
1.

0E
+

0
0

3
.0

E
+

0
3

1
.1

E
+

1
8

2
.4

E
+

0
0

3
.1

E
+

2
2

3
.2

E
-1

6
6
.6

E
-1

9
2
.3

E
-1

7
0

lo
tk

in
5.

4E
+

22
1.

0E
+

0
0

2
.6

E
+

0
3

2
.0

E
+

1
8

2
.4

E
+

0
0

8
.1

E
+

2
2

6
.6

E
-1

7
2
.3

E
-1

8
1
.0

E
-1

5
0

ka
h

an
1.

1E
+

28
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

5
.3

E
+

0
0

7
.6

E
+

5
2

0
E

+
0
0

1
.1

E
-1

7
5
.2

E
-1

6
1

35

Table 6.5
Stability of the linear solver using binary tree based CALU PRRP, binary tree based CALU,

and GEPP.

n P b η wb NIR HPL1 HPL2 HPL3
Binary tree based CALU PRRP

8192

256
32 7.5E-15 4.4E-14 2 6.2E-02 2.3E-02 4.4E-03
16 6.7E-15 4.1E-14 2 3.4E-02 2.2E-02 4.6E-03

128
64 7.6E-15 4.7E-14 2 2.6E-02 2.5E-02 4.9E-03
32 7.5E-15 4.9E-14 2 6.9E-02 2.6E-02 4.9E-03
16 7.3E-15 5.1E-14 2 4.2E-02 2.7E-02 5.7E-03

64

128 7.6E-15 5.0E-14 2 2.8E-02 2.6E-02 5.2E-03
64 7.9E-15 5.3E-14 2 6.2E-02 2.8E-02 5.9E-03
32 7.8E-15 5.0E-14 2 7.0E-02 2.6E-02 5.0E-03
16 6.7E-15 5.0E-14 2 4.2E-02 2.7E-02 5.7E-03

4096

256 16 3.5E-15 2.2E-14 2 5.8E-02 2.3E-02 5.1E-03

128
32 3.8E-15 2.3E-14 2 5.3E-02 2.4E-02 5.1E-03
16 3.6E-15 2.2E-14 1.6 1.3E-02 2.4E-02 5.1E-03

64
64 4.0E-15 2.3E-14 2 3.8E-02 2.4E-02 4.9E-03
32 3.9E-15 2.4E-14 2 1.2 E-02 2.5E-02 5.7E-03
16 3.8E-15 2.4E-14 1.6 2.3E-02 2.5E-02 5.2E-03

2048
128 16 1.8E-15 1.0E-14 2 8.1E-02 2.2E-02 4.8E-03

64
32 1.8E-15 1.2E-14 2 9.7E-02 2.5E-02 5.6E-03
16 1.9E-15 1.2E-14 1.8 3.4E-02 2.5E-02 5.4E-03

1024 64 16 1.0E-15 6.3E-15 1.3 7.2E-02 2.5E-02 6.1E-03
Binary tree based CALU

8192

256
32 6.2E-15 4.1E-14 2 3.6E-02 2.2E-02 4.5E-03
16 5.8E-15 3.9E-14 2 4.5E-02 2.1E-02 4.1E-03

128
64 6.1E-15 4.2E-14 2 5.0E-02 2.2E-02 4.6E-03
32 6.3E-15 4.0E-14 2 2.5E-02 2.1E-02 4.4E-03
16 5.8E-15 4.0E-14 2 3.8E-02 2.1E-02 4.3E-03

64

128 5.8E-15 3.6E-14 2 8.3E-02 1.9E-02 3.9E-03
64 6.2E-15 4.3E-14 2 3.2E-02 2.3E-02 4.4E-03
32 6.3E-15 4.1E-14 2 4.4E-02 2.2E-02 4.5E-03
16 6.0E-15 4.1E-14 2 3.4E-02 2.2E-02 4.2E-03

4096

256 16 3.1E-15 2.1E-14 1.7 3.0E-02 2.2E-02 4.4E-03

128
32 3.2E-15 2.3E-14 2 3.7E-02 2.4E-02 5.1E-03
16 3.1E-15 1.8E-14 2 5.8E-02 1.9E-02 4.0E-03

64
64 3.2E-15 2.1E-14 1.7 3.1E-02 2.2E-02 4.6E-03
32 3.2E-15 2.2E-14 1.3 3.6E-02 2.3E-02 4.7E-03
16 3.1E-15 2.0E-14 2 9.4E-02 2.1E-02 4.3E-03

2048
128 16 1.7E-15 1.1E-14 1.8 6.9E-02 2.3E-02 5.1E-03

64
32 1.7E-15 1.0E-14 1.6 6.5E-02 2.1E-02 4.6E-03
16 1.6E-15 1.1E-14 1.8 4.7E-02 2.2E-02 4.9E-03

1024 64 16 8.7E-16 5.2E-15 1.6 1.2E-1 2.1E-02 4.7E-03
GEPP

8192 - 3.9E-15 2.6E-14 1.6 1.3E-02 1.4E-02 2.8E-03
4096 - 2.1E-15 1.4E-14 1.6 1.8E-02 1.4E-02 2.9E-03
2048 - 1.1E-15 7.4E-15 2 2.9E-02 1.5E-02 3.4E-03
1024 - 6.6E-16 4.0E-15 2 5.8E-02 1.6E-02 3.7E-03

36

Table 6.6
Stability of the linear solver using flat tree based CALU PRRP, flat tree based CALU, and GEPP.

n P b η wb NIR HPL1 HPL2 HPL3
Flat tree based CALU PRRP

8096

- 8 6.2E-15 3.8E-14 1 1.7E-02 2.0E-02 4.0E-03
- 16 6.6E-15 4.3E-14 1 3.6E-02 2.2E-02 4.3E-03
- 32 7.2E-15 4.8E-14 1 6.5E-02 2.5E-02 5.3E-03
- 64 7.3E-15 5.1E-14 1 4.8E-02 2.7E-02 5.4E-03

4096

- 8 3.2E-15 2.0E-14 1 6.7E-02 2.1E-02 4.7E-03
- 16 3.6E-15 2.3E-14 1 2.9E-02 2.4E-02 5.1E-03
- 32 3.8E-15 2.4E-14 1 4.6E-02 2.5E-02 5.5E-03
- 64 3.7E-15 2.5E-14 1 1.7E-1 2.6E-02 5.6E-03

2048

- 8 1.4E-15 1.1E-14 1 1.3E-1 2.3E-02 5.1E-03
- 16 1.9E-15 1.1E-14 1 1.6E+0 2.3 E-02 5.3E-03
- 32 2.1E-15 1.3E-14 1 2.5E-02 2.7E-02 5.8E-03
- 64 1.9E-15 1.25E-14 1 1.2E-1 2.6E-02 5.9E-03

1024

- 8 9.4E-16 5.5E-15 1 3.8E-02 2.2E-02 5.3E-03
- 16 1.0E-15 6.0E-15 1 6.2E-02 2.4E-02 5.4E-03
- 32 1.0E-15 5.6E-15 1 4.2E-02 2.2E-02 5.4E-03
- 64 1.0E-15 6.8E-15 1 3.6E-02 2.7E-02 6.7E-03

Flat tree based CALU

8096

- 8 4.5E-15 3.1E-14 1.7 4.4E-02 1.6E-02 3.4E-03
- 16 5.6E-15 3.7E-14 2 1.9E-02 2.0E-02 3.3E-03
- 32 6.7E-15 4.4E-14 2 4.6E-02 2.4E-02 4.7E-03
- 64 6.5E-15 4.2E-14 2 5.5E-02 2.2E-02 4.6E-03

4096

- 8 2.6E-15 1.7E-14 1.3 1.3E-02 1.8E-02 4.0E-03
- 16 3.0E-15 1.9E-14 1.7 2.6E-02 2.0E-02 3.9E-03
- 32 3.8E-15 2.4E-14 2 1.9E-02 2.5E-02 5.1E-03
- 64 3.4E-15 2.0E-14 2 6.0E-02 2.1E-02 4.1E-03

