
LAPACK Working Note ?

LAPACK Block Factorization Algorithms

on the Intel iPSC/860 ∗

Jack Dongarra and Susan Ostrouchov
Department of Computer Science

University of Tennessee
Knoxville, Tennessee 37996-1301

August 1, 1990

Abstract

The aim of this project is to implement the basic factorization routines
for solving linear systems of equations and least squares problems from
LAPACK—namely, the blocked versions of LU with partial pivoting, QR,
and Cholesky on a distributed-memory machine. We discuss our imple-
mentation of each of the algorithms and the results we obtained using
varying orders of matrices and blocksizes.

1 Background

As part of the LAPACK project [1], we have developed a large body of mathe-
matical software for solving linear algebra problems on shared-memory parallel
processors. The goal of LAPACK is to design and implement a portable lin-
ear algebra library on high-performance computers. The methodology for the
design has been to construct matrix-matrix algorithms and to develop software
that encapsulates the computationally intensive parts in calls to the Level 3
BLAS [3]. This methodology results in a high operation-to-memory reference
count and thus offers the possibility of high performance on most machines.

This paper describes an effort to reuse the software developed for shared-
memory machines in the setting of distributed-memory machines. As such, it
represents an effort to quickly bring up a numerical linear algebra library on
message-passing machines by exploiting the existing base of software.

∗This work was supported by the National Science Foundation Science and Technology
Center Cooperative Agreement No. CCR-8809615.

1



2 Strategy

Since data movement on most high-performance architectures is slow compared
to floating-point performance, block algorithms have been derived and imple-
mented for matrix computations. Algorithms that consider a matrix as a col-
lection of submatrices, where each submatrix is a group of columns, require
little data movement. In this paper, we report on our attempts to use a fixed-
width blocking strategy from the LAPACK routines for LU, QR, and Cholesky
factorization on the Intel iPSC/860 hypercube.

Since the Intel iPSC/860 is a distributed-memory architecture and since we
wish to minimize data communication, we chose the right-looking block algo-
rithms for our implementation of LU, QR, and Cholesky, as implemented in
LAPACK as routines SGETRF, SGEQRF, and SPOTRF respectively. The
right-looking versions of the algorithms minimize communication and tend to
spread out the computation and updating across the data. These block algo-
rithms rely heavily on Level 3 BLAS routines.

We assume that our matrices are wrap-mapped across the processors by
panels, where each panel is a number of columns of the matrix specified by the
blocksize. Since communication is very expensive, we keep it to a minimum by
communicating only once per iteration. This approach of communicating fewer
times with larger messages is cheaper than communicating more frequently but
with smaller messages. For more information about the cost of communica-
tion versus computation, see Dunigan [4]. To further simplify and minimize
communication volume we use a gray code ordering scheme on a unidirectional
ring as our connection topology for the hypercube. The ring topology is chosen
because it best simulates the progression of the algorithms and decreases the
communication volume. The gray code ordering together with the ring topology
minimizes the traffic distance between nodes, and eliminates the intersection of
messages.

In the following sections, we explain each of the implementations used for
LU, QR, and Cholesky, as well as how we arrived at our pipelined approach.
We then evaluate our timing results and specify an optimal blocksize for each
of the algorithms.

3 Intel iPSC/860

The Intel iPSC/860 is an Intel i860 processor-based hypercube with 128 nodes
attached to a 80386 host processor. Each i860 node has an 8-KB cache, 8
MB of main memory, and multiple arithmetic units which permit multiple op-
erations per cycle [4]. Each node has a theoritical peak performance rate of
80 MFLOPS for single precision and 40 MFLOPS for double precision. The
operation system on the nodes supports asynchronous communication, remote
I/O from the host, and multitasking. Communication is supported by direct-
connect routing modules on each node. These direct-connect modules relieve
the node CPU of routing overhead and greatly reduce the penalty of multihop

2



messages. With this new routing hardware, the nodes can be treated as if they
were directly connected [4]. The communication time for a message is a linear
function of the size of the message. Thus, the time T to transmit a message of
length N is T = α + β ∗ N , where α represents a fixed startup overhead and
β is the transmission time per byte. For messages of length 100 bytes or less,
α = 75 microseconds. However, for larger messages, α = 136 microseconds.
In both cases, β = 0.4 microseconds. The reason for this difference in startup
cost is that messages of 100 bytes or less travel by route-acquisition protocol,
whereas larger messages require a type of hand-shaking before the message can
be sent.

