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Abstract. The objective of this paper is to describe, in the context
of multicore architectures, different scheduler implementations for the
two-sided linear algebra transformations, in particular the Hessenberg
and Bidiagonal reductions which are the first steps for the standard
eigenvalue problems and the singular value decompositions respectively.
State-of-the-art dense linear algebra softwares, such as the LAPACK
and ScaLAPACK libraries, suffer performance losses on multicore pro-
cessors due to their inability to fully exploit thread-level parallelism. At
the same time the coarse-grain dataflow model gains popularity as a
paradigm for programming multicore architectures. By using the con-
cepts of algorithms-by-tiles [Buttari et al., 2007] along with efficient
mechanisms for data-driven execution, these two-sided reductions achieve
high performance computing. The main drawback of the algorithms-by-
tiles approach for two-sided transformations is that the full reduction
can not be obtained in one stage. Other methods have to be considered
to further reduce the band matrices to the required forms.

1 Introduction

The current trend in the semiconductor industry to double the number of execu-
tion units on a single die is commonly referred to as the multicore discontinuity.
This term reflects the fact that existing software model is inadequate for the new
architectures and existing code base will be incapable of delivering increased per-
formance, possibly not even capable of sustaining current performance.

This problem has already been observed with state-of-the-art dense linear al-
gebra libraries, LAPACK [4] and ScaLAPACK [12], which deliver a small fraction
of peak performance on current multicore processors and multi-socket systems
of multicore processors, mostly following Symmetric Multi-Processor (SMP) ar-
chitecture.

* Research reported here was partially supported by the National Science Foundation
and Microsoft Research.



This paper presents different scheduling schemes for the two-sided linear
algebra transformations, in particular the Hessenberg and Bidiagonal reductions
(HRD and BRD).

— The HRD is very often used as a pre-processing step in solving the standard
eigenvalue problems (EVP) [19]:

(A - X))z =0,
with Ae R™™™, » ¢ C*, A € C.

The need to solve EVPs emerges from various computational science dis-
ciplines e.g., structural engineering, electronic structure calculations, com-
putational fluid dynamics, and also, in information technology e.g., search
engines rank websites [23]. The basic idea is to transform the dense ma-
trix A to an upper Hessenberg form H by applying successive orthogonal
transformations from the left (Q) as well as from the right (Q7) as follows:

H=0Q x A x Q7
Ac R, Q € R, H ¢ RV

— The BRD of a general, dense matrix is very often used as a pre-processing
step for calculating the singular value decompositions (SVD) [19, 37):

A = XXY7T,
withAe R™", X ¢ R™™, XY ¢ R, Y € R"".

The necessity of calculating SVDs emerges from various computational sci-
ence disciplines, e.g., in statistics where it is related to principal component
analysis, in signal processing and pattern recognition, and also in numerical
weather prediction [13]. The basic idea is to transform the dense matrix A
to an upper bidiagonal form B by applying successive distinct orthogonal
transformations from the left (U) as well as from the right (V') as follows:

B =U" x A xV,
AeR™, Ue R"™,V e R, Bec R"".

As originaly discussed in [9] for one-sided transformations, the algorithms-by-tiles
approach is a combination of several parameters which are essential to match the
architecture associated with the cores: (1) fine granularity to reach a high level
of parallelism and to fit the cores’ small caches; (2) asynchronicity to prevent
any global barriers; (3) Block Data Layout (BDL), a high performance data
representation to perform efficient memory access; and (4) data-driven scheduler
to ensure any enqueued tasks can immediately be processed as soon as all their
data dependencies are satisfied.

By using those concepts along with efficient scheduler implementations for
data-driven execution, these two-sided reductions achieve high performance com-
puting. However, the main drawback of the algorithms-by-tiles approach for two-
sided transformations is that the full reduction can not be obtained in one stage.



Other methods have to be considered to further reduce the band matrices to the
required forms. A section in this paper will address the origin of this issue.

