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Abstract

The emergence and continuing use of multi-core architestrgquire changes in the existing software and some-
times even a redesign of the established algorithms in dodtake advantage of now prevailing parallelism. The
Parallel Linear Algebra for Scalable Multi-core Architets (PLASMA) is a project that aims to achieve both high
performance and portability across a wide range of multeé @chitectures. We present in this paper a comparative
study of PLASMA's performance against established lindgelara packages (LAPACK and ScaLAPACK), against
new approaches at parallel execution (Task Based LineagbigSubroutines — TBLAS), and against equivalent
commercial software offerings (MKL, ESSL and PESSL). Oyreriments were conducted on one-sided linear alge-
bra factorizations (LU, QR and Cholesky) and used multeamnchitectures (based on Intel Xeon EMT64 and IBM
Power6). The performance results show improvements btdughew algorithms on up to 32 cores — the largest

multi-core system we could access.

1 Introduction and Motivations

The emergence of multi-core microprocessor designs mahieedeginning of a forced march toward an era of com-
puting in which research applications must be able to ekjplaiallelism at a continuing pace and unprecedented
scale [1]. This confronts the scientific software communmitth both a daunting challenge and a unique opportunity.
The challenge arises from the disturbing mismatch betwleedésign of systems based on this new chip architecture
—hundreds of thousands of nodes, a million or more corescastibandwidth and memory available to cores —and the
components of the traditional software stack, such as nigaidibraries, on which scientific applications have rdlie

for their accuracy and performance. So long as library agests could depend on ever increasing clock speeds and

instruction level parallelism, they could also settle fugriemental improvements in the scalability of their altoris.
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But to deliver on the promise of tomorrow’s petascale systdirary designers must find methods and algorithms
that can effectively exploit levels of parallelism that arders of magnitude greater than most of today’s systenes. off
This is an unsolved problem.

To answer this challenge, we have developed a project cBHeallel Linear Algebra Software for Multi-core Ar-
chitectures (PLASMA) [2, 3]. PLASMA is a redesign of LAPACHK][and ScaLAPACK [5] for shared memory
computers based on multi-core processor architecturesdditesses the critical and highly disruptive situatiort tha
is facing the linear algebra and high performance compyttiRC) community due to the introduction of multi-core
architectures. To achieve high performance on this typedfitecture, PLASMA relies on tile algorithms, which
provide fine granularity parallelism. The standard lindgehbra algorithms can then be represented as a Directed
Acyclic Graph (DAG) [6] where nodes represent tasks, eiffearel factorization or update of a block-column, and
edges represent dependencies among them. Moreover, telpl@ent of programming models that enforce asyn-
chronous, out of order scheduling of operations is the goingsed as the basis for the definition of a scalable yet
highly efficient software framework for computational larealgebra applications. In PLASMA, parallelism is no
longer hidden inside Basic Linear Algebra Subprograms (B)./¥] but is brought to the fore to yield much better
performance. Each of the one-sided tile factorizationsemes unique challenges to parallel programming. Cholesky
factorization is represented by a DAG with relatively étiork required on the critical path. LU and QR factorizasion
have exactly the same dependency pattern between the fatleddAG. These two factorizations exhibit much more
severe scheduling and numerical (only for LU) constraintstthe Cholesky factorization. PLASMA is currently
scheduled statically with a trade off between load balapaimd data reuse.

The development of these new algorithms for multi-coreesyiston one-sided factorizations motivated us to show
improvements made by the tile algorithms in performing a parative study of PLASMA against established linear
algebra packages (LAPACK and ScaLAPACK) as well as equitalemmercial software offerings (MKL, ESSL and
PESSL). Moreover, we also compared a new approach at ganadleution called TBLAS [8] (Task Based Linear Al-
gebra Subroutines) in the Cholesky and QR cases — the LUrization not being implemented yet. The experiments
were conducted on two different multi-core architecturasdu on Intel Xeon EMT64 and IBM Power6, respectively.

The paper is organized as follows. Section 2 provides anvewgrof the libraries and the hardware used in the
experiments, as well as a guideline to interpret the res8kstion 3 describes the tuning process to achieve the best
performance of each software. In section 4 we present a catiygaperformance evaluation of the different libraries

before concluding and presenting future work directionSeation 5.