2048

- 8 1.5E-15 8.7E-15 1.6 2.7E-02 1.8E-02 4.2E-03
- 16 1.6E-15 1.0E-14 2 2.1E-1 2.1E-02 4.5E-03
- 32 1.8E-15 1.1E-14 1.8 2.3E-1 2.3E-02 5.1E-03
- 64 1.7E-15 1.0E-14 1.2 4.1E-02 2.1E-02 4.5E-03

1024

- 8 7.8E-16 4.9E-15 1.6 5.5E-02 2.0E-02 4.9E-03
- 16 9.2E-16 5.2E-15 1.2 1.1E-1 2.1E-02 4.8E-03
- 32 9.6E-16 5.8E-15 1.1 1.5E-1 2.3E-02 5.6E-03
- 64 8.7E-16 4.9E-15 1.3 7.9E-02 2.0E-02 4.5E-03

GEPP
8192 - 3.9E-15 2.6E-14 1.6 1.3E-02 1.4E-02 2.8E-03
4096 - 2.1E-15 1.4E-14 1.6 1.8E-02 1.4E-02 2.9E-03
2048 - 1.1E-15 7.4E-15 2 2.9E-02 1.5E-02 3.4E-03
1024 - 6.6E-16 4.0E-15 2 5.8E-02 1.6E-02 3.7E-03

37

T
a
b
l
e
6
.7

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

fl
a

t
tr

ee
ba

se
d

C
A

L
U

P
R

R
P

a
n

d
G

E
P

P
o

n
ra

n
d

o
m

m
a

tr
ic

es

F
la

t
T

re
e

b
a
se

d
C

A
L

U
P

R
R

P

n
b

g W
||L
|| 1

||L
−
1
|| 1

||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

H
P

L
1

H
P

L
2

H
P

L
3

81
92

12
8

3.
44

E
+

01
2.

96
E

+
0
3

2
.0

3
E

+
0
3

1
.2

9
E

+
0
5

2
.8

6
E

+
0
3

8
.6

7
E

-1
4

1
.7

7
E

-0
1

2
.5

3
E

-0
2

5
.0

0
E

-0
3

64
4.

42
E

+
01

3.
30

E
+

0
3

2
.2

8
E

+
0
3

1
.4

3
E

+
0
5

6
.8

9
E

+
0
2

8
.5

6
E

-1
4

3
.6

2
E

-0
2

2
.9

7
E

-0
2

6
.4

0
E

-0
3

32
5.

88
E

+
01

4.
34

E
+

0
3

2
.5

0
E

+
0
3

1
.5

4
E

+
0
5

3
.7

9
E

+
0
2

8
.1

5
E

-1
4

3
.4

0
E

-0
2

2
.9

6
E

-0
2

6
.4

0
E

-0
3

16
6.

05
E

+
01

4.
54

E
+

0
3

2
.5

0
E

+
0
3

1
.5

3
E

+
0
5

4
.5

7
E

+
0
2

6
.5

9
E

-1
4

5
.6

6
E

-0
2

2
.2

7
E

-0
2

4
.6

0
E

-0
3

8
5.

25
E

+
01

3.
24

E
+

0
3

2
.6

3
E

+
0
3

1
.6

0
E

+
0
5

1
.7

8
E

+
0
2

5
.7

5
E

-1
4

1
.9

2
E

-0
2

1
.9

3
E

-0
2

4
.1

0
E

-0
3

40
96

12
8

2.
38

E
+

01
1.

60
E

+
0
3

1
.0

5
E

+
0
3

4
.7

5
E

+
0
4

5
.1

1
E

+
0
3

4
.1

5
E

-1
4

1
.5

8
E

+
0
0

2
.4

0
E

-0
2

5
.1

6
E

-0
3

64
2.

90
E

+
01

1.
85

E
+

0
3

1
.1

9
E

+
0
3

5
.1

8
E

+
0
4

2
.3

8
E

+
0
3

4
.5

5
E

-1
4

1
.7

1
E

-0
1

2
.6

0
E

-0
2

5
.6

5
E

-0
3

32
3.

32
E

+
01

1.
89

E
+

0
3

1
.2

9
E

+
0
3

5
.5

7
E

+
0
4

3
.0

4
E

+
0
2

4
.6

3
E

-1
4

4
.6

3
E

-0
2

2
.5

7
E

-0
2

5
.5

1
E

-0
3

16
3.

87
E

+
01

1.
94

E
+

0
3

1
.3

4
E

+
0
3

5
.9

0
E

+
0
4

2
.6

2
E

+
0
2

4
.5

4
E

-1
4

2
.9

2
E

-0
2

2
.4

4
E

-0
2

5
.1

8
E

-0
3

8
3.

80
E

+
01

1.
63

E
+

0
3

1
.3

6
E

+
0
3

5
.9

0
E

+
0
4

5
.6

3
E

+
0
2

4
.2

4
E

-1
4

6
.7

0
E

-0
2

2
.1

9
E

-0
2

4
.7

3
E

-0
3

20
48

12
8

1.
57

E
+

01
6.

90
E

+
0
2

5
.2

6
E

+
0
2

1
.6

6
E

+
0
4

3
.7

9
E

+
0
2

2
.0

1
E

-1
4

6
.2

9
E

-0
2

2
.4

3
E

-0
2

5
.3

9
E

-0
3

64
1.

80
E

+
01

7.
94

E
+

0
2

6
.0

6
E

+
0
2

1
.8

6
E

+
0
4

4
.2

2
E

+
0
2

2
.2

5
E

-1
4

1
.2

6
E

-0
1

2
.6

3
E

-0
2

5
.9

6
E

-0
3

32
2.

19
E

+
01

9.
30

E
+

0
2

6
.8

6
E

+
0
2

2
.0

5
E

+
0
4

1
.0

8
E

+
0
2

2
.4

1
E

-1
4

2
.5

9
E

-0
2

2
.7

0
E

-0
2

5
.8

0
E

-0
3

16
2.

53
E

+
01

8.
62

E
+

0
2

6
.9

9
E

+
0
2

2
.1

7
E

+
0
4

3
.5

0
E

+
0
2

2
.3

6
E

-1
4

1
.6

8
E

+
0
0

2
.3

0
E

-0
2

5
.3

6
E

-0
3

8
2.

62
E

+
01

8.
32

E
+

0
2

7
.1

9
E

+
0
2

2
.2

1
E

+
0
4

4
.5

8
E

+
0
2

2
.2

7
E

-1
4

1
.3

7
E

-0
1

2
.3

6
E

-0
2

5
.1

3
E

-0
3

10
24

12
8

9.
36

E
+

00
3.

22
E

+
0
2

2
.5

9
E

+
0
2

5
.7

9
E

+
0
3

9
.9

1
E

+
0
2

9
.4

2
E

-1
5

3
.9

8
E

-0
2

2
.5

0
E

-0
2

5
.7

7
E

-0
3

64
1.

19
E

+
01

3.
59

E
+

0
2

3
.0

0
E

+
0
2

6
.6

7
E

+
0
3

1
.7

9
E

+
0
2

1
.0

9
E

-1
4

3
.6

9
E

-0
2

2
.7

4
E

-0
2

6
.7

3
E

-0
3

32
1.

40
E

+
01

4.
27

E
+

0
2

3
.5

1
E

+
0
2

5
.7

9
E

+
0
3

2
.9

9
E

+
0
2

1
.2

1
E

-1
4

4
.2

3
E

-0
2

2
.2

7
E

-0
2

5
.4

2
E

-0
3

16
1.

72
E

+
01

4.
42

E
+

0
2

3
.7

4
E

+
0
2

8
.2

9
E

+
0
3

2
.1

0
E

+
0
2

1
.2

4
E

-1
4

6
.2

1
E

-0
2

2
.4

3
E

-0
2

5
.4

8
E

-0
3

8
1.

