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Abstract

The emergence and continuing use of multi-core architectures require changes in the existing software and some-

times even a redesign of the established algorithms in orderto take advantage of now prevailing parallelism. The

Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) is a project that aims to achieve both high

performance and portability across a wide range of multi-core architectures. We present in this paper a comparative

study of PLASMA’s performance against established linear algebra packages (LAPACK and ScaLAPACK), against

new approaches at parallel execution (Task Based Linear Algebra Subroutines – TBLAS), and against equivalent

commercial software offerings (MKL, ESSL and PESSL). Our experiments were conducted on one-sided linear alge-

bra factorizations (LU, QR and Cholesky) and used multi-core architectures (based on Intel Xeon EMT64 and IBM

Power6). The performance results show improvements brought by new algorithms on up to 32 cores – the largest

multi-core system we could access.

1 Introduction and Motivations

The emergence of multi-core microprocessor designs markedthe beginning of a forced march toward an era of com-

puting in which research applications must be able to exploit parallelism at a continuing pace and unprecedented

scale [1]. This confronts the scientific software communitywith both a daunting challenge and a unique opportunity.

The challenge arises from the disturbing mismatch between the design of systems based on this new chip architecture

– hundreds of thousands of nodes, a million or more cores, reduced bandwidth and memory available to cores – and the

components of the traditional software stack, such as numerical libraries, on which scientific applications have relied

for their accuracy and performance. So long as library developers could depend on ever increasing clock speeds and

instruction level parallelism, they could also settle for incremental improvements in the scalability of their algorithms.

∗Research reported here was partially supported by the National Science Foundation and Microsoft Research.

1



But to deliver on the promise of tomorrow’s petascale systems, library designers must find methods and algorithms

that can effectively exploit levels of parallelism that areorders of magnitude greater than most of today’s systems offer.

This is an unsolved problem.

To answer this challenge, we have developed a project calledParallel Linear Algebra Software for Multi-core Ar-

chitectures (PLASMA) [2, 3]. PLASMA is a redesign of LAPACK [4] and ScaLAPACK [5] for shared memory

computers based on multi-core processor architectures. Itaddresses the critical and highly disruptive situation that

is facing the linear algebra and high performance computing(HPC) community due to the introduction of multi-core

architectures. To achieve high performance on this type of architecture, PLASMA relies on tile algorithms, which

provide fine granularity parallelism. The standard linear algebra algorithms can then be represented as a Directed

Acyclic Graph (DAG) [6] where nodes represent tasks, eitherpanel factorization or update of a block-column, and

edges represent dependencies among them. Moreover, the development of programming models that enforce asyn-

chronous, out of order scheduling of operations is the concept used as the basis for the definition of a scalable yet

highly efficient software framework for computational linear algebra applications. In PLASMA, parallelism is no

longer hidden inside Basic Linear Algebra Subprograms (BLAS) [7] but is brought to the fore to yield much better

performance. Each of the one-sided tile factorizations presents unique challenges to parallel programming. Cholesky

factorization is represented by a DAG with relatively little work required on the critical path. LU and QR factorizations

have exactly the same dependency pattern between the nodes of the DAG. These two factorizations exhibit much more

severe scheduling and numerical (only for LU) constraints than the Cholesky factorization. PLASMA is currently

scheduled statically with a trade off between load balancing and data reuse.

The development of these new algorithms for multi-core systems on one-sided factorizations motivated us to show

improvements made by the tile algorithms in performing a comparative study of PLASMA against established linear

algebra packages (LAPACK and ScaLAPACK) as well as equivalent commercial software offerings (MKL, ESSL and

PESSL). Moreover, we also compared a new approach at parallel execution called TBLAS [8] (Task Based Linear Al-

gebra Subroutines) in the Cholesky and QR cases – the LU factorization not being implemented yet. The experiments

were conducted on two different multi-core architectures based on Intel Xeon EMT64 and IBM Power6, respectively.

The paper is organized as follows. Section 2 provides an overview of the libraries and the hardware used in the

experiments, as well as a guideline to interpret the results. Section 3 describes the tuning process to achieve the best

performance of each software. In section 4 we present a comparative performance evaluation of the different libraries

before concluding and presenting future work directions inSection 5.

2 Experimental environment

We provide below an overview of the software used for the comparison against PLASMA as well as a description of

the hardware platforms,i.e., Intel Xeon EMT64 and IBM Power6 machines. We also introducesome performance
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metrics that will be useful to the interpretation of the experimental results.

