Factorizations of Band Matrices
Using Level 3 BLAS

Jeremy Du Croz Peter Mayes Giuseppe Radicati
N.A.G. Lid N.A.G. Ltd IBEM ECSEC Rome
Abstract

This paper describes block algorithms for Cholesky and LU factorizations of
band matrices. The algarithms can be implemented using Level 3 BLAS. Although
they invalve some extra data movement and extra arithmetic operations, on some
machines they can outperform unblocked algorithms which use Level 2 BLAS. We
present performance measurements to demonstrate this, on an IBM 3060 VF, a

Cray 2, and a Siemens VI 400,

1 Introduction

This paper describes the development of “block algorithms” {or factorizations of band
matrices. By block algorithms, we mean algorithms that are rich in matrix-matrix
operations [9]. On many modern high performance compulers, block algorithms have
been found to be capable of giving superior performance to the traditional algorithms—
as implemented in Linpack [4], for example—which we refer to as “unblocked”.

The Linpack software was written using Level 1 BLAS [11], but can easily be rewritten
to use Level 2 BLAS [6], with improved performance especially on vecfor-processing
machines. Software for block algorithms requires Level 3 BLAS [5].

Our algorithms have been developed as a contribution to the LAPACK project [3].
The original plans for LAPACK [1] did not envisage that block algorithms would be
useful for factorizing band matrices. However we show that on some machines they
are significantly faster than unblocked algorithms—as long as the bandwidth is not too

small.

Section 2 describes a block algorithm for Cholesky factorization of a symmetric positive-
definite band matrix (an earlier report on this was given in [12]). Section 3 describes
a block algorithm for LU factorization of a general band matrix. Section 4 presents
timings measured on an IBM 3090/ VF, a Cray XMP, a Cray 2, and a Stemens VP 400,

Clur software assumes that band matrices are stored compactly in the same band storage
format as is used in Linpack — that is, columns of the matrix are stored in columns

of the array, and diagonals of the malrix are stored in rows of the array. However,
we describe the algorithms here in mathematical terms, with reference to the matrix
elements rather than the array elements.

2 Cholesky factorization

We assume that we are given the upper triangle of a symetric posilive-definite band ma-
trix A of order n, with k superdiagonals. We wish to compute the Cholesky factorization
A =0T, with I overwriting the upper triangle of 4.

The proposed LAPACK routines for Cholesky factorization—for both full and band
matrices—allow options for working with either the upper or the lower triangle. However
for simplicity, we describe here only the upper triangular version of the algorithm.

There are three different ways of organizing the Cholesky factorization of a full matrix
{sce [12]), and they can all be adapted to the factorization of a band matrix.

Our block algorithm is based on a “right-locking” variant, and is derived by equating
submatrices in the following equation. We use a fixed block size nb. 4y is the leading
nh by nb submatrix.

Ay AN _ (UL 0\ /(U Ul _(UfUn Ufils
Al Az Ui Un 0 Us Uﬁ 4% Uﬁﬂu -—'U;?;U:z
Henece for a full matrix, the algorithm performs the following matrix-matrix operations:

1. Ay — 'U;iﬂn
2. Uz~ (U Aae
3. Ay — Ax — ULU,

The algorithm then repeats the process on the updated submatrix 45,

If the matrix is a band matrix, then the submaitrices 4y5 and Ay are truncated by
the band structure, and only part of A is affected by the update. A typical stape
in the algorithm is shown in Figure 1, where the “active block”™ within the band has
been partitioned 3 by 3. We assume that the block size nb does not exceed the semi-
bandwidih k—otherwise we use the unblocked algorithm.

The submatrix A;; lies partly outside the band. In order to operate on it using calls to
Level 3 BLAS, we copy it into a square internal work array, of size nb by nb, with the
upper triangle explicitly set to zero.

Each major stage in the computation consists of the following steps, using calls to the
named Level 3 BLAS routines. U;; denotes the submatrix of the Cholesky factor I7

which corresponds to 4;; and overwrites 4;; in the computation.

1. factorize the diagonal block Ay as UL T, (using Level 2 BLAS)

Figure 1: Block Cholesky factorization of a band matrix

2. Uy — (U5) "1 Ayz (using DTRSM)
3. ..-‘!.;.! _— _r']_;-; = UZE;U]-E {'L'I.EiI'lg DSYRKJ
4. copy the lower triangle of 4,5 into the work array

g — [[If_]}-‘ﬁ_u {(using DTRSM, with {1y overwriting A,z in the work array)

o

6. Al +— Az — ULy (using DGEMM)
. Ay — Ags — Uf3Ths (using DSYRK]

=1

8. copy the lower triangle of Uy3 back into the main array in band storage.

