LAPACK Working Note #224
QR Factorization of Tall and Skinny Matrices in a
Grid Computing Environment

Emmanuel Agullo®, Camille Coti', Jack Dongarrd,
Thomas Herault, Julien Langou
* Dpt of Electrical Engineering and Computer Science, Uniteiaf Tennessee,
1122 Volunteer Blvd, Claxton Building, Knoxville, TN 379968d, USA
TINRIA Saclayile de France, F-91893 Orsay, France
fUniv Paris Sud, University of Tennesse, LRI, INRIA
§ Dpt of Mathematical and Statistical Sciences, UniversityColorado Denver,
Campus Box 170, P.O. Box 173364, Denver, Colorado 80217-336A, US
eagullo@eecs.utk.edu, coti@lri.fr, dongarra@eec®dtk.
herault@Iri.fr, julien.langou@ucdenver.edu

Abstract

Previous studies have reported that common dense lineabralgpperations do not achieve speed up by
using multiple geographical sites of a computational gBgcause such operations are the building blocks
of most scientific applications, conventional supercorapugre still strongly predominant in high-performance
computing and the use of grids for speeding up large-sc@etsfic problems is limited to applications exhibiting
parallelism at a higher level. We have identified two perfange bottlenecks in the distributed memory algorithms
implemented in ScaLAPACK, a state-of-the-art dense lirsdgebra library. First, because ScaLAPACK assumes
a homogeneous communication network, the implementatibr&al APACK algorithms lack locality in their
communication pattern. Second, the number of messagesrs¢éimé ScalLAPACK algorithms is significantly
greater than other algorithms that trade flops for commtioicaln this paper, we present a hew approach for
computing a QR factorization — one of the main dense linegetak kernels — of tall and skinny matrices in a grid
computing environment that overcomes these two bottlene&@kr contribution is to articulate a recently proposed
algorithm (Communication Avoiding QR) with a topology-awamiddleware (QCG-OMPI) in order to confine
intensive communications (ScaLAPACK calls) within thefeliént geographical sites. An experimental study
conducted on the Grid’5000 platform shows that the resglfierformance increases linearly with the number
of geographical sites on large-scale problems (and is iticpdar consistently higher than ScaLAPACK's).

. INTRODUCTION

Grid computing [20] as a utility has reached the mainstrédamy large-scale scientific problems have
been successfully solved thanks to the use of computatgnidd (or, simply,grids). These problems
cover a wide range of scientific disciplines including bgto(protein folding [31]), medicine (cure
muscular dystrophy [9]), financial modeling, earthquakeawdation, and climate/weather modeling.
Such scientific breakthroughs have relied on the tremengoosessing power provided by grid in-
frastructures. For example, the Berkeley Open Infrastractar Network Computing (BOINC) [3]
gathers the processing power of personal computers prbvigepeople volunteering all over the
world. This processing power is then made available to rekeas through different projects such as
Climateprediction.net [2], Rosetta@home [16] and World ComityuGrid (WCG). As of September
2009, 18, BOINC had 566,000 active computers (hosts) woddvior an average total processing power

1This work was partly supported by the EC grant for the QosCosGrid gir(geant # FP6-2005-1ST-5 033883), and NSF-CCF (grant
#881520).
http://www.worldcommunitygrid.org

of 2.4 Pflop/g. Furthermore, following the supercomputing trends, godputing infrastructures have
successfully exploited the emerging hardware technatodgide Folding@Home project [7] — which
aims at understanding protein folding, misfolding, andated diseases — achievé® Pflop/s thanks
to grid exploiting specialized hardware such as graphicggssing units (GPUs), multicore chips and
IBM Cell processors.

However, conventional supercomputers are strongly préusm in high-performance computing
(HPC) because different limiting factors prevent the use wfisyfor solving large-scale scientific
problems. First of all, security requirements for grids ao¢ completely met in spite of the important
efforts in that direction [28]. Second, contrary to theiigoral purpose (the terngrid itself is a
metaphor for making computer power as easy to access as amnicefgower grid [20]), grids have
not been historically very user-friendly. Third, not aletrid infrastructures are dimensioned for HPC,
which is only one of the aims of grid computing. Even recennowrcial offerings such as Amazon
Elastic Compute Cloud (EC2)are not considered mature yet for HPC because of underataib
components [41]. Furthermore, other aspects are still toes of intensive research, such as service
discovery [11], scheduling [4ktc.

But, above all, the major limiting factor to a wider usage atigrby computational scientists to solve
large-scale problems is the fact that common dense linggbed operations do not achieve perfor-
mance speed up by using multiple geographical sites of a atatipnal grid, as reported in previous
studies [33], [34]. Because those operations are the bgildiacks of most scientific applications, the
immense processing power delivered by grids vanishes.sSrilee application presents parallelism at
a higher level (most of the applications running on BOINC awually embarrassingly paralleli.e.,
loosely coupled), its performance becomes limited by thecgssing power of a single geographical
site of the grid infrastructure, ruining the ambition to quete against conventional supercomputers.
We have identified two performance bottlenecks in the disted memory algorithms implemented in
ScalLAPACK [12], a state-of-the-art dense linear algebreatip First, because ScaLAPACK assumes a
homogeneous communication network, the implementatibtteeo0ScaL APACK algorithms lack locality
in their communication pattern. Second, the number of ngessaent in the ScaLAPACK algorithms is
significantly greater than other algorithms that trade fifggscommunication. In this paper, we present
a new approach for factorizing a dense matrix — one of the mngsortant operations in dense linear
algebra — in a grid computing environment that overcomes&lito bottlenecks. Our approach consists
of articulating a recently proposed algorithm (Communaai\voiding algorithm [17]) with a topology-
aware middleware (QCG-OMPI[15]) in order to confine inteastommunications (ScaLAPACK calls)
within the different geographical sites.

In this study, we focus on the QR factorization [23] of a taidaskinny (TS) dense matrix into an
orthogonal matrix)) and an upper triangular matrix and we discuss how our approach generalizes to
all one-sided factorizations (QR, LU and Cholesky) of a gdriase matrix (Section IV). Furthermore,
we focus on the computation of the triangular factband do not explicitly form the orthogonal matrix
Q. However, we show that the performance behavior would bdagini we compute(or not.

The paper is organized as follows. We present the relate@t wod define the scope of our paper
in Section Il. In Section lll, we present the implementatioha QR factorization of TS matrices
that confines intensive communications within the différgaographical sites. Section IV discusses a
performance model that allows us to understand the bagsicddrebserved in our experimental study
(Section V). We conclude and present the future work in $acvl.

