
Communication Bounds for Heterogeneous Architectures
(Regular Submission)

Grey Ballard
UC Berkeley

ballard@cs.berkeley.edu

James Demmel
UC Berkeley

demmel@cs.berkeley.edu

Andrew Gearhart
UC Berkeley

agearh@cs.berkeley.edu

Abstract

As the gap between the cost of communication (i.e., data movement) and computation continues
to grow, pursuing algorithms which minimize communication has become a critical research objective.
Toward this end, we seek asymptotic communication lower bounds for general memory models and
classes of algorithms. Recent work [2] has established lower bounds for a wide set of linear algebra
algorithms on a sequential machine and on a parallel machine with identical processors. This work
extends these previous bounds to a heterogeneous model in which processors access data and perform
floating point operations at differing speeds. We also present algorithms which prove that the lower
bounds are tight (i.e., attainable) in the cases of dense matrix-vector and matrix-matrix multiplication.

Keywords: Communication lower bounds, heterogeneity, dense linear algebra



1 Introduction

Traditionally, algorithms for dense linear algebra focus on minimizing floating point operations as the key
to performance. However, as the gap between interprocessor communication and computation continues
to grow, focus has shifted to the problem of reducing data movement between various levels of a memory
hierarchy or between different nodes on a parallel machine. Thus, the idea of a “communication-avoiding”
(CA) algorithm has become a concept of critical research importance. CA algorithms differ from traditional
flop-minimized approaches as they asymptotically minimize communication, sometimes at the cost of extra
flops. Solving a problem in a CA manner may involve a significant amount of algorithmic innovation (for
examples, see [6, 8, 12]).

Toward the goal of developing CA algorithms (and ultimately producing efficient software), we seek
asymptotic communication lower bounds for general memory models and certain classes of algorithms.
Once an optimal algorithm for a memory model has been established, then lower-level tuning can obtain
high performance on specific architectures.

Recent work [2] has established communication lower bounds for a large set of linear algebra algorithms
on both sequential and parallel machines. However, the parallel model assumes homogeneity among pro-
cessors. In this work, we propose a heterogeneous parallel machine model and show how the lower bounds
of [2] can be extended to this more complicated model. These new bounds hold for the same wide set
of algorithms as the prior work. Further, we argue that the new lower bounds are asymptotically tight by
presenting algorithms that attain them (to within constant factors).

We differentiate between communication costs that are dominated by the initial reading of inputs and
final writing of outputs of an algorithm and those that are dominated by the shuffling of data in and out of
memory. The former case is common with O(n2) matrix-vector operations, while the latter encompasses
O(n3) matrix-matrix operations and matrix factorizations where the data is too large to fit into fast memory
at once.

The rest of this paper is organized as follows. We discuss prior communication lower bounds in Sec-
tion 2. We present the heterogeneous model in Section 3 and establish lower bounds for the model in
Section 4. In Sections 5 and 6 we present algorithms for matrix-vector multiplication and matrix-matrix
multiplication, respectively, which attain the lower bounds. Section 7 concludes and discusses future re-
search directions.

2 Prior Communication Lower Bounds

A communication lower bound for dense matrix multiplication was first proved for a sequential machine
in the two-level memory model (shown in Figure 1(a)) by Hong and Kung [9]. Irony, Toledo, and Tiskin
[10] extended the result for dense matrix multiplication to parallel machines where the data is distributed
across the local memories of the processors (i.e., the distributed memory model, shown in Figure 1(b)). In
this model, all of the processors and their local memory sizes are identical. The proof in [10] is based on a
geometric inequality of Loomis and Whitney [11] which is used to bound the arithmetic intensity for matrix
multiplication on a processor with a given fast memory size.