2.1 Libraries

2.1.1 LAPACK, MKL and ESSL

LAPACK 3.2 [4], an acronym for Linear Algebra PACKage, is a library of Fortran subroutines for solving the most

commonly occurring problems in numerical linear algebra for high-performance computers. It has been designed to

achieve high efficiency on a wide range of modern high-performance computers such as vector processors and shared

memory multiprocessors. LAPACK supersedes LINPACK [9] andEISPACK [10, 11]. The major improvement was to

rely on the use of a standard set of Basic Linear Algebra Subprograms (BLAS) [7], which can be optimized for each

computing environment. LAPACK is designed on top of the level 1, 2, and 3 BLAS, and nearly all of the parallelism

in the LAPACK routines is contained in the BLAS.

MKL 10.1 (Math Kernel Library) [12], a commercial offering from Intel, is a library of highly optimized, extensively

threaded math routines that require maximum performance such as BLAS. We consider in this paper the 10.1 version

– the latest available version when the paper was submitted.

ESSL 4.3 (Engineering Scientific Subroutine Library) [13] is a collection of subroutines providing a wide range of

performance-tuned mathematical functions specifically designed to improve the performance of scientific applications

on the IBM Power processor-based servers (and other IBM machines).

2.1.2 ScaLAPACK and PESSL

ScaLAPACK 1.8.0 (Scalable Linear Algebra PACKage) [5] is a parallel implementation of LAPACK for parallel

architectures such as massively parallel SIMD machines, ordistributed memory machines. It is based on the Message

Passing Interface (MPI) [14]. As in LAPACK, ScaLAPACK routines rely on block-partitioned algorithms in order to

minimize the frequency of data movement between different levels of the memory hierarchy. The fundamental building

blocks of the ScaLAPACK library are distributed memory versions of the Level 1, Level 2, Level 3 BLAS, called the

Parallel BLAS or PBLAS [15], and a set of Basic Linear AlgebraCommunication Subprograms (BLACS) [16] for

communication tasks that arise frequently in parallel linear algebra computations. In the ScaLAPACK routines, the

majority of interprocessor communication occurs within the PBLAS and the interface is as similar to the BLAS as

possible. The source code of the top software layer of ScaLAPACK looks very similar to that of LAPACK.

PESSL 3.3 (Parallel Engineering Scientific Subroutine Library) [13] is a scalable mathematical library that supports

parallel processing applications. It is an IBM commercial offering for Power processor-based servers (and other IBM

machines).

Although ScaLAPACK and PESSL are primarily designed for distributed memory architectures, a driver optimized

for shared-memory machines allows memory copies instead ofactual communications.
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2.1.3 TBLAS

The TBLAS [8] project is an on-going effort to create a scalable, high-performance task-based linear algebra library

that works in both shared memory and distributed memory environments. TBLAS takes inspiration from SMP Su-

perscalar (SMPSs) [17], PLASMA and ScaLAPACK. It adopts a dynamic task scheduling approach to execute dense

linear algebra algorithms on multi-core systems. A task-based library replaces the existing linear algebra subrou-

tines such as PBLAS. TBLAS transparently provides the same interface and functionality as ScaLAPACK. Its runtime

system extracts a DAG of tasks from the sequence of function calls of a task-based linear algebra program. Data

dependencies between tasks are identified dynamically. Their execution is driven by data availability. To handle large

DAGs, a fixed-size task window is enforced to unroll a portionof the active DAG on demand. Hints regarding critical

paths (e.g., panel tasks for factorizations) may also be provided to increase the priority of the corresponding tasks.

Although the TBLAS runtime system transparently handles any data movement required for distributed memory ex-

ecutions, we will not use this feature since we focus on shared-memory multi-core architectures. So far the TBLAS

project is in an experimental stage and the LU factorization(DGETRF routine) is not completed yet.

PLASMA, TBLAS, LAPACK and ScaLAPACK are all linked with the optimized vendor BLAS available on the

system, which are MKL 10.1 and ESSL 4.3 on the Intel64 and Power6 architectures, respectively.

