
CALU: A COMMUNICATION OPTIMAL LU FACTORIZATION
ALGORITHM

LAURA GRIGORI∗, JAMES W. DEMMEL† , AND HUA XIANG ‡

Abstract. Since the cost of communication (moving data) greatly exceeds the cost of doing
arithmetic on current and future computing platforms, we are motivated to devise algorithms that
communicate as little as possible, even if they do slightly more arithmetic, and as long as they still
get the right answer. This paper is about getting the right answer for such an algorithm.

It discusses CALU, a communication avoiding LU factorization algorithm based on a new pivoting
strategy, that we refer to as tournament pivoting. The reason to consider CALU is that it does an
optimal amount of communication, and asymptotically less than Gaussian elimination with partial
pivoting (GEPP), and so will be much faster on platforms where communication is expensive, as
shown in previous work.

We show that the Schur complement obtained after each step of performing CALU on a matrix
A is the same as the Schur complement obtained after performing GEPP on a larger matrix whose
entries are the same as the entries of A (sometimes slightly perturbed) and zeros. More generally,
the entire CALU process is equivalent to GEPP on a large, but very sparse matrix, formed by entries
of A and zeros. Hence we expect that CALU will behave as GEPP and it will be also very stable in
practice. In addition, extensive experiments on random matrices and a set of special matrices show
that CALU is stable in practice. The upper bound on the growth factor of CALU is worse than of
GEPP. However, there are Wilkinson like-matrices for which GEPP has exponential growth factor,
but not CALU, and vice-versa.

Key words. LU factorization, communication optimal algorithm, numerical stability

AMS subject classifications. 65F50, 65F05, 68R10

1. Introduction. In this paper we discuss CALU, a communication avoiding
LU factorization algorithm. The main part of the paper focuses on showing that
CALU is stable in practice. We also show that CALU minimizes communication.
For this, we use lower bounds on communication for dense LU factorization that
were introduced in [5]. These bounds were obtained by showing through reduction
that lower bounds on dense matrix multiplication [15, 16] represent lower bounds for
dense LU factorization as well. These bounds show that a sequential algorithm that
computes the LU factorization of a dense n×n matrix transfers between slow and fast
memory at least Ω(n3/W 1/2) words and Ω(n3/W 3/2) messages, where W denotes the
fast memory size and we assume a message consists of at most W words in consecutive
memory locations. On a parallel machine with P processors, if we consider that the
local memory size used on each processor is on the order of n2/P , it results from the
previous bounds that a lower bound on the number of words is Ω(n2/

√
P) and a lower

∗INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique, Université Paris-Sud
11, France (laura.grigori@inria.fr). This work has been supported in part by French National
Research Agency (ANR) through COSINUS program (projects PETAL no ANR-08-COSI-009 and
PETALH no ANR-10-COSI-013).
†Computer Science Division and Mathematics Department, UC Berkeley, CA 94720-1776, USA

(demmel@cs.berkeley.edu). Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227), as well
as U.S. Department of Energy grants under Grant Numbers DE-SC0003959, DE-SC0004938, and
DE-FC02-06-ER25786, as well as Lawrence Berkeley National Laboratory Contract DE-AC02-
05CH11231.
‡School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China

(hxiang@whu.edu.cn). Research partly supported by the National Natural Science Foundation of
China under grant 10901125.

1

bound on the number of messages is Ω(
√
P). Here we consider square matrices, but

later we consider the more general case of an m× n matrix.
Gaussian elimination with partial pivoting (GEPP) is one of the most stable

algorithms for solving a linear system through LU factorization. At each step of
the algorithm, the maximum element in each column of L is permuted in diagonal
position and used as a pivot. Efficient implementations of this algorithm exist for
sequential and parallel machines. In the sequential case, the DGETRF routine in
LAPACK [1] implements a block GEPP factorization. The algorithm iterates over
block columns (panels). At each step, the LU factorization with partial pivoting of the
current panel is computed, a block row of U is determined, and the trailing matrix
is updated. Another efficient implementation is recursive GEPP [22, 11]. We will
see later in the paper that DGETRF minimizes neither the number of words nor the
number of messages in some cases. Recursive LU attains the lower bound on the
number of words but not the lower bound on the number of messages in general. In
the parallel case, the PDGETRF routine in ScaLAPACK [3] distributes the input
matrix over processors using a block cyclic layout. With this partition, every column
is distributed over several processors. Finding the maximum element in a column
of L necessary for partial pivoting incurs one reduction operation among processors.
This gives an overall number of messages at least equal to the number of columns of
the matrix. Hence this algorithm cannot attain the lower bound on the number of
messages of Ω(

√
P) and is larger by a factor of at least n/

√
P .

CALU uses a new strategy that we refer to as tournament pivoting. This strategy
has the property that the communication for computing the panel factorization does
not depend on the number of columns. It depends only on the number of blocks
in the sequential case and on the number of processors in the parallel case. The
panel factorization is performed as follows. A preprocessing step aims at finding
at low communication cost b rows that can be used as pivots to factor the entire
panel, where b is the panel width. Then the b rows are permuted into the first
positions and the LU factorization with no pivoting of the entire panel is performed.
The preprocessing step is performed as a reduction operation where the reduction
operator is the selection of b pivot rows using GEPP at each node of the reduction
tree. The reduction tree is selected depending on the underlying architecture. In this
paper we study in particular binary-tree-based and flat-tree-based CALU. It has been
shown in [9], where the algorithm was presented for the first time, that binary-tree-
based CALU leads to important speedups in practice over ScaLAPACK on distributed
memory computers. In [6] the algorithm is adapted to multicore architectures and is
shown to lead to speedups for matrices with many more rows than columns.

The main part of this paper focuses on the stability of CALU. First, we show
that the Schur complement obtained after each step of performing CALU on a matrix
A is the same as the Schur complement obtained after performing GEPP on a larger
matrix whose entries are the same as the entries of A (plus some randomly generated ε
entries) and zeros. More generally, the entire CALU process is equivalent to GEPP on
a large, but very sparse matrix, formed by entries of A (sometimes slightly perturbed)
and zeros. Hence we expect that CALU will behave as GEPP and it will be also very
stable in practice. However, for CALU the upper bound on the growth factor is worse
than for GEPP. The growth factor plays an important role in the backward error
analysis of Gaussian elimination. It is computed using the values of the elements of A

during the elimination process, gW =
maxi,j,k |a(k)

ij |
maxi,j |aij | , where [a(k)

ij] is the matrix obtained
at the k-th step of elimination. For GEPP the upper bound of the growth factor is

2

2n−1, while for CALU is on the order of 2nH , where n is the number of columns of
the input matrix and H is the depth of the reduction tree.

For GEPP the upper bound is attained on a small set of input matrices, that are
variations of one particular matrix, the Wilkinson matrix. We also show that there are
very sparse matrices, formed by Kronecker products involving the Wilkinson matrix,
that nearly attain the bound for GEPP. We were not able to find matrices for which
CALU exceeds GEPP’s upper bound and we conjecture that the growth factor of
CALU is also bounded by 2n−1. In addition, there are Wilkinson-like matrices for
which CALU is stable and GEPP has an exponential growth factor and vice-versa.

Second, we present experimental results for random matrices and for a set of
special matrices, including sparse matrices, for binary tree based and flat-tree-based
CALU. We discuss both the stability of the LU factorization and of the linear solver,
in terms of pivot growth and backward errors. The results show that in practice
CALU is stable. Later in the paper Tables 7.2 through 7.6 present the backward
errors measured three ways: by ‖PA − LU‖/‖A‖, by the normwise backward error
‖Ax− b‖/(‖A‖‖x‖+ ‖b‖), and by the componentwise backward error (after iterative
refinement in working precision). Figure 3.3 shows the ratios of these errors, dividing
backward errors of CALU by GEPP. For random matrices, all CALU’s backward
errors were at most 1.9x larger than GEPP’s backward errors. We also tested ”special”
matrices, including known difficult examples: (1) The ratios of ‖PA−LU‖/‖A‖ were
at most 1 in over 69% of cases (i.e. CALU was at least as stable as GEPP), and always
1.5 or smaller, except for one ratio of 4.3, in which case both backward errors were
much smaller than 2−53 = machine epsilon. (2) The ratios of normwise backward
errors were at most 1 in over 53% of cases, and always 1.5 or smaller, except for 5
ratios ranging up to 26, in which cases all backward errors were less than 4x machine
epsilon. (3) The ratios of componentwise backward errors were at most 1 in over 52%
of cases, and always 3.2 or smaller, except for one ratio of 8.3.

We also discuss the stability of block versions of pairwise pivoting [21] and par-
allel pivoting [23], two different pivoting schemes. These methods are of interest,
since with an optimal layout, block pairwise pivoting is communication optimal in
a sequential environment and block parallel pivoting is communication optimal in a
parallel environment. Block pairwise pivoting has been introduced and used in the
context of out-of-core algorithms [25, 17], updated factorizations [18], and multicore
architectures [2, 19]. It is simple to see that block parallel pivoting is unstable. As
the number of blocks per panel increases (determined by the number of processors),
so does the growth factor. In the extreme case when the block size is equal to 1,
the growth factor increases exponentially with dimension on random examples. For
pairwise pivoting we study the growth factor for the case when the block size is equal
to 1. This method is more stable, but it shows a growth more than linear of the factor
with respect to the matrix size. Hence a more thorough analysis for larger matrices
is necessary to understand the stability of pairwise pivoting.

QR factorization is another stable method for computing the solution of linear
systems, however it performs twice as many floating point operations as LU factor-
ization in the case of dense matrices (this factor can be larger in the case of sparse
matrices). For dense matrices, communication avoiding QR (CAQR) [5] is a family
of algorithms that have some similarities with CALU. CAQR computes the panel
factorization as a reduction operation as in CALU. But the reduction operator is the
QR factorization, which is performed at each node of the tree on matrices formed by
R factors previously computed. This is different from CALU which operates on rows

3

of the original matrix. In other words, panel factorization in CAQR does not include
a preprocessing step that needs to complete before starting to update the trailing
matrix. With an optimal layout of the input matrix, CAQR attains the lower bounds
on communication for sequential and parallel machines. It has the same communica-
tion cost as CALU, modulo polylogarithmic or constant factors. In a situation where
communication costs completely dominate the difference in flop costs between CALU
and CAQR, it is conceivable that CAQR could be the faster way to solve Ax = b (as
well as guaranteeing backward stability).

The paper is organized as follows. Section 2 presents the algebra of CALU and
the new tournament pivoting scheme. Section 3 discusses the stability of CALU. It
describes similarities between GEPP and CALU and upper bounds of the growth
factor of CALU. It also presents experimental results for random matrices and several
special matrices showing that CALU is stable in practice. Section 4 discusses two
alternative approaches for solving linear systems via LU-like factorization. Section
5 presents parallel and sequential CALU algorithms and their performance models.
Section 6 recalls lower bounds on communication and shows that CALU attains them.
Section 7 concludes the paper.

2. CALU Matrix Algebra. In this section we describe the main steps of the
CALU algorithm for computing the LU factorization of a matrix A of size m × n.
CALU uses a new pivoting strategy, that we refer to as tournament pivoting. (In [9]
we referred to this strategy as ca-pivoting.) Here is our notation. We refer to the
submatrix of A formed by rows i through j and columns d through e as A(i : j, d : e).
If A is the result of the multiplication of two matrices B and C, we refer to the
submatrix of A as (BC)(i : j, d : e). The matrix [B;C] is the matrix obtained by
stacking the matrices B and C atop one another.

CALU is a block algorithm that factorizes the input matrix by traversing itera-
tively blocks of columns. At the first iteration, the matrix A is partitioned as follows:

A =
[
A11 A12

A21 A22

]
where A11 is of size b× b, A21 is of size (m− b)× b, A12 is of size b× (n− b) and A22

is of size (m − b) × (n − b). We present a right looking version of the algorithm, in
which first the LU factorization of the first block-column (panel) is computed, then
the block U12 is determined, and the trailing matrix A22 is updated. The algorithm
continues on the block A22.

The LU factorization of each panel is computed using tournament pivoting, and
this is the main difference between CALU and other block algorithms. The panel can
be seen as a tall and skinny matrix, and so we refer to its factorization as TSLU. It is
performed in two steps. The first step is a preprocessing step, which identifies at low
communication cost a set of good pivot rows. These rows are used as pivots in the
second step for the LU factorization of the entire panel. That is, in the second step
the b pivot rows are permuted into the first b positions of the panel (maintaining the
order determined by the first step), and the LU factorization with no pivoting of the
panel is performed.

We illustrate tournament pivoting on the factorization of the first panel. CALU
considers that the panel is partitioned in P block-rows. We present here the simple
case P = 4, and we suppose that m is a multiple of 4. The preprocessing step is
performed as a reduction operation, where GEPP is the operator used to select new

4

pivot rows at each node of the reduction tree. We use now a binary reduction tree to
exemplify tournament pivoting. We number its levels starting with 0 at the leaves.

The preprocessing starts by performing GEPP of each block-row Ai. This corre-
sponds to the reductions performed at the leaves of the binary tree (the right subscript
0 refers to the level in the reduction tree):

A(:, 1 : b) =

2664
A0

A1

A2

A3

3775 =

2664
Π̄00L̄00Ū00

Π̄10L̄10Ū10

Π̄20L̄20Ū20

Π̄30L̄30Ū30

3775

=

2664
Π̄00

Π̄10

Π̄20

Π̄30

3775 ·
2664
L̄00

L̄10

L̄20

L̄30

3775 ·
2664
Ū00

Ū10

Ū20

Ū30

3775
≡ Π̄0L̄0Ū0

In this decomposition, the first factor Π̄0 is an m×m block diagonal matrix, where
each diagonal block Π̄i0 is a permutation matrix. The second factor, L̄0, is an
m × Pb block diagonal matrix, where each diagonal block L̄i0 is an m/P × b lower
unit trapezoidal matrix. The third factor, Ū0, is a Pb × b matrix, where each block
Ūi0 is a b × b upper triangular factor. This step has identified P sets of local pivot
rows. These rows are linearly independent and they correspond to the first b rows (or
less if the block was singular) of Π̄T

i0Ai, with i = 0 . . . 3. The global pivot rows are
obtained from the P sets of local pivot rows by performing a binary tree (of depth
log2 P = 2 in our example) of GEPP factorizations of matrices of size 2b× b . At the
first level of our depth-2 binary tree, 2 sets of pivot rows are obtained by performing
2 GEPP factorizations. The decompositions, combined here in one matrix, lead to a
Pb× Pb permutation matrix Π̄1, a Pb× 2b factor L̄1 and a 2b× b factor Ū1.

2664
`
Π̄T

0 A
´

(1 : b, 1 : b)`
Π̄T

0 A
´

(m/P + 1 : m/P + b, 1 : b)`
Π̄T

0 A
´

(2m/P + 1 : 2m/P + b, 1 : b)`
Π̄T

0 A
´

(3m/P + 1 : 3m/P + b, 1 : b)

3775 =

»
Π̄01L̄01Ū01

Π̄11L̄11Ū11

–

=

»
Π̄01

Π̄11

–
·
»
L̄01

L̄11

–
·
»
Ū01

Ū11

–
≡ Π̄1L̄1Ū1

At the root of our depth-2 binary tree, the gloabl pivot rows are obtained by
applying GEPP on the two sets of pivot rows identified at level 1. This is shown
in the following equation, where we consider that Π̄1 is extended by the appropriate
identity matrices to the dimension of Π̄0.