4 LU Factorization

The right-looking block algorithm (SGETRF) computes a group of elementary
transformations to zero out a number of columns at each step (this requires
an unblocked LU factorization) and uses these transformation to update the
remaining trailing submatrix. SGETRF calls three routines: SGETF2, the
unblocked LU factorization for operations with a block column; STRSM, the
triangular solve with multiple right-hand sides; and SGEMM, the matrix-matrix
multiply. Initially, we coded a straightforward version of SGETRF with the
communication of the factored block column (panel) and the pivots after the
call to SGETF2.

The pseudo-code for this algorithm would be the following (where n is the
number of columns in the matrix, nb is the blocksize, nprocs is the total number
of processors allocated, and proc is the integer value used to keep track of which
processor is currently doing the factoring and shipping of data):

proc = 0
DO i = 1, n, nb

if (proc = myid) then
call sgetf2
send pivots and factored panel to other processors

else
receive pivots and factored panel from processor proc

endif
apply pivot interchanges to panels
call strsm for the triangular solve on panels
call sgemm to update the remaining panels
proc = mod(proc + 1, nprocs)

ENDDO

Disappointment with the execution times led us to analyze our implementa-
tion in more detail with the help of ParaGraph [6]. ParaGraph is a parallel pro-
gramming tool that graphically displays the execution of a distributed-memory
program. It obtains the trace information that it needs from a communication
library called PICL [5]. PICL is used throughout our implementations because

3



of its portability and its simplification of many hypercube commands. Para-
Graph confirmed our belief that there were inherent idle waits in the algorithm.
The stairstep of idle waits can clearly be seen in Fig. 4. These idle waits occur
when all of the processors are waiting for one processor—which will eventu-
ally call SGETF2 and communicate its information—first to do STRSM and
SGEMM to all of its panels for the current call.

Figure 1: ParaGraph visualization of straight-forward LU factorization

A better strategy is to communicate as soon as possible using a pipelined
approach. Specifically, instead of calling STRSM and SGEMM for all of its
panels, the processor simply updates the next panel to be factored, factors that
panel, ships the information to the other processors, and finishes the update
of the rest of its panels for the previous SGETF2 call. We call this strategy
pipelined updating.

The pseudo-code for the pipelined updating approach would be the following
(where n, nb, nprocs, and proc are as previously defined):

proc = 0
if (proc = myid) then

call sgetf2 to factor my first panel and get things started
ship factored panel and pivots in workout array

4



to other processors
endif
DO i = 1, n, nb

if (proc = myid) then
copy workout array into workin array

else
receive panel and pivots into workin array from
processor proc

endif
all processors apply shipped pivots
proc = mod(proc + 1, nprocs)
if (I have panels left to modify) then

if (proc = myid) then
I’m the next processor to factor a panel so
call strsm and sgemm only on my first panel
then factor that panel (call sgetf2) and ship
the information in workout to all other processors

endif
all processors call strsm and sgemm with workin array

endif
ENDDO

It is evident from ParaGraph (see Fig. 2) that the idle waits between proces-
sors have now been eliminated. Idle time occurs only when the processor starts
to run out of work, that is, when it has fewer panels to update than the other
processors.

4.1 Testing and Results

The timings that we report are for the factorization only. They do not include
the time to load the node program or to distribute the wrap-mapped matrix to
the processors. We use only 64 and 128 nodes for our timings. Our matrices
range from order 500 to order 5000, with blocksizes of 1 to 16.

Unfortunately, several implementation details on the Intel iPSC/860 limit
performance. No Level 3 BLAS routines in i860 assembly language were avail-
able. There were, however, a few Level 1 BLAS routines coded in i860 assembly
language—specifically, SAXPY, SSCAL, and a stride-one version of SDOT. We
therefore incorporate calls to these routines whenever possible. We also use only
column-major addressing and strides of one wherever possible. Single precision
is used in our implementations.