2.2 Hardware

2.2.1 Intel64-based 16 cores machine

Our first architecture is a quad-socket quad-core machine based on an Intel Xeon EMT64 E7340 processor operating

at 2.39 GHz. The theoretical peak is equal to 9.6 Gflop/s/ per core or 153.2 Gflop/s for the whole node, composed of

16 cores. There are two levels of cache. The level-1 cache, local to the core, is divided into 32 kB of instruction cache

and 32 kB of data cache. Each quad-core processor being actually composed of two dual-core Core2 architectures, the

level-2 cache has 2×4 MB per socket (each dual-core shares 4 MB). The effective bus speed is 1066 MHz per socket

leading to a bandwidth of 8.5 GB/s (per socket). The machine is running Linux 2.6.25 and provides Intel Compilers

11.0 together with the MKL 10.1 vendor library.

2.2.2 Power6-based 32 cores machine

The second architecture is a SMP node composed of 16 dual-core Power6 processors. Each dual-core Power6 pro-

cessor runs at 4.7 Ghz, leading to a theoretical peak of 18.8 Gflop/s per core and 601.6 Gflop/s per node. There are

three levels of cache. The level-1 cache, local to the core, can contain 64 kB of data and 64 kB of instructions; the

level-2 cache is composed of 4 MB per core, accessible by the other core; and the level-3 cache is composed of 32

MB common to both cores of a processor with one controller percore (80 GB/s). An amount of 256 GB of memory

is available and the memory bus (75 GB/s) is shared by the 32 cores of the node. The machine runs AIX 5.3 and
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provides the xlf 12.1 and xlc 10.1 compilers together with the ESSL 4.3 vendor library. Actually, the whole machine

is the IBM Vargas1 – ranked 50th on the TOP500 of November 2008 [18] – from IDRIS2 and is composed of 112

SMP nodes for a total 67.38 Tflops/s theoretical peak. However, we use only a single node at a time since we focus on

shared-memory, multi-core architectures.

2.3 Performance metrics (How to interpret the graphs)

In this section, we present some performance references anddefinitions that we will consistently report in the paper to

evaluate the efficiency of the libraries presented above.

We report three performance references. The first one is thetheoretical peakof the hardware used. All the graphs

in the paper are scaled to that value, which depends on the processor used (Intel64 or Power6) and the number of

cores involved (or the maximum number of cores if results on different number of cores are presented in the same

graph). For instance, the graphs of Figures 1(a) and 1(b) arescaled to 153.2 Gflop/s and 601.6 Gflop/s since they

respectively involve a maximum of 16 Intel64 cores and 32 Power6 cores. The second reference is the parallel vendor

DGEMM performance (i.e., the MKL and ESSL ones on Intel64 and Power6, respectively).DGEMM is a commonly

used performance reference for parallel linear algebra algorithms; achieving a comparable performance is challenging

since it is a parallel-friendly level-3 BLAS operation. Figures 1(a) and 1(b) illustrate very good scalability on both

platforms. The last reference we consider is related to the peak performance of the serial computational intensive
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Figure 1: DGEMM performance (Gflop/s).

level-3 BLAS kernel effectively used by PLASMA. The kernel used depends on the factorization; they are respectively

dgemm-seq, dssrfb-seq and dssssm-seq for the Cholesky (DPOTRF), QR (DGEQRF) and LU (DGETRF) algorithms.

The dssrfb-seq and dssssm-seq routines are new kernels (notpart of BLAS nor LAPACK standard) that have been

specifically designed for tile algorithms. They involve extra-flops (that can lead to a total 50% overhead if no inner

blocking occurs) [2].

Their complete description is out of the scope of this paper and more information can be found in [2]. The per-

1http://www.idris.fr/eng/Resources/index-vargas.html
2Institut du Développement et des Ressources en Informatique Scientifique:http://www.idris.fr.
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formance of a PLASMA thread (running on a single core) is bounded by the performance – that we notekernelseq

– of the corresponding serial level-3 kernel. Therefore, the performance of an execution of PLASMA onp cores is

bounded byp×kernelseq. For instance, Figures 2(a), 2(b) and 2(c) respectively show the performance upper bound for

the DPOTRF, DGEQRF and DGETRF (PLASMA) factorizations; they correspond to the horizontal 16×dgemm-seq,

16×dssrfb-seq and 16×dssssm-seq dashed lines.

Thespeedupof a parallel execution onp cores is defined by the following formula:sp = t1
tp

wherep is the number

of cores,t1 the execution time of the sequential algorithm andtp the execution time of the parallel algorithm when

p cores are used. Alinear speedup is obtained whensp = p. This corresponds to the ideal case where doubling the

number of cores doubles the speed.