[(
Π̄T

1 Π̄T
0 A
)

(1 : b, 1 : b)(
Π̄T

1 Π̄T
0 A
)

(2m/P + 1 : 2m/P + b, 1 : b)

]
= Π̄02L̄02Ū02 ≡ Π̄2L̄2Ū2

We consider again by abuse of notation that Π̄2 is extended by the appropriate
identity matrices to the dimension of Π̄0. The global pivot rows are permuted to the
diagonal positions by applying the permutations identified in the preprocessing step
to the original matrix A. The LU factorization with no pivoting of the first panel

5

is performed. Note that U11 = Ū2. Then the block-row of U is computed and the
trailing matrix is updated. The factorization continues on the trailing matrix Ā. This
is shown in the following equation.

Π̄T
2 Π̄T

1 Π̄T
0 A =

[
L11

L21 In−b

]
·
[
Ib

Ā

]
·
[
U11 U12

U22

]
Different reduction trees can be used during the preprocessing step of TSLU. We

illustrate them using an arrow notation having the following meaning. The function
f(B) computes GEPP of matrix B, and returns the b rows used as pivots. The input
matrix B is formed by stacking atop one another the matrices situated at the left
side of the arrows pointing to f(B). A binary tree of height two is represented in the
following picture:

A30

A20

A10

A00

→
→
→
→

f(A30)
f(A20)
f(A10)
f(A00)

↗
↘

↗
↘

f(A11)

f(A01)

↗
↘
f(A02)

A reduction tree of height one leads to the following factorization:

A30

A20

A10

A00

→
→
→
→

f(A30)
f(A20)
f(A10)
f(A00)

�
�
�3���:

XXXz

Q
Q
Qs f(A01)

The flat-tree-based TSLU is illustrated using the arrow abbreviation as:

A30

A20

A10

A00

���
���

���
���

�:

���
���

���:���
��:

-f(A00)-f(A01)- f(A02)- f(A03)

Finally, we note that the name “tournament pivoting” applies to all these varia-
tions of TSLU, interpreting them all as running a tournament where at each round a
subset of b competing rows is selected to advance in the tournament until the best b
overall are chosen, in rank order from first to b-th.

The tournament pivoting strategy has several properties. It is equivalent to partial
pivoting for b = 1 or P = 1. The elimination of each column of A leads to a rank-1
update of the trailing matrix, as in GEPP. As shown experimentally in [23], the rank-1
update property can be important for the stability of LU factorization [23]. A large
rank update, as for example in block parallel pivoting [23] might lead to an unstable
LU factorization.

3. Numerical Stability of CALU. In this section we present results showing
that CALU has stability properties similar to Gaussian elimination with partial piv-
oting. First, we show that the Schur complement obtained after each step of CALU
is the same as the Schur complement obtained after performing GEPP on a larger
matrix whose entries are the same as the entries of the input matrix (sometimes
slightly perturbed) and zeros. Second, we show that the upper bound on the pivot
growth for CALU is much larger than for GEPP. However, the first result suggests
that CALU should be stable in practice. Another way to see this is that GEPP only

6

gives big pivot growth on a small set of input matrices (see, for example, [13]) which
are all variations of one particular matrix, the Wilkinson matrix. Furthermore there
are Wilkinson-like matrices for which GEPP gives modest growth factor but CALU
gives exponential growth (WEG−CALU in equation (3.1)), and vice-versa (WEG−GEPP
in equation (3.1)). These two examples (presented here slightly more generally) are
from V. Volkov [24]. They show that GEPP is not uniformly more stable than CALU.
However they are rather very special cases, since such matrices could be probably also
found for Gaussian elimination with no pivoting, which is known to be unstable in
practice.

The matrices WEG−CALU and WEG−GEPP of size 6b× 2b are as following:

WEG−CALU =


Ib eeT

0 W
0 0
Ib 0
0 W
−Ib 2Ib − eeT

 ,WEG−GEPP =


Ib eeT

0 Ib
0 0
Ib 0
Ib 2Ib
0 2W

 (3.1)

Here Ib is the b × b identity matrix, 0 is the b × b zero matrix, e is a b × 1 vector
with all ei = 1, and W is a b × b Wilkinson matrix, i.e. W (i, j) = −1 for i > j,
W (i, i) = 1, and W (:, b) = 1. We suppose that CALU divides the input matrix into
two blocks, each of dimension 3b × 2b. For WEG−CALU , the growth factor of GEPP
is 2 while the growth factor of CALU is 2b−1. This is because CALU uses pivots from
W , while GEPP does not. For WEG−GEPP , GEPP uses pivots from W and hence
has an exponential growth of 2b−1. For this matrix, CALU does not use pivots from
W and its growth factor is 1.

Third, we measured the stability of CALU using several metrics that include
pivot growth and normwise backward stability. We perform our tests in Matlab,
using matrices from a normal distribution with varying size from 1024 to 8192, and a
set of special matrices. We have also performed experiments on different matrices such
as matrices drawn from different random distributions and dense Toeplitz matrices,
and we have obtained results similar to those presented here.

3.1. Similarities with Gaussian elimination with partial pivoting. In this
section we discuss similarities that exist between computing the LU factorization of
a matrix A using CALU and computing the LU factorization using GEPP of a larger
matrix G. The matrix G is formed by elements of A, sometimes slightly perturbed,
and zeros. We first prove a related result.

Lemma 3.1. The CALU tournament pivoting strategy chooses for each panel
factorization a set of rows that spans the row space of the panel.

Proof. At each step of the preprocessing part of the panel factorization, two (or
more) blocks A1 and A2 are used to determine a third block B. Since Gaussian
elimination is used to choose pivot rows and determine B, row span([A1;A2]) =
row span(B). This is true at every node of the reduction tree. Therefore the final
block of pivot rows spans the row space of the panel. This reasoning applies to every
panel factorization.

Before proving a general result that applies to CALU using any reduction tree,
we discuss first a simple case of a reduction tree of height one. In the following, Ib

7

denotes the identity matrix of size b× b. Let A be an m× n matrix partitioned as

A =

A11 A12

A21 A22

A31 A32

 ,

where A11, A21 are of size b×b, A31 is of size (m−2b)×b, A12, A22 are of size b×(n−b),
and A32 is of size (m − 2b) × (n − b). In this example we suppose that TSLU is ap-
plied on the first block column [A11;A21;A31], and first performs GEPP of [A21;A31].
Without loss of generality we further suppose that the permutation returned at this
stage is the identity, that is the pivots are chosen on the diagonal. Second, TSLU per-
forms GEPP on [A11;A21], and the pivot rows are referred to as Ā11. With the arrow
notation defined in section 2, the panel factorization uses the following tree (we do
not display the function f , instead each node of the tree displays the result of GEPP):

A31

A21

A11

↗
↘ A21

-

�
�7
Ā11

We refer to the block obtained after performing TSLU on the first block column
and updating A32 as As32. The goal of the following lemma is to show that As32 can
be obtained from performing GEPP on a larger matrix. The result can be easily
generalized to any reduction tree of height one.

Lemma 3.2. Let A be a nonsingular m× n matrix partitioned as

A =

A11 A12

A21 A22

A31 A32

 ,

where A11, A21 are of size b × b, A31 is of size (m − 2b) × b, A12, A22 are of size
b× (n− b), and A32 is of size (m− 2b)× (n− b). Consider the GEPP factorizationsΠ11 Π12

Π21 Π22

Im−2b

 ·
A11 A12

A21 A22

A31 A32

 =

Ā11 Ā12

Ā21 Ā22

A31 A32


=

L̄11

L̄21 Ib
L̄31 Im−2b

 ·
Ū11 Ū12

Ās22
As32

(3.2)

and

Π
(
A21

A31

)
=
(
L21

L31

)
·
(
U21

)
, (3.3)

where we suppose that Π = Im−b.
The matrix As32 can be obtained after 2b steps of GEPP factorization of a larger

matrix G, that is

G =

Ā11 Ā12

A21 A21

−A31 A32

 =

 L̄11

A21Ū
−1
11 L21

−L31 Im−2b

 ·
Ū11 Ū12

U21 −L−1
21 A21Ū

−1
11 Ū12

As32


8

Proof. The first b steps of GEPP applied to G pivot on the diagonal. This is
because equation (3.2) shows that the rows of A21 which could be chosen as pivots
are already part of Ā11. The second b steps pivot on the diagonal as well, as it can
be seen from equation (3.3).

The following equalities prove the lemma:

L31L
−1
21 A21Ū

−1
11 Ū12 +As32 = L31U21Ū

−1
11 Ū12 +As32 = A31Ū

−1
11 Ū12 +As32

= L̄31Ū12 +As32 = A32

In the following we prove a result that applies to any reduction tree. We consider
the CALU factorization of a nonsingular matrix A of size m× n. After factoring the
first block column using TSLU, the rows of the lower triangular factor which were
not involved in the last GEPP factorization at the root of the reduction tree are not
bounded by 1 in absolute value as in GEPP. We consider such a row j and we refer to
the updated A(j, b+ 1 : n) after the first block column elimination as As(j, b+ 1 : n).
The following theorem shows that As(j, 1 : b) can be obtained by performing GEPP
on a larger matrix G whose entries are of the same magnitude as entries of the original
matrix A, and hence can be bounded.

Some of the intermediate matrices on which TSLU performs GEPP can be exactly
singular, even if the original matrix A is not; this may happen frequently if A is sparse.
We need to account for this, either (1) by permitting fewer than b rows to be advanced
in a stage of the tournament, or (2) by introducing tiny perturbations in the matrix
when required to preserve nonsingularity. If A is nonsingular, then either way the
final outcome of each b-column panel factorization via TSLU will be b independent
rows (in exact arithmetic). Even though approach (1) is likely to be more efficient
in practice (especially for sparse matrices), our proof of numerical stability will use
approach (2) to simplify notation, by allowing us to assume that all submatrices are
nonsingular.

We proceed by introducing a variant of GEPP, called ε-GEPP, that replaces any
zero pivot U(i, i) = 0 encountered by U(i, i) = ε, where ε is any (arbitrarily tiny)
nonzero number. This is equivalent to adding ε to the i-th diagonal entry (PA)(i, i)
of the permuted A, and then doing standard GEPP; we denote the correspondingly
perturbed A by A(ε). This assures that ε-GEPP always identifies b independent rows
when applied to any b′-by-b matrix, with b′ ≥ b. And since ε is arbitrarily tiny, it will
be as stable as GEPP as measured by ‖PA− LU‖/‖A‖.

Definition 3.3. Let T be a reduction tree and let H be its height. Let sk, sk+1, . . . , sH
be a path of tree vertices in which the height of vertex sh is h and sh+1 is the tree
parent of sh for all h = k, . . . ,H − 1. For node sh at level h, let Ash,h be the c · b× b
submatrix obtained by stacking the b rows selected by each of sh’s c tree children atop
one another, and let Πsh,hA

(ε)
sh,h

= Lsh,hUsh,h be its ε-GEPP factorization.
The matrices associated with the ancestor nodes of sk in T are defined for all

sh = sk, sk+1, . . . , sH and h = k . . .H as

Āh = (Πsh,hA
(ε)
sh,h

)(1 : b, 1 : b)

with its GEPP factorization

Āh = L̄hŪh.

9

Theorem 3.4. Let A be a nonsingular m× n matrix that is to be factored using
CALU. Consider the first block column factorization using TSLU, and let Π be the
permutation returned after this step. Let j be the index of a row of A that is involved
for the last time in a GEPP factorization of the CALU reduction tree at node sk of
level k.

Consider the matrices associated with the ancestor nodes of sk in T as described
in Definition 3.3, and let

ĀH = (ΠA)(1 : b, 1 : b)
ÂH = (ΠA)(1 : b, b+ 1 : n).

The updated row As(j, b+1 : n) obtained after the first block column factorization
of A by TSLU, that is(

ĀH ÂH
A(j, 1 : b) A(j, b+ 1 : n)

)
=
(

L̄H
L(j, 1 : b) 1

)
·
(
ŪH ÛH

As(j, b+ 1 : n)

)
(3.4)

is equal to the updated row obtained after performing GEPP on the leading (H−k+1)b
columns of a larger matrix G of dimension ((H − k + 1)b+ 1)× ((H − k + 1)b+ 1),
that is

G =

0BBBBBBB@

ĀH ÂH

ĀH−1 ĀH−1

ĀH−2 ĀH−2

. . .
. . .

Āk Āk

(−1)H−kA(j, 1 : b) A(j, b+ 1 : n)

1CCCCCCCA

=

0BBBBBBB@

L̄H

ĀH−1Ū
−1
H L̄H−1

ĀH−2Ū
−1
H−1 L̄H−2

. . .
. . .

ĀkŪ
−1
k+1 L̄k

(−1)H−kA(j, 1 : b)Ū−1
k 1

1CCCCCCCA

·

0BBBBBBBB@

ŪH ÛH

ŪH−1 ÛH−1

ŪH−2 ÛH−2

. . .
...

Ūk Ûk

As(j, b+ 1 : n)

1CCCCCCCCA
(3.5)

where

ÛH−i =


L̄−1

H ÂH if i = 0

−L̄−1
H−iĀH−iŪH−i+1ÛH−i+1 if 0 < i ≤ H − k

(3.6)

Proof. Since the matrix is nonsingular, the final step of ε-GEPP does not need
to modify ĀH to make its rows independent, whereas the other entries Āk, ..., ĀH−1

of G may have had ε perturbations.
10

From equation (3.5), As(j, b+ 1 : n) can be computed as follows:

As(j, b+ 1 : n) =

= A(j, b+ 1 : n)−

`
0 . . . 0 (−1)H−kA(j, 1 : b)

´
·

0BBB@
0BBB@
ĀH

ĀH−1

. . .

Āk

1CCCA ·
0BBB@
Ib

Ib Ib

. . .
. . .

Ib Ib

1CCCA
1CCCA
−1

·

0BBB@
ÂH

0
...
0

1CCCA
= A(j, b+ 1 : n)−

`
0 . . . 0 (−1)H−kA(j, 1 : b)

´
·

0BBB@
Ib

−Ib Ib

. . .
. . .

(−1)H−kIb . . . −Ib Ib

1CCCA ·
0BBB@
Ā−1

H

Ā−1
H−1

. . .

Ā−1
k

1CCCA ·
0BBB@
ÂH

0
...
0

1CCCA
= A(j, b+ 1 : n)−A(j, 1 : b)Ā−1

H ÂH

The last equality represents the computation of As(j, b + 1 : n) obtained from
equation (3.4), and this ends the proof.

The following corollary shows similarities between CALU and GEPP of a larger
matrix GCALU . Since GEPP is stable in practice, we expect CALU to be also stable
in practice. However, we note a weakness of this argument. It is not impossible that
the larger matrix GCALU is closer to a Wilkinson-like matrix than A, and GEPP
could generate a large growth factor. But we have never observed this in practice.

Corollary 3.5. The Schur complement obtained after each step of performing
CALU on a matrix A is equivalent to the Schur complement obtained after performing
GEPP on a larger matrix whose entries are the same as the entries of A, sometimes
slightly perturbed, or zeros.