We found these blocksizes to be sufficient to saturate the desired number
of nodes that we were using, given the implementation of SAXPY we had, and
also show starvation as it occurs. The major limiting factor is the performance
of the SAXPY routine. After SAXPY reaches its peak performance, we begin
to see the performance of LU leveling off. Fig. 3 is a graph of the MFLOP
ratings for LU factorization. The graph shows a peak individual processor

5



Figure 2: ParaGraph visualization of pipelined LU factorization

performance of 6.11 MFLOPS for 64 processors and 4.75 MFLOPS for 128
processors. To achieve comparable peak performance on 128 processors we
would need to further increase the order of test matrices to match the work
load achieved on 64 processors.

4.2 Optimal Blocksize

The optimal blocksize is—as expected—a function of the number of proces-
sors, the efficiency of the floating-point operations, and the order of the matrix.
Interestingly, in examining our test results, we observed a range of optimal
blocksizes.

Smaller blocksizes produce better load balancing on the nodes and thus de-
crease the amount of idle waits between the processors. However, this decrease
in idle time is at the expense of an increase in communication overhead and
a decrease in the floating-point performance of the individual nodes. Larger
blocksizes, on the other hand, increase the floating-point performance of indi-
vidual nodes and decrease the amount of communication overhead at the cost
of larger messages. They also result in poorer load balancing between the nodes

6



0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Block LU Factorization

order

M
FL

O
PS

-- 64 processors
- 128 processors

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 3: LU Factorization Results for Intel iPSC/860 with 64 and 128 nodes

and thus incur idle waits in the execution.
Hence, the range of optimal blocksizes occur at the point where the tradeoff

between idle waits and communication overhead is outweighed by the floating-
point performance of the individual nodes.

Bischof cites these drawbacks to a fixed-blocking strategy in [2].

5 QR Factorization

Like the right-looking block algorithm for LU, the right-looking block algorithm
(SGEQRF) computes a block row and column at each step and uses them to
update the trailing submatrix. SGEQRF calls three routines: SGEQR2 to com-
pute the factorization for the panel, SLARFT to compute the block Householder
matrix, and SGEMM to apply the block Householder matrix to the rest of the
matrix. In our case, communication occurs after the call to SLARFT. (It is also
possible to let communication occur after the call to SGEQR2. However, this
idea would result in a lot of redundant computation because all of the processors
calling SLARFT instead of just one.) All processors then update their panels by
calling SLARFB. As with the LU factorization, to achieve optimal performance,
we use the pipelined update approach.

The pseudo-code for the QR partial updating approach would be the follow-
ing (where n, nb, nprocs, and proc are as previously defined):

proc = 0

7



if (proc = myid) then
call sgeqr2 to factor my first panel and get things started
call slarft to form the block householder matrix S
ship factored panel and S matrix in workout array
to other processors

endif
DO i = 1, n− nb, nb

if (proc = myid) then
copy workout array into workin array

else
receive panel and S matrix into workin array from
processor proc

endif
proc = mod(proc + 1, nprocs)
if (I have panels left to modify) then

if (proc = myid) then
I’m the next processor to factor a panel so
call slarfb to update my first panel
then factor that panel (call sgeqr2)
and compute the S matrix (call slarft)
ship the information in workout to other processors

endif
all processors call slarfb with workin array

endif
ENDDO

It should be noted that our DO loop in this case runs from 1 to n − nb,
instead of from 1 to n as in LU. The reason for this discrepancy is that, in
the case of QR, we do not need to communicate after the last panel has been
factored; for LU, however, we need to communicate that last time because all of
the other processors need to apply the pivot information from the last factored
panel to their finished panels.

5.1 Testing and Results

Since QR has the highest operation count for the three factorization algorithms,
we expect it to produce the best performance. Fig. 4 reflects the MFLOP ratings
that were reported for the QR factorization. The graph shows a peak individual
processor performance of 6.67 MFLOPS for 64 processors and 5.36 MFLOPS
for 128 processors. To achieve comparable peak performance on 128 processors
we would need to further increase the order of test matrices to match the work
load achieved on 64 processors.

8



0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Block QR factorization

order

M
FL

O
PS

-- 64 processors
- 128 processors

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 4: Pipelined QR Factorization Results for 64 and 128 nodes

5.2 Optimal Blocksize

As stated before in the case of LU, the optimal blocksize is a function of the
number of processors and the order of the matrix. Similarly, our timings again
show identifiable optimal blocksize ranges.

Although QR has the greatest potential for good floating-point performance
on the nodes, it suffers from the same pitfalls as LU for small versus large
blocksizes. It can incur very poor load balancing since it requires more work
than LU. It also involves the communication of greater amounts of data between
the processors.