Another performance metric commonly used for parallel performance evaluation is theefficiency. It is usually

defined as follows:Ep = t1
p×tp

. However, this metric does not provide much information about the relative performance

of a library against another one, which is the focus of this paper. Therefore we introduce thenormalized efficiency

asep =
tkernelseq

p×tp
wheretkernelseqis the time that the serial level-3 kernel (dgemm-seq, dssrfb-seq or dssssm-seq) would

spend to perform an equivalent number of effective floating point operations. We say it is normalized since the

sequential reference timetkernelseqconsistently refers to a common operation independently ofthe considered library

(but that still depends on the considered factorization). Therefore, that metric directly allows us to compare two

libraries to each other. Furthermore, PLASMA normalized efficiency is bounded by a value of 1 (ep(PLASMA) ≤ 1)

since the level-3 serial kernels are the tasks that achieve the highest performance during the PLASMA factorization

process. That normalized efficiency can also be interpretedgeometrically. It corresponds to the performance ratio

of the considered operation to thep× kernelseqreference. For instance, in Figure 2(b), the normalized efficiency

of PLASMA is the ratio between the PLASMA performance graphsto the 16×dgerfb-seq dashed line. The peak

performance (obtained whenNB= 200,IB = 40 andN = 12000) being equal to 102.1 Gflop/s and the 16×dgerfb-seq

performance being equal to 129.6 Gflops, the peak normalized efficiency is thus equal toep = 0.79.

3 Tuning

Maximizing the performance and minimizing the execution time of scientific applications is a daily challenge for

the HPC community. The libraries presented in the previous section have tunable execution parameters and a wrong

setting for a single parameter can dramatically slow down the whole application. This section presents an overview of

the tuning method applied to each library.

3.1 PLASMA

PLASMA performance strongly depends on tunable execution parameters trading off utilization of different system

resources, the outer and the inner blocking sizes as illustrated in Figure 2. The outer block size (NB) trades off
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Figure 2: Effect of (NB,IB) on PLASMA performance (Gflop/s).

parallelization granularity and scheduling flexibility with single core utilization, while the inner block size (IB) trades

off memory load with extra-flops due to redundant calculations. Only the QR and LU factorizations use inner blocking.

If no inner blocking occurs, the resulting extra-flops overhead may represent 25% and 50% for the QR and LU

factorization, respectively [2]. Tuning PLASMA consists of finding the (NB,IB) pairs that maximize the performance

depending on the matrix size and on the number of cores. Anexhaustive searchis cumbersome since the search

space is huge. For instance, in the QR and LU cases, there are 1352 possible combinations for (NB,IB) even if we

constrain NB to be an even integer between 40 and 500 and if we constrain IB to divide NB. All these combinations

cannot be explored for large matrices (N >> 1000) on effective factorizations in a reasonable time. Knowing that this

process should be repeated for each number of cores and each matrix size motivates us to consider apruned search.

The idea is that tuning the serial level-3 kernel (dgemm-seq, dssrfb-seq and dssssm-seq) is not time-consuming since
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peak performance is reached on relatively small input matrices (NB < 500) that can be processed fast. Therefore,

we first tune those serial kernels. As illustrated in Figure 3, not all the (NB,IB) pairs result in a high performance.

For instance, the (480,6) pair leads to a performance of 6.0 Gflop/s whereas the (480,96) pair achieves 12.2 Gflop/s,
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Figure 3: Effect of (NB,IB) on the performance of the serial PLASMA computational intensive level-3 BLAS kernels (Gflop/s).

for the dssrfb-seq kernel on Power6 (Figure 3(e)). We selecta limited number of (NB,IB) pairs (pruningstep) that

achieve a local maximum performance on the range of NB. We have selected five or six pairs on the Intel64 machine

for each factorization and eight on the Power6 machine (Figure 3). We then benchmark the performance of PLASMA

factorizations only with this limited number of combinations (as seen in Figure 2). Finally, the best performance

obtained is selected.

The dssssm-seq efficiency depends on the amount of pivoting performed. The average amount of pivoting effectively

performed during a factorization is matrix-dependent. Because the test matrices used for our LU benchmark are

randomly generated with a uniform distribution, the amountof pivoting is likely to be important. Therefore, we have

selected the (NB,IB) pairs from dssssm-seq executions withfull pivoting (figures 3(c) and 3(f)). The dssssm-seq

performance drop due to pivoting can reach more than 2 Gflop/son Power6 (Figure 3(f)).