The remainder of this document is organized as follows: Section 2 recalls
the standard HRD and BRD algorithms. Section 3 describes the parallel tiled
HRD and BRD algorithms. Section 4 outlines the different scheduling schemes.
Section 5 presents performance results for each implementation. Section 6 gives a
detailed overview of previous projects in this area. Finally, section 7 summarizes
the results of this paper and presents the ongoing work.

2 Description of the two-sided transformations

In this section, we review the original HRD and BRD algorithms using orthog-
onal transformations based on Householder reflectors.
2.1 The Standard Hessenberg Reduction

The standard HRD algorithm based on Householder reflectors is written as fol-
lows:

Algorithm 1 Hessenberg Reduction with Householder reflectors
1: for j = 1ton—2do
20 x = Ajyim

3 v = sign(z) ||zl a1 + =

4 vy = v/ ||vll2

5. Ajttngn = Ajtimgn — 205 (V] Ajtim,m)
6:  Avngtrin = Avngitn — 2 (Ajttngm v5) V)
7: end for

Algorithm 1 takes as input the dense matrix A and gives as output the matrix
in Hessenberg form. The reflectors v; could be saved in the lower part of A for
storage purposes and used later if necessary. The bulk of the computation is
located in line 5 and in line 6 in which the reflectors are applied to A from the
left and then from the right, respectively. Four flops are needed to annihilate
one element of the matrix which makes the total number of operations for such
algorithm 10/3 n? (the lower order terms are neglected).

2.2 The Standard Bidiagonal Reduction

The standard BRD algorithm based on Householder reflectors interleaves two
factorizations methods, i.e. QR (left reduction) and LQ (right reduction) de-
compositions. The two phases are written as follows:

Algorithm 2 takes as input a dense matrix A and gives as output the upper bidi-
agonal decomposition. The reflectors u; and v; can be saved in the lower and



Algorithm 2 Bidiagonal Reduction with Householder reflectors

1: for j = 1tondo
2: xr = Aj;n,]'

3 wu; = sign(z) ||zll2en + x

4y = vy / |yl

5. Ajmgin = Ajingm — 2uj (U] Ajingin)

6: if j < n then

T r = Aj,j+l:n

8: v; = sign(z1) ||z|l2e1 + =

9: v = v; / |[vjll2

10: Ajnjrim = Ajngrim — 2 (Ajinjrim v5) U5
11: end if

12: end for

upper parts of A, respectively, for storage purposes and used later if necessary.
The bulk of the computation is located in line 5 and in line 10 in which the
reflectors are applied to A from the left and then from the right, respectively.
Four flops are needed to annihilate one element of the matrix, which makes the
total number of operations for such algorithm 8/3 n3 (the lower order terms are
neglected).

2.3 Limitations of the Standard Reductions

It is obvious that algorithms 1 and 2 are not efficient, especially because it
is based on matrix-vector Level-2 BLAS operations. Also, a single entire col-
umn/row is reduced at a time, which engenders a large stride access to memory.
The whole idea is to transform these algorithms to work on tiles instead in order
to improve data locality and cache reuse. Also, the Householder reflectors are
accumulated within the tiles and then applied at once, which potentially make
those algorithms rich in matrix-matrix operations. The next section presents the
parellel tiled versions of these two-sided reductions.

3 The Parallel Band Reductions

In this section, we present the parallel implementation of the band HRD and
BRD algorithms.

3.1 Fast Kernel Descriptions

— The tiled band HRD kernels are identical to the ones used by Buttari et.
al in [9] for the QR factorization. Basically, DGEQRT is used to do a QR
blocked factorization using the WY technique for efficiently accumulating the
Householder reflectors [35]. The DLARFB kernel comes from the LAPACK
distribution and is used to apply a block of Householder reflectors. DTSQRT



Algorithm 3 Tiled HRD Algorithm with Householder reflectors.