[I. BACKGROUND
We present here the related work. We first describe previapsramental studies of the behavior
of dense linear algebra operations in a grid computing enument (Section II-A). We then succinctly

2htt p: // boi ncst ats. conml
Shttp://aws.amazon.com/ec2/

present the operation we focus on in this paper, the QR faat@n, as it is implemented in ScalA-
PACK, a state-of-the-art dense linear algebra library fetridiuted memory machines (Section 1I-B).
We continue with the introduction of a recently proposedodatgm trading flops for communication
(Section 1I-C). To take advantage in a grid computing enviment of the limited amount of communi-
cation induced by such an algorithm, we need to articulatétit the topology of the grid. We present
in Section II-D a middleware enabling this articulation by retrieving the system topology to the
application and even (ii) allowing the application to resesuitable resources. Such an articulation of
the algorithms with the topology is critical in an environméuilt on top of heterogeneous networks
such as a grid. We conclude this review by discussing theesobphis paper (Section II-E).

A. Dense linear algebra on the grid

The idea of performing dense linear algebra operations engtid is not new; however, success
stories are rare in the related bibliography. Libraried treve an MPI [19] interface for handling the
communication layer, such as ScaLAPACK or HP Linpack, carubeon a grid by linking them to a grid-
enabled implementation of the MPI standard such as MPICHZ92, PACX-MPI [22] or GridMPf.
MPI has become thde factolanguage for programming parallel applications on digteld memory
architectures such as clusters. Programmers have gaipedience using this programming paradigm
throughout the past decade; scientific libraries have beseldped and optimized using MPI. As a
consequence, it is natural to consider it as a first-choioéidate for programming parallel applications
on the grid in order to benefit from this experience and to e &bport existing applications for the
grid. The GrADS project had the purpose of simplifying distributed, he¢emeous computing and
making grid application development as well as performamnoing for real applications an everyday
practice. Among other accomplishments, large matriceéddog factorized thanks to the use of a grid
whereas it was impossible to process them on a single clostause of memory constraints [34], [40].
The resource allocation (number of clustezt;) was automatically chosen in order to maximize the
performance. However, for matrices that could fit in thet(sted) memory of the nodes of a cluster,
the experiments (conducted with ScaLAPACK) showed that f#eeaf a single cluster was optimal [34].
In other words, using multiple geographical sites led to@vstlown of the factorization. Indeed, the
overhead due to the high cost of inter-cluster communinatias not balanced by the benefits of a
higher processing power.

For the same reason, the EC2 cloud has recently been shown itmatbequate for dense linear
algebra [33]. In this latter study, the authors address thestipn whether cloud computing can reach
the Top5086, i.e., the ranked list of the fastest computing systems in thedvd@hsed on experiments
conducted with the parallel LU factorization [23] implented in the HP Linpack Benchmark [18], not
only did they observe a slow down when using multiple clsstbut they also showed that the financial
cost (in dollars) of performance (number of floating-poipemations per second, in Gflop/s) increases
exponentially with the number of computing cores used, minchontrast to existing scalable HPC
systems such as supercomputers.

The HeteroScaLAPACK projettaims at developing a parallel dense linear algebra package f
heterogeneous architectures on top of ScaLAPACK. This agbres orthogonal (and complementary)
to ours since it focuses on the heterogeneity of the proced87d], whereas we presently aim at
mapping the implementation of the algorithm to the hetenegg of the network (topology) through
QCG-OMPI. In our present work, we do not consider the hetereie of the processors. Another
fundamental difference with HeteroScaLAPACK is that we aseng TSQR, an algorithm that is not
available in ScaLAPACK.

“http:/ivww.gridmpi.org

SSoftware Support for High-Level Grid Application Developménitt p: / / www. hi per soft. ri ce. edu/ gr ads/
®http://www.top500.0rg

"http://hcl.ucd.ie/project/HeteroScalLAPACK

B. ScaLAPACK'’s QR factorization

The QR factorization of an/ x N real matrix A has the formA = QR, where@ is an M x M
real orthogonal matrix and R is al/ x N real upper triangular matrix. Provided is nonsingular,
this factorization is essentially unique, that is, it isaque if we impose the diagonal entries Bfto
be positive. There is a variety of algorithms to obtain a QBtdazation from a given matrix, the
most well-known arguably being the Gram-Schmidt algoritibense linear algebra libraries have been
traditionally focusing on algorithms based on unitary sf@anmations (Givens rotations or Householder
reflections) because they are unconditionally backwardlest23]. Givens rotations are advantageous
when zeroing out a few elements of a matrix whereas Househatdnsformations are advantageous
when zeroing out a vector of a matrix. Therefore, for denstioes, we consider the QR factorization
algorithm based on Householder reflections. The algoritbnsists of applying successive elementary
Householder transformations of the forth= I — 7vv? where! is the identity matrixp is a column
reflector andr is a scaling factor [23].

To achieve high performance on modern computers with @iffetevels of cache, the application of
the Householder reflections lidocked[39]. In ScaLAPACK [8],b elementary Householder matrices are
accumulated within @anel(a block-column)/” consisting ob reflectors. The consecutive applications of
theseb reflectors {, H,... H,) is then constructed all at once using the matrix equdlityl,...H, = [—
VTVT (T is abx b upper triangular matrix). However, this blocking incursaaiditional computational
overhead. The overhead is negligible when there is a largebeu of columns to be updated but
is significant when there are only a few columns to be updabedault values in the ScaLAPACK
PDGEQRF subroutine are NB=64 and NX=128, where NB is the blagk & and NX is the cross-
over point; blocking is not to be used if there is less than NXumns are to be updated. PDGEQRF
uses PDGEQR2 to perform the panel factorizations. Due to #melpfactorization, the algorithm in
ScalLAPACK requires one allreduce operation for each colufnthe initial matrix. In other words,
ScalLAPACK uses at leasY log,(P) messages to factor al -by—N matrix.

C. Communication Avoiding QR (CAQR) factorization

In this paper we propose an implementation of the so-cala@himunication Avoiding QR” (CAQR)
algorithm originally proposed by Demmel et al. [17]. CAQR do&ds to the class of th@actor panel)

/ (update trailing matrix)algorithms. For all algorithms in this class, the updatesgh& entirely
dictated by the panel factorization step and is easily feizdble. Therefore, we only discuss the panel
factorization step. The panel factorization in CAQR is basadhe “Tall and Skinny QR” factoriza-
tion algorithm (TSQR) [17]. In contrast to the ScaLAPACK pafedtorization algorithm (subroutine
PDGEQRZ2), which requires one allreduce operation per colUiBQR requires one allreduce operation
per b columns wheré is an arbitrary block size. The number of communicationdherdfore divided
by b. The volume of communication stays the same. The number efatipns on the critical path is
increased in TSQR by an addition&@l(log,(P)N?) term. TSQR effectively trades communication for
flops.