Recent work [2] has generalized the communication lower bound to many other linear algebra algo-
rithms. The more general proof is also based on the Loomis-Whitney [11] inequality. This result holds for
most of “direct” linear algebra algorithms including Basic Linear Algebra Subroutine (BLAS) [4] operations
(e.g. matrix-vector multiplication, matrix multiplication, and triangular solve with one or multiple right hand
sides) and computing LU , Cholesky, LDLT , and QR decompositions, as well as many eigenvalue/SVD
computations. The result holds whether the matrices are dense or sparse, and whether the machine fits the
two-level or distributed memory model. If a processor does G floating point operations (flops) that satisfy

1



SLOW 

FAST 

(a) Two-level sequential model

LOCAL LOCAL LOCAL 

LOCAL LOCAL LOCAL 

LOCAL LOCAL LOCAL 

(b) Distributed parallel model

Figure 1: Previous memory models

the requirements described in [2] and has M words of local memory (fast memory in the sequential case),
then the total number of words W sent and received by the processor satisfies

W ≥ G

8
√

M
−M.

Also, as observed in [2], if the original input data does not reside in fast memory at the start of the algorithm
and the final output data must be written out of fast memory at the end of the algorithm, then there is a trivial
lower bound based on the combined number of input and output words. Since the negative term in the bound
above accounts for the possibility of the fast memory being full of useful data at the start of the algorithm,
we can ignore it under this assumption. Thus, a tighter lower bound may be expressed as

W ≥ max
�

I + O,
G

8
√

M

�
. (1)

where I and O are the number of input and output words, respectively. Note that the second term in the
maximum function degenerates to less than one when G is sufficiently small relative to the size of the
local memory, which is the case for dense algorithms in which the input and output matrices fit in local
memory and for some sparse problems in which the sparsity structure yields few flops. In the case of dense
matrix multiplication of n × n matrices on a sequential machine with n2 � M , inequality (1) reproduces
W = Ω

�
n3
√

M

�
as in [9].

In the distributed memory model, words are packed into contiguous messages before being communi-
cated to another processor. In the two-level memory model, words which are stored contiguously in slow
memory can be read into fast memory (or written back to slow memory) in a single message. We represent
the time cost of a single message between fast/local memory and slow/global memory as:

Tmsg = α + βw

where w is the number of words transferred. In order to model the latency costs (i.e., the cost of a message
that is independent of message size), we are also interested in the number of messages each processor sends
and receives.

Following [2], we obtain a lower bound on the number of messages L a processor sends and receives by
dividing the lower bound on the number of words given in (1) by the fast/local memory size M , which is
the size of the largest possible message. Thus, if a processor executes G flops as before, we have

L ≥ max
�

I + O

M
,

G

8M3/2

�
. (2)

2



GLOBAL 

LOCAL
1 

LOCAL
2 

LOCAL
3 

LOCAL
4 

Figure 2: Heterogeneous memory model

3 A Model for Heterogeneous Architectures

To capture the non-uniform nature of a heterogenous computing environment, we model the machine to be a
set of compute elements proci (1 ≤ i ≤ P ) with varying characteristics connected via independent links to
a shared global memory. Figure 2 shows a graphical representation of the model. Each proci can be defined
very abstractly; for example, one compute element may be a single processor, GPU, or a shared-memory
multiprocessor itself. Each proci is associated with several element-specific parameters:

• βi: Inverse bandwidth of proci’s communication link to global shared memory

• αi: Latency of proci’s communication link to global shared memory

• Mi: Size of the local memory of proci

• γi: Floating point performance (flops per second) of proci on data that resides in local memory

We assume that the initial data for the problem is stored within the machine’s global memory. For
the purposes of this work, global memory is assumed to be without size constraints. Note that unlike the
distributed parallel model, the heterogeneous model presented here assumes that the initial problem lies
within the global memory. Thus, the layout of data in global memory becomes a factor for performance:
in order to read/write a set of words in one message, those words must be contiguously stored in global
memory.

Note that when i = 1, this model reduces to the sequential two-level memory model shown in Fig-
ure 1(a). However, in the case that all the element-specific parameters are equivalent across compute ele-
ments (e.g., βi = β for 1 ≤ i ≤ P ), this heterogeneous model does not reduce to the parallel distributed-
memory model shown in Figure 1(b) since it is based on a global shared memory.

A natural extension of this model is to apply it to real architectures in a hierarchical way. In the case
that proci represents multiple computational units (heterogeneous or not) with a shared memory, one could
apply this model to the element individually to obtain a more accurate prediction of γi.