We have validated ourpruned searchmethodology for the three one-sided factorizations on Intel64 16 cores. To do

so, we have measured the relative performance overhead (percentage) of the pruned search (PS) over the exhaustive

search (ES), that is: 100× (ES
PS−1). Table 1 shows that the pruned search performance overhead is bounded by 2%.
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Table 1: Overhead (in %) of Pruned search (Gflop/s) over Exhaustive search (Gflop/s) on Intel64 16 cores

DPOTRF DGEQRF DGETRF
Matrix Pruned Exhaustive Over- Pruned Exhaustive Over- Pruned Exhaustive Over-

Size Search Search head Search Search head Search Search head

1000 53.44 52.93 -0.95 46.35 46.91 1.20 36.85 36.54 -0.84
2000 79.71 81.08 1.72 74.45 74.95 0.67 61.57 62.17 0.97
4000 101.34 101.09 -0.25 93.72 93.82 0.11 81.17 80.91 -0.32
6000 108.78 109.21 0.39 100.42 100.79 0.37 86.95 88.23 1.47
8000 112.62 112.58 -0.03 102.81 102.95 0.14 89.43 89.47 0.04

Because the performance may slightly vary from one run to another on cache-based architectures [19], we could fur-

thermore observe in some cases higher performance (up to 0.95%) with pruned search (negative overheads in Table 1).

However, the (NB,IB) pair that leads to the highest performance obtained with one method consistently matches the

pair leading to the highest performance obtained with the other method. These results validate our approach. There-

fore, in the following, all the experimental results presented for PLASMA will correspond to experiments conducted

with a pruned searchmethodology.

3.2 TBLAS

Like PLASMA, TBLAS performance relies on two tunable parameters, NB and IB. However, preliminary experimen-

tal results led the authors to systematically set IB equal to20% of NB (for the QR factorization). Figure 4 shows

the effect of NB on TBLAS performance. In its current development stage, TBLAS requires that NB divides the

matrix size N; this constraint reduces the search space and makes it possible to perform an exhaustive search. In the

graphs, the TBLAS results presented correspond to experiments conducted with anexhaustive search(and the best

performance is reported for each matrix size and each numberof cores considered).

3.3 ScaLAPACK and PESSL

ScaLAPACK and PESSL are based on block-partitioned algorithms and the matrix is distributed among a processor

grid. The performance thus depends on the the topology of theprocessor grid and on the block size (NB). For

instance, when using 32 cores, the grid topology can be 8x4 (8rows, 4 columns), 4x8, 2x16, 16x2, 1x32 or 32x1.

Four possible block sizes are commonly used: 32, 64, 128 and 256. Figures 5 show the effect of the block size

NB on the performance of ScaLAPACK and PESSL (we report the maximum performance obtained for the different

possible processor grid configurations). Because there is alimited number of possible combinations, in the following

we will report performance results obtained with an exhaustive search: for each matrix size and number of cores, all

the possible processor grid distributions are tried in combination with the four block sizes (NB∈ {32,64,128,256}).

And the highest performance is finally reported.
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Figure 4: Effect of NB on TBLAS performance (Gflop/s).

3.4 LAPACK, MKL and ESSL

In LAPACK, the blocking factor (NB) is hard coded in the auxiliary routineILAENV [20]. This parameter has been set

to 64 for both LU and Cholesky factorizations and to 32 for QR factorization3.

MKL and ESSL have been highly optimized by their respective vendors.

4 Comparison to other libraries

4.1 Methodology

Factorizations are performed in double precision. We briefly recall the tuning techniques used in the experiments

discussed below according to Section 3. We employ a pruned search for PLASMA; an exhaustive search for TBLAS,

ScaLAPACK and PESSL; and we consider that LAPACK, MKL and ESSL have been tuned by the vendor.

Furthermore, to capture the best possible behavior of each library, we repeat the number of executions (up to 10

times) and we report the highest performance obtained. We donot flush the caches [21] before timing a factorization4.

However, the TLB (Translation Lookaside Buffer) is flushed between two executions: the loop over the different

3These values may not be optimum for all the test cases. Another approach might have consisted in tuning NB for each number of cores and
each matrix size. However, since we did not expect this library to be competitive, we did not investigate that possibility further.