Some of these steps are omitted when the active block hits the lower right hand corner of
the matrix. When the bandwidih is large, the biggest fraction of the work iz performed
by the call to DSYRK in step 3.

The overhead of the block implementation includes setting the upper triangle of the
work array to zero (done only once), copying the lower triangle of 45 into the work
array, performing extra arithmetic operations with zero elements of Az or Uhs, and

copying L5 back into the main array.

3 LU factorization

Now we assume that we are given an unsymmetric matrix of order n with kI subdiagonals
and ku superdiagonals. An additional kI superdiagonals may be generated because

of fillin during the factorization. The fill-in results from the need to perform row-
interchanges.

For simplicity in the description, we assume that the additional kl superdiagonals are
used from the start, so that the number of superdiagonals is ku' = ku + &I In practice
the fill-in usually builds up gradually as the algorithm proceeds, and the code takes
advantage of this to avoid unnecessary work in the early stages.

There are different ways of organizing the LU factorization of a full matrix (see, for
example, [2], [13]). However the need to preserve band structure, while at the same
time performing row interchanges, enforces the use of a “right-looking” varant for the
factorization of a band matrix. Moreover at each stage, the row interchanges are applied
only to the columns to the right of the current pivot column, not to the whole matrix.

A block algorithm can be derived by the same approach as was used in Section 2 for
Cholesky factorization. A typical stage in the algorithm is illustrated in Figure 2. We
assume that the block size nb does not exceed the number of subdiagonals, kI, which in
turn is less than the number of superdiagonals, ku', allowing for fill-in.

nh kea’ = pil nb
e e A3
i — miy
Az Az Aay
Aay
nh Axz Aaa

e

Figure 2: Block LU factorization of a banded matrix

The submatrices A,y and A, lie partly outside the band; they are copied into internal
work arrays with the elements outside the band set to zero, before they are operated
Ofl.

A typical stage consists of the following steps. Ly and Ufy; denote the submatrices of
the factors L and I7 which correspond to A;; and overwrite 45 in the computation.

|. Perform an LU factorization with row interchanges, on the block column

ﬂ! 1
.r'ln

As

using Level 2 BLAS. This block column is a rectangular band matrix, whose upper
triangle is normally full. It is factorized using the standard unblocked algorithm,
with one difference: the row interchanges must be applied to all columns in the
block before using Liy, Ly; and Ly in steps 2 to §; this introduces nonzero elements
into the lower triangle of Ls. So during this step, Ly is copled into a square work
array, and is stored az a full matnx.

2. Uﬂ — ;,-1'-]1..413 I:using D'WH.SM}I
3. AL, +— Agp — Loy, (using DGEMM)
4. -'qllgg o -"131: == Lu.] L"-n; {uSiﬂg DGF-?‘-"I.I'-‘I:I

5. copy the lower triangle of 4,z into a second square work array, with zeros stored
in its upper triangle

[Fia = Lt_ll..-'-lm {using DTRS:."'.-I:I
Iga ! -"ij_a = Li]_{.lrt'd. |:'L'|-5i]1g DGEI'I-'IM}
-4;3 b _‘:133 — Ll I[usiug DGEI'-IM}

b)

copy the lower triangle of Ifs back into the main array according to the band
storage scheme

10. partially undo the row interchanges which were performed on the block column

Lig
Lz

to restore the band structure, and at the same time copy the nonzero elements of
L4 back into the main array according to the band storage scheme.

Some of these steps are omitted when the active block hits the lower right hand corner
of the matrix. Step 3 accounts for the largest fraction of the work when the bandwidth

is large.

4 Performance measurements

Because the block algorithms invaelve some extra data movement and some extra arith-
metic operations, it is not obvious that they will be faster than the unblocked algorithms,
even on machines where Level 3 BLAS perform significantly faster than Level 2 BLAS.

We report measurements on an IBM 3090-E/VF, a Cray XMP, a Cray 2 and a Siemens
VI 400, We chose these machines because efficient implementations of the necessary
Level 2 and Level 3 BLAS are available on all of themn—in the ESSL Library [7] on the
IBM machine, in the SCILIB Library on the Cray machines, and developed by Geers
8] and Grasemann [10] for the Siemens machine.