As explained in [17], TSQR is a single complex allreduce apen. The TS matrix is split inP
block-rows, calleddomains the factorization of a domain is the operation performedtmnleaves of
the binary tree associated to the reduction. The basic bpeitaen used in this allreduce operation is as
follows: from two input triangular matriceB; and R,, stackR; on top of R, to form [R;; R, perform
the QR factorization ofRy; Rs], the outputR is given by the R-factor ofR;; Ry]. One can show that
this operation is binary and associative. It is also comtiwgaf one imposes the diagonal of each
computed R-factor to have nonnegative entries. As for anyaeaperation, the shape of the optimal
tree depends on the dimension of the data and the underlgrdyare. CAQR with a binary tree has
been studied in the parallel distributed context [17] and ®A@ith a flat tree has been implemented
in the context of out-of-core QR factorization [26]. We nobat CAQR with a flat tree also delivers
wide parallelism and, for this reason, has been used in tHecome context [10], [30], [36].

Previous implementations of CAQR have used either a flat treelmnary tree. One key originality
of our present work lies in the fact that our reduction treaaither binary nor flat. It is tuned for
the targeted computational grid, as illustrated in Fig. @stFwe reduce with a binary tree on each
cluster. Then we reduce with a second binary tree the retetah cluster at the grid level. The binary
tree used by ScaLAPACK PDGEQR?2 (Fig. 1) minimizes the sum ofnter-cluster messages and the
intra-cluster messages. Our tree is designed to minimiedgdtal number of inter-cluster messages.

We now give a brief history of related algorithmic work in ¢@st to the reference work of Demmel
et al. [17]. The parallelization of the Givens rotations dthand Householder reflections based QR
factorization algorithms is a well-studied area in Numalricinear Algebra. The development of the
algorithms has followed architectural trends. In the |28&0s / early 1980s [27], [32], [38], the research
was focusing on algorithms based on Givens rotations. Toasfavas on extracting as much parallelism
as possible. We can interpret these sequences of algordlrasalar implementations using a flat tree
of the algorithm in Demmel et al. [17]. In the late 1980s, tlsearch shifted gears and presented
algorithms based on Householder reflections [35], [14]. Tiaivation was to use vector computer
capabilities. We can interpret all these algorithms asoreichplementations using a flat tree and/or a
binary tree of the algorithm in Demmel et al. [17]. All thedga@ithms require a number of messages
greater tham, the number of columns of the initial matriA, as in ScaLAPACK. The algorithm in
Demmel et al. [17] is a generalization with multiple blockk amlumns with a nontrivial reduction
operation, which enables one to divide the number of messafj¢hese previous algorithms by the
block size,b. Demmel et al. proved that TSQR and CAQR algorithms induce ranmuim amount of
communication (under certain conditions, see Section 1[4 dffor more details) and are numerically
as stable as the Householder QR factorization.

Fig. 1. lllustration of the ScaLAPACK panel factorization
routine on aM-by-3 matrix. It involves one reduction per Fig. 2. Illustration of the TSQR panel factorization routine

column for the normalization and one reduction per column

for the update. (No update for the last column.) The reduction
tree used by ScalLAPACK is a binary tree. It In this example,

we have 25 inter-cluster messages (10 for all columns but the
last, 5 for the last). A tuned reduction tree would have given

10 inter-cluster messages (4 per column but the last, 2 for the
last). We note that if process ranks are randomly distributed,
the figure can be worse.

on a M-by-3 matrix. It involves only one reduction tree.
Moreover the reduction tree is tuned for the grid architecture.
We only have two inter-cluster messages. This number (two)
is independent of the number of columns. This number is
obviously optimal. One can not expect less than two inter-
cluster communications when data is spread on the three
clusters.

D. Topology-aware MPI middleware for the grid: QCG-OMPI

Programming efficient applications for grids built by fealmg clusters is challenging, mostly because
of the difference of performance between the various nddsvtite application has to use. As seen in
the table of Figure 3(a) we can observe two orders of magaibhelween inter and intra-cluster latency

on a dedicated, nation-wide network, and the differencereach three or four orders of magnitude
on an international, shared network such as the Interneta Aensequence, the application must be
adapted to the intrinsically hierarchical topology of thedgIn other words, the communication and
computation patterns of the application must match the ipalysopology of the hardware resources it
is executed on.

Latency (ms) Orsay | Toulouse| Bordeaux| Sophia
Orsay 0.07 | 7.97 6.98 6.12
Toulouse 0.03 9.03 8.18
Bordeaux 0.05 7.18
Sophia 0.06
Throughput (Mb/s)| Orsay| Toulouse| Bordeaux| Sophia
Orsay 890 78 90 102
Toulouse 890 77 90
Bordeaux 890 83
Sophia 890
(@) Communications performance on Grid’5000 (b) Grid’5000: a nation-wide experimental testbed.

Fig. 3. Grid’5000 communication characteristics.

ScalLAPACK, and many of the linear algebra libraries for stifiencomputing, are programmed in
MPI. MPI is fit for homogeneous supercomputers: processesrarstly indistinguishable one from
another, and the standard does not specify anything abouegs / node placement.

As a consequence, to efficiently program a parallel apphinabn top of a non-uniform network,
typically on top of a hierarchical network like a grid, MPI stlbe extended to help programmers adapt
the communications of the application to the machine. MPIEH[29] introduced the concept of colors
to describe the available topology to the application atinu@. Colors can be used directly by MPI
routines in order to build topology-aware communicatohe (&bstraction in MPI that is used to group
processors together). However, the application is fulgpomsible to adapt itself to the topology that is
discovered at runtime. This adaptation, and the load-balgnthat it implies, may be a hard task for
the application.

The QosCosGrid systéhoffers a resource-aware grid meta-scheduler that givesdssibility to allo-
cate resources that match requirements expressed in a smmgie called the application’dobProfile
that describe the future communications of the applicaf@nThe JobProfile defines process groups
and requirements on the hardware specifications of the res®uhat have to be allocated for these
processes such as amount of memory, CPU speed, and netwpskipes between groups of processes,
such as latency and bandwidth.

As a consequence, the application will always be executedroappropriate resource topology. It
can therefore be developed for a specific topology in mindef@ample, under the assumption that a
set of processes will be located on the same cluster or onatine snulti-core machine. Of course, the
more flexibility the programmer gives to the JobProfile anel dpplication, the more chances he gets
to let the meta-scheduler find a suitable hardware setup.

The QosCosGrid system features QCG-OMPI, an MPI implememntdtased on OpenMPI [21] and
targeted to computational grids. Besides grid-specific camoation features that enable communicating
throughout the grid described in [15], QCG-OMPI has the folisi to retrieve topology information
provided to the scheduler in the JobProfile at run-time. Wplax in Section Ill how we have
implemented and articulated TSQR with QCG-OMPI in order tetadvantage of the topology.