67
E

+
01

4.
16

E
+

0
2

3
.8

3
E

+
0
2

8
.6

8
E

+
0
3

1
.8

5
E

+
0
2

1
.1

9
E

-1
4

3
.8

0
E

-0
2

2
.2

2
E

-0
2

5
.3

7
E

-0
3

G
E

P
P

81
92

-
5.

5E
+

01
1.

9E
+

0
3

2
.6

E
+

0
3

8
.7

E
+

0
3

6
.0

E
+

0
2

7
.2

E
-1

4
1
.3

E
-0

2
1
.4

E
-0

2
2
.8

E
-0

3
40

96
-

3.
61

E
+

01
1.

01
E

+
0
3

1
.3

8
E

+
0
3

2
.3

1
E

+
0
4

1
.8

7
E

+
0
2

3
.8

8
E

-1
4

1
.8

3
E

-0
2

1
.4

3
E

-0
2

2
.9

0
E

-0
3

20
48

-
2.

63
E

+
01

5.
46

E
+

0
2

7
.4

4
E

+
0
2

6
.1

0
E

+
0
4

1
.8

1
E

+
0
2

2
.0

5
E

-1
4

2
.8

8
E

-0
2

1
.5

4
E

-0
2

3
.3

7
E

-0
3

10
24

-
1.

81
E

+
01

2.
81

E
+

0
2

4
.0

7
E

+
0
2

1
.6

0
E

+
0
5

4
.3

1
E

+
0
2

1
.0

6
E

-1
4

5
.7

8
E

-0
2

1
.6

2
E

-0
2

3
.7

4
E

-0
3

38

T
a
b
l
e
6
.8

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

fl
a

t
tr

ee
ba

se
d

C
A

L
U

P
R

R
P

o
n

sp
ec

ia
l

m
a

tr
ic

es
.

m
at

ri
x

co
n

d
(A

,2
)

g W
||L
|| 1

||L
−
1
|| 1

||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

well-conditioned
h

ad
am

ar
d

1.
0E

+
0

5.
1E

+
0
2

5
.1

E
+

0
2

1
.4

E
+

0
2

5
.8

E
+

0
4

5
.3

E
+

0
0

5
.2

E
-1

5
9
.5

E
-1

6
7
.9

E
-1

5
1

h
ou

se
1.

0E
+

0
6.

5E
+

0
0

9
.0

E
+

0
2

3
.3

E
+

0
2

3
.3

E
+

0
2

5
.2

E
+

0
1

6
.6

E
-1

6
4
.8

E
-1

7
5
.3

E
-1

5
1

p
ar

te
r

4.
8E

+
0

1.
5E

+
0
0

4
.7

E
+

0
1

3
.7

E
+

0
0

1
.4

E
+

0
1

3
.6

E
+

0
1

8
.6

E
-1

6
6
.8

E
-1

6
4
.4

E
-1

5
1

ri
s

4.
8E

+
0

1.
5E

+
0
0

4
.7

E
+

0
1

3
.7

E
+

0
0

7
.3

E
+

0
0

7
.2

E
+

0
1

8
.5

E
-1

6
6
.8

E
-1

6
4
.1

-1
5

1
k
m

s
9.

1E
+

0
1.

0E
+

0
0

5
.4

E
+

0
0

3
.2

E
+

0
0

3
.9

E
+

0
0

9
.8

E
+

0
0

1
.1

3
E

-1
6

7
.0

E
-1

7
4
.2

E
-1

6
1

to
ep

p
en

1.
0E

+
1

1.
3E

+
0
0

2
.3

E
+

0
0

3
.4

E
+

0
0

3
.6

E
+

0
1

1
.0

E
+

0
0

1
.0

E
-1

6
8
.3

E
-1

7
2
.7

E
-1

5
1

co
n

d
ex

1.
0E

+
2

1.
0E

+
0
0

1
.9

E
+

0
0

5
.5

E
+

0
0

5
.9

E
+

0
2

1
.2

E
+

0
0

6
.5

E
-1

6
7
.4

E
-1

6
5
.2

E
-1

5
1

m
ol

er
1.

9E
+

2
1.

4E
+

0
0

2
.7

E
+

0
3

1
.5

E
+

0
3

2
.0

E
+

0
6

3
.0

E
+

1
5

8
.7

E
-1

6
6
.0

E
-1

9
4
.4

E
-1

7
0

ci
rc

u
l

3.
7E

+
2

1.
5E

+
0
2

1
.5

E
+

0
3

1
.4

E
+

0
3

8
.5

E
+

0
4

2
.5

E
+

0
1

4
.7

E
-1

4
4
.0

E
-1

5
2
.4

E
-1

4
1

ra
n

d
co

rr
1.

4E
+

3
1.

0E
+

0
0

3
.0

E
+

0
1

5
.9

E
+

0
1

3
.5

E
+

0
1

2
.4

E
+

0
4

5
.8

E
-1

6
5
.9

E
-1

7
5
.3

E
-1

6
1

p
oi

ss
on

1.
7E

+
3

1.
0E

+
0
0

1
.9

E
+

0
0

2
.2

E
+

0
1

7
.3

E
+

0
0

2
.0

E
+

0
1

1
.6

E
-1

6
9
.0

E
-1

7
1
.8

E
-1

5
1

h
an

ke
l

2.
9E

+
3

7.
9E

+
0
1

1
.6

E
+

0
3

1
.6

E
+

0
3

6
.5

E
+

0
4

8
.2

E
+

0
1

4
.5

E
-1

4
3
.6

E
-1

5
2
.2

E
-1

4
1

jo
rd

b
lo

c
5.

2E
+

3
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

2
.0

E
+

0
0

4
.0

E
+

0
3

0
.0

E
+

0
0

1
.9

E
-1

7
6
.1

E
-1

7
0

co
m

p
an

7.
5E

+
3

1.
0E

+
0
0

2
.9

E
+

0
0

5
.9

E
+

0
2

6
.8

E
+

0
2

4
.1

E
+

0
0

6
.7

E
-1

6
5
.4

E
-1

6
5
.5

E
-1

2
1

p
ei

1.
0E

+
4

4.
9E

+
0
0

2
.8

E
+

0
3

1
.6

E
+

0
1

1
.7

E
+

0
1

1
.7

E
+

0
1

6
.5

E
-1

6
2
.8

E
-1

7
4
.7

E
-1

7
0

ra
n

d
co

lu
1.

5E
+

4
3.

7E
+

0
1

1
.6

E
+

0
3

1
.3

E
+

0
3

1
.0

E
+

0
3

1
.3

E
+

0
4

4
.4

E
-1

4
3
.3

E
-1

5
2
.1

E
-1

4
1

sp
ra

n
d

n
1.

6E
+

4
6.

3E
+

0
0

1
.2

E
+

0
3

1
.6

E
+

0
3

9
.7

E
+

0
3

3
.5

E
+

0
3

4
.0

E
-1

4
1
.2

E
-1

4
1
.5

E
-1

3
1

ri
em

an
n

1.
9E

+
4

1.
0E

+
0
0

4
.0

E
+

0
3

1
.0

E
+

0
3

3
.1

E
+

0
6

1
.4

E
+

0
2

4
.5

E
-1

6
1
.5

E
-1

6
2
.0

E
-1

5
1

co
m

p
ar

1.
8E

+
6

9.
0E

+
0
2

2
.0

E
+

0
3

1
.3

E
+

0
5

9
.0

E
+

0
5

1
.0

E
+

0
3

1
.7

E
-1

4
1
.2

E
-1

5
8
.3

E
-1

5
1

tr
id

ia
g

6.
8E

+
6

1.
0E

+
0
0

1
.9

E
+

0
0

1
.8

E
+

0
2

4
.0

E
+

0
0

1
.6

E
+

0
4

3
.2

E
-1

6
2
.8

E
-1

7
2
.6

E
-1

6
0

ch
eb

sp
ec

1.
3E

+
7

1.
0E

+
0
0

5
.2

E
+

0
1

5
.6

E
+

0
1

9
.7

E
+

0
6

1
.7

E
+

0
0

5
.9

E
-1

6
1
.0

E
-1

8
4
.4

E
-1

5
1

le
h

m
er

1.
8E

+
7

1.
0E

+
0
0

1
.5

E
+

0
3

8
.9

E
+

0
0

8
.9

E
+

0
0

8
.1

E
+

0
3

5
.6

E
-1

6
1
.0

E
-1

7
6
.0

E
-1

7
0

to
ep

p
d

2.
1E

+
7

1.
0E

+
0
0

4
.2

E
+

0
1

1
.3

E
+

0
3

6
.6

E
+

0
4

7
.2

E
+

0
1

5
.8

E
-1

6
2
.6

E
-1

7
1
.7

E
-1

6
0

m
in

ij
2.