1: fori = 1, 2 to NBT—-1 do

2:

10:

12:
13:
14:
15:
16:
17:
18:

DGEQRT((i, i + 1, 7)
for j = i+ 1to NBT do
DLARFB(’L”, i, i+1,7)
end for
for j = 1to NBT do
DLARFB(R”, i, j, i + 1)
end for
for k = 1+ 2 to NBT do
DTSQRT(i, k, i)
for j = i+ 1to NBT do
DSSRFB("L”, i, k, j)
end for
for j = 1to NBT do
DSSRFB("R”, 1, j, k)
end for
end for
end for

performs a block QR factorization of a matrix composed of two tiles, a trian-
gular tile on top of a dense square tile. DSSRFB updates the matrix formed
by coupling two square blocks and applying the resulting DTSQRT trans-
formations. [9] gives a detailed description of the different kernels. However,
minor modifications are needed for the DLARFB and DSSRFB kernels in
order to apply the updates on the right side. Moreover, the computed reflec-
tors can be stored in the lower annihilated part of the original matrix for
later use. Let NBT be the number of tiles in each direction. The tiled band
HRD algorithm with Householder reflectors then appears as in algorithm 3.

The characters "L” and "R” stand for Left and Right updates. In each ker-
nel call, the triplets (i, ii, iii) specify the tile location in the original matrix,
as in figure 1: (i) corresponds to the reduction step in the general algo-
rithm, (ii) gives the row index and (iii) represents the indice of the column.
For example, in figure 1(a), the blue tiles represent the final data tiles, the
white tiles are the zeroed tiles, the gray tiles are those which need to be
processed and finally, the black tile corresponds to DTSQRT(1,4,1). In fig-
ure 1(b), the top black tile is DLARFB(”R”,3,1,4) while the bottom one is
DLARFB("L”,3,4,5).

There are eight overall kernels for the tiled band BRD implemented for the
two phases, four for each phase. For phase 1 (left reduction), the first four
kernels are exactly the ones used by Buttari et al. [9] for the QR factoriza-
tion, in which the reflectors are stored in column major form. For phase 2
(right reduction), the reflectors are now stored in rows. DGELQT is used
to do a LQ blocked factorization using the WY technique as well. DTSLQT
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(a) HRD: Reduction Step 1. (b) HRD: Reduction Step 3.

Fig. 1. HRD algorithm applied on a tiled Matrix with NBT= 5.

performs a block LQ factorization of a matrix composed of two tiles, a trian-
gular tile beside a dense square tile. Again, minor modifications are needed
for the DLARFB and DSSRFB kernels to take into account the row storage
of the reflectors. Moreover, the computed left and right reflectors can be
stored in the lower and upper annihilated parts of the original matrix, for
later use. Although the algorithm works for rectangular matrices, for sim-
plicity purposes, only square matrices are considered.

The characters ”L” and "R” stand for Left and Right updates. In each kernel
call, the triplets (i, ii, iii) specify the tile location in the original matrix, as
in figure 2: (i) corresponds to the reduction step in the general algorithm,
(ii) gives the row index and (iii) represents the column index. For example,
in figure 2(a), the black tile is the input dependency at the current step, the
white tiles are the zeroed tiles, the bright gray tiles are those which need to
be processed and finally, the dark gray tile corresponds to DTSQRT(1,4,1).
In figure 2(b), the blue tiles represent the final data tiles and the dark gray
tile is DLARFB(”R”,1,1,4). In figure 2(c), the reduction is at step 3 where
the dark gray tiles represent DSSRFB(”L”,3,4,4). In figure 2(d), the dark
gray tiles represent DSSRFB(”R”,3,4,5).

All the kernels presented in this section are very rich in matrix-matrix op-
erations. By working on small tiles with block data layout, the elements are
stored contiguous in memory and thus the access pattern to memory is more
regular, which makes these kernels high performing. It appears necessary then
to efficiently schedule the kernels to get high performance in parallel.