4It is kernel usage, not problem size, that dictates whether one wish to flush the cache [21]. Warm (or partially warm) cacheexecutions are
plausible for dense linear factorizations. For instance, sparse linear solvers, which rely on dense kernels, intend tomaximize data reuse between
successive calls to dense operations.
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Figure 5: Effect of NB on ScaLAPACK (a,b,c,d,e,f) and PESSL (g,h,i) performance (Gflop/s).

executions is performed in a script (rather than within the executable) and calls several times the same executable.

ScaLAPACK, PESSL and PLASMA interfaces allow the user to provide data distributed on the cores. In our shared-

memory multi-core environment, because we do not flush the caches, these libraries have thus the advantage to start

the factorization with part of the data distributed on the caches. This is not negligible. For instance, a 8000×8000

double precision matrix can be held distributed on the L3 caches of the 32 cores of a Power6 node.

4.2 Experiments on few cores

We present in this section results of experiments conductedon a single socket (4 cores on Intel64 and 2 cores on

Power6). In these conditions, data reuse between cores is likely to be efficient since the cores share different levels

of cache (see Section 2.2). Therefore, we may expect a high speedup (see definition in Section 2.3) for the different
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algorithms. Figures 6(a) and 6(d) indeed show that parallelDGEMM – given as a reference – almost reaches a linear

speedup on both platforms (s4 ≈ 4 on Intel64 ands2 ≈ 2 on Power6).

Even LAPACK has a decent speedup. In the DPOTRF case, most of the computation is spent by the dgemm-seq

kernel. Since LAPACK exploits parallelism at the BLAS level, the parallel DGEMM version is actually executed.

Figures 6(a) and 6(d) show that LAPACK DPOTRF efficiency follows the one of the parallel DGEMM at a lower

but decent rate. On Intel64, its performance stabilizes at 20.0 Gflop/s, which corresponds to a normalized efficiency

e4 = 0.56 (according to the definition provided in Section 2.3). Parallelism is obtained by processing each BLAS

task with all the cores. However, since those tasks are processed in sequence, this approach is very synchronous

and does not scale with the number of cores. Indeed, Figure 12(a) shows that LAPACK DPOTRF does not benefit

from any significant performance improvement anymore when more than 4 cores (i.e. more than one socket) are (is)

involved. On Power6, the LAPACK DPOTRF performance also stabilizes at 20.0 Gflop/s (on 2 cores this time, see

Figure 6(d)) which corresponds to an even higher normalizedefficiencye2 = 0.69. The very high bandwidth (80 MB/s

per core) of the L3 shared cache strongly limits the overheaddue to this synchronous approach. Furthermore, the high

memory bandwidth (75 GB/s shared bus) allows a non negligible improvement of the LAPACK DPOTRF when going

to more than 2 cores – and up to 16 – as illustrated by Figure 12(d). However, the performance hardly exceeds 100

Gflop/s, which is only one sixth of the theoretical peak of the32 cores node. Similar observations can be reported

from Figures 6 and 12 for the LAPACK DGEQRF and DGETRF routines (except that a non negligible performance

improvement can be obtained up to 8 cores in the LAPACK DGETRFcase on Intel – see Figure 12(a)). In a nutshell,

parallelism at the BLAS level can achieve a decent performance when the cores involved are limited to a single socket.

Figures 6(c) and 6(f) show that the vendor libraries (MKL andESSL) outperform the other libraries – including

PLASMA– when the LU factorization (DGETRF routine) is executed on a single socket. They even outperform the

upper bound of the tile algorithms. Indeed, geometrically,their graphs are above the 4×dssssm-seq (resp.2×dssssm-

seq) dashed lines and, numerically, their peak normalized efficiencye4 = 1.13 (resp. e2 = 1.29) is higher than 1. This

result shows that when the hardware allows a very efficient data reuse across the cores – thanks to the high bandwidth

of shared level of caches – the lower performance of the kernels used in the tile algorithmscannotbe balanced by

the better scheduling opportunities that these algorithmsprovide. The lower performance of tile algorithms kernels is

both due to a current non optimized implementation (that we plan to improve) and to the extra-flops performed (that

may be decreased at the price of a lower data reuse). The dssssm-seq kernel is the one involving the largest amount of

extra-flops for going to tile algorithms (that can lead to a total 50% overhead if no inner blocking occurs). When the

extra-flops count is lower, tile algorithms remain competitive. Figures 6(b) and 6(e) illustrate this phenomenon for the

QR factorization (DGEQRF routine) whose extra-flops count is bounded by 25% (and less if inner blocking occurs). In

this case, tile algorithms (PLASMA and TBLAS) can almost compete against vendor libraries; their better scheduling

opportunities enable balancing the extra-flops count (as well as the current non optimized implementation of their
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Figure 6: Performance comparison when a single socket is used (Gflop/s).

serial kernels) although the hardware efficiency for parallel data reuse limits the impact of a non optimum scheduling.