2 Experimental environment

We provide below an overview of the software used for the canispn against PLASMA as well as a description of

the hardware platforms.e., Intel Xeon EMT64 and IBM Power6 machines. We also introdsmee performance



metrics that will be useful to the interpretation of the exipental results.
21 Libraries

211 LAPACK,MKL and ESSL

LAPACK 3.2 [4], an acronym for Linear Algebra PACKage, is larliry of Fortran subroutines for solving the most
commonly occurring problems in numerical linear algebrahigh-performance computers. It has been designed to
achieve high efficiency on a wide range of modern high-peréorce computers such as vector processors and shared
memory multiprocessors. LAPACK supersedes LINPACK [9] &8PACK [10, 11]. The major improvementwas to
rely on the use of a standard set of Basic Linear Algebra Sigvrpms (BLAS) [7], which can be optimized for each
computing environment. LAPACK is designed on top of the ldye, and 3 BLAS, and nearly all of the parallelism
in the LAPACK routines is contained in the BLAS.

MKL 10.1 (Math Kernel Library) [12], a commercial offeringdm Intel, is a library of highly optimized, extensively
threaded math routines that require maximum performande asi BLAS. We consider in this paper the 10.1 version
— the latest available version when the paper was submitted.

ESSL 4.3 (Engineering Scientific Subroutine Library) [18hicollection of subroutines providing a wide range of
performance-tuned mathematical functions specificalgigied to improve the performance of scientific application

on the IBM Power processor-based servers (and other IBM imash
2.1.2 ScalL APACK and PESSL

Scal APACK 1.8.0 (Scalable Linear Algebra PACKage) [5] isaghlel implementation of LAPACK for parallel
architectures such as massively parallel SIMD machinegdistnibuted memory machines. It is based on the Message
Passing Interface (MPI) [14]. As in LAPACK, ScaLAPACK rougis rely on block-partitioned algorithms in order to
minimize the frequency of data movement between diffemrels of the memory hierarchy. The fundamental building
blocks of the ScaLAPACK library are distributed memory vens of the Level 1, Level 2, Level 3 BLAS, called the
Parallel BLAS or PBLAS [15], and a set of Basic Linear Algel@ammunication Subprograms (BLACS) [16] for
communication tasks that arise frequently in paralleldinelgebra computations. In the ScaLAPACK routines, the
majority of interprocessor communication occurs withie #BLAS and the interface is as similar to the BLAS as
possible. The source code of the top software layer of ScAlCKPooks very similar to that of LAPACK.

PESSL 3.3 (Parallel Engineering Scientific Subroutine &iifpy [13] is a scalable mathematical library that supports
parallel processing applications. It is an IBM commerciétiong for Power processor-based servers (and other IBM
machines).

Although ScaLAPACK and PESSL are primarily designed fotrihsited memory architectures, a driver optimized

for shared-memory machines allows memory copies insteadtafll communications.



213 TBLAS

The TBLAS [8] project is an on-going effort to create a sciahigh-performance task-based linear algebra library
that works in both shared memory and distributed memoryrenwients. TBLAS takes inspiration from SMP Su-
perscalar (SMPSs) [17], PLASMA and ScaLAPACK. It adopts aalyic task scheduling approach to execute dense
linear algebra algorithms on multi-core systems. A taskedalibrary replaces the existing linear algebra subrou-
tines such as PBLAS. TBLAS transparently provides the samegface and functionality as ScaLAPACK. Its runtime
system extracts a DAG of tasks from the sequence of functdie of a task-based linear algebra program. Data
dependencies between tasks are identified dynamicallyr @kecution is driven by data availability. To handle large
DAGs, a fixed-size task window is enforced to unroll a portddthe active DAG on demand. Hints regarding critical
paths €.g, panel tasks for factorizations) may also be provided toeiase the priority of the corresponding tasks.
Although the TBLAS runtime system transparently handlgs@ata movement required for distributed memory ex-
ecutions, we will not use this feature since we focus on sharemory multi-core architectures. So far the TBLAS
project is in an experimental stage and the LU factorizai®@BETRF routine) is not completed yet.
PLASMA, TBLAS, LAPACK and ScaLAPACK are all linked with theptimized vendor BLAS available on the

system, which are MKL 10.1 and ESSL 4.3 on the Intel64 and P&architectures, respectively.
2.2 Hardware

2.2.1 Intel64-based 16 cores machine

Our first architecture is a quad-socket quad-core machisedan an Intel Xeon EMT64 E7340 processor operating
at 239 GHz. The theoretical peak is equal t6é Gflop/s/ per core or 153 Gflop/s for the whole node, composed of
16 cores. There are two levels of cache. The level-1 cacbal to the core, is divided into 32 kB of instruction cache
and 32 kB of data cache. Each quad-core processor beindlpcimaposed of two dual-core Core?2 architectures, the
level-2 cache has2 4 MB per socket (each dual-core shares 4 MB). The effectigespeed is 1066 MHz per socket
leading to a bandwidth of.B GB/s (per socket). The machine is running Linux 2.6.25 amodtides Intel Compilers
11.0 together with the MKL 10.1 vendor library.