Algorithm 4 Tiled Band BRD Algorithm with Householder reflectors.
1: fori = 1, 2 to NBT do

2: // QR Factorization

3:  DGEQRT(, ¢, )

4 for j = i+ 1 to NBT do
5: DLARFB(L”, i, i ,j)
6: end for
7.
8

for kK = i+ 1 to NBT do
: DTSQRT(z, k, )
9: for j = i+ 1 to NBT do

10: DSSRFB("L”, i, k, j)
11: end for

12:  end for

13:  if ¢+ < NBT then

14: // LQ Factorization

15: DGELQT(4, 4, i+ 1)

16: for j = i+ 1to NBT do
17: DLARFB(’R”, i, j, i + 1)
18: end for

19: for k = i+ 2 to NBT do
20: DTSLQT(i, i, k)

21: for j = ¢+ 1 to NBT do
22: DSSRFB("R?, 4, j, k)
23: end for

24: end for

25: end if

26: end for

3.2 Parallel Kernel Executions

Figure 3(a) and 3(b) illustrate the step-by-step execution of algorithm 3 in order
to eliminate the first tile column. The factorization of the panel (DGEQRT
and DTSQRT kernels) is the only part of the algorithm which has to be done
sequentially. The updates kernels can be run concurrently as long as the order in
which the panel factorization has been executed is preserved during the update
procedures, for numerical correctness.

Figure 4(a) and 4(b) illustrate the step-by-step execution of algorithm 4 to
eliminate the first tile column and tile row. The factorization of the row/column
panels (DGEQRT, DTSQRT, DGELQT and DTSLQT kernels) is also the only
part of the algorithm which has to be done sequentially. The updates kernels
can then be run in parallel as long as the order in which the panel factorizations
have been executed is preserved during the update procedures.

Finally, the data driven execution scheduler has to ensure the pool of tasks
generated by algorithms 3 and 4 are processed as soon as their respective de-
pendencies are satisfied (more details in section 4).
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(a) BRD: Left Reduction Step 1. (b) BRD: Right Reduction Step 1.
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(c) BRD: Left Reduction Step 3. (d) BRD: Right Reduction Step 3.

Fig. 2. BRD algorithm applied on a tiled Matrix with NBT= 5.

The next section describes the number of operations needed to perform those
reductions.

3.3 Arithmetic Complexity

By using updating factorization techniques as suggested in [19,36], the ker-
nels for both reducing algorithms can be applied to tiles of the original matrix.
Using updating techniques to tile the algorithms have first been proposed by
Yip [38] for LU to improve the efficiency of out-of-core solvers, and were re-
cently reintroduced in [20,33] for LU and QR, once more in the out-of-core
context. The cost of these updating techniques is an increase in the operation
count for the whole HRD and BRD reductions. However, as suggested in [15-17],
by setting up inner-blocking within the tiles during the panel factorizations and
the trailing submatrix update, DGEQRT-DGELQT-DTSQRT-DTSLQT kernels
and DLARFB-DSSRFB kernels respectively, those extra flops become negligible
provided s << b, with b being the tile size (equivalent to the bandwidth of
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Fig. 4. Parallel tiled band BRD scheduling.

the matrix) and s being the inner-blocking size (see Buttari et al. [9] for further
information). This blocking approach has been also described in [20, 34].

The algorithmic complexity for the band HRD is divided into two steps. The
left transformation is basically a QR factorization which counts for 4/3 n (n —
b) (n—b). The cost of the right transformation is 2 n3. The total number of flops is
then 2 (n® + 2 n (n—b) (n—b)). Compared to the full HRD reduction complexity,
i.e., 10/3 n3, the band HRD algorithm is doing O(n? b) less flops, which is a
negligible expense of the overall HRD algorithm cost provided n >> b.