4 Lower Bounds for Heterogeneous Architectures

Suppose we run an algorithm which executes G flops on a heterogeneous machine, and suppose the algo-
rithm assigns Fi flops to proci for 1 ≤ i ≤ P , such that

�
Fi = G. Then we can focus our attention on

one compute element proci and model the communication between the local memory of proci and machine
global memory as two levels of a sequential machine. In this way we obtain a lower bound on the number of
words Wi transferred to/from proci by applying inequality (1) and, similarly, a lower bound on the number
of messages Li by applying inequality (2). Although we can obtain separate lower bounds for each compute

3



element, the bounds apply only to a particular partitioning of the total flops. We would like a lower bound
which applies to any assignment of the G flops to the different compute elements.

Toward this end, we broaden our focus from the individual communication costs of each compute el-
ement to the total parallel runtime. We begin by recalling the time cost of a single message in our model
between proci’s local memory and global memory as Tmsgi

= αi + βiw, where w is the number of words
transferred. From this, by ignoring idle time, we lower bound proci’s total runtime Ti by the sum of three
terms:

Ti ≥ γiFi + βiWi + αiLi.

This runtime model ignores any potential overlap of computation and communication, though we note that
completely overlapping computation and communication will decrease the runtime by at most a factor of
2×.

In the heterogeneous model, the parallel runtime is determined by the last compute element to finish its
computation. Thus, given a partition {Fi} of the G flops (i.e.,

�
Fi = G, we have

T ({Fi}) ≥ max
1≤i≤P

γiFi + βiWi + αiLi

where Fi, Wi, and Li are the number of flops executed, words communicated, and messages communicated,
respectively, by proci during the course of the algorithm. In order to obtain a more general lower bound, we
can find the minimum over all possible partitions {Fi} with

�
Fi = G, yielding

T ≥ minP
Fi=G

max
1≤i≤P

γiFi + βiWi + αiLi. (3)

Assuming that inequalities (1) and (2) hold, we can apply them to (3) to obtain our heterogeneous lower
bound on parallel runtime:

T ≥ minP
Fi=G

max
1≤i≤P

γiFi + βi max
�

Ii + Oi,
Fi

8
√

M i

�
+ αi max

�
Ii + Oi

Mi
,

Fi

8M
3/2
i

�
. (4)

In the following two subsections, we will identify two circumstances where this lower bound may be
greatly simplified. In each case, the simplifications will suggest algorithms which can attain the lower bound
to within constant factors. In this way, we will argue that lower bound given in (4) is asymptotically tight
for the problems solved by these algorithms.

4.1 Input/Output Dominated Lower Bound

In this section, we focus on the lower bound based on original inputs and final outputs for each proci. That
is, if we ignore the lower bound guaranteed by the result based on Loomis-Whitney, we obtain another valid
lower bound which may be lower than the one in (4). This input/output dominated lower bound, given by

T ≥ minP
Fi=G

max
1≤i≤P

γiFi + βi(Ii + Oi) + αi

�
Ii + Oi

Mi

�
(5)

is valid for any algorithm where the original input and final output must reside in global memory. We may
simplify this bound for an algorithm with a direct relationship between flops and input and output data.

For example, in the case of BLAS2 [4] operations like n-by-n dense-matrix-vector-multiplication, G =
O(n2) and I + O = O(n2). Thus, the number of inputs and outputs in BLAS2 functions are related to the
number of flops via some constant c. So, we can represent inequality (5) as

T ≥ minP
Fi=G

max
1≤i≤P

γiFi + βi(cFi) + αi

�
cFi

Mi

�

4



or
T ≥ minP

Fi=G
max

1≤i≤P
ξiFi,

where
ξi = γi + cβi +

cαi

Mi
(6)

and c is a constant determined by the specific number of words per flop for a given BLAS2 algorithm.
We can further simplify this min-max expression by solving the associated linear program. Observe

that the minimum is attained when ξiFi is constant for 1 ≤ i ≤ P (i.e., the compute elements finish
simultaneously), and we discover that a partition attaining the minimum satisfies

Fi =
1
ξi�
j

1
ξj

G (7)

for 1 ≤ i ≤ P . Thus, for BLAS2 operations, we obtain the partition-independent, input/output dominated
lower bound

T ≥ max
1≤i≤P

ξiFi =
G�
j

1
ξj

. (8)

Again, inequality (8) may not be as tight a bound as (4) in general, but we will argue in Section 5 that
it can be attained in the case of matrix-vector multiplication. This will imply that in that case, both bounds
are equivalent and tight.