In other words, Corollary 3.5 says that the entire CALU process is equivalent
to GEPP on a different, possibly much larger, matrix GCALU . We describe briefly
an approach to build this matrix. Consider a row k of the trailing matrix obtained
after performing the first two steps in CALU, that is, after two TSLUs and updates
were performed. We form a matrix Gk which contains only blocks from the original
matrix A as following. Similar to the construction of matrix G in equation (3.5), the
updated row k can be obtained by factoring a matrix F formed by b(H+1)+1 rows of
the second panel whose values correspond to those obtained after one step of CALU.
To form Gk, we use the fact that each such row, that we note Es, can be obtained
by factoring a matrix whose elements are the same as elements of A or zeros, as in
equation (3.5). Our construction requires multiple copies of Es (or more generally
blocks) in various places. For illustration, let Es be the updated block obtained when
taking the Schur complement of B in„

B C
D E

«
.

Suppose that we need to make appear the following copies of Es„
Es Es V

V Es V

«
,

11

where V are other blocks. Then we just build the larger matrix0BB@
B C C

B C
D E E V

D V E V

1CCA , (3.7)

and the elimination of each block B on the diagonal leads to the update of all blocks E
from a same row. Using this approach, the matrix Gk can be obtained by extending
matrix F and adding in front on the diagonal a submatrix of dimension b(H + 1)
for each row of F . We note that Gk is very sparse, its GEPP factorization involves
b(H+1)+1 independent factorizations of submatrices of dimension b(H+1), followed
by the factorization of submatrix F of dimension b(H + 1) + 1. Each independent
factorization updates only one row of F . Hence the growth factor depends only on
one independent factorization and on the factorization of F .

The reasoning can continue for the following steps of CALU. This leads to a large
GCALU matrix, however very sparse and with many independent factorizations that
will update only subparts of the matrix. It can be seen that the growth factor does
not depend on the dimension of GCALU , and it is bounded by 2n(H+1)−1, as displayed
in Table 3.1.

In the following theorem, we use the same approach as in Theorem 3.4 to bound
the L factor obtained from the CALU factorization of a matrix A.

Theorem 3.6. Let A be a nonsingular m × n matrix that is to be factored by
CALU based on a reduction tree of height H and using a block of size b. The elements
of the factor L are bounded in absolute value by 2bH .

Proof. Consider the first block column factorization using TSLU, and let Π be
the permutation returned after this step. Let j be the index of a row of A that is
involved only in a GEPP factorization at the leaf (node s0, level 0) of the CALU
reduction tree. Without loss of generality, we suppose that Π(j, j) = 1, that is row j
is not permuted from its original position. Consider the matrices associated with the
ancestor nodes of s0 in the reduction tree T as described in Definition 3.3. The jth
row of the L factor satisfies the relation:(

ĀH
A(j, 1 : b)

)
=
(

L̄H
L(j, 1 : b)

)
ŪH

We have the following:

|L(j, 1 : b)| = |A(j, 1 : b) · Ū−1
H |

= |A(j, 1 : b) · Ā−1
0 · Ā0 · Ā−1

1 · Ā1 . . . Ā
−1
H−1 · ĀH−1 · Ū−1

H |
= |A(j, 1 : b) · Ū−1

0 · L̄−1
0 · Ā0 · Ū−1

1 · L̄−1
1 · Ā1 . . . Ū

−1
H−1 · L̄

−1
H−1 · ĀH−1 · Ū−1

H |
≤ |A(j, 1 : b) · Ū−1

0 | · |L̄
−1
0 | · |Ā0 · Ū−1

1 | · |L̄
−1
1 | . . . |L̄

−1
H−1| · |ĀH−1 · Ū−1

H |

The elements of |A(j, 1 : b) · Ū−1
0 | and |Āi−1 · Ū−1

i | ≤ 1, for i = 1 . . . H, are
bounded by 1. In addition L̄i−1, for i = 1 . . . H, is a b×b unit lower triangular matrix
whose elements are bounded by 1 in absolute value. The elements of each row j of
|L̄−1
i | · |Āi ·Ū

−1
i+1| are bounded by 2j−1. Hence, the elements of |L(j, 1 : b)| are bounded

by 2bH .
The same reasoning applies to the following steps of factorization, and this ends

the proof.
12

Theorem 3.6 shows that the elements of |L| are bounded by 2bH . For a flat
reduction tree with H = n/b, this bound becomes of order 2n. This suggests that
more levels in the reduction tree we have, less stable the factorization may become.

We give an example of a matrix formed by Wilkinson-type sub-matrices whose fac-
tor L obtained from CALU factorization has an element of the order of 2(b−2)H−(b−1),
which is close to the bound in Theorem 3.6. This matrix is formed by the following
submatrices Āi (we use the same notation as in Theorems 3.4 and 3.6). Let W be
a unit lower triangular matrix of order b × b with W (i, j) = −1 for i > j (the same
definition of a Wilkinson-type matrix as before). Let v be a vector of dimension H+1
defined as following: v(1) = 1, and v(i) = v(i− 1)(2b−2 + 1) + 1 for all i = 2 : H + 1.
Then Āi = W + v(H − i+ 1) · eb · eT1 , and A(j, 1 : b) = (e1 + v(H + 1) · eb)T .

The upper bound for |L| is much larger for CALU than for GEPP. However we
note that for the backward stability of the LU factorization, the growth factor plays
an important role, not |L|. This is shown in the following lemma from [12], which
uses the growth factor gW defined in (3.8), where a(k)

ij denotes the entry in position
(i, j) obtained after k steps of elimination.

gW =
maxi,j,k |a(k)

ij |
maxij |aij |

(3.8)

Lemma 3.7 (Lemma 9.6, section 9.3 of [12]). Let A = LU be the Gaussian
elimination without pivoting of A. Then ‖|L||U |‖∞ is bounded using the growth factor
gW by the relation ‖|L||U |‖∞ ≤ (1 + 2(n2 − n)gW)‖A‖∞.

The growth factor obtained after performing one panel factorization in CALU
(using TSLU) is equal to the growth factor of matrix G in equation (3.5) of Theorem
3.4. This theorem implies that the growth factor can be as large as 2b(H+1). It is
shown in [13] that the L factor of matrices that attain the maximum growth factor is
a dense unit lower triangular matrix. Hence the growth factor of matrix G in equation
(3.5) cannot attain the maximum value of 2b(H+1), since its L factor is lower block
bidiagonal. In addition, matrix G has a special form as described in equation (3.5).
We were not able to find matrices that attain the worst case growth factor, the largest
growth factor we could observe is of order 2b. For matrices for which a large |L| is
attained, the growth factor is still of the order of 2b, since the largest element in |L|
is equal to the largest element in |A|. We conjecture that the growth factor of G is
bounded by 2b.

Table 3.1 summarizes bounds derived in this section for CALU and also recalls
bounds for GEPP. It considers a matrix of size m × (b + 1) for which one TSLU
factorization is performed, and also the general case of a matrix of size m × n. It
displays bounds for |L| and for the growth factor gW .

As an additional observation, we note that matrices whose L factor is lower block
bidiagonal can attain a growth factor within a constant factor of the maximum. One
example is the following very sparse Ws matrix of dimension n× n with n = bH + 1,
formed by Kronecker products involving the Wilkinson-type matrix W ,

Ws =
(
IH ⊗W + S ⊗N eT1

en−1

)
, (3.9)

where W is unit lower triangular of order b × b with W (i, j) = −1 for i > j, N is of
order b×b with N(i, j) = −1 for all i, j, IH is the identity matrix of order H×H, S is
a lower triangular matrix of order H×H with S(i, j) = 1 for i = j+1, 0 otherwise, e1

13

Table 3.1
Bounds for the elements of |L| and for the growth factor gW obtained from factoring a matrix

of size m× (b+ 1) and m×n using CALU and GEPP. CALU uses a reduction tree of height H and
a block of size b. For the matrix of size m × (b + 1), the result for CALU corresponds to the first
step of panel factorization based on TSLU.

matrix of size m× (b+ 1)
TSLU(b,H) GEPP

upper bound attained upper bound

|L| 2bH 2(b−2)H−(b−1) 1

gW 2b(H+1) 2b 2b

matrix of size m× n
CALU(b,H) GEPP

upper bound attained upper bound

|L| 2bH 2(b−2)H−(b−1) 1

gW 2n(H+1)−1 2n−1 2n−1

is the vector (1, 0, . . . , 0) of dimension (n− 1)× 1, and en−1 is the vector (0, . . . , 0, 1)
of dimension (n− 1)× 1. For example, when H = 3 this matrix becomes

W eT1
N W

N W
eb

 . (3.10)

The matrix Ws gets pivot growth of .25 ·2n−1 · (1−2−b)H−2. Hence by choosing b and
H so that H ≈ 2b, it gets pivot growth of about .1 · 2n−1, which is within a constant
factor of the maximum pivot growth 2n−1 of a dense n× n matrix.

3.2. Experimental results. We present experimental results showing that CALU
is stable in practice and compare them with those obtained from GEPP. The results
focus on CALU using a binary tree and CALU using a flat tree, as defined in section
2.

In this section we focus on matrices whose elements follow a normal distribution.
In Matlab notation, the test matrix is A = randn(n, n), and the right hand side is
b = randn(n, 1). The size of the matrix is chosen such that n is a power of 2, that
is n = 2k. The sample size is in general 3, but we use only 1 or 2 matrices when
the size of the matrix is large (more precisely, the sample size is max{10 ∗ 210−k, 3}).
We discuss several metrics, that concern the LU decomposition and the linear solver
using it, such as the growth factor, normwise and componentwise backward errors.
Additional results, that consider as well several special matrices [14] including sparse
matrices are described in Appendix A.

In this section we present results for the growth factor gT defined in (3.11), which
was introduced by Trefethen and Schreiber in [23]. The authors have introduced a
statistical model for the average growth factor, where σA is the standard deviation
of the initial element distribution of A. In the data presented here σA = 1. They
observed that the average growth factor gT is close to n2/3 for partial pivoting and
n1/2 for complete pivoting (at least for n 6 1024). In Appendix A we also present
results for gW , defined in (3.8), as well as the growth factor gD defined in (3.12), which
was introduced in [4]. As for gW , a(k)

ij denotes the entry in position (i, j) obtained
14

after k steps of elimination.

gT =
maxi,j,k |a(k)

ij |
σA

(3.11)

gD = max
j

{
maxi |uij |
maxi |aij |

}
(3.12)

Figure 3.1 displays the values of the growth factor gT of the binary tree based
CALU, for different block sizes b and different number of processors P . As explained
in section 2, the block size determines the size of the panel, while the number of
processors determines the number of block rows in which the panel is partitioned.
This corresponds to the number of leaves of the binary tree. We observe that the
growth factor of binary tree based CALU grows as C · n2/3, where C is a small
constant around 1.5. We can also note that the growth factor of GEPP is of order
O(n2/3), which matches the result in [23].

Fig. 3.1. Growth factor gT of binary tree based CALU for random matrices.

Figure 3.2 shows the values of the growth factor gT for flat tree based CALU with
varying block size b from 4 to 64. The curves of the growth factor lie between n2/3

and 2n2/3 in our tests on random matrices. The growth factor of both binary tree
based and flat tree based CALU have similar behavior to the growth factor of GEPP.

Table 3.2 presents results for the linear solver using binary tree based and flat
tree based CALU, together with GEPP for the comparison. The normwise backward
stability is evaluated by computing three accuracy tests as performed in the HPL
(High-Performance Linpack) benchmark [7], and denoted as HPL1, HPL2 and HPL3
(equations (3.13) to (3.15)).

HPL1 = ||Ax− b||∞/(ε||A||1 ∗N), (3.13)
HPL2 = ||Ax− b||∞/(ε||A||1||x||1), (3.14)
HPL3 = ||Ax− b||∞/(ε||A||∞||x||∞ ∗N). (3.15)

In HPL, the method is considered to be accurate if the values of the three quan-
tities are smaller than 16. More generally, the values should be of order O(1). We

15

Fig. 3.2. Growth factor gT of flat tree based CALU for random matrices.

also display the normwise backward error, using the 1-norm,

η :=
||r||

||A|| ||x||+ ||b||
. (3.16)

We also include results obtained by iterative refinement, which can be used to improve
the accuracy of the solution. For this, the componentwise backward error

w := max
i

|ri|
(|A| |x|+ |b|)i

, (3.17)

is used, where the computed residual is r = b − Ax. The residual is computed in
working precision [20] as implemented in LAPACK [1]. The iterative refinement is
performed as long as the following three conditions are satisfied: (1) the componen-
twise backward error is larger than eps; (2) the componentwise backward error is
reduced by half; (3) the number of steps is smaller than 10. In Table 3.2, wb denotes
the componentwise backward error before iterative refinement and NIR denotes the
number of steps of iterative refinement. NIR is not always an integer since it repre-
sents an average. We note that for all the sizes tested in Table 3.2, CALU leads to
results within a factor of 10 of the GEPP results.

In Appendix A we present more detailed results on random matrices. We also
consider different special matrices, including sparse matrices, described in Table 7.1.
There we include different metrics, such as the norm of the factors, their conditioning,
the value of their maximum element, and the backward error of the LU factorization.
For the special matrices, we compare the binary tree based and the flat tree based
CALU with GEPP in Tables 7.4, 7.5 and 7.6.

Tournament pivoting does not ensure that the element of maximum magnitude
is used as pivot at each step of factorization. Hence |L| is not bounded by 1 as in
Gaussian elimination with partial pivoting. To discuss this aspect, we compute at
each elimination step k the threshold τk, defined as the quotient of the pivot used
at step k divided by the maximum value in column k. In our tests we compute the
minimum value of the threshold τmin = mink τk and the average value of the threshold
τave = (

∑n−1
k=1 τk)/(n− 1), where n is the number of columns. The average maximum

16

element of L is 1/τmin. We observe that in practice the pivots used by tournament
pivoting are close to the elements of maximum magnitude in the respective columns.
For binary tree based and flat tree based CALU, the minimum threshold τmin is larger
than 0.24 on all our test matrices. This means that in our tests |L| is bounded by 4.2.

For all the matrices in our test set, the componentwise backward error is reduced
to 10−16 after 2 or 3 steps of iterative refinement for all methods.

Figure 3.3 summarizes all our stability results for CALU. This figure displays the
ratio of the relative error ‖PA− LU‖/‖A‖, the normwise backward error η, and the
componentwise backward error w of CALU versus GEPP. Results for all the matrices
in our test set are presented: 20 random matrices from Table 3.2 and 37 special
matrices from Table 7.1.

Fig. 3.3. A summary of all our experimental data, showing the ratio of CALU’s backward error
to GEPP’s backward error for all test matrices. Each vertical bar represents such a ratio for one
test matrix, so bars above 100 = 1 mean CALU’s backward error is larger, and bars below 1 mean
GEPP’s backward error is larger. There are a few examples where the backward error of each is
exactly 0, and the ratio 0/0 is shown as 1. As can be seen nearly all ratios are between 1 and 10,
with a few outliers up to 26 (GEPP more stable) and down to .06 (CALU more stable). For each
matrix and algorithm, the backward error is measured 3 ways. For the first third of the bars, labeled
‖PA− LU‖/‖A‖, this is backward error metric, using the Frobenius norm. For the middle third of
the bars, labeled “normwise backward error”, η in equation (3.16) is the metric. For the last third
of the bars, labeled “componentwise backward error”, w in equation (3.17) is the metric. The test
matrices are further labeled either as “randn”, which are randomly generated, or “special”, listed in
Table 7.1. Finally, each test matrix is done using both CALU with a binary reduction tree (labeled
BCALU) and with a flat reduction tree (labeled FCALU). Tables 7.2 -7.6 contain all the raw data.