2.2.2 Power6-based 32 cores machine

The second architecture is a SMP node composed of 16 dualRawer6 processors. Each dual-core Power6 pro-
cessor runs at.Z Ghz, leading to a theoretical peak of.8&flop/s per core and 60 Gflop/s per node. There are
three levels of cache. The level-1 cache, local to the came,contain 64 kB of data and 64 kB of instructions; the
level-2 cache is composed of 4 MB per core, accessible bytther core; and the level-3 cache is composed of 32
MB common to both cores of a processor with one controllercpee (80 GB/s). An amount of 256 GB of memory

is available and the memory bus (75 GB/s) is shared by the B&adf the node. The machine runs AlX 5.3 and



provides the xIf 12.1 and xIc 10.1 compilers together with BESSL 4.3 vendor library. Actually, the whole machine
is the IBM Varga$ — ranked 50th on the TOP500 of November 2008 [18] — from IDRiBd is composed of 112
SMP nodes for a total 638 Tflops/s theoretical peak. However, we use only a singlie @b a time since we focus on

shared-memory, multi-core architectures.

2.3 Performance metrics (How to interpret the graphs)

In this section, we present some performance referencesedimitions that we will consistently report in the paper to
evaluate the efficiency of the libraries presented above.

We report three performance references. The first one ightaretical pealof the hardware used. All the graphs
in the paper are scaled to that value, which depends on tleessor used (Intel64 or Power6) and the number of
cores involved (or the maximum number of cores if results ffierent number of cores are presented in the same
graph). For instance, the graphs of Figures 1(a) and 1(b3caied to 152 Gflop/s and 605 Gflop/s since they
respectively involve a maximum of 16 Intel64 cores and 32 &6veores. The second reference is the parallel vendor
DGEMM performancei(e., the MKL and ESSL ones on Intel64 and Power6, respectivBIBEMM is a commonly
used performance reference for parallel linear algebraritgns; achieving a comparable performance is challengin
since it is a parallel-friendly level-3 BLAS operation. Eigs 1(a) and 1(b) illustrate very good scalability on both

platforms. The last reference we consider is related to #ak performance of the serial computational intensive
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Figure 1: DGEMM performance (Gflop/s).

level-3 BLAS kernel effectively used by PLASMA. The kernsld depends on the factorization; they are respectively
dgemm-seq, dssrfb-seq and dssssm-seq for the CholeskyT®POQR (DGEQRF) and LU (DGETRF) algorithms.
The dssrfb-seq and dssssm-seq routines are new kernelggnaif BLAS nor LAPACK standard) that have been
specifically designed for tile algorithms. They involveraxflops (that can lead to a total 50% overhead if no inner
blocking occurs) [2].

Their complete description is out of the scope of this paper more information can be found in [2]. The per-

http:/mww.idris.fr/eng/Resources/index-vargas.html
2Institut du Développement et des Ressources en Informatgientifiquehttp://www.idris.fr.



formance of a PLASMA thread (running on a single core) is lmthby the performance — that we né&rnelseq
— of the corresponding serial level-3 kernel. Therefore,fglrformance of an execution of PLASMA @cores is
bounded byp x kernelseqFor instance, Figures 2(a), 2(b) and 2(c) respectivelywshe performance upper bound for
the DPOTRF, DGEQRF and DGETRF (PLASMA) factorizationsytherrespond to the horizontal X@gemm-seq,
16xdssrfb-seq and 6dssssm-seq dashed lines.

Thespeedumf a parallel execution op cores is defined by the following formula; = % wherep is the number
of cores,t; the execution time of the sequential algorithm @pndhe execution time of the parallel algorithm when
p cores are used. Anear speedup is obtained whep = p. This corresponds to the ideal case where doubling the
number of cores doubles the speed.