The Cholesky factorization (DPOTRF routine) does not involve extra-flops for going to tile algorithms and directly

relies on a kernel optimized by the vendor (dgemm-seq). As illustrated in figures 6(a) and 6(d), in this case, tile

algorithms (and in particular PLASMA) outperform the algorithms implemented in the other libraries, including the

vendor libraries.

In a nutshell, the overhead of imperfect scheduling strategies is limited when the algorithms are executed on few

cores that share levels of cache they can access with a very high bandwidth. In this case, tile algorithms have a higher

performance than established linear algebra packages depending on whether the extra-flops count for going to tile and

the overhead of a non optimized serial kernel is not too largecompared to the limited practical improvement gained by

their scheduling opportunities. The advantage of tile algorithms relies on their very good scalability achieved by their

scheduling opportunities; figures 8 and 9 show their excellent practical scalability on both machines in the PLASMA

and TBLAS cases, respectively. In the next section, we discuss their relative performance against other libraries when

a larger number of cores are used.

4.3 Large number of cores

We present in this section results of experiments conductedon a larger number of cores (16 cores on Intel64; 16 and

32 cores on Power6). In these conditions, the cost of data reuse between cores is higher when the cores do not share a
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common level of cache. For instance, on the Power6 architecture, if a core accesses data that have been processed by

another processor, it will access that data through the memory bus, which is shared by all the 32 cores. Even if that bus

has a high bandwidth (75 GB/s), the actual throughput is limited when many cores simultaneously access the memory.

Therefore, we expect a higher sensitivity of the algorithmsto the scheduling strategy than we indicated in Section 4.2.

Figures 7(a), 7(d) and 7(g) present the Cholesky (DPOTRF routine) performance of the different libraries. PLASMA

consistently outperforms the other libraries, followed byTBLAS. These results illustrate the performance improvement

brought by tile algorithms. The higher efficiency of PLASMA compared to TBLAS is essentially due to a better data

reuse. Indeed, PLASMA scheduling strategy maximizes data reuse and thus benefits from a better cache effect than

TBLAS whose scheduler does not take into account date reuse.PLASMA is even faster than the parallel DGEMM
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Figure 7: Performance comparison on a large number of cores (Gflop/s).

reference up to a matrix sizeN = 2000 on the Intel64 machine when 16 cores are used. This is notcontradictory since
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PLASMA does not rely on the parallel version of DGEMM. Each PLASMA thread indeed uses the serial dgemm-seq.

Better performance can then be achieved thanks to better scheduling. However, the DPOTRF factorization cannot

only be performed with efficient level-3 BLAS operations (italso involves level-2 BLAS operations). Therefore, as

expected, the parallel DGEMM dominates all the other operations when the matrix size becomes larger. This illustrates

the fact that using a fine enough granularity (as in tile algorithms) is more critical when processing small or moderate

size matrices. Indeed, the better load balancing allowed bya fine granularity does not impact the steady state of the

DAG processing. This also explains the major improvement brought by PLASMA compared to the other libraries on

matrices of small and moderate size.

Still considering the DPOTRF routine, the vendor libraries(MKL and ESSL) remain the most competitive solution

versus tile algorithms (but they have a lower efficiency thantile algorithms) compared to ScaLAPACK and LAPACK

approaches, up to 16 cores. However, ESSL does not scale wellto 32 cores (Figure 11). ScaLAPACK and its vendor

equivalent, PESSL, both outperform ESSL on 32 cores (Figure7(g)). This result generalizes, to some extent, to all

the factorization routines. ScaLAPACK and PESSL still scale up to 32 cores (Figure 10) – as opposed to ESSL– and

they both (with a slight advantage for PESSL) achieve a performance comparable to ESSL for the DGEQRF (QR)

and DGETRF (LU) routines on Power6 when 32 cores are used (Figures 7). Similarly, figures 11(a), 11(b) and 11(c)

illustrate the not so good scalability of the vendor librarywhen all the 16 cores of the Intel64 platform are used.