The results presented in this section and in Appendix A show that binary tree
based and flat tree based CALU are stable, and have the same behavior as GEPP,
including the ill-conditioned matrices in our test set.

4. Alternative algorithms. We consider in this section several other approaches
to pivoting that avoid communication, and appear that they might be as stable as
tournament pivoting, but can in fact be unstable. These approaches are based as well
on a block algorithm, that factors the input matrix by traversing blocks of columns
(panels) of size b. But in contrast to CALU, they compute only once the panel fac-

17

Table 3.2
Stability of the linear solver using binary tree based and flat tree based CALU and GEPP.

n P b η wb NIR HPL1 HPL2 HPL3
Binary tree based CALU

8192

256 32 6.2E-15 4.1E-14 2 3.6E-2 2.2E-2 4.5E-3
16 5.8E-15 3.9E-14 2 4.5E-2 2.1E-2 4.1E-3

128
64 6.1E-15 4.2E-14 2 5.0E-2 2.2E-2 4.6E-3
32 6.3E-15 4.0E-14 2 2.5E-2 2.1E-2 4.4E-3
16 5.8E-15 4.0E-14 2 3.8E-2 2.1E-2 4.3E-3

64

128 5.8E-15 3.6E-14 2 8.3E-2 1.9E-2 3.9E-3
64 6.2E-15 4.3E-14 2 3.2E-2 2.3E-2 4.4E-3
32 6.3E-15 4.1E-14 2 4.4E-2 2.2E-2 4.5E-3
16 6.0E-15 4.1E-14 2 3.4E-2 2.2E-2 4.2E-3

4096

256 16 3.1E-15 2.1E-14 1.7 3.0E-2 2.2E-2 4.4E-3

128 32 3.2E-15 2.3E-14 2 3.7E-2 2.4E-2 5.1E-3
16 3.1E-15 1.8E-14 2 5.8E-2 1.9E-2 4.0E-3

64
64 3.2E-15 2.1E-14 1.7 3.1E-2 2.2E-2 4.6E-3
32 3.2E-15 2.2E-14 1.3 3.6E-2 2.3E-2 4.7E-3
16 3.1E-15 2.0E-14 2 9.4E-2 2.1E-2 4.3E-3

2048
128 16 1.7E-15 1.1E-14 1.8 6.9E-2 2.3E-2 5.1E-3

64 32 1.7E-15 1.0E-14 1.6 6.5E-2 2.1E-2 4.6E-3
16 1.6E-15 1.1E-14 1.8 4.7E-2 2.2E-2 4.9E-3

1024 64 16 8.7E-16 5.2E-15 1.6 1.2E-1 2.1E-2 4.7E-3
Flat tree based CALU

8096

- 4 4.1E-15 2.9E-14 2 1.4E-2 1.5E-2 3.1E-3
- 8 4.5E-15 3.1E-14 1.7 4.4E-2 1.6E-2 3.4E-3
- 16 5.6E-15 3.7E-14 2 1.9E-2 2.0E-2 3.3E-3
- 32 6.7E-15 4.4E-14 2 4.6E-2 2.4E-2 4.7E-3
- 64 6.5E-15 4.2E-14 2 5.5E-2 2.2E-2 4.6E-3

4096

- 4 2.2E-15 1.4E-14 2 9.3E-3 1.5E-2 3.1E-3
- 8 2.6E-15 1.7E-14 1.3 1.3E-2 1.8E-2 4.0E-3
- 16 3.0E-15 1.9E-14 1.7 2.6E-2 2.0E-2 3.9E-3
- 32 3.8E-15 2.4E-14 2 1.9E-2 2.5E-2 5.1E-3
- 64 3.4E-15 2.0E-14 2 6.0E-2 2.1E-2 4.1E-3

2048

- 4 1.3E-15 7.9E-15 1.8 1.3E-1 1.6E-2 3.7E-3
- 8 1.5E-15 8.7E-15 1.6 2.7E-2 1.8E-2 4.2E-3
- 16 1.6E-15 1.0E-14 2 2.1E-1 2.1E-2 4.5E-3
- 32 1.8E-15 1.1E-14 1.8 2.3E-1 2.3E-2 5.1E-3
- 64 1.7E-15 1.0E-14 1.2 4.1E-2 2.1E-2 4.5E-3

1024

- 4 7.0E-16 4.4E-15 1.4 2.2E-2 1.8E-2 4.0E-3
- 8 7.8E-16 4.9E-15 1.6 5.5E-2 2.0E-2 4.9E-3
- 16 9.2E-16 5.2E-15 1.2 1.1E-1 2.1E-2 4.8E-3
- 32 9.6E-16 5.8E-15 1.1 1.5E-1 2.3E-2 5.6E-3
- 64 8.7E-16 4.9E-15 1.3 7.9E-2 2.0E-2 4.5E-3

GEPP
8192 - 3.9E-15 2.6E-14 1.6 1.3E-2 1.4E-2 2.8E-3
4096 - 2.1E-15 1.4E-14 1.6 1.8E-2 1.4E-2 2.9E-3
2048 - 1.1E-15 7.4E-15 2 2.9E-2 1.5E-2 3.4E-3
1024 - 6.6E-16 4.0E-15 2 5.8E-2 1.6E-2 3.7E-3

18

torization as follows. Each panel factorization is performed by computing a sequence
of LU factorizations until all the elements below the diagonal are eliminated and an
upper triangular matrix is obtained. The idea of performing the LU factorization as
a reduction operation is present as well. But the LU factorization performed at nodes
of the reduction tree uses U factors previously computed, and not rows of the original
matrix as in CALU. Because of this, we conjecture that it is not possible to reduce
these factorizations to performing GEPP on a larger matrix formed by elements of
the input matrix and zeros, as we were able to do for CALU.

We present first a factorization algorithm that uses a binary tree and is suit-
able for parallel computing. Every block column is partitioned in P block-rows
[A0;A1; . . . ;AP−1]. Consider for example P = 4 and suppose that the number of
rows m divides 4. We illustrate this factorization using an “arrow” abbreviation. In
this context, the notation has the following meaning: each U factor is obtained by
performing the LU factorization with partial pivoting of all the matrices at the other
ends of the arrows stacked atop one another.

The procedure starts by performing independently the LU factorization with par-
tial pivoting of each block row Ai. After this stage there are four U factors. The
algorithm continues by performing the LU factorization with partial pivoting of pairs
of U factors stacked atop one another, until the final U02 factor is obtained.

A3

A2

A1

A0

→
→
→
→

U30

U20

U10

U00

↗
↘

↗
↘

U11

U01

↗
↘
U02

A flat tree can be used as well, and the execution of the factorization on this
structure is illustrated using the “arrow” abbreviation as:

A3

A2

A1

A0

��
��

��
��

��1

��
��

��
��1

���
��:

-U00
-U01

- U02
-U03

When the block size b is equal to 1 and when the number of processors P is
equal to the number of rows m, the binary tree based and the flat tree based factor-
izations correspond to two known algorithms in the literature, parallel pivoting and
pairwise pivoting (discussed for example in [23]). Hence, we refer to these extensions
as block parallel pivoting and block pairwise pivoting. Factorization algorithms based
on block pairwise pivoting are used in the context of out-of-core algorithms [25, 17],
updated factorizations [18], and multicore architectures [2, 19], and are referred to as
incremental pivoting based algorithms [17] or tiled algorithms [2].

There are two important differences between these algorithms and the classic LU
factorization algorithm. First, in LU factorization, the elimination of each column
of A leads to a rank-1 update of the trailing matrix. The rank-1 update property
and the fact that the elements of L are bounded are two properties that are shown
experimentally to be very important for the stability of LU factorization [23]. It
is thought [23] that the rank-1 update inhibits potential element growth during the
factorization. A large rank update might lead to an unstable LU factorization. Parallel
pivoting is known to be unstable, see for example [23]. Note that the elimination of
each column leads to a rank update of the trailing matrix equal to the number of

19

rows involved at each step of elimination. The experiments performed in [23] on
random matrices show that pairwise pivoting uses in practice a low rank update.
Second, block parallel pivoting and block pairwise pivoting use in their computation
factorizations that involve U factors previously computed. This can propagate ill-
conditioning through the factorization.

We discuss here the stability in terms of pivot growth for block parallel pivoting
and pairwise pivoting. We perform our tests in Matlab, using matrices from a normal
distribution. The pivot growth of block parallel pivoting is displayed in figure 4.1.
We vary the number of processors P on which each block column is distributed, and
the block size b used in the algorithm. The matrix size varies from 2 to 1024. We can
see that the number of processors P has an important impact on the growth factor,
while b has little impact. The growth factor increases with increasing P , with an
exponential growth in the extreme case of parallel pivoting. Hence, for large number
of processors, block parallel pivoting is unstable. We note further that using iterative
refinement does not help improve the stability of the algorithm for large number of
processors. We conclude that block parallel pivoting is unstable.

Fig. 4.1. Growth factor of block parallel pivoting for varying block size b and number of pro-
cessors P .

The growth factor of pairwise pivoting is displayed in figure 4.2. The matrix size
varies from 2 to 15360 (the maximum size we were able to test with our code). We
note that for small matrix size, pairwise pivoting has a growth factor on the order
of n2/3. With increasing matrix size, the growth of the factor is faster than linear.
For n > 212, the growth factor becomes larger than n. This suggests that further
experiments are necessary to understand the stability of pairwise pivoting and its
block version.

We note that tournament pivoting bears some similarities to the batched pivoting
strategy [8]. To factor a block column partitioned as [A0;A1; . . . ;AP−1], batched
pivoting uses also two steps. It identifies first b rows, that are then used as pivots for
the entire block column. The identification of the b rows is different from CALU. In
batched pivoting, each block Ai is factored using Gaussian elimination with partial
pivoting. One of the P sets of b pivot rows is selected, based on some criterion, and
used to factor the entire block column. Hence, the different P sets are not combined
as in CALU. We note that when all the blocks Ai are singular, batched pivoting will

20

Fig. 4.2. Growth factor of pairwise pivoting for varying matrix size.

fail, even if the block-column is nonsingular. This can happen for sparse matrices.

5. CALU algorithm. In this section we describe the CALU factorization algo-
rithm in more detail than before, in order to model its performance, and show that
it is optimal. We use the classical (γ, α, β) model that describes a parallel machine
in terms of the time per floating point operation (add and multiply) γ, the network
latency α, and the inverse of the bandwidth β. In this model the time to send a
message of n words is estimated to be α + nβ. A broadcast or a reduce of n words
between P processors is estimated to correspond to log2 P messages of size n. We
omit low order terms in our estimations.

As described in section 2, CALU factors the input matrix by iterating over pan-
els. At each iteration it factors the current panel using TSLU and then it updates
the trailing matrix. The trailing matrix update can be performed by any existing
algorithm, and so we will not detail it in this paper. We focus mainly on the de-
scription of the TSLU algorithm used for panel factorization. TSLU performs the
panel factorization in two steps: a preprocessing step to find good pivots, followed
by the LU factorization of the panel that uses these pivots. The preprocessing step
uses tournament pivoting, and it is performed as a reduction operation, with GEPP
being performed at each node of the reduction tree. TSLU can take as input an arbi-
trary reduction tree, and this algorithmic flexibility is illustrated in Algorithm 1 that
presents a parallel TSLU implementation. However, the performance of TSLU and
CALU is modeled for specific trees. This is because, as we will see in the following
section, a binary tree based TSLU/CALU and a flat tree based TSLU/CALU lead to
optimal algorithms for parallel and sequential machines, respectively.

In the parallel TSLU implementation presented in Algorithm 1, the input matrix
is distributed over P processors using a 1-D block row layout. For the ease of presen-
tation, the algorithm uses an all-reduction tree, that is the result is available on all
the processors. In the preprocessing step, the algorithm traverses the reduction tree
bottom-up. At the leaves, each processor computes independently the GEPP factor-
ization of its block. Then at each node of the reduction tree, the processors exchange
the pivot rows they have computed at the previous step. A matrix is formed by the
pivot rows stacked atop one another and it is factored using GEPP. The pivots used

21

in the final GEPP factorization at the root of the reduction tree are the pivots that
will be used to factor the entire panel. The description of TSLU follows the same
approach as the presentation of parallel TSQR in [5].

Algorithm 1 Parallel TSLU
Require: S is the set of P processors, i ∈ S is my processor’s index.
Require: All-reduction tree with height H.
Require: The m × b input matrix A(:, 1 : b) is distributed using a 1-D block row

layout; Ai,0 is the block of rows belonging to my processor i.
1: Compute Πi,0Ai,0 = Li,0Ui,0 using GEPP.
2: for k from 1 to H do
3: if I have any neighbors in the all-reduction tree at this level then
4: Let q be the number of neighbors.
5: Send (Πi,k−1Ai,k−1)(1 : b, 1 : b) to each neighbor j
6: Receive (Πj,k−1Aj,k−1)(1 : b, 1 : b) from each neighbor j
7: Form the matrix Ai,k of size qb × b by stacking the matrices

(Πj,k−1Aj,k−1)(1 : b, 1 : b) from all neighbors.
8: Compute Πi,kAi,k = Li,kUi,k using GEPP.
9: else

10: Ai,k := Πi,k−1Ai,k−1

11: Πi,k := Ib×b
12: end if
13: end for
14: Compute the final permutation Π̄ = Π̄H . . . Π̄1Π̄0, where Π̄i represents the per-

mutation matrix corresponding to each level in the reduction tree, formed by the
permutation matrices of the nodes at this level extended by appropriate identity
matrices to the dimension m×m.

15: Compute the Gaussian elimination with no pivoting of (Π̄A)(:, 1 : b) = LU
Ensure: Ui,H is the U factor obtained at step (15), for all processors i ∈ S.

The runtime estimation of this algorithm when using a binary tree is displayed
in Table 5.1. We recall also in Table 5.2 the runtime estimation of binary tree based
parallel CALU for an m× n matrix distributed using a two-dimensional block cyclic
layout. More details and the algorithm are described in [9]. The panel factorization is
performed using binary tree based TSLU. The other steps of parallel CALU are similar
to the PDGETRF routine in ScaLAPACK that implements Gaussian elimination with
partial pivoting.

We analyze now briefly flat tree based sequential TSLU and sequential CALU,
for which the runtime estimations are presented in Tables 5.1 and 5.2, respectively. A
more detailed study is presented in section 5 and Appendix A of the technical report
on which this paper is based [10]. Sequential TSLU based on a flat tree consists of
reading in the memory of size M blocks of the input matrix that fit in memory and
that are as large as possible. For this, the matrix is considered to be partitioned in
blocks of size b1 × b, where b1 ≥ b is chosen such that a b× b matrix and a block fits
in memory, that is b2 + b1b ≤M . We assume that the blocks are stored in contiguous
memory. We have b1 ≈ (M − b2)/b = M1/b, with M1 = M − b2, and M1 ≥M/2. The
preprocessing step of TSLU starts by performing GEPP of the first block to select
b rows, that are kept in memory. Then the following blocks of the matrix are read.
For each block, a new set of b rows is selected by computing GEPP on the previously

22

Table 5.1
Performance models of parallel and sequential TSLU for ”tall-skinny” matrices of size m× b,

with m � b. Parallel TSLU uses a binary tree and sequential TSLU uses a flat tree. Some lower
order terms are omitted.