7E
+

7
1.

0E
+

0
0

4
.0

E
+

0
3

1
.1

E
+

0
3

1
.7

E
+

0
6

4
.0

E
+

0
0

5
.3

E
-1

6
7
.7

E
-1

9
1
.0

E
-1

6
0

ra
n

d
sv

d
6.

7E
+

7
5.

0E
+

0
0

1
.5

E
+

0
3

1
.3

E
+

0
3

5
.8

E
+

0
0

4
.1

E
+

0
9

6
.1

E
-1

5
5
.1

E
-1

6
2
.9

E
-1

5
1

fo
rs

y
th

e
6.

7E
+

7
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

6
.7

E
+

0
7

0
.0

E
+

0
0

0
.0

E
+

0
0

0
.0

E
+

0
0

0

ill-conditioned

fi
ed

le
r

2.
5E

+
10

1.
0E

+
0
0

9
.3

E
+

0
2

1
.4

E
+

0
1

6
.5

E
+

0
1

1
.5

E
+

0
7

2
.4

E
-1

6
8
.9

E
-1

7
1
.9

E
-1

5
1

d
or

r
7.

4E
+

10
1.

0E
+

0
0

2
.0

E
+

0
0

4
.0

E
+

0
1

6
.7

E
+

0
5

2
.5

E
+

0
5

1
.6

E
-1

6
3
.7

E
-1

7
3
.4

E
-1

5
1

d
em

m
el

1.
0E

+
14

1.
6E

+
0
0

1
.6

E
+

0
2

2
.5

E
+

0
2

5
.7

E
+

1
5

3
.5

E
+

0
1

3
.7

E
-1

5
9
.2

E
-2

1
1
.1

E
-0

8
1

ch
eb

va
n

d
3.

8E
+

19
2.

1E
+

0
2

1
.1

E
+

0
4

2
.6

E
+

0
3

8
.5

E
+

0
4

3
.5

E
+

1
9

6
.2

E
-1

4
6
.9

E
-1

7
5
.1

E
-1

6
1

in
v
h

es
s

4.
1E

+
19

2.
0E

+
0
0

4
.0

E
+

0
3

1
.5

E
+

0
3

8
.2

E
+

0
3

2
.9

E
+

2
8

1
.2

E
-1

5
8
.0

E
-1

8
3
.7

E
-1

5
1

p
ro

la
te

1.
4E

+
20

1.
1E

+
0
1

1
.4

E
+

0
3

4
.1

E
+

0
3

1
.6

E
+

0
3

3
.6

E
+

2
1

2
.6

E
-1

4
1
.2

E
-1

5
4
.0

E
-1

4
1

fr
an

k
1.

7E
+

20
1.

0E
+

0
0

1
.9

E
+

0
0

1
.9

E
+

0
0

4
.1

E
+

0
6

2
.3

E
+

1
6

1
.6

E
-1

7
2
.6

E
-2

0
6
.8

E
-1

7
0

ca
u

ch
y

5.
5E

+
21

1.
0E

+
0
0

3
.2

E
+

0
2

1
.8

E
+

0
2

4
.3

E
+

0
7

5
.6

E
+

1
8

5
.6

E
-1

6
6
.8

E
-1

9
3
.3

E
-1

4
1

h
il

b
8.

0E
+

21
1.

0E
+

0
0

3
.0

E
+

0
3

1
.3

E
+

0
3

2
.4

E
+

0
0

9
.5

E
+

2
2

3
.2

E
-1

6
5
.2

E
-1

9
1
.8

E
-1

7
0

lo
tk

in
5.

4E
+

22
1.

0E
+

0
0

2
.8

E
+

0
3

1
.2

E
+

0
3

2
.4

E
+

0
0

2
.5

E
+

2
1

6
.5

E
-1

7
5
.6

E
-1

8
2
.3

E
-1

5
(1

)
ka

h
an

1.
1E

+
28

1.
0E

+
0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

5
.3

E
+

0
0

7
.6

E
+

5
2

0
.0

E
+

0
0

8
.1

E
-1

8
4
.3

E
-1

6
1

39

T
a
b
l
e
6
.9

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

bi
n

a
ry

tr
ee

ba
se

d
C

A
L

U
P

R
R

P
a

n
d

G
E

P
P

o
n

ra
n

d
o

m
m

a
tr

ic
es

.

B
in

a
ry

T
re

e
b

a
se

d
C

A
L

U
P

R
R

P

n
P

b
g W

||L
|| 1

||L
−
1
|| 1

||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

H
P

L
1

H
P

L
2

H
P

L
3

81
92

25
6

16
4.

29
E

+
01

4.
41

E
+

0
3

2
.6

8
E

+
0
3

1
.6

2
E

+
0
5

2
.1

5
E

+
0
2

7
.3

9
E

-1
4

3
.4

4
E

-0
2

2
.2

0
E

-0
2

4
.6

9
E

-0
3

12
8

32
4.

58
E

+
01

3.
47

E
+

0
3

2
.5

8
E

+
0
3

1
.5

6
E

+
0
5

2
.9

6
E

+
0
2

8
.6

7
E

-1
4

6
.9

2
E

-0
2

2
.6

3
E

-0
2

4
.9

8
E

-0
3

16
4.

97
E

+
01

4.
05

E
+

0
3

2
.7

3
E

+
0
3

1
.6

3
E

+
0
5

2
.1

6
E

+
0
2

7
.5

9
E

-1
4

4
.2

2
E

-0
2

2
.7

1
E

-0
2

5
.7

6
E

-0
3

64

64
4.

77
E

+
01

3.
23

E
+

0
3

2
.3

5
E

+
0
3

1
.4

5
E

+
0
5

3
.2

2
E

+
0
2

9
.1

4
E

-1
4

6
.3

7
E

-0
2

2
.8

5
E

-0
2

5
.9

1
E

-0
3

32
4.

86
E

+
01

4.
16

E
+

0
3

2
.6

4
E

+
0
3

1
.5

8
E

+
0
5

5
.1

5
E

+
0
2

9
.0

4
E

-1
4

7
.0

7
E

-0
2

2
.6

9
E

-0
2

5
.0

9
E

-0
3

16
5.

37
E

+
01

3.
83

E
+

0
3

2
.6

7
E

+
0
3

1
.6

4
E

+
0
5

2
.5

6
E

+
0
2

7
.3

0
E

-1
4

4
.2

1
E

-0
2

2
.7

0
E

-0
2

5
.7

5
E

-0
3

40
96

25
6

8
3.

49
E

+
01

1.
69

E
+

0
3

1
.4

E
+

0
3

6
.1

2
E

+
0
4

3
.0

7
E

+
0
2

4
.7

1
E

-1
4

7
.2

6
E

-0
2

2
.1

4
E

-0
2

4
.6

9
E

-0
3

12
8

16
4.