4.2 Loomis-Whitney Dominated Lower Bound

In this section, on the other hand, we focus on the lower bound based on Loomis-Whitney. This time,
ignoring the lower bound guaranteed by having to read the original inputs and write the final outputs, we
obtain another lower bound which may be lower than the one in (4). This Loomis-Whitney dominated lower
bound is given by

T ≥ minP
Fi=G

max
1≤i≤P

γiFi + βi

�
Fi

8
√

Mi

�
+ αi

�
Fi

8M
3/2
i

�
.

For example, this lower bound applies to BLAS3 [4] operations such as n-by-n dense-matrix-matrix-
multiplication as well as most direct linear algebra algorithms where G = O(n3). We can rewrite this
inequality as

T ≥ minP
Fi=G

max
1≤i≤P

δiFi

where
δi = γi +

βi

8
√

Mi
+

αi

8M
3/2
i

(9)

is a constant.
As before, we can simplify the min-max expression above by solving the associated linear program.

This implies that the partitioning {Fi} that attains the minimum satisfies

Fi =
1
δi�
j

1
δj

G (10)

for 1 ≤ i ≤ P . Thus, we obtain a partition-independent Loomis-Whitney dominated lower bound

T ≥ max
1≤i≤P

δiFi =
G�
j

1
δj

. (11)

5



= 

A x y 

!

Figure 3: HGEMV splitting

While inequality (11) may not be as tight a bound as (4) in general, we will argue in Section 6 that it can
be attained in the case of O(n3) matrix-matrix multiplication. This will imply that in that case, both bounds
are equivalent and tight.

5 Matrix-Vector Multiplication

In this section we present an algorithm to compute square matrix-vector multiplication (GEMV) that attains
the lower bound presented in Section 4.1. As a BLAS2 operation, square GEMV performs 2n2 flops upon
n2 + 2n data. Thus, we do two flops per word of data transferred and the value of c in Equation (6) is 1

2 .
With this definition of c, we can rewrite the lower bound of (8) as

T ≥ G�
j

1
ξj

= ξiFi = γiFi + βi

�
1
2
Fi

�
+ αi

�
1
2

Fi

Mi

�
(12)

where Fi is defined as in equation (7) and we note that ξiFi is constant for 1 ≤ i ≤ P .
An optimal algorithm for square GEMV on a heterogeneous machine is presented as Algorithm 1. This

algorithm divides the work among the processors by partitioning the rows of the matrix A as shown in
Figure 3. In this way, each processor computes a subset of the entries of the output vector and there are no
write contentions (though each compute element must access the entire input vector).

Algorithm 1 Heterogeneous matrix-vector multiplication
Require: Matrix A ∈ Rn×n, stored in row-wise order, vector x ∈ Rn,

1: Measure ai, βj , γi, Mi for each 1 ≤ i ≤ P and set ξi according to equation (6) with c = 1/2
2: for i = 1 to P do
3: Set Fi according to equation (7) where G = 2n2

4: Choose splitting rows ri (1 ≤ i ≤ P , with r0 = 0) in matrix A such that ri − ri−1 ≈ Fi
2n

5: end for
6: for all proci (1 ≤ i ≤ P ) parallel do
7: Compute GEMVi(A(ri−1 : ri, :), x)
8: end for

For simplicity, we assume the matrix A is stored in row-wise order so that each GEMVi is performed on
a contiguous block of memory. Further, we assume that each GEMVi accesses matrix entries contiguously
(along rows). This implies that if the input vector does not fit in fast memory (n > Mi), then each input
vector entry must be read from slow memory for each row of the matrix. While a blocked algorithm (with

6



a blocked data structure) is more communication-efficient, the difference in the the number of words and
messages transferred from slow memory is less than a constant factor (2×).