Algorithm # flops # messages # words
Par. TSLU 2mb2

P + b3

3 (5 log2 P − 1) log2 P b2 log2 P

Seq. TSLU var. 1 2mb2 − b3

3
3mb
M−b2 + b 3mb+ 2b2

Seq. TSLU var. 2 2mb2 − b3

3
5mb
M−b2 5mb

selected rows and this new block. Thus, in the preprocessing step the matrix is read
once, using mb/b1b = mb/M1 messages. At the end of the preprocessing step, the b
pivot rows are in fast memory, and the pivoting needs to be applied on the matrix.
The rows that are in the first b positions and are not used as pivots need to be stored
at different locations in memory. These rows can be read in fast memory using one
message, since M > b2. Two approaches can be used for writing the rows back to slow
memory at their new positions. The first approach consists of using one message for
writing each row. We refer to this approach in Table 5.1 as Seq. TSLU var. 1. The
second approach consists of permuting rows by reading in fast memory and writing
back in slow memory blocks of the matrix that are as large as possible, that is of
size mb/(M − b2). At most the whole matrix is read and written once. We refer to
this approach in Table 5.1 as Seq. TSLU var. 2. This approach can lead to fewer
number of messages exchanged, at the cost of more words transferred, in particular
when b > mb/(M − b2). During the LU factorization with no pivoting, the matrix is
read and written once. This leads to 2mb/(M − b2) messages.

Table 5.2
Performance models of parallel (binary tree based) and sequential (flat tree based) CALU and

PDGETRF routine when factoring an m× n matrix, m ≥ n. For parallel CALU and PDGETRF,
the input matrix is distributed in a 2-D block cyclic layout on a Pr × Pc grid of processors with
square b × b blocks. For sequential CALU, the matrix is partitioned into P = 3mn

M
blocks. Some

lower order terms are omitted.

Parallel CALU

messages 3n
b

log2 Pr + 3n
b

log2 Pc

words
“
nb+ 3n2

2Pc

”
log2 Pr + 1

Pr

“
mn− n2

2

”
log2 Pc

flops 1
P

“
mn2 − n3

3

”
+ 1

Pr

`
2mn− n2

´
b+ n2b

2Pc
+ nb2

3
(5 log2 Pr − 1)

PDGETRF

messages 2n
`
1 + 2

b

´
log2 Pr + 3n

b
log2 Pc

words
“

nb
2

+ 3n2

2Pc

”
log2 Pr + log2 Pc

1
Pr

“
mn− n2

2

”
flops 1

P

“
mn2 − n3

3

”
+ 1

Pr

“
mn− n2

2

”
b+ n2b

2Pc

Sequential CALU

messages 15
√

3mn2

2M3/2 + 15mn
2M

words 5
√

3mn2

2
√

M
− 5
√

3n3

6
√

M
+ 5

“
mn− n2

2

”
flops mn2 − n3

3
+ 2√

3
mn
√
M − 1√

3
n2
√
M

For sequential CALU, we consider that the matrix is partitioned into P = Pr×Pc
blocks (here P does not refer to the number of processors, the algorithm is executed on
one processor) and we analyze a right-looking algorithm. Following the approach of

23

sequential CAQR discussed in [5], we impose that 3 square blocks fit in fast memory,
that is P = 3mn

M . This is necessary for performing the updates on the trailing matrix,
when 3 blocks are necessary. We have then Pc =

√
3n√
M

, Pr =
√

3m√
M

, and M1 = 2M
3 .

With this choice, the runtime of sequential CALU is presented in Table 5.2.

6. Lower bounds on communication. In this section we discuss the optimal-
ity of CALU in terms of communication. We first recall communication complexity
bounds for dense matrix multiplication and dense LU factorization. A lower bound
on the volume of communication for the multiplication of two square dense matrices
of size n × n using a O(n3) sequential algorithm (not Strassen like) was introduced
first by Hong and Kung [15] in the sequential case. A simpler proof and its extension
to the parallel case is presented by Irony et al. in [16]. By using the simple fact that
the size of each message is limited by the size of the memory, a lower bound on the
number of messages can be deduced [5]. Memory here refers to fast memory in the
sequential case and to local memory of a processor in the parallel case.

It is shown in [5] that the lower bounds for matrix multiplication presented in
[15, 16] represent lower bounds for LU decomposition, using the following reduction
of matrix multiplication to LU:I −B

A I
I

 =

IA I
I

I −B
I A ·B

I

 .

Consider a matrix of size m × n and its LU decomposition. On a sequential
machine with fast memory of size M , a lower bound on the number of words and on
the number of messages communicated between fast and slow memory during its LU
decomposition is:

words ≥ Ω
(
mn2

√
M

)
, # messages ≥ Ω

(
mn2

M3/2

)
. (6.1)

On a parallel machine, it is considered that the size of the local memory of each
processor is on the order of O(mn/P) words and the number of flops the algorithm
performs is at least (mn2 − n3)/P [5]. This leads to a lower bound on the number of
words and number of messages that at least one of the processors must communicate
during the LU decomposition of

words ≥ Ω

(√
mn3

P

)
, # messages ≥ Ω

(√
nP

m

)
. (6.2)

In the following we show that CALU attains the lower bounds on communication.
We discuss first sequential TSLU and CALU, whose performance models are shown in
Tables 5.1 and 5.2. Sequential TSLU is optimal in terms of communication, modulo
constant factors. The number of messages exchanged is O(mb/M), that is on the order
of the number of messages necessary to read the matrix. The volume of communication
is O(mb), that is on the order of the size of the matrix. Sequential CALU attains the
lower bounds on communication, modulo constant factors, in terms of both number
of messages and volume of communication.

In contrast to CALU, previous algorithms do not always minimize communication.
We discuss here two algorithms, recursive LU [22, 11] and LAPACK’s DGETRF [1].
An analysis similar to the one performed for recursive QR [5] shows that recursive

24

LU minimizes the number of words communicated, but it does not always attain the
lower bound for the number of messages. More details can be found in [10].

DGETRF uses a block algorithm to implement Gaussian elimination with partial
pivoting. As for sequential CALU, we consider that the matrix is partitioned into
Pr × Pc blocks, with P = Pr · Pc, and we analyze a right-looking variant of the
algorithm. With this partitioning, each block is of size m/Pr×n/Pc, and P, Pr, Pc do
not refer to the number of processors, since the algorithm is sequential. The LAPACK
implementation of DGETRF refers to n/Pc as the “block size”. The size of the blocks
is chosen such that 3 blocks fit in memory, that is 3mn/P ≤ M . The total number
of words communicated in DGETRF is:

#wordsDGETRF =


O
(
mn2

Pc

)
+O (mnPc) if m > M

O
(
mn2

Pc

)
+O (mnPc) if m ≤M and mn

Pc
> M

O (mn) +O (mnPc) if m ≤M and mn
Pc
≤M

O (mn) if mn ≤M

In the first case, m > M , one column does not fit in memory. We choose
Pc =

√
3n/
√
M , and Pr =

√
3m/
√
M . The number of words communicated is

O(mn2/
√
M). In this case DGETRF attains the lower bound on the number of

words. In the second case, at least one column fits in memory, but Pc is such that
the panel does not fit in memory. The number of words communicated is minimized
by choosing Pc =

√
n, and so the amount of words communicated is O(mn1.5). It

exceeds the lower bound by a factor of
√
M/
√
n, when M > n. In the third case, Pc

is chosen such that the panel fits in memory, that is Pc = mn/M . Then the number
of words communicated is O(m2n2/M), which exceeds the lower bound by a factor of
m/
√
M . In the last case the whole matrix fits in memory, and this case is trivial.

DGETRF does not always minimize the number of messages. Consider the case
m > M , when the matrix is partitioned in square blocks of size mn/P , such that the
number of words communicated is reduced. The panel factorization involves a total of
O(nPr) = O(mn√

M
) messages exchanged between slow and fast memory. If M = O(n),

this term attains the lower bound on number of messages. But not if n < M .
We discuss now parallel CALU, whose performance model is presented in Table

5.2. To attain the communication bounds presented in equation (6.2), we need to
choose an optimal layout, that is optimal values for Pr, Pc and b. We choose the same
layout as optimal CAQR in [5]:

Pr =

√
mP

n
, Pc =

√
nP

m
and b = log−2

(√
mP

n

)
·
√
mn

P
. (6.3)

The idea behind this layout is to choose b close to its maximum value, such that
the lower bound on the number of messages is attained, modulo polylog factors. In
the same time, the number of extra floating point operations performed due to this
choice of b represent a lower order term. With this layout, the performance of parallel
CALU is given in Table 6.1. It attains the lower bounds on both number of words
and number of messages, modulo polylog factors.

We now compare CALU to parallel GEPP as for example implemented in the
routine PDGETRF of ScaLAPACK. Both algorithms communicate the same number
of words. But the number of messages communicated by CALU is smaller by a factor
of the order of b (depending Pr and Pc) than PDGETRF. This is because PDGETRF

25

Parallel CALU with optimal layout Lower bound

Input matrix of size m× n

messages 3
q

nP
m
log2

„q
mP
n

«
logP Ω(

q
nP
m

)

words
q

mn3

P

„
log−1

„q
mP
n

«
+ log P2m

n

«
Ω(
q

mn3

P
)

flops 1
P

“
mn2 − n3

3

”
+ 5mn2

2Plog2
„q

mP
n

« + 5mn2

3Plog3
„q

mP
n

« 1
P

“
mn2 − n3

3

”
Input matrix of size n× n

messages 3
√
P log3 P Ω(

√
P)

words n2
√

P

`
2 log−1 P + 1.25 logP

´
Ω(n2
√

P
)

flops 1
P

2n3

3
+ 5n3

2P log2 P
+ 5n3

3P log3 P
1
P

“
mn2 − n3

3

”
Table 6.1

Performance models of parallel (binary tree based) CALU with optimal layout. The matrix
factored is of size m× n, m ≥ n and n× n. The values of Pr, Pc and b used in the optimal layout
are presented in equation (6.3). Some lower-order terms are omitted.

has an O(n logP) term in the number of messages due to partial pivoting. Hence
PDGETRF does not attain the lower bound on the number of messages.

7. Conclusions. This paper studies CALU, a communication optimal LU fac-
torization algorithm. The main part focuses on showing that CALU is stable in
practice. First, we show that the growth factor of CALU is equivalent to performing
GEPP on a larger matrix, whose entries are the same as the entries of the input
matrix (slightly perturbed) and zeros. Since GEPP is stable in practice, we expect
CALU to be also stable in practice. Second, extensive experiments show that CALU
leads to results of (almost) the same order of magnitude as GEPP.

The paper also discusses briefly parallel and sequential algorithms for TSLU and
CALU and their performance models. We show in particular that binary tree based
TSLU and CALU minimize communication between processors of a parallel machine,
and flat tree based TSLU and CALU minimize communication between slow and fast
memory of a sequential machine.

Two main directions are followed in our future work. The first direction focuses
on using a more stable factorization at each node of the reduction tree of CALU.
The goal is to decrease the upper bound of the growth factor of CALU. The second
direction focuses on the design and implementation of CALU on real machines that
are formed by multiple levels of memory hierarchy and heterogeneous parallel units.
We are interested in developing algorithms that are optimal over multiple levels of
the memory hierarchy and over different levels of parallelism and implement them.

Acknowledgments. The authors thank the anonymous reviewers for their use-
ful comments that helped us improve the paper.

Appendix A. We present experimental results for binary tree based CALU and
flat tree based CALU, and we compare them with GEPP. We show results obtained
for the LU decomposition and the linear solver.

Tables 7.2 and 7.3 display the results obtained for random matrices. They show
the growth factors, the threshold, the norm of the factors L and U and their inverses,
and the relative error of the decomposition.

Tables 7.4, 7.5, and 7.6 display results obtained for the special matrices presented
in Table 7.1. We include in our set sparse matrices. The size of the tested matrices

26

is n = 4096. For binary tree based CALU we use P = 64, b = 8, and for flat tree
based CALU we use b = 8. With n = 4096 and b = 8, this means the flat tree
has 4096/8 = 512 leaf nodes and its height is 511. When iterative refinement fails
to reduce the componentwise backward error to the order of 10−16, we indicate the
number of iterations done before failing to converge and stopping by putting it in
parentheses.

Table 7.1: Special matrices in our test set.

No. Matrix Remarks
1 hadamard Hadamard matrix. hadamard(n), where n, n/12, or n/20 is power of

2.
2 house Householder matrix, A = eye(n) − β ∗ v ∗ v′, where [v, β, s] =

gallery(’house’, randn(n, 1)).
3 parter Parter matrix, a Toeplitz matrix with most of singular values near π.

gallery(’parter’, n), or A(i, j) = 1/(i− j + 0.5).
4 ris Ris matrix, matrix with elements A(i, j) = 0.5/(n− i− j + 1.5). The

eigenvalues cluster around −π/2 and π/2. gallery(’ris’, n).
5 kms Kac-Murdock-Szego Toeplitz matrix. Its inverse is tridiagonal.

gallery(’kms’, n) or gallery(’kms’, n, rand).
6 toeppen Pentadiagonal Toeplitz matrix (sparse).
7 condex Counter-example matrix to condition estimators. gallery(’condex’, n).
8 moler Moler matrix, a symmetric positive definite (spd) matrix.

gallery(’moler’, n).
9 circul Circulant matrix, gallery(’circul’, randn(n, 1)).
10 randcorr Random n × n correlation matrix with random eigenvalues from

a uniform distribution, a symmetric positive semi-definite matrix.
gallery(’randcorr’, n).

11 poisson Block tridiagonal matrix from Poisson’s equation (sparse), A =
gallery(’poisson’,sqrt(n)).

12 hankel Hankel matrix, A = hankel(c, r), where c=randn(n, 1), r=randn(n, 1),
and c(n) = r(1).

13 jordbloc Jordan block matrix (sparse).
14 compan Companion matrix (sparse), A = compan(randn(n+1,1)).
15 pei Pei matrix, a symmetric matrix. gallery(’pei’, n) or gallery(’pei’, n,

randn).
16 randcolu Random matrix with normalized cols and specified singular values.

gallery(’randcolu’, n).
17 sprandn Sparse normally distributed random matrix, A = sprandn(n, n,0.02).
18 riemann Matrix associated with the Riemann hypothesis. gallery(’riemann’, n).
19 compar Comparison matrix, gallery(’compar’, randn(n), unidrnd(2)−1).
20 tridiag Tridiagonal matrix (sparse).
21 chebspec Chebyshev spectral differentiation matrix, gallery(’chebspec’, n, 1).
22 lehmer Lehmer matrix, a symmetric positive definite matrix such that

A(i, j) = i/j for j ≥ i. Its inverse is tridiagonal. gallery(’lehmer’,
n).

23 toeppd Symmetric positive semi-definite Toeplitz matrix. gallery(’toeppd’, n).
24 minij Symmetric positive definite matrix with A(i, j) = min(i, j).

gallery(’minij’, n).
25 randsvd Random matrix with preassigned singular values and specified band-

width. gallery(’randsvd’, n).
26 forsythe Forsythe matrix, a perturbed Jordan block matrix (sparse).
27 fiedler Fiedler matrix, gallery(’fiedler’, n), or gallery(’fiedler’, randn(n, 1)).

27

28 dorr Dorr matrix, a diagonally dominant, ill-conditioned, tridiagonal matrix
(sparse).