09
E

+
01

1.
91

E
+

0
3

1
.3

9
E

+
0
3

6
.0

2
E

+
0
4

5
.1

3
E

+
0
2

4
.9

9
E

-1
4

2
.2

2
E

-0
2

2
.4

4
E

-0
2

5
.2

5
E

-0
3

8
3.

85
E

+
01

1.
78

E
+

0
3

1
.4

0
E

+
0
3

6
.0

9
E

+
0
4

1
.5

2
E

+
0
4

4
.7

5
E

-1
4

4
.4

1
E

+
0
0

2
.4

1
E

-0
2

4
.9

8
E

-0
3

64
32

3.
06

E
+

01
1.

95
E

+
0
3

1
.3

4
E

+
0
3

5
.8

0
E

+
0
4

2
.9

9
E

+
0
2

4
.9

4
E

-1
4

3
.2

6
E

-0
2

2
.5

1
E

-0
2

5
.7

1
E

-0
3

16
3.

88
E

+
01

1.
95

E
+

0
3

1
.3

7
E

+
0
3

6
.0

2
E

+
0
4

2
.3

9
E

+
0
2

5
.0

6
E

-1
4

3
.4

5
E

-0
2

2
.3

3
E

-0
2

5
.4

4
E

-0
3

8
3.

64
E

+
01

1.
73

E
+

0
3

1
.4

0
E

+
0
3

5
.9

7
E

+
0
4

1
.8

7
E

+
0
2

4
.7

3
E

-1
4

4
.3

3
E

-0
2

2
.0

6
E

-0
2

4
.2

9
E

-0
3

32

64
2.

80
E

+
01

1.
69

E
+

0
3

1
.1

8
E

+
0
3

5
.1

5
E

+
0
4

2
.1

2
E

+
0
3

4
.6

7
E

-1
4

2
.3

4
E

-0
1

2
.8

1
E

-0
2

6
.0

6
E

-0
3

32
3.

71
E

+
01

1.
83

E
+

0
3

1
.3

2
E

+
0
3

5
.8

2
E

+
0
4

3
.7

4
E

+
0
2

4
.9

2
E

-1
4

5
.1

3
E

-0
2

2
.3

5
E

-0
2

5
.2

8
E

-0
3

16
3.

75
E

+
01

1.
97

E
+

0
3

1
.4

1
E

+
0
3

6
.2

4
E

+
0
4

2
.2

3
E

+
0
2

5
.0

5
E

-1
4

3
.5

8
E

-0
2

2
.3

9
E

-0
2

5
.2

7
E

-0
3

8
3.

62
E

+
01

1.
95

E
+

0
3

1
.4

3
E

+
0
3

6
.1

1
E

+
0
4

7
.2

1
E

+
0
2

4
.7

0
E

-1
4

1
.6

9
E

-0
1

2
.1

7
E

-0
2

4
.9

1
E

-0
3

20
48

12
8

8
2.

91
E

+
01

8.
48

E
+

0
2

7
.5

9
E

+
0
2

2
.3

2
E

+
0
4

3
.3

7
E

+
0
2

2
.4

9
E

-1
4

7
.7

1
E

-0
2

2
.2

0
E

-0
2

4
.7

2
E

-0
3

64
16

2.
63

E
+

01
8.

42
E

+
0
2

7
.3

4
E

+
0
2

2
.2

2
E

+
0
4

2
.7

6
E

+
0
2

2
.5

7
E

-1
4

6
.0

9
E

-0
2

2
.3

4
E

-0
2

5
.2

9
E

-0
3

8
3.

01
E

+
01

8.
48

E
+

0
2

7
.3

6
E

+
0
2

2
.2

8
E

+
0
4

3
.7

9
E

+
0
2

2
.4

5
E

-1
4

6
.5

5
E

-0
2

2
.4

2
E

-0
2

5
.1

0
E

-0
3

32
32

2.
18

E
+

01
8.

70
E

+
0
2

6
.6

6
E

+
0
2

2
.0

4
E

+
0
4

5
.7

9
E

+
0
3

2
.4

6
E

-1
4

1
.9

1
E

+
0
0

2
.3

8
E

-0
2

5
.4

4
E

-0
3

16
2.

66
E

+
01

1.
05

E
+

0
3

7
.2

4
E

+
0
2

2
.2

5
E

+
0
4

8
.4

8
E

+
0
2

2
.5

7
E

-1
4

6
.3

7
E

-0
2

2
.3

7
E

-0
2

5
.2

9
E

-0
3

8
2.

81
E

+
01

8.
86

E
+

0
2

7
.4

2
E

+
0
2

2
.3

0
E

+
0
4

1
.4

5
E

+
0
2

2
.4

3
E

-1
4

1
.2

5
E

-0
2

2
.2

1
E

-0
2

5
.0

4
E

-0
3

10
24

64
8

1.
73

E
+

01
4.

22
E

+
0
2

3
.8

7
E

+
0
2

8
.4

4
E

+
0
3

2
.3

3
E

+
0
2

1
.3

4
E

-1
4

7
.9

2
E

-0
2

2
.4

6
E

-0
2

5
.7

0
E

-0
3

32
16

1.
55

E
+

01
4.

39
E

+
0
2

3
.7

2
E

+
0
2

7
.9

8
E

+
0
3

1
.6

7
E

+
0
2

1
.2

7
E

-1
4

7
.5

5
E

-0
2

2
.2

0
E

-0
2

4
.8

9
E

-0
3

8
1.

84
E

+
01

4.
00

E
+

0
2

3
.9

2
E

+
0
2

8
.4

6
E

+
0
3

1
.2

9
E

+
0
2

1
.2

5
E

-1
4

5
.4

1
E

-0
2

2
.3

2
E

-0
2

5
.4

0
E

-0
3

G
E

P
P

81
92

-
-

5.
5E

+
01

1.
9E

+
0
3

2
.6

E
+

0
3

8
.7

E
+

0
3

6
.0

E
+

0
2

7
.2

E
-1

4
1
.3

E
-0

2
1
.4

E
-0

2
2
.8

E
-0

3
40

96
-

-
3.

61
E

+
01

1.
01

E
+

0
3

1
.3

8
E

+
0
3

2
.3

1
E

+
0
4

1
.8

7
E

+
0
2

3
.8

8
E

-1
4

1
.8

3
E

-0
2

1
.4

3
E

-0
2

2
.9

0
E

-0
3

20
48

-
-

2.
63

E
+

01
5.

46
E

+
0
2

7
.4

4
E

+
0
2

6
.1

0
E

+
0
4

1
.8

1
E

+
0
2

2
.0

5
E

-1
4

2
.8

8
E

-0
2

1
.5

4
E

-0
2

3
.3

7
E

-0
3

10
24

-
-

1.
81

E
+

01
2.

81
E

+
0
2

4
.0

7
E

+
0
2

1
.6

0
E

+
0
5

4
.3

1
E

+
0
2

1
.0

6
E

-1
4

5
.7

8
E

-0
2

1
.6

2
E

-0
2

3
.7

4
E

-0
3

40

T
a
b
l
e
6
.1
0

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

bi
n

a
ry

tr
ee

ba
se

d
C

A
L

U
P

R
R

P
o

n
sp

ec
ia

l
m

a
tr

ic
es

.

m
at

ri
x

co
n

d
(A

,2
)

g W
||L
|| 1

||L
−
1
|| 1

||U
|| 1

||U
−
1
|| 1

||P
A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

well-conditioned
h

ad
am

ar
d

1.
0E

+
0

5.
1E

+
0
2

5
.1

E
+

0
2

1
.3

E
+

0
2

4
.9

E
+

0
4

6
.5

E
+

0
0

5
.3

E
-1

5
1
.2

E
-1

5
8
.7

E
-1

5
2

h
ou

se
1.

0E
+

0
7.