8Quasi-Opportunistic Supercomputing for Complex Systems in Grid Envienrs, http://www.qoscosgrid.eu

E. Scope

The QR factorization of TS matrices is directly used as addeimseveral important applications of
linear algebra. For instance, block-iterative methodsirieaegularly perform this operation in order to
obtain an orthogonal basis for a set of vectors; this steppsudicular importance for block eigensolvers
(BLOPEX, SLEPc, PRIMME). Currently these packages rely onabistorthogonalization schemes to
avoid too many communications. TSQR is a stable algorithat émables the same total number of
messages. TSQR can also be used to perform the panel fagtmiof an algorithm handling general
matrices (CAQR). Thanks to simulations, Demmel et al. [17icgmated that the benefits obtained with
TSQR should get transposed to CAQR. Said differently, thisgmestudy can be viewed as a first step
towards the factorization of general matrices on the grid.

Grids aggregate computing power from any kind of resour@avé¥er, in some typical grid projects,
such as Superlink@Technion, the Lattice project, EAGES,th@ Condor pool at Univ. of Wisconsin-
Madison, a significant part of the power comes from a few tustins featuring environments with a
cluster-like setup. In this first work, we focus our study dunsters of clusters, to enable evaluation in a
stable and reproducible environment. Porting the work teregal desktop grid remains a future work.

Finally, we emphasize that the objective of this paper ishimsthat we can achieve a performance
speed up over the grid with common dense linear algebra bgesaTo illustrate our claim, we compare
our approach against a state-of-the-art library for disted memory architectures, ScaLAPACK. In
order to highlight the differences, we chose to base ouragmbr on ScaLAPACK (see Section 1lI).

1. QCG-TSQR: ARTICULATION OF TSQRWITH QCG-OMPI

We explain in this section how we articulate the TSQR alonitvith QCG-OMPI in order to confine
intensive communications within the different geographisites of the computational grid. The first
difference from the TSQR algorithm as presented in Sectigd s that a domain is processed by a
call to ScaLAPACK (but not LAPACK as in [17]). By doing so, we matgrioute a domain to a group
of processes (instead of a single process) jointly perfiogmis factorization. The particular case of
one domain per process corresponds to the original TSQR tcaLAPACK). At the other end of the
spectrum, we may associate one domain per geographicabfsitee computational grid. The choice
of the number of domains impacts performance, as we wilktthte in Section V-D. In all cases, we
call our algorithm TSQR (or QCG-TSQR), since it is a single wxaperation based on a binary tree,
similarly to the algorithm presented in Section II-C.

As explained in Section 11-D, the first task of developing a QOGIPI application consists of defining
the kind of topologies expected by the application in a Jobler To get enough flexibility, we request
that processes are split into groups of equivalent comgupiower, with good network connectivity
inside each group (low latency, high bandwidth) and we acadpwer network connectivity between
the groups. This corresponds to the classical cluster stels approach, with a constraint on the relative
size of the clusters to facilitate load balancing.

The meta-scheduler will allocate resources in the phygjadl that matches these requirements. To
enable us to complete an exhaustive study on the differemd &if topologies we can get, we also
introduced more constraints in the reservation mechani@pending on the experiment we ran. For
each experiment, the set of machines that are allocatecetgpothare passed to the MPI middleware,
which exposes those groups using two-dimensional arragsaeip identifiers (the group identifiers are
defined in the JobProfile by the developer). After the inietion, the application retrieves these group
identifiers from the system (using a specific MPI attributed ¢hen creates one MPI communicator per
group, using theMPI_Commsplit routine. Once this is done, the TSQR algorithm has knowlaafge
the topology that allows it to adapt to the physical setuphef grid.

The choice to introduce a requirement of similar computirgvgr between the groups however
introduces constraints on the reservation mechanism.Xamgle, in some experiments discussed later
(Section V), only half the cores of some of the machines woeated in order to fit this requirement.

msg vol. data exchanged # FLOPs
ScalLAPACK QR2]| 2Nlog,(P) | log,(P)(N?/2) (2MN? —2/3N%)/P
TSQR log, (P) log, (P)(N?/2) (2MN? —2/3N?)/P + 2/3log,(P)N®
TABLE |

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN ONLY THE R-FACTOR IS NEEDED

Another possibility would have been to handle load balagpdgsues at the algorithmic level (and not
at the middleware level) in order to relieve this constrant the JobProfile and thus increase the
number of physical setups that would match our needs. Indhnigcplar case of TSQR, this is a natural
extension; we would only have to adapt the number of rowsbated to each domain as a function of
the processing power dedicated to a domain. This altemajpproach is future work.

V. PERFORMANCE MODEL

In Tables | and II, we give the amount of communication and gotation required for ScaLAPACK
QR2 and TSQR in two different scenarios: first, when only thea&dr is requested (Table 1) and,
second, when both the R-factor and the Q-factor are requ€Badte I1). In this model, we assume that
a binary tree is used for the reductions and a homegeneowsnketWe recall that the input matrix
is M—by-N and thatP is the number of domains. The number of FLOPS is the numbetL®FHS on
the critical path per domain.

Assuming a homogeneous network, the total time of the fematon is then approximated by the
formula:

time = [(# msg) + a x (vol. data exchanged} ~ « (# FLOPS), (2)

where« is the inverse of the bandwidtly, the latency, andy the inverse of the floating point rate of
a domain. Although this model is simplistic, it enables ugai@cast the basic trends. Note that in the
case of TS matrices, we hawd > N.

First we observe that the cost to compute bothdhand theR factors is exactly twice the cost for
computing R only. Moreover, further theoretical and experimental gsial of the algorithm (see [17])
reveal that the structure of the computation is the same th bases and the time to obtaip is
twice the time to obtaink. This leads to Property 1. For brevity, we mainly focus owrdgton the
computation ofRR only.

Property 1: The time to compute botty and R is about twice the cost for computing only.

One of the building blocks of the ScaLAPACK PDGEQR2 implem#ateand of our TSQR algorithm
is the domanial QR factorization of a TS matrix. The domain ba processed by a core, a node or
a group of nodes. We can not expect performance from ourlpbhditributed algorithms to be better
than the one of its domanial kernels. This leads to Propertin Zractice, the performance of the
QR factorization of TS matrices obtained from LAPACK/Scals on a domain (core, node, small
number of nodes) is a small fraction of the peak. (Terrof Equation 1 is likely to be small.)

Property 2: The performance of the factorization of TS matrices is ladiby the domanial perfor-
mance of the QR factorization of TS matrices.

We see that the number of operations is proportionab tewhile all the communication terms (latency
and bandwidth) are independent of. Therefore whenn increases, the communication time stays
constant whereas the domanial computation time incred$es.leads to increased performance.