29 demmel A = D∗(eye(n) + 10−7∗rand(n)), where D = diag(1014∗(0:n−1)/n) [4].
30 chebvand Chebyshev Vandermonde matrix based on n equally spaced points on

the interval [0, 1]. gallery(’chebvand’, n).
31 invhess A=gallery(’invhess’, n, rand(n−1, 1)). Its inverse is an upper Hessen-

berg matrix.
32 prolate Prolate matrix, a spd ill-conditioned Toeplitz matrix. gallery(’prolate’,

n).
33 frank Frank matrix, an upper Hessenberg matrix with ill-conditioned eigen-

values.
34 cauchy Cauchy matrix, gallery(’cauchy’, randn(n, 1), randn(n, 1)).
35 hilb Hilbert matrix with elements 1/(i+ j − 1). A =hilb(n).
36 lotkin Lotkin matrix, the Hilbert matrix with its first row altered to all ones.

gallery(’lotkin’, n).
37 kahan Kahan matrix, an upper trapezoidal matrix.

28

T
a
b
l
e

7
.2

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

bi
n

a
ry

tr
ee

ba
se

d
C

A
L

U
a

n
d

G
E

P
P

o
n

ra
n

d
o

m
m

a
tr

ic
es

.

B
in

ar
y

tr
ee

ba
se

d
C

A
L

U
n

P
b

g W
g D

g T
τ a

ve
τ m

in
||L
|| 1

||L
−

1
|| 1

||U
|| 1

||U
−

1
|| 1

||P
A
−
L
U
|| F

||A
|| F

81
92

25
6

32
8.

5E
+

1
1.

1E
+

2
4.

9E
+

2
0.

84
0.

40
3.

6E
+

3
3.

3E
+

3
2.

0E
+

5
2.

4E
+

2
1.

1E
-1

3
16

8.
9E

+
1

1.
1E

+
2

5.
2E

+
2

0.
86

0.
37

3.
7E

+
3

3.
3E

+
3

2.
0E

+
5

9.
0E

+
2

1.
1E

-1
3

12
8

64
8.

6E
+

1
9.

8E
+

1
4.

7E
+

2
0.

84
0.

42
3.

1E
+

3
3.

2E
+

3
2.

0E
+

5
4.

2E
+

2
1.

1E
-1

3
32

9.
0E

+
1

1.
2E

+
2

5.
1E

+
2

0.
84

0.
38

3.
5E

+
3

3.
3E

+
3

2.
0E

+
5

2.
2E

+
2

1.
1E

-1
3

16
8.

5E
+

1
1.

1E
+

2
4.

9E
+

2
0.

86
0.

37
4.

1E
+

3
3.

2E
+

3
2.

0E
+

5
5.

1E
+

2
1.

1E
-1

3

64

12
8

7.
2E

+
1

8.
8E

+
1

3.
9E

+
2

0.
85

0.
47

2.
9E

+
3

3.
1E

+
3

1.
9E

+
5

4.
6E

+
2

1.
0E

-1
3

64
8.

2E
+

1
9.

4E
+

1
4.

7E
+

2
0.

84
0.

44
3.

2E
+

3
3.

2E
+

3
1.

9E
+

5
2.

2E
+

2
1.

1E
-1

3
32

7.
4E

+
1

9.
9E

+
1

4.
3E

+
2

0.
84

0.
40

3.
3E

+
3

3.
3E

+
3

2.
0E

+
5

3.
0E

+
2

1.
1E

-1
3

16
8.

3E
+

1
1.

1E
+

2
5.

0E
+

2
0.

86
0.

35
3.

9E
+

3
3.

2E
+

3
2.

0E
+

5
6.

8E
+

2
1.

1E
-1

3

40
96

25
6

16
6.

2E
+

1
7.

5E
+

1
3.

5E
+

2
0.

87
0.

41
1.

7E
+

3
1.

7E
+

3
7.

4E
+

4
4.

4E
+

2
5.

6E
-1

4

12
8

32
5.

3E
+

1
7.

3E
+

1
3.

0E
+

2
0.

86
0.

40
1.

7E
+

3
1.

7E
+

3
7.

5E
+

4
3.

2E
+

2
5.

7E
-1

4
16

7.
3E

+
1

9.
0E

+
1

3.
9E

+
2

0.
87

0.
38

1.
9E

+
3

1.
7E

+
3

7.
4E

+
4

3.
5E

+
2

5.
7E

-1
4

64
64

5.
5E

+
1

7.
0E

+
1

2.
9E

+
2

0.
86

0.
46

1.
5E

+
3

1.
7E

+
3

7.
1E

+
4

4.
3E

+
2

5.
6E

-1
4

32
5.

2E
+

1
6.

8E
+

1
3.

0E
+

2
0.

86
0.

41
1.

7E
+

3
1.

7E
+

3
7.

5E
+

4
1.

7E
+

2
5.

8E
-1

4
16

5.
4E

+
1

6.
8E

+
1

3.
1E

+
2

0.
88

0.
39

1.
7E

+
3

1.
7E

+
3

7.
4E

+
4

1.
5E

+
3

5.
6E

-1
4

20
48

12
8

16
4.

1E
+

1
4.

8E
+

1
2.

1E
+

2
0.

89
0.

41
8.

9E
+

2
8.

7E
+

2
2.

7E
+

4
3.

5E
+

2
2.

9E
-1

4

64
32

3.
6E

+
1

4.
7E

+
1

1.
9E

+
2

0.
88

0.
46

7.
8E

+
2

9.
1E

+
2

2.
7E

+
4

1.
6E

+
2

2.
9E

-1
4

16
3.

7E
+

1
4.

7E
+

1
1.

9E
+

2
0.

89
0.

40
9.

0E
+

2
8.

8E
+

2
2.

7E
+

4
1.

4E
+

2
2.

9E
-1

4
10

24
64

16
2.

4E
+

1
3.

4E
+

1
1.

2E
+

2
0.

90
0.

43
4.

7E
+

2
4.

7E
+

2
1.

0E
+

4
3.

1E
+

2
1.

4E
-1

4
G

E
P

P
81

92
-

5.
5E

+
1

7.
6E

+
1

3.
0E

+
2

1
1

1.
9E

+
3

2.
6E

+
3

8.
7E

+
3

6.
0E

+
2

7.
2E

-1
4

40
96

-
3.

6E
+

1
5.

1E
+

1
2.

0E
+

2
1

1
1.

0E
+

3
1.

4E
+

3
2.

3E
+

4
1.

9E
+

2
3.

9E
-1

4
20

48
-

2.
6E

+
1

3.
6E

+
1

1.
4E

+
2

1
1

5.
5E

+
2

7.
4E

+
2

6.
1E

+
4

1.
8E

+
2

2.
0E

-1
4

10
24

-
1.

8E
+

1
2.

5E
+

1
9.

3E
+

1
1

1
2.

8E
+

2
4.

1E
+

2
1.

6E
+

5
4.

3E
+

2
1.

1E
-1

4

29

T
a
b
l
e

7
.3

S
ta

bi
li

ty
o

f
th

e
L

U
d

ec
o

m
po

si
ti

o
n

fo
r

fl
a

t
tr

ee
ba

se
d

C
A

L
U

o
n

ra
n

d
o

m
m

a
tr

ic
es

.

n
b

g W
g D

g T
τ a

ve
τ m

in
||L
|| 1

||L
−

1
|| 1

||U
|| 1

||U
−

1
|| 1

||P
A
−
L
U
|| F

||A
|| F

81
92

4
7.

0E
+

1
9.

5E
+

1
3.

8E
+

2
0.

97
0.

44
2.

7E
+

3
2.

7E
+

3
1.

7E
+

5
3.

5E
+

2
7.

7E
-1

4
8

8.
4E

+
1

1.
1E

+
2

4.
8E

+
2

0.
93

0.
42

3.
2E

+
3

2.
9E

+
3

1.
8E

+
5

7.
3E

+
2

8.
6E

-1
4

16
1.

0E
+

2
1.

1E
+

2
5.

8E
+

2
0.

87
0.

36
3.

6E
+

3
3.

1E
+

3
1.

9E
+

5
2.

1E
+

2
1.

0E
-1

3
32

1.
0E

+
2

1.
1E

+
2

5.
7E

+
2

0.
81

0.
35

4.
0E

+
3

3.
4E

+
3

2.
0E

+
5

3.
9E

+
2

1.
2E

-1
3

64
9.

6E
+

1
1.

2E
+

2
5.

5E
+

2
0.

80
0.

38
3.

6E
+

3
3.

3E
+

3
2.

0E
+

5
1.

6E
+

3
1.

2E
-1

3

40
96

4
4.

7E
+

1
6.

4E
+

1
2.

6E
+

2
0.

97
0.

48
1.

2E
+

3
1.

4E
+

3
6.

3E
+

4
1.

5E
+

2
4.

1E
-1

4
8

5.
8E

+
1

7.
1E

+
1

3.
1E

+
2

0.
93

0.
40

1.
5E

+
3

1.
5E

+
3

6.
8E

+
4

1.
1E

+
2

4.
6E

-1
4

16
6.

2E
+

1
7.

0E
+

1
3.

6E
+

2
0.

88
0.

35
2.

2E
+

3
1.

7E
+

3
7.

1E
+

4
3.

4E
+

2
5.

4E
-1

4
32

7.
2E

+
1

7.
9E

+
1

3.
9E

+
2

0.
83

0.
37

1.
9E

+
3

1.
7E

+
3

7.
6E

+
4

3.
1E

+
2

6.
2E

-1
4

64
5.

0E
+

1
6.

1E
+

1
2.

8E
+

2
0.

83
0.

42
1.

7E
+

3
1.

7E
+

3
7.

1E
+

4
4.

9E
+

2
5.

9E
-1

4

20
48

4
3.

2E
+

1
4.

1E
+

1
1.

7E
+

2
0.

97
0.

51
7.

2E
+

2
7.

7E
+

2
2.

5E
+

4
6.

2E
+

2
2.

2E
-1

4
8

3.
5E

+
1

4.
9E

+
1

1.
8E

+
2

0.
93

0.
43

8.
4E

+
2

8.
2E

+
2

2.
6E

+
4

1.
7E

+
2

2.
4E

-1
4

16
3.

8E
+

1
5.

0E
+

1
2.

0E
+

2
0.

88
0.

35
9.

8E
+

2
8.

9E
+

2
2.

7E
+

4
1.

0E
+

3
2.

9E
-1

4
32

3.
7E

+
1

4.
5E

+
1

1.
9E

+
2

0.
85

0.
40

8.
7E

+
2

8.
9E

+
2

2.
7E

+
4

8.
8E

+
2

3.
1E

-1
4

64
3.

7E
+

1
4.

8E
+

1
1.

9E
+

2
0.

87
0.

45
8.

6E
+

2
8.

7E
+

2
2.

7E
+

4
2.

2E
+

2
2.

9E
-1

4

10
24

4
2.

4E
+

1
2.

8E
+

1
1.

2E
+

2
0.

97
0.

48
3.

5E
+

2
4.

2E
+

2
9.

2E
+

3
1.

9E
+

2
1.

1E
-1

4
8

2.
8E

+
1

3.
4E

+
1

1.
4E

+
2

0.
94

0.
42

4.
5E

+
2

4.
4E

+
2

9.
9E

+
3

1.
7E

+
2

1.
3E

-1
4

16
2.

8E
+

1
3.

4E
+

1
1.

4E
+

2
0.

90
0.

39
4.

7E
+

2
4.

7E
+

2
9.

9E
+

3
3.

6E
+

2
1.

4E
-1

4
32

2.
5E

+
1

3.
3E

+
1

1.
3E

+
2

0.
88

0.
44

4.
4E

+
2

4.
6E

+
2

9.
9E

+
3

3.
2E

+
2

1.
5E

-1
4

64
2.

2E
+

1
2.

8E
+

1
1.

1E
+

2
0.

91
0.

50
3.

9E
+

2
4.

5E
+

2
9.

7E
+

3
3.

2E
+

2
1.

4E
-1

4

30

T
a
b
l
e

7
.4

S
ta

bi
li

ty
re

su
lt

s
fo

r
G

E
P

P
o

n
sp

ec
ia

l
m

a
tr

ic
es

.

m
at

ri
x

co
nd

(A
,2

)
g W

||L
|| 1

||L
−

1
|| 1

m
a
x

ij
|U
ij
|

m
in
k
k
|U
k
k
|

co
nd

(U
,1

)
||P

A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

well-conditioned
ha

da
m

ar
d

1.
0E

+
0

4.
1E

+
3

4.
1E

+
3

4.
1E

+
3

4.
1E

+
3

1.
0E

+
0

5.
3E

+
5

0.
0E

+
0

3.
3E

-1
6

4.
6E

-1
5

2
ho

us
e

1.
0E

+
0

5.
1E

+
0

8.
9E

+
2

2.
6E

+
2

5.
1E

+
0

5.
7E

-2
1.

4E
+

4
2.

0E
-1

5
5.

6E
-1

7
6.

3E
-1

5
3

pa
rt

er
4.

8E
+

0
1.

6E
+

0
4.

8E
+

1
2.

0E
+

0
3.

1E
+

0
2.

0E
+

0
2.

3E
+

2
2.

3E
-1

5
8.

3E
-1

6
4.

4E
-1

5
3

ri
s

4.
8E

+
0

1.
6E

+
0

4.
8E

+
1

2.
0E

+
0

1.
6E

+
0

1.
0E

+
0

2.
3E

+
2

2.
3E

-1
5

7.
1E

-1
6

4.
7E

-1
5

2
km

s
9.

1E
+

0
1.

0E
+

0
2.

0E
+

0
1.

5E
+

0
1.

0E
+

0
7.

5E
-1

3.
0E

+
0

2.
0E

-1
6

1.
1E

-1
6

6.
7E

-1
6

1
to

ep
pe

n
1.

0E
+

1
1.

1E
+

0
2.

1E
+

0
9.

0E
+

0
1.

1E
+

1
1.

0E
+

1
3.

3E
+

1
1.

1E
-1

7
7.

2E
-1

7
3.

0E
-1

5
1

co
nd

ex
1.

0E
+

2
1.

0E
+

0
2.

0E
+

0
5.

6E
+

0
1.

0E
+

2
1.

0E
+

0
7.

8E
+

2
1.

8E
-1

5
9.

7E
-1

6
6.

8E
-1

5
3

m
ol

er
1.

9E
+

2
1.

0E
+

0
2.

2E
+

1
2.

0E
+

0
1.

0E
+

0
1.

0E
+

0
4.

4E
+

1
3.

8E
-1

4
2.

6E
-1

6
1.

7E
-1

5
2

ci
rc

ul
3.

7E
+

2
1.

8E
+

2
1.

0E
+

3
1.

4E
+

3
6.

4E
+

2
3.

4E
+

0
1.

2E
+

6
4.

3E
-1

4
2.

1E
-1

5
1.

2E
-1

4
1

ra
nd

co
rr

1.
4E

+
3

1.
0E

+
0

3.
1E

+
1

5.
7E

+
1

1.
0E

+
0

2.
3E

-1
5.

0E
+

4
1.

6E
-1

5
7.

8E
-1

7
8.