To see that the parallel running time of this algorithm is within a constant factor of the lower bound
given in equation (12), consider proci. It computes a matrix-vector product with a matrix of size mi × n

where mi = ri − ri−1 ≈ Fi
2n . Thus, it performs 2min ≈ Fi flops. Because the division of work is done by

rows, even if Fi
2n is not an integer, the processor is assigned no more than one row of extra work (2n flops).

Assuming each compute element is assigned at least one row of work, this implies that the number of flops
done on the compute element is no more than 2× that of the lower bound.

We now consider the communication costs. As mentioned above, if the flops are performed in row-
wise order and the input vector x does not fit in fast memory, then two reads are required for each scalar
multiplication. Since the cost of writing the output vector entries is a lower order term, the number of words
transferred by proci is also 2min. Since 2min is within 2× of Fi, the number of words transferred is within
4× of the lower bound. Since we are accessing the matrix and input vector entries in contiguous order, we
can read the data in blocks of size about Mi/2 (in order to fit both blocks in fast memory at the same time).
Thus, the number of messages is about 4min

Mi
which is within 8× of the lower bound.

Since each term (flop cost, bandwidth cost, latency cost) of the running time of proci is within a con-
stant factor of the lower bound, the sum of the three terms is also within a constant factor. This argument
holds for each compute element individually, so the maximum runtime over all compute elements (i.e., the
parallel runtime) is within a constant factor of the lower bound given in equation (12). Thus, Algorithm 1 is
asymptotically optimal within a factor of 8 of the lower bound. Note that by using a blocked data structure
for the matrix and corresponding algorithm, one could obtain a runtime within 4× of the lower bound.

6 Matrix Multiplication

In this section we present an algorithm to compute square matrix-matrix multiplication (GEMM) that at-
tains the lower bound presented in Section 4.2. For comparison to the upper bound analysis, we re-write
inequality (11) in terms of three summands. Letting Fi be defined as in equation (10), and noting that δiFi

is constant for 1 ≤ i ≤ P , we have the lower bound

T ≥ G�
j

1
δj

= δiFi = γiFi + βi

�
Fi

8
√

Mi

�
+ αi

�
Fi

8M
3/2
i

�
. (13)

We will base the algorithm on the square recursive matrix multiplication algorithm (see [5] for example).
In this algorithm, each of the matrices are divided into four n

2×
n
2 submatrices and the blocked multiplication

of these submatrices yields eight subproblems of 2(n/2)3 flops each, which can be solved recursively. We
assume that n is a power of two in this section.

We require that the n × n input matrices A and B are stored in a block-recursive format. The block-
recursive format [1, 7, 13] (also known as the bit interleaved layout, space-filling curve storage, or Morton
ordering format) stores each of the four n

2 ×
n
2 submatrices contiguously, and the elements of each submatrix

are ordered so that the smaller submatrices are each stored contiguously, and so on recursively. In this way,
every subproblem within square recursive GEMM will be associated with contiguous data.

At a high level, the algorithm assigns subproblems of various sizes to each processor in a manner con-
sistent with the optimal flop distribution as suggested by the lower bound. It assigns as many subproblems
at one level of recursion as possible before recursing to smaller subproblems. The flop assignments are
represented as octal fractions in order to determine the number and size of subproblems to assign to each
processor. Also, no subproblem is allocated such that the entire problem fits in the assigned processor’s fast
memory.

7



Algorithm 2 Heterogeneous matrix-matrix multiplication
Require: Matrices A, B ∈ Rn×n, stored in block-recursive order, n is a power of two

1: Measure ai, βj , γi, Mi and set δi according to equation (9) for each 1 ≤ i ≤ P

2: for i = 1 to P do
3: Set Fi according to equation (10) where G = n3

4: Set ki to be the largest integer such that 3(n/2ki)2 ≥Mi

5: Convert Fi/G into octal and round1 to kth
i digit: 0.d

(i)
1 d

(i)
2 · · · d(i)

ki

6: end for
7: Initialize S = {A · B}
8: for j = 1 to max ki do
9: Subdivide all problems in S into 8 subproblems according to square recursive GEMM