The algorithmic complexity for the band BRD is also split into two phases:
QR factorization with 4/3 n® and a band LQ factorization with 4/3 n (n —
b) (n —b). The total number of flops is then 4/3 (n® + n (n —b) (n —b)).
Compared to the full BRD reduction complexity, i.e., 8/3 n3, the band BRD



algorithm is doing O(n? b) less flops, which is a negligible expense of the overall
BRD algorithm cost provided n >> b.

However, it is noteworthy to mention the high cost of reducing the band
hessenberg / bidiagonal matrix to the full reduced matrix. Indeed, using tech-
nics such as bulge chasing to reduce the band matrix is very exepensive and
may dramatically slow down the overall algorithms. Another approach would be
to apply the QR algorithm (non symmetric EVP) or the Divide-and-Conquer
(SVD) on the band matrix but those strategies are sill under investigations.

The next section explains in details the limitations of the concept of algorithms-
by-tiles for two-sided transformations, i.e. the band reduction.

3.4 Limitations of Algorithms-by-Tiles Approach for Two-Sided
Transformations

The concept of algorithms-by-tiles is very suitable for one-sided methods (i.e.
Cholesky, LU, QR, LQ). Indeed, the transformations are only applied to the
matrix from one side. With the two-sided methods, the right transformation
needs to preserve the reduction achieved by the left transformation. In other
words, the right transformation should not destroy the zeroed structure by cre-
ating fill-in elements. That is why, the only way to keep intact the obtained
structure is to perform a shift of a tile in the adequate direction. For the HRD,
we shifted one tile bottom from the top-left corner of the matrix. For the BRD,
we decided to shift one tile right from the top-left corner of the matrix. For the
latter algorithm, we could have also performed the shift one tile bottom from
the top-left corner of the matrix.

In the following part, we present a comparison of three approaches for tile
scheduling, i.e., a static data driven execution scheduler, a hand-coded dynamic
data driven execution scheduler and finally, a dynamic scheduler using SMP
Superscalar framework.

4 Description of the Scheduling Implementations

This section describes three scheduler implementations: a static scheduler where
the scheduling is predetermined ahead and two dynamic schedulers where deci-
sions are made at runtime.

4.1 Static Scheduling

The static scheduler used here is a derivative of the scheduler used successfully
in the past to schedule Cholesky and QR factorizations on the Cell processor [25,
26]. The static scheduler imposes a linear order on all the tasks in the factoriza-
tion. Each thread traverses the tasks space in this order picking a predetermined
subset of tasks for execution. In the phase of applying transformations from the
left each thread processes one block-column of the matrix; In the phase of ap-
plying transformations from the right each thread processes one block-row of
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the matrix (figure 5). A dependency check is performed before executing each
task. If dependencies are not satisfied the thread stalls until they are (imple-
mented by busy waiting). Dependencies are tracked by a progress table, which
contains global progress information and is replicated on all threads. Each thread
calculates the task traversal locally and checks dependencies by polling the lo-
cal copy of the progress table. Due to its decentralized nature, the mechanism
is much more scalable and of virtually no overhead. This technique allows for
pipelined execution of factorizations steps, which provides similar benefits to dy-
namic scheduling, namely, execution of the inefficient Level 2 BLAS operations
in parallel with the efficient Level 3 BLAS operations.Also, processing of tiles
along columns and rows provides for greater data reuse between tasks, to which
the authors attribute the main performance advantage of the static scheduler.
The main disadvantage of the technique is potentially suboptimal scheduling,
i.e., stalling in situations where work is available. Another obvious weakness
of the static schedule is that it cannot accommodate dynamic operations, e.g.,
divide-and-conquer algorithms.