6 Cholesky Factorization

SPOTRF, the right-looking block algorithm for Cholesky, factors a block column
at each step and then uses it to update the trailing submatrix. SPOTRF calls
three routines: SPOTF2 to factor the block column, STRSM to do a triangular
solve on the panel, and SSYRK to perform the symmetric rank update. Unlike
LU and QR, the implementation of this algorithm was not straightforward,
since the call to SSYRK is impossible in the distributed-memory wrap-mapped
context. The changes to SSYRK were minor, however: only one loop was
changed, and a few indexes were added. The code proceeds as a call to SPOTF2
and STRSM, followed by communication and the symmetric rank update over
the panels. As with our other factorization techniques, we use the pipelined
partial update approach for best performance.

9



The pseudo-code for the Cholesky partial updating approach would be the
following (where n, nb, nprocs, and proc are as previously defined):

proc = 0
if (proc = myid) then

call spotf2 to factor my first panel and get things started
call strsm
ship factored panel in workout array to other processors

endif
DO i = 1, n− nb, nb

if (proc = myid) then
copy workout array into workin array

else
receive panel into workin array from processor proc

endif
proc = mod(proc + 1, nprocs)
if (I have panels left to modify) then

if (proc = myid) then
I’m the next processor to factor a panel so
call update to update my first panel
then factor that panel (call spotf2)
call strsm
ship the information in workout to other processors

endif
all processors call update with workin array

endif
ENDDO

It should be noted that our DO loop in this case runs from 1 to n−nb as in
QR. The same reasoning applies here as in the QR case.

6.1 Testing and Results

The same number of processors, orders of matrices, and blocksizes discussed ear-
lier were used for the Cholesky factorization timings. Fig. 5 reflects the timings
that were recorded. The graph shows a peak individual processor performance
of 5.21 MFLOPS for 64 processors and 3.52 MFLOPS for 128 processors. These
peak rates were, of course, achieved at a matrix of order 5000. To achieve com-
parable peak performance on 128 processors we would need to further increase
the order of test matrices to match the work load achieved on 64 processors.

6.2 Optimal Blocksize

Since Cholesky factorization has the poorest ratio of computation to communi-
cation (its optimal blocksize range is again a function of the number of processors
and the order of the matrix), we expected it to perform poorly on this machine.

10



0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Block Cholesky factorization

order

M
FL

O
PS

-- 64 processors
- 128 processors

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 5: Pipelined Cholesky Factorization Results for 64 and 128 nodes

However, its smaller amount of computation allowed for better load balancing
and smaller idle waits between processors. It also requires the least amount of
communication volume. Thus, its performance was better than expected.

7 Conclusions

After implementing these algorithms using fixed blocksizes, we clearly see that
determining an optimal blocking strategy for these block algorithms on a distributed-
memory machine is a complicated task; see [2] for further details. Unfortunately,
a fixed-width blocksize strategy is highly dependent on the number of processors
allocated and the size of the matrix.

The efficiency of the algorithm is a balance between between individual node
floating-point performance, communication overhead and volume, and load bal-
ancing. As Bischof [2] points out, a library routine should be able to obtain
near-optimal performance for any problem size. Thus, we are currently explor-
ing variable blocksize strategies which will elevate problem size dependence.

11



References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK: A portable linear algebra library for high-
performance computers, computer Science Dept. Technical Report CS-90-
105, University of Tennessee, Knoxville, TN, September 1990. (LAPACK
Working Note #20).

[2] C. H. Bischof, Adaptive blocking, Tech. Rep. MCS-P39-1288, Argonne
National Laboratory, Argonne, Illinois, 1988.

[3] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling, A set of
level 3 basic linear algebra subprograms, ACM Transactions on Mathematical
Software, 16 (1990), pp. 1–17.

[4] T. H. Dunigan, Performance of the intel ipsc/860 hypercube, Tech. Rep.
ORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1990.

[5] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley,
A machine-independent communication library, Monterey, California, 1989,
Proc. Fourth Conf. Hypercubes and Concurrent Computers and Applica-
tions.

[6] M. T. Heath, Visual animation of parallel algorithms for matrix compu-
tations, Charleston, South Carolina, 1990, Proc. Fifth Distributed Memory
Computing Conf.

12