Another performance metric commonly used for parallel genance evaluation is thefficiency It is usually

defined as followsE, = ptxltp. However, this metric does not provide much informationutitioe relative performance
of a library against another one, which is the focus of thiggra Therefore we introduce thrmalized efficiency
asep = t"‘“;%';eq wheretiemelseqis the time that the serial level-3 kernel (dgemm-seq, dssef) or dssssm-seq) would
spend to perform an equivalent number of effective floatiogfpoperations. We say it is normalized since the
sequential reference timgymeiseqconsistently refers to a common operation independentip@tonsidered library
(but that still depends on the considered factorizationfer&fore, that metric directly allows us to compare two
libraries to each other. Furthermore, PLASMA normalizditieicy is bounded by a value of &{(PLASMA < 1)
since the level-3 serial kernels are the tasks that achiev@ighest performance during the PLASMA factorization
process. That normalized efficiency can also be interprgésanetrically. It corresponds to the performance ratio
of the considered operation to tlpex kernelsegeference. For instance, in Figure 2(b), the normalizedieficy

of PLASMA is the ratio between the PLASMA performance graphshe 16<dgerfb-seq dashed line. The peak
performance (obtained whé&B = 200,IB = 40 andN = 12000) being equal to 10P Gflop/s and the 18dgerfb-seq

performance being equal to 1B9Gflops, the peak normalized efficiency is thus equa}te- 0.79.

3 Tuning

Maximizing the performance and minimizing the executiondiof scientific applications is a daily challenge for
the HPC community. The libraries presented in the previegtien have tunable execution parameters and a wrong
setting for a single parameter can dramatically slow dovenwhole application. This section presents an overview of

the tuning method applied to each library.

31 PLASMA

PLASMA performance strongly depends on tunable executarameters trading off utilization of different system

resources, the outer and the inner blocking sizes as #liestrin Figure 2. The outer block size (NB) trades off
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Figure 2: Effect of (NB,IB) on PLASMA performance (Gflop/s).

parallelization granularity and scheduling flexibilitytivisingle core utilization, while the inner block size (IBades

off memory load with extra-flops due to redundant calcutaidOnly the QR and LU factorizations use inner blocking.
If no inner blocking occurs, the resulting extra-flops owsth may represent 25% and 50% for the QR and LU
factorization, respectively [2]. Tuning PLASMA consisfisfinding the (NB,IB) pairs that maximize the performance
depending on the matrix size and on the number of cores.ehaustive searcls cumbersome since the search
space is huge. For instance, in the QR and LU cases, theré&2epbssible combinations for (NB,IB) even if we
constrain NB to be an even integer between 40 and 500 and ibn&m@in IB to divide NB. All these combinations
cannot be explored for large matricés £ > 1000) on effective factorizations in a reasonable time.Wing that this
process should be repeated for each number of cores and @&tk sire motivates us to considepeauned search

The idea is that tuning the serial level-3 kernel (dgemm-dssrfb-seq and dssssm-seq) is not time-consuming since



peak performance is reached on relatively small input medriNB < 500) that can be processed fast. Therefore,
we first tune those serial kernels. As illustrated in Figured@ all the (NB,IB) pairs result in a high performance.

For instance, the (480,6) pair leads to a performance®Blop/s whereas the (480,96) pair achieve® 1Zflop/s,
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Figure 3: Effect of (NB,IB) on the performance of the serial PLASMA cpuatational intensive level-3 BLAS kernels (Gflop/s).

for the dssrfb-seq kernel on Power6 (Figure 3(e)). We saldichited number of (NB,IB) pairspfruning step) that
achieve a local maximum performance on the range of NB. We balected five or six pairs on the Intel64 machine
for each factorization and eight on the Power6 machine (€ig) We then benchmark the performance of PLASMA
factorizations only with this limited number of combinat®(as seen in Figure 2). Finally, the best performance
obtained is selected.

The dssssm-seq efficiency depends on the amount of pivagiigrmed. The average amount of pivoting effectively
performed during a factorization is matrix-dependent. &mse the test matrices used for our LU benchmark are
randomly generated with a uniform distribution, the amafrivoting is likely to be important. Therefore, we have
selected the (NB,IB) pairs from dssssm-seq executions fultipivoting (figures 3(c) and 3(f)). The dssssm-seq
performance drop due to pivoting can reach more than 2 GftapRower6 (Figure 3(f)).

We have validated owpruned searcimethodology for the three one-sided factorizations orlédt&6 cores. To do
so, we have measured the relative performance overheatk(piage) of the pruned search (PS) over the exhaustive

search (ES), that is: 100(,%—2— 1). Table 1 shows that the pruned search performance overbéadinded by 2%.