10: Assign d
(i)
j subproblems to proci and remove subproblems from S

11: end for
12: for all proci parallel do
13: Compute assigned subproblems using square recursive GEMM
14: end for
Ensure: Matrix C = AB, stored in block-recursive order

We will assume that for a given heterogeneous machine, the problem size is large enough such that the
distribution of flops to compute elements according to equation (10) satisfies

Fi ≥ (Mi/3)3/2 (14)

for each 1 ≤ i ≤ P . Note that on a sequential machine, this degenerates to 3n2 ≥ M , where the matrix
multiplication problem (two input matrices and one output matrix) is too large to fit entirely in fast memory.
This assumption may be violated for a small problem on a heterogeneous machine where one compute
element is relatively slow (i.e., large δi) but has a large fast memory (i.e., large Mi).

To see that the parallel runtime is within a constant factor of the lower bound given in equation (13),
consider proci. As in Section 5, we will argue that each of the three terms contributing to proci’s runtime
are within constant factors of the corresponding terms in the lower bound.

Algorithm 2 does not assign exactly Fi flops to the proci. Instead, in line 5, Fi/G is rounded to a fraction
with ki octal digits.1 Thus, the actual number of flops assigned is Ui =

�
0.d

(i)
1 d

(i)
2 · · · d(i)

ki

�

8
· G, yielding

Ui

G
− Fi

G
≤ 1

8ki
.

Further, ki is chosen in line 4 so that 3
�

n
2ki+1

�2
≤ Mi which implies n3

8ki
≤

�
4
3Mi

�3/2. Since G = n3, we
have

Ui − Fi ≤
n3

8ki
≤

�
4
3
Mi

�3/2

.

By our assumption in inequality (14), we have

Ui − Fi

Fi
≤ 8

(Mi/3)3/2

Fi
≤ 8

1Rounding each of these fractions to a finite-digit octal representation such that the sum of octal fractions is exactly one is a
nontrivial problem. For the purposes of this upper bound, we may assume that the rounding scheme always rounds up to the next
kth

i digit, in which case the sum will be greater than one.

8



and so the number of flops assigned to proci in Algorithm 2 is within a constant factor of the flops given in
the lower bound.

We now consider the communication costs for proci. By construction, the octal fraction representing the
work assigned to proci has no more than ki digits. This implies that the smallest subproblem assigned to the
compute element involves submatrices of size at least n/2ki × n/2ki . Since 3(n/2ki)2 ≥ Mi, the smallest
subproblem is too large to fit into fast memory. In this case, from [3], the number of words transferred by
the square recursive GEMM on a sequential machine for each subproblem is O(#flops/

√
Mi), and with

a block recursive data structure, the number of messages is O(#flops/M3/2
i ).2 Thus, the total number of

words transferred between proci and slow memory is O(Ui/
√

Mi), and the number of messages transferred
is O(Ui/M

3/2
i ). Since Ui is within a constant factor of Fi, the number of words and messages transferred is

within a constant factor of the lower bound.
We also note that for matrix multiplication, all subproblems are independent (ignoring the O(n2) work

to sum the results of pairs of subproblems), so there is no idle time on processors due to data dependencies.
Thus, the running time of each compute element is the sum of the three terms of arithmetic and commu-
nication costs. Since each of these terms is within a constant factor of the lower bound for each compute
element, the maximum runtime over all compute elements is no more than a constant factor larger than the
lower bound given in inequality (13). Thus, Algorithm 2 is optimal.

7 Future Work and Conclusions

In this work, we have extended existing communication lower bounds for simple memory models to a
shared-memory heterogeneous model. The bounds hold for a wide class of algorithms in dense and sparse
direct linear algebra including BLAS operations and matrix factorizations. Further, we have shown that
the bounds are tight for dense matrix-vector and matrix-matrix multiplication by presenting algorithms that
attain the lower bounds within constant factors.