4E
+

0
0

8
.3

E
+

0
2

3
.8

E
+

0
2

3
.7

E
+

0
2

5
.0

E
+

0
1

5
.8

E
-1

6
4
.2

E
-1

7
4
.8

E
-1

5
3

p
ar

te
r

4.
8E

+
0

1.
5E

+
0
0

4
.7

E
+

0
1

3
.7

E
+

0
0

1
.4

E
+

0
1

3
.6

E
+

0
1

8
.6

E
-1

6
6
.9

E
-1

6
4
.4

E
-1

5
3

ri
s

4.
8E

+
0

1.
5E

+
0
0

4
.7

E
+

0
1

3
.7

E
+

0
0

7
.3

E
+

0
0

7
.2

E
+

0
1

8
.5

E
-1

6
6
.2

E
-1

6
4
.4

E
-1

5
2

k
m

s
9.

1E
+

0
1.

0E
+

0
0

5
.1

E
+

0
0

3
.4

E
+

0
0

4
.3

E
+

0
0

9
.3

E
+

0
0

1
.1

E
-1

6
6
.3

E
-1

7
3
.6

E
-1

6
1

to
ep

p
en

1.
0E

+
1

1.
3E

+
0
0

2
.3

E
+

0
0

3
.4

E
+

0
0

3
.6

E
+

0
1

1
.0

E
+

0
0

1
.0

E
-1

6
8
.2

E
-1

7
4
.0

E
-1

5
1

co
n

d
ex

1.
0E

+
2

1.
0E

+
0
0

1
.9

E
+

0
0

5
.5

E
+

0
0

5
.9

E
+

0
2

1
.2

E
+

0
0

6
.5

E
-1

6
7
.4

E
-1

6
5
.2

E
-1

5
2

m
ol

er
1.

9E
+

2
1.

0E
+

0
0

4
.0

E
+

0
3

9
.0

E
+

0
0

2
.2

E
+

0
4

3
.8

E
+

1
5

1
.0

E
-1

8
2
.1

E
-2

0
2
.7

E
-1

6
1

ci
rc

u
l

3.
7E

+
2

1.
5E

+
0
2

1
.6

E
+

0
3

1
.4

E
+

0
3

8
.4

E
+

0
4

2
.1

E
+

0
1

5
.2

E
-1

4
4
.1

E
-1

5
3
.2

E
-1

4
2

ra
n

d
co

rr
1.

4E
+

3
1.

4E
+

0
2

5
.4

E
+

0
2

4
.4

E
+

0
3

2
.9

E
+

0
3

6
.1

E
+

0
3

2
.2

E
-1

5
1
.3

E
-1

6
5
.7

E
-1

5
2

p
oi

ss
on

1.
7E

+
3

1.
0E

+
0
0

1
.9

E
+

0
0

2
.2

E
+

0
1

7
.3

E
+

0
0

2
.0

E
+

0
1

1
.7

E
-1

6
9
.3

E
-1

7
1
.5

E
-1

5
1

h
an

ke
l

2.
9E

+
3

6.
1E

+
0
1

1
.8

4
E

+
0
3

1
.5

E
+

0
3

6
.5

E
+

0
4

8
.0

E
+

0
1

4
.9

E
-1

4
3
.9

E
-1

5
2
.4

E
-1

4
2

jo
rd

b
lo

c
5.

2E
+

3
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

2
.0

E
+

0
0

4
.0

E
+

0
3

0
.0

E
+

0
0

1
.9

E
-1

7
7
.6

7
E

-1
7

0
co

m
p

an
7.

5E
+

3
2.

0E
+

0
0

2
.9

E
+

0
0

6
.8

E
+

0
2

6
.7

E
+

0
2

9
.4

E
+

0
0

9
.8

E
-1

6
6
.1

E
-1

6
6
.3

E
-1

2
1

p
ei

1.
0E

+
4

1.
3E

+
0
0

5
.5

E
+

0
2

7
.9

E
+

0
0

1
.6

E
+

0
1

2
.9

E
+

0
0

3
.6

E
-1

6
2
.2

E
-1

7
5
.0

E
-1

7
0

ra
n

d
co

lu
1.

5E
+

4
4.

6E
+

0
1

1
.7

E
+

0
3

1
.4

E
+

0
3

1
.0

E
+

0
3

1
.1

E
+

0
4

4
.8

E
-1

4
3
.5

E
-1

5
2
.2

E
-1

4
2

sp
ra

n
d

n
1.

6E
+

4
6.

6E
+

0
0

1
.1

E
+

0
3

1
.6

E
+

0
3

9
.6

E
+

0
3

1
.4

E
+

0
3

4
.1

E
-1

4
1
.3

E
-1

4
2
.0

E
-1

3
(1

)
ri

em
an

n
1.

9E
+

4
1.

0E
+

0
0

4
.0

E
+

0
3

1
.8

E
+

0
3

7
.6

E
+

0
6

1
.4

E
+

0
2

1
.7

E
-1

6
1
.2

E
-1

6
1
.1

E
-1

5
1

co
m

p
ar

1.
8E

+
6

9.
0E

+
0
2

2
.0

E
+

0
3

1
.3

E
+

0
5

9
.0

E
+

0
5

6
.5

E
+

0
2

1
.9

E
-1

4
1
.2

E
-1

5
8
.9

E
-1

5
1

tr
id

ia
g

6.
8E

+
6

1.
0E

+
0
0

1
.9

E
+

0
0

1
.8

E
+

0
2

4
.0

E
+

0
0

1
.6

E
+

0
4

3
.2

E
-1

6
2
.8

E
-1

7
2
.6

E
-1

6
0

ch
eb

sp
ec

1.
3E

+
7

1.
0E

+
0
0

5
.2

E
+

0
1

5
.6

E
+

0
1

9
.7

E
+

0
6

1
.7

E
+

0
0

6
.0

E
-1

6
7
.8

E
-1

9
1
.3

E
-1

5
1

le
h

m
er

1.
8E

+
7

1.
0E

+
0
0

1
.5

E
+

0
3

8
.9

E
+

0
0

8
.9

E
+

0
0

8
.1

E
+

0
3

5
.7

E
-1

6
9
.9

2
E

-1
8

5
.7

E
-1

7
0

to
ep

p
d

2.
1E

+
7

1.
0E

+
0
0

4
.3

E
+

0
1

9
.1

E
+

0
2

6
.8

E
+

0
4

1
.8

E
+

0
1

5
.8

E
-1

6
2
.7

E
-1

7
1
.7

E
-1

6
0

m
in

ij
2.

7E
+

7
1.

0E
+

0
0

4
.0

E
+

0
3

9
.0

E
+

0
0

1
.8

E
+

0
4

4
.0

E
+

0
0

6
.4

E
-1

9
6
.9

E
-1

9
6
.1

E
-1

8
0

ra
n

d
sv

d
6.

7E
+

7
5.

4E
+

0
0

1
.7

E
+

0
3

1
.4

E
+

0
3

6
.4

E
+

0
0

3
.2

E
+

0
9

7
.2

E
-1

5
5
.5

E
-1

6
3
.3

E
-1

5
2

fo
rs

y
th

e
6.

7E
+

7
1.

0E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

6
.7

E
+

0
7

0
.0

E
+

0
0

0
.0

E
+

0
0

0
.0

E
+

0
0

0

ill-conditioned

fi
ed

le
r

2.
5E

+
10

1.
0E

+
0
0

9
.0

E
+

0
2

1
.2

E
+

0
1

5
.5

E
+

0
1

1
.4

E
+

0
7

2
.5

E
-1

6
7
.9

E
-1

7
1
.7

E
-1

5
1

d
or

r
7.

4E
+

10
1.

0E
+

0
0

2
.0

E
+

0
0

4
.0

E
+

0
1

6
.7

E
+

0
5

2
.5

E
+

0
5

1
.6

E
-1

6
3
.3

E
-1

7
3
.4

E
-1

5
1

d
em

m
el

1.
0E

+
14

1.
5E

+
0
0

1
.2

E
+

0
2

5
.3

E
+

0
2

5
.5

E
+

1
5

2
.9

E
+

0
1

3
.3

E
-1

5
9
.0

E
-2

1
7
.9

E
-0

9
2

ch
eb

va
n

d
3.