Table 1: Overhead (in %) of Pruned search (Gflop/s) over Exhausti@eehg Gflop/s) on Intel64 16 cores

DPOTRF DGEQRF DGETRF
Matrix Pruned | Exhaustive| Over- Pruned | Exhaustive| Over- | Pruned | Exhaustive| Over-
Size Search Search head Search Search head | Search Search head

1000 | 53.44 | 5293 |-095| 46.35| 46.91 | 1.20| 36.85| 36.54 | -0.84
2000 | 79.71 81.08 | 1.72 | 74.45 7495 | 0.67| 61.57| 62.17 | 0.97
4000 | 101.34| 101.09 | -0.25| 93.72 93.82 | 0.11| 81.17| 80.91 | -0.32
6000 | 108.78| 109.21 | 0.39 | 100.42| 100.79 | 0.37| 86.95| 88.23 | 1.47
8000 | 112.62| 112.58 | -0.03 | 102.81| 102.95 | 0.14 | 89.43| 89.47 | 0.04

Because the performance may slightly vary from one run tahem@n cache-based architectures [19], we could fur-
thermore observe in some cases higher performance (up3&d) with pruned search (negative overheads in Table 1).
However, the (NB,IB) pair that leads to the highest perfarogaobtained with one method consistently matches the
pair leading to the highest performance obtained with themmethod. These results validate our approach. There-
fore, in the following, all the experimental results presehfor PLASMA will correspond to experiments conducted

with a pruned searcimethodology.

3.2 TBLAS

Like PLASMA, TBLAS performance relies on two tunable paraens, NB and IB. However, preliminary experimen-
tal results led the authors to systematically set IB equ&0® of NB (for the QR factorization). Figure 4 shows
the effect of NB on TBLAS performance. In its current devetmmt stage, TBLAS requires that NB divides the
matrix size N; this constraint reduces the search space akdsnit possible to perform an exhaustive search. In the
graphs, the TBLAS results presented correspond to expetdmm®nducted with aexhaustive searcfand the best

performance is reported for each matrix size and each nuailveres considered).

3.3 ScaLAPACK and PESSL

ScaLAPACK and PESSL are based on block-partitioned alyostand the matrix is distributed among a processor
grid. The performance thus depends on the the topology optbeessor grid and on the block size (NB). For
instance, when using 32 cores, the grid topology can be 8x4w8, 4 columns), 4x8, 2x16, 16x2, 1x32 or 32x1.
Four possible block sizes are commonly used: 32, 64, 128 &6d Figures 5 show the effect of the block size
NB on the performance of ScaLAPACK and PESSL (we report theimmam performance obtained for the different
possible processor grid configurations). Because theréristad number of possible combinations, in the following
we will report performance results obtained with an exhigestearch: for each matrix size and number of cores, all
the possible processor grid distributions are tried in cortiion with the four block sizedNB € {32,64,128 256}).

And the highest performance is finally reported.
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Figure 4. Effect of NB on TBLAS performance (Gflop/s).

34 LAPACK, MKL and ESSL

In LAPACK, the blocking factor (NB) is hard coded in the augil routineILAENV [20]. This parameter has been set
to 64 for both LU and Cholesky factorizations and to 32 for @Btdrization.

MKL and ESSL have been highly optimized by their respectisedors.

4 Comparison to other libraries

4.1 Methodology

Factorizations are performed in double precision. We lyriedtall the tuning techniques used in the experiments
discussed below according to Section 3. We employ a pruradiséor PLASMA; an exhaustive search for TBLAS,
ScaLAPACK and PESSL; and we consider that LAPACK, MKL and E&8ve been tuned by the vendor.
Furthermore, to capture the best possible behavior of eébdry, we repeat the number of executions (up to 10
times) and we report the highest performance obtained. Witliush the caches [21] before timing a factorization

However, the TLB (Translation Lookaside Buffer) is flusheztviieen two executions: the loop over the different

3These values may not be optimum for all the test cases. Anafiiroach might have consisted in tuning NB for each numbeores and
each matrix size. However, since we did not expect thisfjbrabe competitive, we did not investigate that possipfiitrther.

41t is kernel usage, not problem size, that dictates whetherwish to flush the cache [21]. Warm (or partially warm) caekecutions are
plausible for dense linear factorizations. For instanpeyse linear solvers, which rely on dense kernels, intenda®imize data reuse between
successive calls to dense operations.
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Figure5: Effect of NB on ScaLAPACK (a,b,c,d,e,f) and PESSL (g,h,iffpemance (Gflop/s).

executions is performed in a script (rather than within tkeceitable) and calls several times the same executable.