Property 3: The performance of the factorization of TS matrices inceeasith M.

The number of operations is proportional & while the number of messages is proportionai\to
Therefore whenV increases, the latency term is hidden by the computation.t€his leads to better
performance. We also note that increasiiigenables better performance of the domanial kernel since
it can use Level 3 BLAS when the number of columns is greater, tharhaps]100. This is Property 4.

Property 4: The performance of the factorization of TS matrices incesasith V.

Finally, we see that the latency term2sog,(P) for TSQR while it is2N log,(P) for ScaLAPACK
QR2. On the other hand, the FLOPs term has a non parallelizaldigional2/3 log,(P)N3 term for

msg vol. data exchanged # FLOPs
ScaLAPACK QR2|| 4Nlog,(P) | 2log,(P)(N?/2) (4MN? —4/3N%)/P
TSQR 2log,(P) 2log,(P)(N?/2) | (4MN? —4/3N%)/P + 4/31og,(P)N?
TABLE Il

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN BOTH THE Q-FACTOR AND THE R-FACTOR ARE NEEDED

the TSQR algorithm. We see that TSQR effectively trades agessfor flops. We expect TSQR to be
faster than ScaLAPACK QR2 faW in the mid-range (perhaps between five and a few hundreds). Fo
larger N, TSQR will become slower because of the additional flopss ThiProperty 5. (We note that
for large N, one should stop using TSQR and switch to CAQR.)

Property 5: The performance of TSQR is better than ScaLAPACK férin the mid range. When
N gets too large, the performance of TSQR deteriorates andAR%CK becomes better.

V. EXPERIMENTAL STUDY
A. Experimental environment

We present an experimental study of the performance of thef@@®rization of TS matrices in a
grid computing environment. We conducted our experiment&nd’5000. This platform is a dedicated,
reconfigurable and controllable experimental grid of 13tdts distributed over 9 cities in France. Each
cluster is itself composed of 58 to 342 nodes. The clustersnaer-connected through dedicated black
fiber. In total, Grid’5000 roughly gathers 000 CPU cores featuring multiple architectures.

For the experiments presented in this study, we chose fogterks based on relatively homogeneous
dual-processor nodes, ranging from AMD Opteron 246 (2 GMBI1.2 cache) for the slowest ones
to AMD Opteron 2218 (2.6 GHz/2MB L2 cache) for the fastestgmnehich leads to theoretical peaks
ranging from8.0 to 10.4 Gflop/s per processor. These four clusters are the 93-nodeeclin Bordeaux,
the 312-node cluster in Orsay, a 80-node cluster in Toulcaursaé a 56-node cluster in Sophia-Antipolis.
Because these clusters are located in different cities, vileindistinctly use the termsluster and
geographical sitg(or site) in the following. Nodes are interconnected with a Gigaltidtnet switch;
on each node, the network controller is shared by both psocesOn each cluster, we reserved a
subset of 32 dual-processor nodes, leading to a theoreiedd 0f512.0 to 665.6 Gflop/s per node. Our
algorithm being synchronous, to evaluate the proportiaihedretical peak achieved in an heterogeneous
environment, we consider the efficiency of the slowest campbas a base for the evaluation. Therefore,
the theoretical peak of our grid is equal 20048 Gflop/s. A consequence of the constraints on the
topology expressed by our implementation in QCG-OMPI (sexi@ell-D) is that in some experiments,
machines with dual 2-cores processors were booked withlitiéyao use 2 cores (over 4) only.

The performance of the inter and intra-cluster commurooatiis shown in Table 3(a). Within a
cluster, nodes are connected with a GigaEthernet networtkst&k are interconnected witld Gb/s
dark fibers. The intra-cluster throughput is consistentyad to 890 Mb/s but varies from61 to 860
Mb/s between clusters. Inter-cluster latency is roughatgr than intra-cluster latency by two orders
of magnitude. Between two processors of a same node, Opens&Blaidriver optimized for shared-
memory architectures, leading tola us latency and & Gb/s throughput.

One major feature of the Grid5000 project is the ability of tiser to boot her own environment
(including the operating system, distribution, librarietc.) on all the computing nodes booked for her
job. All the nodes were booted under Linux 2.6.30. The testskeenchmarks were compiled with GCC
4.0.3 (flag -O3) and run in dedicated mode (no other user cegsadhe machines). ScaLAPACK 1.8.0
and GotoBLAS 1.26 libraries were used. Finally we recall twat focus on the factorization of TS
dense large-scale matrices in real double precision, sporeling to up tol6 GB of memory €.9.a
33,554,432 x 64 matrix in double precision).

B. Tuning of the applications

To achieve high performance across platforms, dense lagabra applications rely on Basic Linear
Algebra Subprograms (BLAS) [13] to perform basic operatisumsh as vector and matrix multiplication.
This design by layers allows one to only focus on the optitioraof these basic operations while
keeping underlying numerical algorithms common to all niaes. From the performance of BLAS
operations — and in particular the matrix multiplicationGEMM) — thus depends the behavior of
the overall application. The Automatically Tuned Linearg@bra Software (ATLAS) [42] library is,
for instance, a widely used implementation of BLAS achievimgh performance thanks to autotuning
methods. It is furthermore possible to take advantage dfphaeessor nodes thanks to a multi-threaded
implementation of BLAS such as GotoBLAS [24]. We have compatedperformance of serial and
multi-threaded GotoBLAS DGEMM against ATLAS. Both configuoaits of GotoBLAS outperformed
ATLAS; we thus selected GotoBLAS to conduct our experimefitether possibility to take advantage
of dual-processor nodes is simply to create two processesquie at the application level. For both
ScalLAPACK and TSQR, that latter configuration consistentlifi@ecd a higher performance. We
therefore usedwo processes per node together with the serial version of BgA&&’'s DGEMM in
all the experimentseported in this study. With DGEMM being the fastest kerrah top of which
other BLAS operations are usually built), we obtain a roughcpcal performance upper bound for
our computational grid of abouw40 Gflop/s (the ideal case where 256 processors would achieve th
performance of DGEMMj.e., about3.67 Gflop/s each) out of the, 048 Gflop/s theoretical peak.

SCALAPACK implements block-partitioned algorithms. Its fmemance depends on the partitioning
of the matrix into blocks. Preliminary experiments (notogpd here) showed that a column-wise 1D-
cyclic partition is optimum for processing TS matrices im eavironment. We furthermore chose a block
size consistently equal #®1 (a better tuning of this parameter as a function of the matnaracteristics
would have occasionally improved the performance but wesidened that the possible gain was not
worth the degree of complexity introduced in the analysishef results.).