1 1

2 3 4
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2 3 4 5

-
.

o N o O
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w N

s

. DGEQRT . DTSQRT . DLARFB D DSSRFB
. DGELQT . DTSLQT . DLARFB . DSSRFB

Fig. 5. BRD Task Partitioning with eight cores on a 5 x 5 tile matrix.
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4.2 Hand-coded Dynamic Scheduling

The dynamic scheduling scheme similar to [9] has been extended for the two-
sided orthogonal transformations. A Directed Acyclic Graph (DAG) is used to
represent the data flow between the tasks/kernels. While the DAG is quite easy
to draw for a small number of tiles, it becomes very complex when the number
of tiles increases and it is even more difficult to process than the one created
by the one-sided orthogonal transformations. Indeed, the right updates impose
severe constraints on the scheduler by filling up the DAG with multiple addi-
tional edges. The dynamic scheduler maintains a central progress table, which is
accessed in the critical section of the code and protected with mutual exclusion
primitives (POSIX mutexes in this case). Each thread scans the table to fetch
one task at a time for execution. As long as there are tasks with all dependencies
satisfied, the scheduler will provide them to the requesting threads and will allow
an out-of-order execution. The scheduler does not attempt to exploit data reuse
between tasks though. The centralized nature of the scheduler may inherently be
non-scalable with the number of threads. Also, the need for scanning potentially
large table window, in order to find work, may inherently be non-scalable with
the problem size. However, this organization does not cause too much perfor-
mance problems for the numbers of threads, problem sizes and task granularities
investigated in this paper.

4.3 SMPSs

SMP Superscalar (SMPSs) [1] is a parallel programming framework developed at
the Barcelona Supercomputer Center (Centro Nacional de Supercomputacién),
part of the STAR Superscalar family, which also includes Grid Supercalar and
Cell Superscalar [6,32]. While Grid Superscalar and Cell Superscalar address
parallel software development for Grid enviroments and the Cell processor re-
spectively, SMP Superscalar is aimed at ”standard” (x86 and like) multicore
processors and symmetric multiprocessor systems. The programmer is respon-
sible for identifying parallel tasks, which have to be side-effect-free (atomic)
functions. Additionally, the programmer needs to specify the directionality of
each parameter (input, output, inout). If the size of a parameter is missing in
the C declaration (e.g., the parameter is passed by pointer), the programmer also
needs to specify the size of the memory region affected by the function. How-
ever, the programmer is not responsible for exposing the structure of the task
graph. The task graph is built automatically, based on the information of task
parameters and their directionality. The programming environment consists of a
source-to-source compiler and a supporting runtime library. The compiler trans-
lates C code with pragma annotations to standard C99 code with calls to the
supporting runtime library and compiles it using the platform native compiler
(Fortran code are also supported). At runtime the main thread creates worker
threads, as many as necessary to fully utilize the system, and starts construct-
ing the task graph (populating its ready list). Each worker thread maintains
its own ready list and populates it while executing tasks. A thread consumes

12



tasks from its own ready list in LIFO order. If that list is empty, the thread
consumes tasks from the main ready list in FIFO order, and if that list is empty,
the thread steals tasks from the ready lists of other threads in FIFO order. The
SMPSs scheduler attempts to exploit locality by scheduling dependent tasks to
the same thread, such that output data is reused immediately. Also, in order to
reduce dependencies, SMPSs runtime is capable of renaming data, leaving only
the true dependencies.

By looking at the characteristics of the three schedulers, we can draw some
basic conclusions. The static and the hand-coded dynamic schedulers are using
orthogonal approaches: the former emphasizes on data reuse between tasks while
the latter does not stall if work is available. The philosophy behind the dynamic
scheduler framework from SMPss falls in the middle of the two previous sched-
ulers because not only it proceeds as soon as work is available, but also it tries
to reuse data as much as possible. Another aspect which has to be taken into
account is the coding effort. Indeed, the easy of use of SMPSs makes it very
attractive for end-users and puts it on top of the other schedulers discussed in
this paper.