0E
-1

6
1

po
is

so
n

1.
7E

+
3

1.
0E

+
0

2.
0E

+
0

3.
4E

+
1

4.
0E

+
0

3.
2E

+
0

7.
8E

+
1

2.
8E

-1
6

1.
4E

-1
6

7.
5E

-1
6

1
ha

nk
el

2.
9E

+
3

6.
2E

+
1

9.
8E

+
2

1.
5E

+
3

2.
4E

+
2

4.
5E

+
0

2.
0E

+
6

4.
2E

-1
4

2.
5E

-1
5

1.
6E

-1
4

2
jo

rd
bl

oc
5.

2E
+

3
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
8.

2E
+

3
0.

0E
+

0
2.

0E
-1

7
8.

3E
-1

7
0

co
m

pa
n

7.
5E

+
3

1.
0E

+
0

2.
0E

+
0

4.
0E

+
0

7.
9E

+
0

2.
6E

-1
7.

8E
+

1
0.

0E
+

0
2.

0E
-1

7
6.

2E
-1

3
1

pe
i

1.
0E

+
4

1.
0E

+
0

4.
1E

+
3

9.
8E

+
0

1.
0E

+
0

3.
9E

-1
2.

5E
+

1
7.

0E
-1

6
6.

6E
-1

8
2.

3E
-1

7
0

ra
nd

co
lu

1.
5E

+
4

4.
6E

+
1

9.
9E

+
2

1.
4E

+
3

3.
2E

+
0

5.
6E

-2
1.

1E
+

7
4.

0E
-1

4
2.

3E
-1

5
1.

4E
-1

4
1

sp
ra

nd
n

1.
6E

+
4

7.
4E

+
0

7.
4E

+
2

1.
5E

+
3

2.
9E

+
1

1.
7E

+
0

1.
3E

+
7

3.
4E

-1
4

8.
5E

-1
5

9.
3E

-1
4

2
ri

em
an

n
1.

9E
+

4
1.

0E
+

0
4.

1E
+

3
3.

5E
+

0
4.

1E
+

3
1.

0E
+

0
2.

6E
+

6
5.

7E
-1

9
2.

0E
-1

6
1.

7E
-1

5
2

co
m

pa
r

1.
8E

+
6

2.
3E

+
1

9.
8E

+
2

1.
4E

+
3

1.
1E

+
2

3.
1E

+
0

2.
7E

+
7

2.
3E

-1
4

1.
2E

-1
5

8.
8E

-1
5

1
tr

id
ia

g
6.

8E
+

6
1.

0E
+

0
2.

0E
+

0
1.

5E
+

3
2.

0E
+

0
1.

0E
+

0
5.

1E
+

3
1.

4E
-1

8
2.

6E
-1

7
1.

2E
-1

6
0

ch
eb

sp
ec

1.
3E

+
7

1.
0E

+
0

5.
4E

+
1

9.
2E

+
0

7.
1E

+
6

1.
5E

+
3

4.
2E

+
7

1.
8E

-1
5

2.
9E

-1
8

1.
6E

-1
5

1
le

hm
er

1.
8E

+
7

1.
0E

+
0

1.
5E

+
3

2.
0E

+
0

1.
0E

+
0

4.
9E

-4
8.

2E
+

3
1.

5E
-1

5
2.

8E
-1

7
1.

7E
-1

6
0

to
ep

pd
2.

1E
+

7
1.

0E
+

0
4.

2E
+

1
9.

8E
+

2
2.

0E
+

3
2.

9E
+

2
1.

3E
+

6
1.

5E
-1

5
5.

0E
-1

7
3.

3E
-1

6
1

m
in

ij
2.

7E
+

7
1.

0E
+

0
4.

1E
+

3
2.

0E
+

0
1.

0E
+

0
1.

0E
+

0
8.

2E
+

3
0.

0E
+

0
7.

8E
-1

9
4.

2E
-1

8
0

ra
nd

sv
d

6.
7E

+
7

4.
7E

+
0

9.
9E

+
2

1.
4E

+
3

6.
4E

-2
3.

6E
-7

1.
4E

+
10

5.
6E

-1
5

3.
4E

-1
6

2.
0E

-1
5

2
fo

rs
yt

he
6.

7E
+

7
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
1.

5E
-8

6.
7E

+
7

0.
0E

+
0

0.
0E

+
0

0.
0E

+
0

0

ill-conditioned

fie
dl

er
2.

5E
+

10
1.

0E
+

0
1.

7E
+

3
1.

5E
+

1
7.

9E
+

0
4.

1E
-7

2.
9E

+
8

1.
6E

-1
6

3.
3E

-1
7

1.
0E

-1
5

1
do

rr
7.

4E
+

10
1.

0E
+

0
2.

0E
+

0
3.

1E
+

2
3.

4E
+

5
1.

3E
+

0
1.

7E
+

11
6.

0E
-1

8
2.

3E
-1

7
2.

2E
-1

5
1

de
m

m
el

1.
0E

+
14

2.
5E

+
0

1.
2E

+
2

1.
4E

+
2

1.
6E

+
14

7.
8E

+
3

1.
7E

+
17

3.
7E

-1
5

7.
1E

-2
1

4.
8E

-9
2

ch
eb

va
nd

3.
8E

+
19

2.
0E

+
2

2.
2E

+
3

3.
1E

+
3

1.
8E

+
2

9.
0E

-1
0

4.
8E

+
22

5.
1E

-1
4

3.
3E

-1
7

2.
6E

-1
6

1
in

vh
es

s
4.

1E
+

19
2.

0E
+

0
4.

1E
+

3
2.

0E
+

0
5.

4E
+

0
4.

9E
-4

3.
0E

+
48

1.
2E

-1
4

1.
7E

-1
7

2.
4E

-1
4

(1
)

pr
ol

at
e

1.
4E

+
20

1.
2E

+
1

1.
4E

+
3

4.
6E

+
3

5.
3E

+
0

5.
9E

-1
3

4.
7E

+
23

1.
6E

-1
4

4.
7E

-1
6

6.
3E

-1
5

(1
)

fr
an

k
1.

7E
+

20
1.

0E
+

0
2.

0E
+

0
2.

0E
+

0
4.

1E
+

3
5.

9E
-2

4
1.

9E
+

30
2.

2E
-1

8
4.

9E
-2

7
1.

2E
-2

3
0

ca
uc

hy
5.

5E
+

21
1.

0E
+

0
3.

1E
+

2
1.

9E
+

2
1.

0E
+

7
2.

3E
-1

5
2.

1E
+

24
1.

4E
-1

5
6.

1E
-1

9
5.

2E
-1

5
(1

)
hi

lb
8.

0E
+

21
1.

0E
+

0
3.

1E
+

3
1.

3E
+

3
1.

0E
+

0
4.

2E
-2

0
2.

2E
+

22
2.

2E
-1

6
6.

0E
-1

9
2.

0E
-1

7
0

lo
tk

in
5.

4E
+

22
1.

0E
+

0
2.

6E
+

3
1.

3E
+

3
1.

0E
+

0
3.

6E
-1

9
2.

3E
+

22
8.

0E
-1

7
3.

0E
-1

8
2.

3E
-1

5
(1

)
ka

ha
n

1.
1E

+
28

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

2.
2E

-1
3

4.
1E

+
53

0.
0E

+
0

9.
7E

-1
8

4.
3E

-1
6

1

31

T
a
b
l
e

7
.5

S
ta

bi
li

ty
o

f
C

A
L

U
ba

se
d

o
n

a
bi

n
a

ry
tr

ee
fo

r
sp

ec
ia

l
m

a
tr

ic
es

.

m
at

ri
x

g W
τ a

v
e

τ m
in

||L
|| 1

||L
−

1
|| 1

m
a
x

ij
|U
ij
|

m
in
k
k
|U
k
k
|

co
nd

(U
,1

)
||P

A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

ha
da

m
ar

d
4.

1E
+

3
1.

00
1.

00
4.

1E
+

3
3.

8E
+

3
4.

1E
+

3
1.

0E
+

0
1.

2E
+

6
0.

0E
+

0
2.

9E
-1

6
3.

7E
-1

5
2

ho
us

e
5.

1E
+

0
1.

00
1.

00
8.

9E
+

2
2.

6E
+

2
5.

1E
+

0
5.

7E
-2

1.
4E

+
4

2.
0E

-1
5

5.
6E

-1
7

6.
8E

-1
5

3
pa

rt
er

1.
6E

+
0

1.
00

1.
00

4.
8E

+
1

2.
0E

+
0

3.
1E

+
0

2.
0E

+
0

2.
3E

+
2

2.
3E

-1
5

7.
5E

-1
6

4.
1E

-1
5

3
ri

s
1.

6E
+

0
1.

00
1.

00
4.

8E
+

1
2.

0E
+

0
1.

6E
+

0
1.

0E
+

0
2.

3E
+

2
2.

3E
-1

5
8.

0E
-1

6
4.

2E
-1

5
3

km
s

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

1.
5E

+
0

1.
0E

+
0

7.
5E

-1
3.

0E
+

0
2.

0E
-1

6
1.

1E
-1

6
5.

9E
-1

6
1

to
ep

pe
n

1.
1E

+
0

1.
00

1.
00

2.
1E

+
0

9.
0E

+
0

1.
1E

+
1

1.
0E

+
1

3.
3E

+
1

1.
1E

-1
7

7.
1E

-1
7

1.
3E

-1
5

1
co

nd
ex

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

5.
6E

+
0

1.
0E

+
2

1.
0E

+
0

7.
8E

+
2

1.
8E

-1
5

9.
4E

-1
6

4.
8E

-1
5

3
m

ol
er

1.
0E

+
0

1.
00

1.
00

2.
2E

+
1

2.
0E

+
0

1.
0E

+
0

1.
0E

+
0

4.
4E

+
1

3.
8E

-1
4

2.
7E

-1
6

1.
8E

-1
5

3
ci

rc
ul

2.
3E

+
2

0.
91

0.
41

1.
8E

+
3

1.
7E

+
3

7.
6E

+
2

3.
1E

+
0

2.
0E

+
6

5.
7E

-1
4

2.
8E

-1
5

1.
6E

-1
4

1
ra

nd
co

rr
1.

0E
+

0
1.

00
1.

00
3.

1E
+

1
5.

7E
+

1
1.

0E
+

0
2.

3E
-1

5.
0E

+
4

1.
6E

-1
5

7.
7E

-1
7

7.
7E

-1
6

1
po

is
so

n
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
3.

4E
+

1
4.

0E
+

0
3.

2E
+

0
7.

8E
+

1
2.

8E
-1

6
1.

4E
-1

6
9.

8E
-1

6
1

ha
nk

el
9.

3E
+

1
0.

92
0.

42
1.

8E
+

3
1.

7E
+

3
4.

3E
+

2
2.

5E
+

0
2.

3E
+

6
5.

3E
-1

4
3.

7E
-1

5
2.

2E
-1

4
2

jo
rd

bl
oc

1.
0E

+
0

1.
00

1.
00

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

8.
2E

+
3

0.
0E

+
0

2.
0E

-1
7

8.
8E

-1
7

0
co

m
pa

n
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
4.

0E
+

0
7.

9E
+

0
2.

6E
-1

7.
8E

+
1

0.
0E

+
0

9.
9E

-1
8

4.
0E

-1
4

1
pe

i
1.

0E
+

0
1.

00
1.

00
4.

1E
+

3
9.

8E
+

0
1.

0E
+

0
3.

9E
-1

2.
5E

+
1

7.
0E

-1
6

3.
6E

-1
7

4.
7E

-1
7

0
ra

nd
co

lu
4.

7E
+

1
0.

91
0.

40
2.

1E
+

3
1.

6E
+

3
3.

8E
+

0
4.

8E
-2

1.
4E

+
7

5.
2E

-1
4

2.
9E

-1
5

1.
8E

-1
4

2
sp

ra
nd

n
8.

0E
+

0
0.

93
0.

41
1.

2E
+

3
1.

8E
+

3
3.

6E
+

1
1.

4E
+

0
2.

4E
+

7
4.

5E
-1

4
9.

6E
-1

5
1.

4E
-1

3
2

ri
em

an
n

1.
0E

+
0

1.
00

1.
00

4.
1E

+
3

5.
1E

+
2

4.
1E

+
3

1.
0E

+
0

1.
7E

+
8

2.
5E

-1
8

1.
1E

-1
6

1.
4E

-1
5

2
co

m
pa

r
3.

5E
+

1
0.

91
0.

42
1.

7E
+

3
1.

6E
+

3
1.

8E
+

2
2.

8E
+

0
3.

3E
+

7
3.

0E
-1

4
1.

7E
-1

5
1.

1E
-1

4
1

tr
id

ia
g

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

1.
5E

+
3

2.
0E

+
0

1.
0E

+
0

5.
1E

+
3

1.
4E

-1
8

2.
5E

-1
7

1.
1E

-1
6

0
ch

eb
sp

ec
1.

0E
+

0
1.

00
1.

00
5.

4E
+

1
9.

2E
+

0
7.

1E
+

6
1.

5E
+

3
4.

2E
+

7
1.

8E
-1

5
3.

2E
-1

8
1.

6E
-1

5
1

le
hm

er
1.

0E
+

0
1.

00
0.

78
1.

9E
+

3
5.

0E
+

2
1.

0E
+

0
4.

9E
-4

1.
7E

+
6

1.
5E

-1
5

1.
8E

-1
7

9.
3E

-1
7

0
to

ep
pd

1.
0E

+
0

1.
00

1.
00

4.
2E

+
1

9.
8E

+
2

2.
0E

+
3

2.
9E

+
2

1.
3E

+
6

1.
5E

-1
5

5.
1E

-1
7

4.
3E

-1
6

1
m

in
ij

1.
0E

+
0

1.
00

1.
00

4.
1E

+
3

2.
0E

+
0

1.
0E

+
0

1.
0E

+
0

8.
2E

+
3

0.
0E

+
0

5.
1E

-1
9

3.
5E

-1
8

0
ra

nd
sv

d
8.

3E
+

0
0.

91
0.

33
1.

8E
+

3
1.

6E
+

3
8.

5E
-2

3.
0E

-7
2.

4E
+

10
7.

4E
-1

5
4.

5E
-1

6
2.

5E
-1

5
2

fo
rs

yt
he

1.
0E

+
0

1.
00

1.
00

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

1.
5E

-8
6.

7E
+

7
0.

0E
+

0
0.

0E
+

0
0.

0E
+

0
0

fie
dl

er
1.

0E
+

0
1.

00
0.

90
1.

7E
+

3
1.

5E
+

1
7.

9E
+

0
4.

1E
-7

2.
9E

+
8

1.
6E

-1
6

3.
5E

-1
7

6.
4E

-1
6

1
do

rr
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
3.

1E
+

2
3.

4E
+

5
1.

3E
+

0
1.

7E
+

11
6.

0E
-1

8
2.

6E
-1

7
1.

4E
-1

5
1

de
m

m
el

2.
8E

+
0

0.
98

0.
38

1.
3E

+
2

1.
3E

+
2

2.
2E

+
14

6.
2E

+
3

2.
0E

+
17

3.
8E

-1
5

1.
1E

-2
0

9.
8E

-9
3

ch
eb

va
nd

3.
1E

+
2

0.
91

0.
42

2.
2E

+
3

3.
4E

+
3

2.
3E

+
2

8.
4E

-1
0

3.
4E

+
23

6.
6E

-1
4

3.
7E

-1
7

3.
2E

-1
6

1
in

vh
es

s
2.

0E
+

0
1.

00
1.

00
4.

1E
+

3
2.