C. ScalLAPACK performance

Figure 4 reports ScaLAPACK performance. In accordance witip&ty 2, the overall performance of
the QR factorization of TS matrices is low (consistently émthan90 Gflop/s) compared to the practical
upper bound of our gridd0 Gflop/s). Even on a single cluster, this ratio is low sinceghdormance at
one site is consistently lower th&0 Gflop/s out of a practical upper bound 25 Gflop/s. As expected
too (properties 3 and 4), the performance increases witldithensions of the matrix. For matrices of
small to moderate height\{ < 5,000, 000), the fastest execution is consistently the one conduated o
a single site. In other words, for those matrices, the usegrda(two or four sites) induces a drop in
performance, confirming previous studies [34], [33], [4A¢r very tall matrices X/ > 5,000, 000), the
proportion of computation relative to the amount of comnoation becomes high enough so that the use
of multiple sites eventually speeds up the performanceénttngost part of the graphs and Property 3).
This speed up however hardly surpasses a value(Ooivhile using four sites (Figure 4(b)).

D. QCG-TSQR performance

The performance of TSQR (articulated with QCG-OMPI as desdriin Section IIl) depends on the
number of domains used. In Figure 5, we report the TSQR paence for the optimum number of
domains and we will return later to the effect of the numbedafains. In accordance with Property 2,
the overall performance is again only a fraction of the pcattupper bound of our gridd¢0 Gflop/s).
But, compared to ScaLAPACK, this ratio is significantly higlserce the factorization of & 388, 608 x
512 matrix achieve256 Gflop/s (Figure 5(d)). Again, in accordance with proper8esnd 4, the overall
performance increases with the dimensions of the matriankh to its better performance (Property 5),
TSQR also achieves a speed up on the grid on matrices of medsza. Indeed, for almost all matrices
of moderate to great height{ > 500, 000), the fastest execution is the one conducted on all fous.site

Gflop/s

Gflop/s

Gflop/s

Gflop/s

Gflop/s

Gflop/s

Gflop/s

Gflop/s

35 ‘ :
4 sites (128 nodes)
30 | 2 sites (64 nodes) - 1
1 site (32 nodes)
25
20
15
10
5
0
100000 le+06 le+07 1le+08
Number of rows (M)
(& N=64
60 - .
4 sites (128 nodes) N
50 | 2 sites (64 nodes) -
1 site (32 nodes) -
40
30
20
10
0
100000 1le+06 1e+07
Number of rows (M)
(c) N =256
Fig. 4. ScalLAPACK
100 : :
4 sites (128 nodes) ——
2 sites (64 nodes) e
80 "1 site (32 nodes)
—
60
40 —— e —
20 [l e i s
VV P
0
100000 le+06 le+07 le+08
Number of rows (M)
(@) N=64
180 ‘
160 |4 sites (128 nodes) ——
2 sites (64 nodes) -
140 + 1 site (32 nodes)
120
100
80
60
40
20
100000 1le+06 le+07
Number of rows (M)
(c) N =256

€0 14 sites (128 nodes)
50 | 2 sites (64 nodes) - |
1 site (32 nodes) - —
40
30
20
10
0
100000 1e+06 1e+07 1e+08
Number of rows (M)
(b) N'=128
90 74 sites (128 nodesj
80 [2 sites (64 nodes) - - 4
70 | 1site (32 nodes) - |
60 i
50 o :
40 A
30 /
20 4,
10
0
100000 le+06 1e+07
Number of rows (M)
(d) N =512
performance.
140 : ‘
4 sites (128 nodes) ——
120 | 2 sites (64 nodes) - 1
1 site (32 nodes) -~
100
80
60
40 /
20
0
100000 1e+06 1e+07 1e+08
Number of rows (M)
(b) N =128
300
4 sites (128 nodes) ——
250 | 2 sites (64 nodes) - |
1 site (32 nodes) f
200
150
100
50 g
0
100000 1e+06 1e+07
Number of rows (M)
(d) N'=512

Fig. 5. TSQR Performance.

Furthermore, for very tall matrices\{ > 5,000, 000), TSQR performance scales almost linearly with
the number of sites (a speed up of almdsdi is obtained on four sites). This result is the central
statement of this paper and validates the thesis that caitiguoal grids are a valid infrastructure for
solving large-scale problems relying on the QR factor@anf TS matrices.
Figure 6 now illustrates the effect of the number of domaies @uster on TSQR performance.
Globally, the performance increases with the number of desnaFor very tall matrices (| =

100 'M =33554 432 —— | 160 'M = 33554 432 ——
M =4 194 304 - 140 M = 4 194 304
M =524 288 - 120 M = 524 288
80 M =131072 - M = 262 144
(2 "
S 60 E— 3 10— —
o - S 80 [
O 40 T O 60 T
40
20 pr
o — 0
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of domains per cluster Number of domains per cluster
(a) N=164 (b) N =128
250 350 " M=8388608 ——
200 300
250
£ 150 2
8 g 200
O 100 O 150
""""""" : 100
50 o
50
0 0
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of domains per cluster Number of domains per cluster
(c) N =256 (d) N=512
Fig. 6. Effect of the number of domains on the performance of TSg#Rwed on all four sites.
; ; ; ‘ ‘ 100
gg M =8 388608 ——
M=1048 576 - 80
30 ¢ M =131 072 -
o o5 M=65536 = 9 g
Q_ D.
L 20 o
O B O 40 o B
10
5 e T T 20
0 0
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of domains Number of domains
(@) N =64 (b) N'= 512
Fig. 7. Effect of the number of domains on the performance of TS&gRwged on a single site.

33,554, 432), the impact is limited (but not negligible) since there regh computation to almost
mask the effect of communications (Property 3). For veryniskimatrices = 64), the optimum
number of domains for executing TSQR on a single clustesdigFigure 7(a)), corresponding to a
configuration with one domain per processor. This optimufecs®n of the number of domains is
translated to executions on multiple clusters whreglomains per cluster is optimum too (Figure 6(a)).
For the widest matrices studiedv(= 512), the optimum number of domains for executing TSQR
on a single cluster i82 (Figure 7(b)), corresponding to a configuration with one domper node.

For those matrices, trading flops for intra-node commuigoatis not worthwhile. This behavior is
again transposable to executions on multiple sites (Fig(®) where the optimum configuration also
corresponds t@2 domains per cluster. This observation illustrates the tfaat one should use CAQR
and not TSQR for largéV, as discussed in Section IV.