8E
+

19
3.

2E
+

0
2

2
.2

E
+

0
3

3
.3

E
+

0
3

8
.9

E
+

0
4

1
.6

E
+

2
0

7
.5

E
-1

4
3
.7

E
-1

7
2
.3

E
-1

6
0

in
v
h

es
s

4.
1E

+
19

1.
7E

+
0
0

4
.0

E
+

0
3

9
.0

E
+

0
0

4
.5

E
+

0
3

1
.4

E
+

1
0
0

2
.9

E
-1

5
1
.5

E
-1

6
6
.9

E
-1

4
1

p
ro

la
te

1.
4E

+
20

1.
2E

+
0
1

2
.1

E
+

0
3

4
.7

E
+

0
3

2
.1

E
+

0
3

1
.6

E
+

2
1

2
.8

E
-1

4
1
.2

E
-1

5
3
.9

E
-1

4
1

fr
an

k
1.

7E
+

20
1.

0E
+

0
0

1
.9

E
+

0
0

1
.9

E
+

0
0

4
.1

E
+

0
6

2
.3

E
+

1
6

1
.6

E
-1

7
2
.6

E
-2

0
6
.8

E
-1

7
0

ca
u

ch
y

5.
5E

+
21

1.
0E

+
0
0

3
.2

E
+

0
2

4
.1

E
+

0
2

5
.4

E
+

0
7

4
.7

E
+

1
8

6
.1

E
-1

6
6
.7

E
-1

9
5
.7

E
-1

4
2

h
il

b
8.

0E
+

21
1.

0E
+

0
0

2
.9

E
+

0
3

1
.4

E
+

0
3

2
.4

E
+

0
0

2
.3

E
+

2
2

3
.2

E
-1

6
6
.3

E
-1

9
2
.2

E
-1

7
0

lo
tk

in
5.

4E
+

22
1.

0E
+

0
0

3
.0

E
+

0
3

1
.4

E
+

0
3

2
.4

E
+

0
0

3
.7

E
+

2
2

6
.6

E
-1

7
5
.2

E
-1

8
1
.7

5
E

-1
5

1
ka

h
an

1.
1E

+
28

1.
0E

+
0
0

1
.0

E
+

0
0

1
.0

E
+

0
0

5
.3

E
+

0
0

7
.6

E
+

5
2

0
.0

E
+

0
0

1
.2

E
-1

7
3
.9

E
-1

6
1

41

Appendix C. Here we summarize the floating-point operation counts for the LU PRRP
algorithm performed on an input matrix A of size m × n, where m ≥ n . We first focus
on the step k of the algorithm, that is we consider the kth panel of size (m− (k − 1)b)× b.
We first perform a Strong RRQR on the transpose of the considered panel, then update the
trailing matrix of size (m− kb)× (n− kb), finally we perform GEPP on the diagonal block
of size b × b. We assume that m − (k − 1)b ≥ b + 1. The Strong RRQR performs nearly
as many floating-point operations as the QR with column pivoting. Here we consider that
is the same, since in practice performing QR with column pivoting is enough to obtain the
bound τ , and thus it is

FlopsSRRQR,1block,stepk = 2(m− (k − 1)b)b2 − 2

3
b3.

If we consider the update step (2.3), then the flops count is

Flopsupdate,stepk = 2b(m− kb)(n− kb).

For the additional GEPP on the diagonal block, the flops count is

Flopsgepp,stepk =
2

3
b3 + (n− kb)b2.

Then the flops count for the step k is

FlopsLU PRRP,stepk = b2(2m+ n− 3(k − 1)b)− b3 + 2b(m− kb)(n− kb).

This gives us an arithmetic operation count of

FlopsLU PRRP (m,n, b) = Σ
n
b
k=1

[
b2(2m+ n− 2(k − 1)b− kb) + 2b(m− kb)(n− kb)

]
,

F lopsLU PRRP (m,n, b) = mn2 + 2mnb+ 2nb2 − 1

2
n2b− 1

3
n3

∼ mn2 − 1

3
n3 + 2mnb− 1

2
n2b.

Then for a square matrix of size n× n, the flops count is

FlopsLU PRRP (n, n, b) =
2

3
n3 +

3

2
n2b+ 2nb2 ∼ 2

3
n3 +

3

2
n2b.

Appendix D. Here we detail the performance model of the parallel version of the
CALU PRRP factorization performed on an input matrix A of size m×n where, m ≥ n. We
consider a 2D layout P = Pr×Pc . We first focus on the panel factorization for the block LU
factorization, that is the selection of the b pivot rows with the tournament pivoting strategy.
This step is similar to CALU except that the reduction operator is Strong RRQR instead of
GEPP, then for each panel the amount of communication is the same as for TSLU:

messages = logPr

words = b2 logPr

However the floating-point operations count is different. We consider as in Appendix C
that Strong RRQR performs as many flops as QR with columns pivoting, then the panel
factorization performs the QR factorization with columns pivoting on the transpose of the
blocks of the panel and logPr reduction steps:

flops = 2
m− (k − 1)b

Pr
b2 − 2

3
b3 + logPr(2(2b)b2 − 2

3
b3)

= 2
m− (k − 1)b

Pr
b2 +

10

3
b3 logPr −

2

3
b3

To perform the QR factorization without pivoting on the transpose of the panel, and the
update of the trailing matrix:

42

• broadcast the pivot information along the rows of the process grid.

messages = logPc

words = b logPc

• apply the pivot information to the original rows.

messages = logPr

words =
nb

Pc
logPr

• Compute the block column L and broadcast it through blocks of columns

messages = logPc

words =
m− kb
Pr

b logPc

flops = 2
m− kb
Pr

b2

• broadcast the upper block of the permuted matrix A through blocks of rows

messages = logPr

words =
n− kb
Pc

b logPr

• perform a rank-b update of the trailing matrix

flops = 2b
m− kb
Pr

n− kb
Pc

Thus to get the block LU factorization :

messages =
3n

b
logPr +

2n

b
logPc

words = (
mn

Pr
− 1

2

n2

Pr
+ n) logPc + (nb+

3

2

n2

Pc
) logPr

flops =
1

P
(mn2 − 1

3
n3) +

2

3
nb2(5 logPr − 1) +

b

Pr
(4mn+ 2nb− 2n2)

∼ 1

P
(mn2 − 1

3
n3) +

2

3
nb2(5 logPr − 1) +

4

Pr
(mn− n2

2
)b

Then to obtain the full LU factorization, for each b × b block, we perform the Gaussian
elimination with partial pivoting and we update the corresponding trailing matrix of size
b × n − kb. During this additional step, we first perform GEPP on the diagonal block,
broadcast pivot rows through column blocks (this broadcast can be done together with the
previous broadcast of L, thus there is no additional message to send), apply pivots, and
finally compute U.

words = n(1 +
b

2
) logPc

flops =

n
b∑

k=1

[
2

3
b3 +

n− kb
Pc

b2
]

=
2

3
nb2 +

1

2

n2b

Pc

43

Finally the total count is :

messages =
3n

b
logPr +

2n

b
logPc

words = (
mn

Pr
− 1

2

n2

Pr
+
nb

2
+ 2n) logPc + (nb+

3

2

n2

Pc
) logPr

∼ (
mn

Pr
− 1

2

n2

Pr
) logPc + (nb+

3

2

n2

Pc
) logPr

flops =
1

P
(mn2 − 1

3
n3) +

4

Pr
(mn− n2

2
)b+

n2b

2Pc
+

10

3
nb2 logPr

Appendix E. Here we detail the algebra of the block parallel LU-PRRP. At the first
iteration, the matrix A has the following partition

A =

[
A11 A12

A21 A22

]
.