Figures 7(b) and 7(h) illustrate the performance of the QR factorization (DGEQRF routine) when all the available

cores are used (16 on Intel64 or 32 on Power6). PLASMA outperforms the other libraries and TBLAS is also very

competitive. These results demonstrate the excellent scalability of tile algorithms and show that it is worth performing

a little amount of extra-flops to obtain tasks more convenient to schedule. On the Intel64 machine, TBLAS actually

has a better performance than PLASMA when 16 cores are used and when the matrix size is larger than or equal to

10,000 (N ≥ 10,000). Indeed, when the matrices processed are large, the critical issue of scheduling corresponds to

maximizing a steady state throughput. The main disadvantage of a static schedule is that cores may be stalling in situa-

tions where work is available. This throughput is easier to maximize with a dynamic scheduling strategy. Approaches

such as TBLAS, which do implement a dynamic scheduling, are thus likely to achieve a higher performance than ap-

proaches that implement a static scheduling (such as PLASMAcurrently does). All in all, these results are motivation

to move towards an hybrid scheduling strategy that would assign priorities according to a trade off between data reuse

and critical path progress and would process available tasks dynamically. Figure 7(e) illustrates the performance of the

QR factorization (DGEQRF routine) when only half of the available cores are used on Power6. In this case, PLASMA

still achieves the highest performance but TBLAS and ESSL almost reach a similar performance.

Finally, figures 7(c), 7(f) and 7(i) show that the LU factorization (DGETRF routine) has a performance behavior

similar to the QR factorization and PLASMA again outperforms the other libraries. However, the lower efficiency

of dssssm-seq compared to dssrfb-seq (dssssm-seq performsmore extra-flops) induces a lower performance of the
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PLASMA LU factorization compared to the PLASMA QR one. On Intel64, this leads MKL to be slightly better than

PLASMA when the matrix size is larger than or equal to 10,000 (N ≥ 10,000). But, similarly to the QR case, moving

towards a hybrid scheduling should remove the penalty due tothe static scheduling strategy used in PLASMA and

strongly improve the performance on large matrices. Indeed, on Intel64 when 16 cores are used, the PLASMA LU

peak normalized efficiency (see definition in Section 2.3) isequal to 78.6%; so there is still room for improving the

performance by enabling dynamic scheduling. Furthermore,as already mentioned, an optimized implementation of

the dssssm-seq kernel will also improve the performance of tile algorithms.
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Figure 8: PLASMA performance (Gflop/s).

5 Conclusion and perspectives

This paper has analyzed and discussed the behavior of several software approaches for achieving high performance

and portability of one-sided factorizations on multi-corearchitectures. In particular, we have shown the performance

improvements brought by tile algorithms on up to 32 cores – the largest shared memory multi-core system we could

access. We may expect that these results generalize somewhat to other linear algebra algorithms and even any algo-

rithm that can be expressed by a DAG of fine-grain tasks. Preliminary experiments using tile algorithms for two-sided

transformations,i.e., the Hessenberg reduction [22] (first step for the standard eigenvalue problem) and the bidiagonal

reduction [23] (first step for the singular value decomposition), show promising results.

We have shown the efficiency of our pruned-search methodology for tuning PLASMA. However, we currently need
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Figure 9: TBLAS performance (Gflop/s).

to manually pick up the (NB,IB) samples (from the serial level-3 kernel benchmarking) that are going to be tested in

the parallel factorizations. We are currently working to automate this pruning process. Furthermore, not all the matrix

sizes and number of cores can be tested. We are also working onthe interpolation of the optimum tuning parameters

from a limited number of parallel executions among the rangeof cores and matrix sizes to the full set of possibilities.

This on-going auto-tuning work should eventually be incorporated within the PLASMA distribution.

Furthermore, because the factorization performance strongly depends on the computational intensive serial level-3

kernels, their optimization is paramount. Unlike DGEMM, the dssrfb-seq and dssssm-seq kernels are not a single call

to level-3 BLAS operations, but are composed of successive calls, since the inefficiency. dssrfb-seq and dssssm-seq

could achieve similar performance if implemented as a monolithic code and heavily optimized.

The experiments have also shown the limits of static scheduling for the factorization of large matrices. We are

currently working on the implementation of a hybrid scheduling for PLASMA. Even if they are not on the critical

path, tasks will be dynamically scheduled on idle cores so asto maximize data reuse.
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Figure 11: MKL (a,b,c) and ESSL (d,e,f) performance (Gflop/s).
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Figure 12: LAPACK performance (Gflop/s).
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