E. QCG-TSQR vs ScaLAPACK
Figure 8 compares TSQR performance (still articulated @®G-OMPI) against ScaLAPACK's. We

90 ¢ TSQR (best) —— 1 120 | TSQR (best) ——
80 | ScalLAPACK (best) - 1 Scal APACK (best) P
A~ 100 -
70 e — /
£ 60 e © 80
g s0 g
“6 40 6 60)
28 / * “ 40 i . = %
10 |y T 20 o
0 0
100000 1e+06 1e+07 1e+08 100000 1e+06 1e+07 1e+08
Number of rows (M) Number of rows (M)
(@) N=164 (b) N'= 128
180 : « 300
160 ¢ TSQR (besy /] S50 | TSQR (best) ——
140 [SCALAPACK (best) > 5 ScalAPACK (best) -
0 12 / 200
o 0
S 100 / 150 2
© e 100 -
60 : / ___________ e
40 / _______________________________________ U
20 L™ 0
100000 1e+06 1e+07 100000 1e+06 1e+07
Num b rof rows M) Number of rows (M)
(c) N (d) N =512

Fig. 8. TSQR vs ScaLAPACK. For each algorithm, the performance effitimum configuration (one, two or four sites) is reported.

report the maximum performance out of executions on one,dwimur sites. For instance, the graph
of TSQR in Figure 8(a) is thus the convex hull of the three gsafrom Figure 5(a). In accordance
with Property 5, TSQR consistently achieves a higher perémrce than ScaLAPACK. For matrices of
limited height (M = 131,072), TSQR is optimum when executed on one site (Figure 5(a)}his
case, its superiority over ScaLAPACK comes from better parémce within a cluster (Figure 7(a)).
For matrices with a larger number of row&/(= 4, 194, 304), the impact of the number of domains per
cluster is less sensitive (Figure 7(a) and Property 3). @nother hand, the matrix is large enough to
allow a speed up of TSQR over the grid (Figure 5(a) and Prg@again)) but not of ScaLAPACK
(Figure 4(a) and Property 5), hence the superiority of TSQ& &calLAPACK for that type of matrix.
For very tall matrices X/ = 33,554, 432), the impact of the number of domains per cluster becomes
negligible (Figure 7(a) and Property 3). But (i) TSQR achgegespeed up of almodgt0O on four sites
(Figure 5(a)) whereas (i) ScaLAPACK does not achieve yehsas ideal speed up (Figure 4(a)).
Finally, on all the range of matrix shapes considered, amdditferent reasons, we have seen that
TSQR consistently achieves a significantly higher perferceathan ScaLAPACK. For not so tall and
not so skinny matrices (left-most part of Figure 8(d)), ttzg@ dpetween the performance of TSQR and
ScalLAPACK reduces (Property 5).

One may have observed that the time spent in intra-node, ithexicluster and finally inter-cluster
communications becomes negligible while the dimensionthefmatrices increase. For larger matrices
(which would not hold in the memory of our machines), we maysteven expect that communications

over the grid for ScaLAPACK would become negligible and that fTSQR and ScaLAPACK would
eventually achieve a similar (scalable) performance (Entgpb).

VI. CONCLUSION AND PERSPECTIVES

This paper has revisited the performance behavior of comdense linear algebra operations in
a grid computing environment. Contrary to past studies, wee hghown that they can achieve a
performance speed up by using multiple geographical sitescomputational grid. To do so, we have
articulated a recently proposed algorithm (CAQR) with a toggtaware middleware (QCG-OMPI) in
order to confine intensive communications (ScaLAPACK callghin the different geographical sites.
Our experimental study, conducted on the experimental’8@0 platform, focused on a particular
operation, the QR factorization of TS matrices. We showed itis performance increases linearly with
the number of geographical sites on large-scale problent i&in particular consistently higher than
ScaLAPACK’s).

We have proved theoretically through our models and exparially that TSQR is a scalable al-
gorithm on the grid. TSQR is an important algorithm in itsglfice, given a set of vectors, TSQR is
a stable way to generate an orthogonal basis for it. TSQR agithe handy as an orthogonalization
scheme for sparse iterative methods (eigensolvers orrlswees). TSQR is also the panel factorization
of CAQR. A natural question is whether CAQR scales as well on titk §rom models, there is no
doubt that CAQR should scale. However we will need to perfdimexperiment to confirm this claim.
We note that the work and conclusion we have reached hereSQIRFCAQR can be (trivially) extended
to TSLU/CALU ([25]) and Cholesky factorization [5].

Our approach is based on ScaLAPACK. However, recent algositthat better fit emerging archi-
tectures would have certainly improved the performancainbt on each cluster ai fine the global
performance. For instance, recursive factorizations lmeen shown to achieve a higher performance
on distributed memory machines [17]. Other codes benefih fnaulticore architectures [1].

If, as discussed in the introduction, the barriers for coraponal grids to compete against supercom-
puters are multiple, this study shows that the performahtage-scale dense linear algebra applications
can scale with the number of geographical sites. We plantenexthis work to the QR factorization of
general matrices and then to other one-sided factoriza{iGholesky, LU). Load balancing to take into
account heterogeneity of clusters is another directiomvesdtigate. The use of recursive algorithms to
achieve higher performance is to be studied too.

THANKS
The authors thank Laura Grigori for her constructive sutges.

REFERENCES

[1] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. Comparative gtofl one-sided factorizations with multiple software packages on
multi-core hardware. II'$C 2009.

[2] Bruce Allen, Carl Christensen, Neil Massey, Tolu Aina, and Miglegel Marquina. Network computing with einstein@home and
climateprediction.net. Technical report, CERN, Geneva, Jul 200RNGE5eneva, 11 Jul 2005.

[3] David P. Anderson. BOINC: A system for public-resource cotimguand storage. In Rajkumar Buyya, edit@RID, pages 4-10.
IEEE Computer Society, 2004.

[4] R. M. Badia, D. Du, E. Huedo, A. Kokossis, I. M. Llorente, R. SoMero, M. de Palol, R. Sirvent, and Ca¥quez. Integration of
GRID superscalar and gridway metascheduler with the DRMAA OGF stdndia Proceedings of the 14th International Euro-Par
Conferencevolume 5168 ofLNCS pages 445-455. Springer, 2008.

[5] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Carication-optimal parallel and sequential Cholesky
decomposition: extended abstract. SRAA pages 245-252, 2009.

[6] P Bar, C Coti, D Groen, T Herault, V Kravtsov, A Schuster, and Rogparallel applications with topology-aware grid middleware.
In 5th IEEE International Conference on e-Science (eSciencel®&ember 2009. to appear.

[7]1 A L. Beberg, D L. Ensign, G Jayachandran, S Khalig, and V S.deanFolding@home: Lessons from eight years of volunteer
distributed computing. 1i8th IEEE International Workshop on High Performance Computationalogip (HICOMB 2009)

[8] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel,Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. WhaleyscaLAPACK Users’ GuideSIAM, 1997.