While the runtimes of the algorithms in Sections 5 and 6 are asymptotically optimal, we would like to
show empirically that the flop distributions suggested by the algorithms are efficient on real heterogeneous
machines. The most common simple heterogeneous environment is a CPU paired with a graphics processing
unit (GPU). Given accurate measurement of system parameters, we have preliminary results that show that
in the case of matrix-vector multiplication our runtime model accurately represents measured performance.
We hope to obtain similar results for the case of matrix-matrix multiplication.

Future work will be targeted in two directions: extending communication bounds to more complicated
theoretical models and developing new linear algebra algorithms that attain the bounds for the model in
this paper. In the first case, we would like to consider bounds on heterogeneous machines that include
multiprocessors as compute elements. For example, such a hierarchical model would allow for represen-
tation of individual GPU cores in a CPU/GPU system. We also plan to explore bounding communication
on distributed heterogeneous machines without a global memory, i.e. machines where each proci possesses
multiple communication links.

Futher algorithm work will explore ways to implement problems such as triangular solves, Cholesky,
LU, and QR optimally within the heterogeneous model. While GEMV and GEMM allow for many inde-
pendent computations and flexibility in flop distribution, these other algorithms include dependencies which
make them harder to map to arbitrary heterogeneous machines.

We also believe we can extend these results to Strassen and other fast matrix multiplication algorithms.
Given a lower bound for Strassen in the two-level memory model, the same arguments can be made to

2The analysis of recursive GEMM in [3] is for a more general algorithm which handles rectangular matrices. In the case of
square matrices, the algorithm reduces to square recursive GEMM.

9



extend the lower bounds to the heterogeneous model. With slight modifications, we believe Algorithm 2
will provide a matching upper bound.

Acknowledgment

This research was supported by Microsoft (Award #024263 ) and Intel (Award #024894) funding and by
matching funding by U.C. Discovery (Award #DIG07-10227).

References

[1] M. Bader, R. Franz, S. Günther, and A. Heinecke. Hardware-oriented implementation of cache oblivi-
ous matrix operations based on space-filling curves. In Proceedings of the 7th international conference

on parallel processing and applied mathematics, PPAM ‘07, pages 628–638, Berlin, Heidelberg, 2008.
Springer-Verlag.

[2] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing Communication in Linear Algebra.
Submitted. Available from http://arxiv.org/abs/0905.2485, 2009.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Communication-optimal parallel and sequential
Cholesky decomposition. SIAM Journal on Scientific Computing, 32(6):3495–3523, 2010.

[4] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated set of Basic Linear
Algebra Subroutines (BLAS). ACM Trans. Math. Soft., 28(2), June 2002.

[5] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. Dag-consistent distributed shared
memory. In IPPS ‘96: Proceedings of the 10th international parallel processing symposium, pages
132–141, 1996.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Implementing communication-optimal parallel
and sequential QR and LU factorizations. Submitted to SIAM. J. Sci. Comp., 2008.

[7] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive blocked algorithms and hybrid data
structures for dense matrix library software. SIAM Review, 46(1):pp. 3–45, 2004.

[8] L. Grigori, J. Demmel, and H. Xiang. Communication avoiding Gaussian elimination. In Proceedings

of the 2008 ACM/IEEE conference on supercomputing, SC ’08, pages 29:1–29:12, Piscataway, NJ,
USA, 2008. IEEE Press.

[9] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In STOC ‘81: Proceedings of

the thirteenth annual ACM symposium on theory of computing, pages 326–333, New York, NY, USA,
1981. ACM.

[10] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix
multiplication. J. Parallel Distrib. Comput., 64(9):1017–1026, 2004.

[11] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. Bulletin of the

AMS, 55:961–962, 1949.

10



[12] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in sparse
matrix solvers. In Proceedings of the 2009 ACM/IEEE conference on supercomputing, SC ’09, pages
36:1–36:12, New York, NY, USA, 2009. ACM.

[13] D. Wise. Ahnentafel indexing into Morton-ordered arrays, or matrix locality for free. In Arndt Bode,
Thomas Ludwig, Wolfgang Karl, and Roland Wismller, editors, Euro-Par 2000 Parallel Processing,
volume 1900 of Lecture Notes in Computer Science, pages 774–783. Springer Berlin / Heidelberg,
2000.

11