ScalLAPACK, PESSL and PLASMA interfaces allow the user tovjite data distributed on the cores. In our shared-
memory multi-core environment, because we do not flush thkes these libraries have thus the advantage to start
the factorization with part of the data distributed on therhes. This is not negligible. For instance, a 8608000

double precision matrix can be held distributed on the L&heaof the 32 cores of a Power6 node.

4.2 Experimentson few cores

We present in this section results of experiments conduated single socket (4 cores on Intel64 and 2 cores on
Power6). In these conditions, data reuse between cordeelg to be efficient since the cores share different levels

of cache (see Section 2.2). Therefore, we may expect a higgdsip (see definition in Section 2.3) for the different
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algorithms. Figures 6(a) and 6(d) indeed show that pafalEEMM — given as a reference — almost reaches a linear
speedup on both platforms;(= 4 on Intel64 and;, =~ 2 on Power6).

Even LAPACK has a decent speedup. In the DPOTRF case, masé @oimputation is spent by the dgemm-seq
kernel. Since LAPACK exploits parallelism at the BLAS leviie parallel DGEMM version is actually executed.
Figures 6(a) and 6(d) show that LAPACK DPOTRF efficiencydal$ the one of the parallel DGEMM at a lower
but decent rate. On Intel64, its performance stabilize9dt &flop/s, which corresponds to a normalized efficiency
e4 = 0.56 (according to the definition provided in Section 2.3). dftalism is obtained by processing each BLAS
task with all the cores. However, since those tasks are psecein sequence, this approach is very synchronous
and does not scale with the number of cores. Indeed, Figua $Bows that LAPACK DPOTRF does not benefit
from any significant performance improvement anymore whernerthan 4 cored.€. more than one socket) are (is)
involved. On Power6, the LAPACK DPOTRF performance alsbitaes at 200 Gflop/s (on 2 cores this time, see
Figure 6(d)) which corresponds to an even higher normakfédencye, = 0.69. The very high bandwidth (80 MB/s
per core) of the L3 shared cache strongly limits the overlaegdo this synchronous approach. Furthermore, the high
memory bandwidth (75 GB/s shared bus) allows a non negéigibprovement of the LAPACK DPOTRF when going
to more than 2 cores — and up to 16 — as illustrated by Figuré) L2{owever, the performance hardly exceeds 100
Gflop/s, which is only one sixth of the theoretical peak of 82ecores node. Similar observations can be reported
from Figures 6 and 12 for the LAPACK DGEQRF and DGETRF rowifexcept that a non negligible performance
improvement can be obtained up to 8 cores in the LAPACK DGET&Je on Intel — see Figure 12(a)). In a nutshell,
parallelism at the BLAS level can achieve a decent perfoceahen the cores involved are limited to a single socket.

Figures 6(c) and 6(f) show that the vendor libraries (MKL &f8iSL) outperform the other libraries — including
PLASMA- when the LU factorization (DGETREF routine) is ex&aion a single socket. They even outperform the
upper bound of the tile algorithms. Indeed, geometricéiigir graphs are above thexdssssm-seqésp.2x dssssm-
seq) dashed lines and, numerically, their peak normaliffesiemcy e, = 1.13 (resp. @ = 1.29) is higher than 1. This
result shows that when the hardware allows a very efficietat daise across the cores — thanks to the high bandwidth
of shared level of caches — the lower performance of the keused in the tile algorithmeannotbe balanced by
the better scheduling opportunities that these algorithrogide. The lower performance of tile algorithms kernels i
both due to a current non optimized implementation (that l&a o improve) and to the extra-flops performed (that
may be decreased at the price of a lower data reuse). Therdsssskernel is the one involving the largest amount of
extra-flops for going to tile algorithms (that can lead to @lt60% overhead if no inner blocking occurs). When the
extra-flops count is lower, tile algorithms remain compegit Figures 6(b) and 6(e) illustrate this phenomenon fer th
QR factorization (DGEQRF routine) whose extra-flops cosiigunded by 25% (and less if inner blocking occurs). In
this case, tile algorithms (PLASMA and TBLAS) can almost gate against vendor libraries; their better scheduling

opportunities enable balancing the extra-flops count (dbasethe current non optimized implementation of their
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Figure 6. Performance comparison when a single socket is used (Gflop/s

serial kernels) although the hardware efficiency for patalata reuse limits the impact of a non optimum scheduling.
The Cholesky factorization (DPOTRF routine) does not imgadxtra-flops for going to tile algorithms and directly
relies on a kernel optimized by the vendor (dgemm-seq). Wstiated in figures 6(a) and 6(d), in this case, tile
algorithms (and in particular PLASMA) outperform the algoms implemented in the other libraries, including the
vendor libraries.