&)
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]
[19]

[20]
[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]

[32]
[33]

[34]
[35]
[36]
[37]

[38]
[39]

[40]

[41]
[42]

Rapha| Bolze. Analyse et @ploiement de solutions algorithmiques et logicielles pour des applicatiomsfdnimatiquesa grande
échelle sur la grille PhD thesisEcole Normale Sugrieure de Lyon, October 2008.

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack DorayaA class of parallel tiled linear algebra algorithms for multicore
architecturesParallel Computing 35:38-53, 2009.

E Caron, F Desprez, and C Tedeschi. Efficiency of tree-stredtpeer-to-peer service discovery systemslPDPS pages 1-8,
2008.

J Choi, J Demmel, | S. Dhillon, J Dongarra, S Ostrouchov, A Petitebtéhley, D W. Walker, and R. C Whaley. ScaLAPACK: A
portable linear algebra library for distributed memory computers - ddsgres and performance. RARA pages 95-106, 1995.
Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, AntoitietP®avid W. Walker, and R. Clinton Whaley. A proposal for a set
of parallel basic linear algebra subprograms PAKRA pages 107-114, 1995.

E. Chu and A. George. QR factorization of a dense matrix on arbype multiprocessoiSIAM J. Sci. Stat. Computl1(5):990—
1028, 1990.

C Coti, T Herault, S Peyronnet, A Rezmerita, and F Cappello. Gridicees for MPI. In ACM/IEEE, editorProceedings of the
8th IEEE International Symposium on Cluster Computing and the Grid (QD@®), pages 417-424, Lyon, France, May 2008.

R Das, B Qian, S Raman, R Vernon, J Thompson, P Bradley, $eKivl D D. Tyka, D Bhat, D Chivian, David E E. K, W H H.
Sheffler, L Malmstdom, A M M. Wollacott, C Wang, | Andre, and D Baker. Structure prediction €ASP7 targets using extensive
all-atom refinement with rosetta@homroteing 69(S8):118-128, September 2007.

J Demmel, L Grigori, M Hoemmen, and J Langou. Communicatiariehng parallel and sequential QR factorizationSoRR
arixv.org/abs/0806.2159, 2008.

Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPA@chmark: past, present and futur€oncurrency and
Computation: Practice and Experiencg5(9):803-820, 2003.

Message Passing Interface Forum. MPI: A message-pasdiedaice standard. Technical Report UT-CS-94-230, Department o
Computer Science, University of Tennessee, April 1994.

| Foster and C Kesselmaithe Grid: Blueprint for a New Computing Infrastructui®lorgan Kaufmann Publishers, 2 edition, 2003.
E Gabriel, G E. Fagg, G Bosilca, T Angskun, J J. Dongarra, J juy&s, V Sahay, P Kambadur, B Barrett, A Lumsdaine,
R H. Castain, D J. Daniel, R L. Graham, and T S. Woodall. Open MPI: Gaealscept, and design of a next generation MPI
implementation. InProceedings, 11th European PVM/MPI Users’ Group Meetipgges 97—104, Budapest, Hungary, September
2004.

E Gabriel, M M. Resch, T Beisel, and R Keller. Distributed computing leterogeneous computing environment.Pioceedings

of the 5th European PVM/MPI Users’ Group Meetinglume 1497 ofLNCS pages 180-187. Springer, 1998.

G. H. Golub and C. F. Van LoarMatrix Computations Johns Hopkins University Press, Baltimore, USA, 2 edition, 1989.

K Goto and R A. van de Geijn. High-performance implementation ofl¢hiel-3 blas.ACM Trans. Math. Softw35(1), 2008.

Laura Grigori, James Demmel, and Hua Xiang. Communication agiGaussian elimination. 18C page 29, 2008.

B. C. Gunter and R. A. van de Geijn. Parallel out-of-core comrizand updating of the QR factorizatioACM Trans. on Math.
Soft, 31(1):60-78, March 2005.

D. Heller. A survey of parallel algorithms in numerical linear algel8IAM Rev. (20):740-777, 1978.

Marty Humphrey, Mary Thompson, and Keith Jackson. Secudtygfids. IEEE, 3:644 — 652, March 2005.

Nicholas T. Karonis, Brian R. Toonen, and lan T. Foster. MPIGBt A grid-enabled implementation of the message passing
interface. CoRR arxiv.org/cs.DC/0206040, 2002.

J. Kurzak and J. J. Dongarra. QR factorization for the CELLcpssor.Scientific Programming, Special Issue: High Performance
Computing with the Cell Broadband EnginE7(1-2):31-42, 2009.

Stefan M. Larson, Christopher D. Snow, Michael Shirts, and VBayande. Folding@home and genome@home: Using distributed
computing to tackle previously intractable problems in computational biol@ayiv.org/abs/arxiv:0901.0866), 2009.

R.E. Lord, J.S. Kowalik, and S.P. Kumar. Solving linear algebeguations on an MIMD computed. ACM 30(1):103-117, 1983.
Jeff Napper and Paolo Bientinesi. Can cloud computing reach th800®? Technical Report AICES-2009-5, Aachen Institute for
Computational Engineering Science, RWTH Aachen, February 2009.

A Petitet, S Blackford, J Dongarra, B Ellis, G Fagg, K Roche, anda8hWar. Numerical libraries and the grid: The GrADS
experiments with ScaLAPACK. Technical Report UT-CS-01-460,,10L of Tennessee, April 2001.

A. Pothen and P. Raghavan. Distributed orthogonal factoriza@Giwvens and Householder algorithmSIAM Journal on Scientific
and Statistical Computingl0:1113-1134, 1989.

G. Quintana-Oit E. S. Quintana-Ort E. Chan, F. G. Van Zee, and R. A. van de Geijn. Scheduling of QRrfaatmn algorithms
on SMP and multi-core architectures. Rmoceedings of PDP’082008. FLAME Working Note #24.

R. Reddy and A. Lastovetsky. HeteroMPI + ScaLAPACK: TovgaadScaLAPACK (Dense Linear Solvers) on heterogeneous networks
of computers. volume 4297, pages 242—-253, Bangalore, Indidl 1IBec 2006 2006. Springer, Springer.

A. Sameh and D. Kuck. On stable parallel linear system soh&r&CM 25(1):81-91, 1978.

R. Schreiber and C. Van Loan. A storage efficié¥it” representation for products of Householder transformati@éM J. Sci.
Stat. Comput.10(1):53-57, 1989.

Sathish S. Vadhiyar and Jack J. Dongarra. Self adaptivity in gnidputing. Concurrency & Computation: Practice & Experience
2005.

Edward Walker. Benchmarking amazon EC2 for high-perferoeascientific computingUSENIX Login 33(5):18-23, 2008.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automateplireral optimization of software and the ATLAS project.
Parallel Comput. 27(1-2):3-25, 2001.