The block A11 is of size m/p× b, where p is the number of processors used and m/p ≥ b+ 1,
the block A12 is of size m/p×n− b, the block A21 is of size m−m/p× b, and the block A22

is of size m−m/p× n− b.

To describe the algebra, we consider 4 processors and a block of size b. We first focus
on the b first columns,

A(:, 1 : b) =


A0

A1

A2

A3

 .
Each block Ai is of size m/p× b. In the following we describe the different steps of the panel
factorization. First, we perform Strong RRQR factorization on the transpose of each block
Ai so we obtain :

AT
0 Π00 = Q00R00

AT
1 Π10 = Q10R10

AT
2 Π20 = Q20R20

AT
3 Π30 = Q30R30

Each matrix Ri is of size b ×m/p. Using MATLAB notations, we can write Ri as fol-
lowing :

R̄i = Ri(1 : b, 1 : b) ¯̄Ri = Ri(1 : b, b+ 1 : m/p)
This step aims to eliminate the last m/p − b rows of each block Ai. We define the matrix
D0Π0 :

D0Π0 =



[
Ib

−D00 Im/p−b

]
[

Ib
−D10 Im/p−b

]
[

Ib
−D20 Im/p−b

]
[

Ib
−D30 Im/p−b

]


×


ΠT

00
ΠT

10
ΠT

20
ΠT

30

 ,

where

D00 = ¯̄RT
00(R̄−1

00)T ,

D10 = ¯̄RT
10(R̄−1

10)T ,

D20 = ¯̄RT
20(R̄−1

20)T ,

D30 = ¯̄RT
30(R̄−1

30)T .

44

Multiplying A(:, 1 : b) by D0Π0 we obtain :

D0Π0 ×A(:, 1 : b) =



(ΠT
00 ×A0)(1 : b, 1 : b)

0m/p−b

(ΠT
10 ×A1)(1 : b, 1 : b)

0m/p−b

(ΠT
20 ×A2)(1 : b, 1 : b)

0m/p−b

(ΠT
30 ×A3)(1 : b, 1 : b)

0m/p−b



=



A01

0m/p−b

A11

0m/p−b

A21

0m/p−b

A31

0m/p−b



.

The second step corresponds to the second level of the reduction tree. We merge pairs
of b × b blocks and as in the previous step we perform Strong RRQR factorization on the
transpose of the 2b× b blocks : [

A01

A11

]
and [

A21

A31

]
.

We obtain

[
A01

A11

]T
Π̄01 = Q01R01,[

A21

A31

]T
Π̄11 = Q11R11.

We note :

R̄01 = R01(1 : b, 1 : b) ¯̄R01 = R01(1 : b, b+ 1 : 2b),

R̄11 = R11(1 : b, 1 : b) ¯̄R11 = R11(1 : b, b+ 1 : 2b).
As in the previous level, we aim to eliminate b rows in each block, so we consider the matrix

D1Π1 =




Ib

Im/p−b

−D01 Ib
Im/p−b




Ib
Im/p−b

−D11 Ib
Im/p−b




×
[

ΠT
01

ΠT
11

]
,

where

D01 = ¯̄RT
01(R̄−1

01)T ,

D11 = ¯̄RT
11(R̄−1

01)T .

45

The matrices Π̄01 and Π̄11 are the permutations corresponding to the Strong RRQR factor-
izations of the two 2b× b blocks. The matrices Π01 and Π11 can easily be deduced from the
matrices Π̄01 and Π̄11 extended by the appropriate identity matrices to get matrices of size
2m/p× 2m/p.

The multiplication of the block D0Π0A(:, 1 : b) with the matrix D1Π1 leeds to

D1Π1D0Π0A(:, 1 : b) =



[
Π̄T

01 ×
[
A01

A11

]]
(1 : b, 1 : b)

02m/p−b[
Π̄T

11 ×
[
A21

A31

]]
(1 : b, 1 : b)

02m/p−b


.

This matrix can be written as

D1Π1D0Π0A(:, 1 : b) =



[
Π̄T

01 ×
[

(ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

]]
(1 : b, 1 : b)

02m/p−b[
Π̄T

11 ×
[

(ΠT
20 ×A2(1 : b, 1 : b))

(ΠT
30 ×A3(1 : b, 1 : b))

]]
(1 : b, 1 : b)

02m/p−b


=


A02

02m/p−b

A12

02m/p−b

 .

For the final step we consider the last 2b× b block

[
A02

A12

]
.

We perform a Strong RRQR factorization on the transpose of this block and then we
obtain

[
A02

A12

]T
Π̄02 = Q02R02.

We note

R̄02 = R02(1 : b, 1 : b) ¯̄R02 = R02(1 : b, b+ 1 : 2b).

We define the matrix D2Π2 as

D2Π2 =



Ib
Im/p−b

Ib
Im/p−b

−D02 Ib
Im/p−b

Ib
Im/p−b


×ΠT

02,

46

where

D02 = ¯̄RT
02(R̄−1

02)T ,

and the permutation matrix Π02 can easily be deduced from the permutation matrix Π̄02.

The multiplication of the block D1Π1D0Π0A(:, 1 : b) by the matrix D2Π2 leeds to :

D2Π2D1Π1D0Π0A(:, 1 : b) =

[
RT

021Q
T
02

04m/p−b

]
= ΠT

02 ×
[

A02

04m/p−b

]
=

[
A03

04m/p−b

]
.

If we consider the block A(:, 1 : b) of the beginning and all the steps performed, we get :

D2Π2D1Π1D0Π0A(:, 1 : b) =


[
Π̄T

02 ×
[
A02

A12

]
(1 : b, 1 : b)

]
04m/p−b


We can also write

D2Π2D1Π1D0Π0A(:, 1 : b) =




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/p−b


.

We can also write

A(:, 1 : b) = (D2Π2D1Π1D0Π0)−1




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/p−b


.

Then, we have

A(:, 1 : b) = ΠT
0D
−1
0 ΠT

1D
−1
1 ΠT

2D
−1
2




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/p−b


,

47

where

ΠT
0 =


Π00

Π10

Π20

Π30

 ,

D−1
0 =



[
Ib
D00 Im/p−b

]
[

Ib
D10 Im/p−b

]
[

Ib
D20 Im/p−b

]
[

Ib
D30 Im/p−b

]


.

For each Strong RRQR performed previously, the corresponding trailing matrix is updated
at the same time. Thus, at the end of the process, we have

A = ΠT
0D
−1
0 ΠT

1D
−1
1 ΠT

2D
−1
2 ×

[
A03 Â12

04m/p−b Â22

]
,

where A03 is the b× b diagonal block containing the b selected pivot rows from the current
panel. An additional GEPP should be performed on this block to get the full LU factoriza-
tion. Â22 is the trailing matrix already updated, and on which the block parallel LU-PRRP
should be continued.

Appendix F. Here is the matlab code for generating the matrix T used in Section
2 to define the generalized Wilkinson matrix on which GEPP fails. For any given integer
r > 0, this generalized Wilkinson matrix is an upper triangular semi-separable matrix with
rank at most r in all of its submatrices above the main diagonal. The entries are all negative
and are chosen randomly. The Wilkinson matrix is for the special case where r = 1 and
every entry above the main diagonal is 1.

function [A] = counterexample_GEPP(n,r,u,v);

% Function counterexample_GEPP generates a matrix which fails

% GEPP in terms of large element growth.

% This is a generalization of the Wilkinson matrix.

%

if (nargin == 2)

u = rand(n,r);

v = rand(n,r);

A = - triu(u * v’);

for k = 2:n

umax = max(abs(A(k-1,k:n))) * (1 + 1/n);

A(k-1,k:n) = A(k-1,k:n) / umax;

end

A = A - diag(diag(A));

A = A’ + eye(n);

A(1:n-1,n) = ones(n-1,1);

else

A = triu(u * v’);

A = A - diag(diag(A));

A = A’ + eye(n);

A(1:n-1,n) = ones(n-1,1);

end

48