In a nutshell, the overhead of imperfect scheduling stiateig limited when the algorithms are executed on few
cores that share levels of cache they can access with a \gnphndwidth. In this case, tile algorithms have a higher
performance than established linear algebra packagesdiegeon whether the extra-flops count for going to tile and
the overhead of a non optimized serial kernel is not too lacgepared to the limited practical improvement gained by
their scheduling opportunities. The advantage of tile algms relies on their very good scalability achieved byitthe
scheduling opportunities; figures 8 and 9 show their exaefpeactical scalability on both machines in the PLASMA
and TBLAS cases, respectively. In the next section, we distheir relative performance against other libraries when

a larger number of cores are used.

4.3 Largenumber of cores

We present in this section results of experiments conduareallarger number of cores (16 cores on Intel64; 16 and

32 cores on Power6). In these conditions, the cost of datereetween cores is higher when the cores do not share a

13



140

120
100
80
60
40
20

300

250

201

o

150

100

50

0 0 oLE
0 2000 4000 6000 8000 10000 12000 O 2000 4000 6000 8000 10000 12000 O 2000 4000 6000 8000 10000 12000

600

500

40

o

300

200

100

0 L dader 0 . 0 L4
0 2000 4000 6000 8000 10000 12000 O 2000 4000 6000 8000 10000 12000 O 2000 4000 6000 8000 10000 12000

0= 0 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

common level of cache. For instance, on the Power6 architedf a core accesses data that have been processed by
another processor, it will access that data through the mebus, which is shared by all the 32 cores. Even if that bus
has a high bandwidth (75 GB/s), the actual throughput igdidwhen many cores simultaneously access the memory.
Therefore, we expect a higher sensitivity of the algorithothe scheduling strategy than we indicated in Section 4.2.
Figures 7(a), 7(d) and 7(g) present the Cholesky (DPOTR#ir@Lperformance of the different libraries. PLASMA
consistently outperforms the other libraries, followedtBt AS. These results illustrate the performance improveime
brought by tile algorithms. The higher efficiency of PLASMAmpared to TBLAS is essentially due to a better data
reuse. Indeed, PLASMA scheduling strategy maximizes datae and thus benefits from a better cache effect than

TBLAS whose scheduler does not take into account date reRISRSMA is even faster than the parallel DGEMM
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Figure 7: Performance comparison on a large number of cores (Gflop/s).

reference up to a matrix siz¢= 2000 on the Intel64 machine when 16 cores are used. This tontrtadictory since

14



PLASMA does not rely on the parallel version of DGEMM. Each3MA thread indeed uses the serial dgemm-seq.
Better performance can then be achieved thanks to bettedstihg. However, the DPOTRF factorization cannot
only be performed with efficient level-3 BLAS operationsdiso involves level-2 BLAS operations). Therefore, as
expected, the parallel DGEMM dominates all the other ojpematwhen the matrix size becomes larger. This illustrates
the fact that using a fine enough granularity (as in tile atgors) is more critical when processing small or moderate
size matrices. Indeed, the better load balancing allowed fiye granularity does not impact the steady state of the
DAG processing. This also explains the major improvemeotight by PLASMA compared to the other libraries on
matrices of small and moderate size.

Still considering the DPOTREF routine, the vendor libraigdL and ESSL) remain the most competitive solution
versus tile algorithms (but they have a lower efficiency ttil@rmalgorithms) compared to ScaLAPACK and LAPACK
approaches, up to 16 cores. However, ESSL does not scaléovdslicores (Figure 11). ScaLAPACK and its vendor
equivalent, PESSL, both outperform ESSL on 32 cores (Fig(m¥. This result generalizes, to some extent, to all
the factorization routines. ScaLAPACK and PESSL still sagh to 32 cores (Figure 10) — as opposed to ESSL— and
they both (with a slight advantage for PESSL) achieve a pedoce comparable to ESSL for the DGEQRF (QR)
and DGETRF (LU) routines on Power6 when 32 cores are usedr@sgr). Similarly, figures 11(a), 11(b) and 11(c)
illustrate the not so good scalability of the vendor librestyen all the 16 cores of the Intel64 platform are used.