0E
+

0
5.

4E
+

0
4.

9E
-4

3.
0E

+
48

1.
2E

-1
4

1.
2E

-1
6

7.
1E

-1
4

(2
)

pr
ol

at
e

1.
7E

+
1

0.
95

0.
39

1.
6E

+
3

5.
8E

+
3

7.
5E

+
0

6.
6E

-1
2

1.
4E

+
23

2.
0E

-1
4

5.
1E

-1
6

9.
1E

-1
5

(1
)

fr
an

k
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
2.

0E
+

0
4.

1E
+

3
5.

9E
-2

4
1.

9E
+

30
2.

2E
-1

8
7.

4E
-2

8
1.

8E
-2

4
0

ca
uc

hy
1.

0E
+

0
1.

00
0.

34
3.

1E
+

2
2.

0E
+

2
1.

0E
+

7
2.

3E
-1

5
6.

0E
+

24
1.

4E
-1

5
7.

2E
-1

9
7.

4E
-1

5
(1

)
hi

lb
1.

0E
+

0
0.

92
0.

37
3.

2E
+

3
1.

6E
+

3
1.

0E
+

0
1.

3E
-1

9
1.

8E
+

22
2.

2E
-1

6
5.

5E
-1

9
2.

2E
-1

7
0

lo
tk

in
1.

0E
+

0
0.

93
0.

48
2.

7E
+

3
1.

4E
+

3
1.

0E
+

0
4.

6E
-1

9
7.

5E
+

22
8.

0E
-1

7
2.

2E
-1

8
2.

1E
-1

6
0

ka
ha

n
1.

0E
+

0
1.

00
1.

00
1.

0E
+

0
1.

0E
+

0
1.

0E
+

0
2.

2E
-1

3
4.

1E
+

53
0.

0E
+

0
7.

7E
-1

8
2.

1E
-1

6
0

32

T
a
b
l
e

7
.6

S
ta

bi
li

ty
o

f
C

A
L

U
ba

se
d

o
n

a
fl

a
t

tr
ee

fo
r

sp
ec

ia
l

m
a

tr
ic

es
.

m
at

ri
x

g W
τ a

v
e

τ m
in

||L
|| 1

||L
−

1
|| 1

m
a
x

ij
|U
ij
|

m
in
k
k
|U
k
k
|

co
nd

(U
,1

)
||P

A
−
L
U
|| F

||A
|| F

η
w
b

N
I
R

ha
da

m
ar

d
4.

1E
+

3
1.

00
1.

00
4.

1E
+

3
4.

1E
+

3
4.

1E
+

3
1.

0E
+

0
5.

3E
+

5
0.

0E
+

0
2.

6E
-1

6
2.

6E
-1

5
2

ho
us

e
5.

1E
+

0
1.

00
1.

00
8.

9E
+

2
2.

6E
+

2
5.

1E
+

0
5.

7E
-2

1.
4E

+
4

2.
0E

-1
5

7.
1E

-1
7

6.
9E

-1
5

3
pa

rt
er

1.
6E

+
0

1.
00

1.
00

4.
8E

+
1

2.
0E

+
0

3.
1E

+
0

2.
0E

+
0

2.
3E

+
2

2.
3E

-1
5

7.
3E

-1
6

4.
4E

-1
5

3
ri

s
1.

6E
+

0
1.

00
1.

00
4.

8E
+

1
2.

0E
+

0
1.

6E
+

0
1.

0E
+

0
2.

3E
+

2
2.

3E
-1

5
7.

2E
-1

6
4.

2E
-1

5
2

km
s

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

1.
5E

+
0

1.
0E

+
0

7.
5E

-1
3.

0E
+

0
2.

0E
-1

6
1.

0E
-1

6
6.

2E
-1

6
1

to
ep

pe
n

1.
1E

+
0

1.
00

1.
00

2.
1E

+
0

9.
0E

+
0

1.
1E

+
1

1.
0E

+
1

3.
3E

+
1

1.
1E

-1
7

6.
9E

-1
7

1.
2E

-1
5

2
co

nd
ex

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

5.
6E

+
0

1.
0E

+
2

1.
0E

+
0

7.
8E

+
2

1.
8E

-1
5

9.
1E

-1
6

5.
6E

-1
5

3
m

ol
er

1.
0E

+
0

1.
00

1.
00

2.
2E

+
1

2.
0E

+
0

1.
0E

+
0

1.
0E

+
0

4.
4E

+
1

3.
8E

-1
4

2.
7E

-1
6

1.
9E

-1
5

1
ci

rc
ul

2.
0E

+
2

0.
93

0.
39

1.
6E

+
3

1.
6E

+
3

6.
3E

+
2

3.
3E

+
0

2.
6E

+
6

5.
2E

-1
4

2.
7E

-1
5

1.
9E

-1
4

2
ra

nd
co

rr
1.

0E
+

0
1.

00
1.

00
3.

1E
+

1
5.

7E
+

1
1.

0E
+

0
2.

3E
-1

5.
0E

+
4

1.
6E

-1
5

7.
6E

-1
7

5.
7E

-1
6

1
po

is
so

n
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
3.

4E
+

1
4.

0E
+

0
3.

2E
+

0
7.

8E
+

1
2.

8E
-1

6
1.

4E
-1

6
1.

1E
-1

5
1

ha
nk

el
8.

3E
+

1
0.

93
0.

40
1.

7E
+

3
1.

8E
+

3
3.

4E
+

2
4.

5E
+

0
2.

8E
+

6
4.

9E
-1

4
3.

2E
-1

5
1.

9E
-1

4
2

jo
rd

bl
oc

1.
0E

+
0

1.
00

1.
00

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

8.
2E

+
3

0.
0E

+
0

2.
0E

-1
7

8.
5E

-1
7

0
co

m
pa

n
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
4.

0E
+

0
7.

9E
+

0
2.

6E
-1

7.
8E

+
1

0.
0E

+
0

1.
5E

-1
7

8.
1E

-1
3

1
pe

i
1.

0E
+

0
1.

00
1.

00
4.

1E
+

3
9.

8E
+

0
1.

0E
+

0
3.

9E
-1

2.
5E

+
1

7.
0E

-1
6

4.
6E

-1
7

6.
3E

-1
7

0
ra

nd
co

lu
5.

6E
+

1
0.

93
0.

30
2.

1E
+

3
1.

6E
+

3
4.

8E
+

0
5.

6E
-2

1.
4E

+
7

4.
8E

-1
4

2.
6E

-1
5

1.
5E

-1
4

2
sp

ra
nd

n
8.

3E
+

0
0.

94
0.

41
1.

2E
+

3
1.

8E
+

3
4.

0E
+

1
1.

4E
+

0
2.

4E
+

7
4.

2E
-1

4
1.

0E
-1

4
1.

3E
-1

3
2

ri
em

an
n

1.
0E

+
0

1.
00

1.
00

4.
1E

+
3

3.
5E

+
0

4.
1E

+
3

1.
0E

+
0

2.
6E

+
6

5.
7E

-1
9

1.
7E

-1
6

1.
6E

-1
5

1
co

m
pa

r
2.

9E
+

1
0.

93
0.

41
1.

6E
+

3
1.

5E
+

3
1.

3E
+

2
2.

8E
+

0
2.

2E
+

7
2.

8E
-1

4
1.

7E
-1

5
1.

1E
-1

4
1

tr
id

ia
g

1.
0E

+
0

1.
00

1.
00

2.
0E

+
0

1.
5E

+
3

2.
0E

+
0

1.
0E

+
0

5.
1E

+
3

1.
4E

-1
8

2.
5E

-1
7

1.
1E

-1
6

0
ch

eb
sp

ec
1.

0E
+

0
1.

00
1.

00
5.

4E
+

1
9.

2E
+

0
7.

1E
+

6
1.

5E
+

3
4.

2E
+

7
1.

8E
-1

5
2.

6E
-1

8
1.

6E
-1

5
1

le
hm

er
1.

0E
+

0
1.

00
1.

00
1.

5E
+

3
2.

0E
+

0
1.

0E
+

0
4.

9E
-4

8.
2E

+
3

1.
5E

-1
5

2.
8E

-1
7

1.
9E

-1
6

0
to

ep
pd

1.
0E

+
0

1.
00

1.
00

4.
2E

+
1

9.
8E

+
2

2.
0E

+
3

2.
9E

+
2

1.
3E

+
6

1.
5E

-1
5

5.
1E

-1
7

3.
2E

-1
6

1
m

in
ij

1.
0E

+
0

1.
00

1.
00

4.
1E

+
3

2.
0E

+
0

1.
0E

+
0

1.
0E

+
0

8.
2E

+
3

0.
0E

+
0

7.
7E

-1
9

4.
6E

-1
8

0
ra

nd
sv

d
6.

1E
+

0
0.

93
0.

44
1.

4E
+

3
1.

5E
+

3
7.

7E
-2

3.
2E

-7
2.

1E
+

10
6.

6E
-1

5
4.

3E
-1

6
2.

3E
-1

5
2

fo
rs

yt
he

1.
0E

+
0

1.
00

1.
00

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

1.
5E

-8
6.

7E
+

7
0.

0E
+

0
0.

0E
+

0
0.

0E
+

0
0

fie
dl

er
1.

0E
+

0
1.

00
1.

00
1.

7E
+

3
1.

5E
+

1
7.

9E
+

0
4.

1E
-7

2.
9E

+
8

1.
6E

-1
6

2.
7E

-1
7

7.
0E

-1
6

1
do

rr
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
3.

1E
+

2
3.

4E
+

5
1.

3E
+

0
1.

7E
+

11
6.

0E
-1

8
2.

6E
-1

7
1.

3E
-1

5
1

de
m

m
el

2.
0E

+
0

0.
98

0.
37

1.
2E

+
2

1.
3E

+
2

1.
6E

+
14

7.
4E

+
3

2.
1E

+
17

4.
0E

-1
5

7.
6E

-2
1

1.
5E

-8
2

ch
eb

va
nd

3.
2E

+
2

0.
93

0.
32

3.
7E

+
3

3.
2E

+
3

3.
2E

+
2

9.
1E

-1
0

4.
7E

+
23

6.
2E

-1
4

3.
7E

-1
7

2.
7E

-1
6

1
in

vh
es

s
2.

0E
+

0
1.

00
1.

00
4.

1E
+

3
2.

0E
+

0
5.

4E
+

0
4.

9E
-4

3.
0E

+
48

1.
2E

-1
4

4.
4E

-1
6

2.
0E

-1
3

(2
)

pr
ol

at
e

1.
9E

+
1

0.
95

0.
30

1.
3E

+
3

4.
7E

+
3

8.
2E

+
0

1.
2E

-1
1

4.
9E

+
22

2.
3E

-1
4

4.
9E

-1
6

7.
4E

-1
5

(1
)

fr
an

k
1.

0E
+

0
1.

00
1.

00
2.

0E
+

0
2.

0E
+

0
4.

1E
+

3
5.

9E
-2

4
1.

9E
+

30
2.

2E
-1

8
5.

2E
-2

7
1.

2E
-2

3
0

ca
uc

hy
1.

0E
+

0
1.

00
0.

47
3.

1E
+

2
2.

1E
+

2
1.

0E
+

7
2.

3E
-1

5
1.

7E
+

24
1.

5E
-1

5
6.

0E
-1

9
2.

9E
-1

5
(1

)
hi

lb
1.

0E
+

0
0.

93
0.

24
3.

0E
+

3
1.

6E
+

3
1.

0E
+

0
3.

1E
-1

9
2.

7E
+

21
2.

2E
-1

6
5.

9E
-1

9
2.

1E
-1

7
0

lo
tk

in
1.

0E
+

0
0.

93
0.

44
2.

6E
+

3
1.

9E
+

3
1.

0E
+

0
2.

4E
-1

9
4.

3E
+

22
8.

1E
-1

7
3.

4E
-1

8
2.

3E
-1

5
(2

)
ka

ha
n

1.
0E

+
0

1.
00

1.
00

1.
0E

+
0

1.
0E

+
0

1.
0E

+
0

2.
2E

-1
3

4.
1E

+
53

0.
0E

+
0

9.
3E

-1
8

3.
1E

-1
6

1

33

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, SIAM, Philadelphia, PA, USA, 1999.

[2] A Buttari, J Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra
algorithms for multicore architectures, Parallel Computing, 35 (2009), pp. 38–53.

[3] J. Choi, J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.
Whaley, The Design and Implementation of the ScaLAPACK LU, QR and Cholesky
Factorization Routines, Scientific Programming, 5 (1996), pp. 173–184. ISSN 1058-9244.

[4] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[5] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and

sequential QR and LU factorizations, Tech. Report UCB/EECS-2008-89, UC Berkeley,
2008. LAPACK Working Note 204.

[6] S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding LU and
QR factorizations to multicore architectures, Proceedings of IPDPS, (2010).

[7] J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK Benchmark: Past, Present and
Future, Concurrency: Practice and Experience, 15 (2003), pp. 803–820.

[8] T. Endo and K. Taura, Highly Latency Tolerant Gaussian Elimination, Proceedings of 6th
IEEE/ACM International Workshop on Grid Computing, (2005), pp. 91–98.

[9] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[10] L. Grigori, J. W. Demmel, and H. Xiang, CALU: A Communication Optimal LU Factor-
ization Algorithm, Tech. Report UCB/EECS-2010-29, EECS Department, University of
California, Berkeley, Mar 2010.

[11] F. Gustavson, Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms, IBM Journal of Research and Development, 41 (1997), pp. 737–755.

[12] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, second ed ed., 2002.
[13] N. Higham and D. J. Higham, Large growth factors in gaussian elimination with pivoting,

SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155–164.
[14] N. J. Higham, The Matrix Function Toolbox. http://www.ma.man.ac.uk/~higham/mftoolbox.
[15] J.-W. Hong and H. T. Kung, I/O complexity: The Red-Blue Pebble Game, in STOC ’81:

Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, New
York, NY, USA, 1981, ACM, pp. 326–333.

[16] D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory
matrix multiplication, J. Parallel Distrib. Comput., 64 (2004), pp. 1017–1026.

[17] T. Joffrain, E. S. Quintana-Ort́ı, and R. A. van de Geijn, Rapid development of high-
performance out-of-core solvers, in Proceedings of PARA 2004, no. 3732 in LNCS, Springer-
Verlag Berlin Heidelberg, 2005, pp. 413–422.

[18] E. Quintana-Ort́ı and R. A. van de Geijn, Updating an LU factorization with pivoting,
ACM Trans. on Mathematical Software, 35 (2008), pp. 11:1–11:16.

[19] G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, F. G. Van Zee, and R. van de Geijn,
Programming algorithms-by-blocks for matrix computations on multithreaded architectures,
Tech. Report TR-08-04, University of Texas at Austin, 2008. FLAME Working Note 29.

[20] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math.
Comput., 35 (1980), pp. 817–832.

[21] D. C. Sorensen, Analysis of pairwise pivoting in Gaussian elimination, IEEE Transactions
on Computers, 3 (1985), p. 274278.

[22] S. Toledo, Locality of reference in LU Decomposition with partial pivoting, SIAM J. Matrix
Anal. Appl., 18 (1997).

[23] L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination, SIAM
J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

[24] V. Volkov, Private communication.
[25] E. L. Yip, Subroutines for out of core solutions of large complex linear systems, Tech. Report

NASA-CR-159142, NASA, 1979.

34