5 Experimental Results

The experiments have been achieved on a quad-socket quad-core Intel Tigerton
2.4 GHz (16 total cores) with 32GB of memory. Hand tuning based on empirical
data has been performed for large problems to determine the optimal tile size b =
200 and inner-blocking size s = 40 for the tiled band HRD and BRD algorithms.
The block sizes for LAPACK and ScaLAPACK (configured for shared-memory)
have also been hand tuned to get a fair comparison, b = 32 and b = 64
respectively.

Figures 6(a) and 7(a) show the band HRD and BRD execution time in sec-
onds for different matrix sizes. They outperform by far the MKL, LAPACK
and ScaLAPACK implementations. Figures 6(b) and 7(b) present the parallel
performance in Gflop/s of the band HRD and BRD algorithms. The different
scheduler implementations scale quite well while the matrix size increases.

For the band HRD, the static scheduling and SMPSs are having very similar
performance reaching 102 Gflop/s, i.e. 67% of the system theoretical peak and
78% of DGEMM peak for large matrix size. The dynamic scheduling asymptot-
ically reaches 94 Gflop/s, runs at 61% of the system theoretical peak and 72%
of the DGEMM peak.

For the band BRD, SMPSs is running slightly better than the two other
schedulers reaching 97 Gflop/s, i.e. 63% of the system theoretical peak and 75%
of DGEMM peak. The static and dynamic scheduling reach 94 Gflop/s, runs at
61% of the system theoretical peak and 72% of the DGEMM peak.
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Fig. 6. Experimenting band HRD on a quad-socket quad-core Intel Xeon 2.4 GHz
processors with MKL BLAS V10.0.1.
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Fig. 7. Experimenting band BRD on a quad-socket quad-core Intel Xeon 2.4 GHz
processors with MKL BLAS V10.0.1.

6 Related Work

Dynamic data-driven scheduling is an old concept and has been applied to dense
linear operations for decades on various hardware systems. The earliest reference,
that the authors are aware of, is the paper by Lord, Kowalik and Kumar [29]. A
little later dynamic scheduling of LU and Cholesky factorizations were reported
by Agarwal and Gustavson [2,3] Throughout the years dynamic scheduling of
dense linear algebra operations has been used in numerous vendor library imple-
mentations such as ESSL, MKL and ACML (numerous references are available
on the Web). In recent years the authors of this work have been investigating
these ideas within the framework Parallel Linear Algebra for Multicore Archi-
tectures (PLASMA) at the University of Tennessee [8,10,11, 28].

Seminal work in the context of the tile QR factorization was done by Elmroth
et al. [15-17]. Gunter et al. presented an ”out-of-core” (out-of-memory) imple-
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mentation [21], Buttari et al. an implementation for ”standard” (x86 and alike)
multicore processors [10, 11], and Kurzak et al. an implementation on the CELL
processor [27].

Seminal work on performance-oriented data layouts for dense linear algebra
was done by Gustavson et al. [18,22] and Elmroth et al. [14] and was also
investigated by Park et al. [30, 31].

7 Conclusion and Future Work

By exploiting the concepts of algorithms-by-tiles in the multicore environment,
i.e., high level of parallelism with fine granularity and high performance data
representation combined with a dynamic data driven execution (i.e., SMPSs),
the HRD and BRD algorithms with Householder reflectors achieve 102 Gflop/s
and 97 Gflop/s respectively , on a 12000 x 12000 matrix size with 16 Intel
Tigerton 2.4 GHz processors. These algorithms perform most of the operations
in Level-3 BLAS.

The main drawback of the algorithms-by-tiles approach for two-sided trans-
formations is that the full reduction can not be obtained in one stage. Other
methods have to be considered to further reduce the band matrices to the re-
quired forms. The authors are looking, for example, at one-sided HRD imple-
mentations done by Hegland et al. [24] and one-sided BRD implementations
done by Barlow et al. [5] and later, Bosner et al. [7] to try to overcome those
limitations.
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