Figures 7(b) and 7(h) illustrate the performance of the Qiofdzation (DGEQRF routine) when all the available
cores are used (16 on Intel64 or 32 on Power6). PLASMA outpers$ the other libraries and TBLAS is also very
competitive. These results demonstrate the excellerdisitiy of tile algorithms and show that it is worth perfonmgi
a little amount of extra-flops to obtain tasks more converti@schedule. On the Intel64 machine, TBLAS actually
has a better performance than PLASMA when 16 cores are uskedtaen the matrix size is larger than or equal to
10,000 N > 10,000). Indeed, when the matrices processed are large, tieakissue of scheduling corresponds to
maximizing a steady state throughput. The main disadvardfg static schedule is that cores may be stalling in situa-
tions where work is available. This throughput is easier &ximize with a dynamic scheduling strategy. Approaches
such as TBLAS, which do implement a dynamic scheduling, laue likely to achieve a higher performance than ap-
proaches that implement a static scheduling (such as PLABMPently does). All in all, these results are motivation
to move towards an hybrid scheduling strategy that wouldyagwiorities according to a trade off between data reuse
and critical path progress and would process availabletdgkamically. Figure 7(e) illustrates the performancdef t
QR factorization (DGEQRF routine) when only half of the dahle cores are used on Power6. In this case, PLASMA
still achieves the highest performance but TBLAS and ES8&loat reach a similar performance.

Finally, figures 7(c), 7(f) and 7(i) show that the LU fact@iion (DGETRF routine) has a performance behavior
similar to the QR factorization and PLASMA again outperfgrthe other libraries. However, the lower efficiency

of dssssm-seq compared to dssrfb-seq (dssssm-seq perfmrasextra-flops) induces a lower performance of the
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PLASMA LU factorization compared to the PLASMA QR one. Ondli®4, this leads MKL to be slightly better than
PLASMA when the matrix size is larger than or equal to 10,000~(10,000). But, similarly to the QR case, moving
towards a hybrid scheduling should remove the penalty dukdstatic scheduling strategy used in PLASMA and
strongly improve the performance on large matrices. Indeadntel64 when 16 cores are used, the PLASMA LU
peak normalized efficiency (see definition in Section 2.3)qsal to 78%; so there is still room for improving the
performance by enabling dynamic scheduling. Furthermeseglready mentioned, an optimized implementation of

the dssssm-seq kernel will also improve the performanciéecdlgorithms.
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Figure 8: PLASMA performance (Gflop/s).

Matrix size

(f) DGETRF - Power6

5 Conclusion and perspectives

This paper has analyzed and discussed the behavior of ksuvéx@are approaches for achieving high performance
and portability of one-sided factorizations on multi-carehitectures. In particular, we have shown the performanc
improvements brought by tile algorithms on up to 32 coreseddingest shared memory multi-core system we could
access. We may expect that these results generalize sottevdiber linear algebra algorithms and even any algo-
rithm that can be expressed by a DAG of fine-grain tasks. rRiediry experiments using tile algorithms for two-sided
transformations,e., the Hessenberg reduction [22] (first step for the standgehgalue problem) and the bidiagonal
reduction [23] (first step for the singular value decomposjt show promising results.

We have shown the efficiency of our pruned-search methogidyduning PLASMA. However, we currently need
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Figure9: TBLAS performance (Gflop/s).

to manually pick up the (NB,IB) samples (from the serial Ie¥&ernel benchmarking) that are going to be tested in
the parallel factorizations. We are currently working técgmate this pruning process. Furthermore, not all the matri
sizes and number of cores can be tested. We are also workitige dnterpolation of the optimum tuning parameters
from a limited number of parallel executions among the rasfgmres and matrix sizes to the full set of possibilities.
This on-going auto-tuning work should eventually be inavgted within the PLASMA distribution.

Furthermore, because the factorization performancegiyatepends on the computational intensive serial level-3
kernels, their optimization is paramount. Unlike DGEMMe tttssrfb-seq and dssssm-seq kernels are not a single call
to level-3 BLAS operations, but are composed of successills, since the inefficiency. dssrfb-seq and dssssm-seq
could achieve similar performance if implemented as a nithiolcode and heavily optimized.

The experiments have also shown the limits of static scligldibr the factorization of large matrices. We are
currently working on the implementation of a hybrid schéugylifor PLASMA. Even if they are not on the critical

path, tasks will be dynamically scheduled on idle cores 40 asaximize data reuse.
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Figure 12: LAPACK performance (Gflop/s).
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