We measured the speed of the routines for a fixed order of matrix (n = 2048), and with
varying semi-bandwidth (&) and block-size (nd).

4.1 Performance of Cholesky factorization

Figure 3 shows the speed on an IBM 3090-E/VF of 4 different routines for Cholesky
UTH factorization:

1. the Linpack rountine DPBFA

2. an unblocked algorithm calling Level 2 BLAS

3. the proposed LAPACK routine DPBTRF implementing the block algorithm de-
scribed in Section 2 with a block size of 32, and calling Level 3 BLAS

4. the ESSL routine DPBF [which actually performs an LDIT factorization, in terms
of the storage scheme that we are assuming, but its results are included for com-
parison)

It iz clear that for bandwidths of 100 or more the LAPACK block algorithm easily
outperforms the unblocked (Level 2 BLAS) algorithm, despite the extra work done by

the block algorithm.

| speed h speed | optimum | crossover
unblocked | blocked | block-size | value of &

IBM 30890 VF 22 40 32 &0
Cray XMP 160 167 16 G4
Cray 2 188 223 32 80
| Siemens VP 400 ar 123 | fid a0

Table 1: Performance of UTT factorization

T e

B i 1 i i 1 L i 1
] e L] 1ac LE 1 L9

Seal Eand width

Figure 3: Speed of banded UTU factorization on an IBM 3090-E/VF

Table 1 summarises results from different machines. It gives the speed of the unblocked
algorithm, the speed of the blocked algorithm (both for k = 192), the optimal block-
size, and the crossover value of k—the value of k beyond which the block algorithm was
faster. The last two values are approximate. As the block size increases (with fixed
bandwidth), the performance of the block algorithm reaches a plateau, beyond which
it slowly declines. There is a slight tendency for the optimum block size fo increase as
the bandwidth increases.

The blocked algorithm is clearly superior—Ifor large enough bandwidths— on the TBM,
Cray 2 and Siemens machine. In fact the obvious superiority on the Siemens machine
results from the poor performance of the unblocked algorithm. A different variant of the
unblocked algorithm (relying on the Level 2 BLAS routine DSYR instead of DTRSV)
was much faster; the block algerithm only became faster for & greater than 200, We did
not expect to see a significant superiority on a Cray XMP, since on that machine Level
2 and Level 3 BLAS run at roughly the same speed.

4.2 Performance of LI/ factorization

We set ki = ku = k and used an approximate value of dnk® for the number of floating-
point operations in order to calculate megaflop rates; this may be a slight over-estimate
since it assumes that maximum fill-in occurs right at the starl of the algorithm.

Figure 4 shows the speed of both the blacked algorithm (NE = 32), calling Level 3 BLAS,
and an unblocked algorithm (NB = 1), calling Level 2 BLAS, on an IBM J000-E/VF;
the blocked algorithm used a block-size of 32.

o el & N
L1

20 o
-

3 13 1} L1 Lig LEE L§2

Semi bpad wlglh

Figure 4: Speed of banded LU factorization on an IBM 3090-E/VE

Table 2 summarises the results from different machines.

ql gpead spe'e,;:l optimum | crossover
[unblocked | blocked | block-size | value of &
IBM 3090 VF 20 39 a2 B4
‘ Cray XMP 198 189 24 -
| Cray 2 180 282 32 il
| Siemens VP 400 281 365 W

Table 2: Performance of LU factorization

Again, there is clear advantage from using the blocked algerithm, on the IBM, Cray
% and Siemens machines, for bandwidths greater than 100 or so, whereas on the Cray
XMP the unblocked algorithm is always faster.

5 Concluding Remarks

Our results demonstrate the advantage of using a bleck algorithm for factorizing band
matrices of bandwidths of 100 or more. Band matrices of order O(1000) and bandwidth
€H100) do oceur in practical applications. We aim to extend the timings to machines
on which the Level 3 BLAS make use of parallel processors, in the hope that this will
demenstrate an additional advantage for the block algorithms.

Acknowledgements

The authors would like to thank Ed Anderson of the University of Tennessee for the
Cray 2 timings, and Klaus Geers of the University of Karlsruhe for the Siemens VP 400
timings. The second author would like to thank IBM for enabling him to wvisit ECSEC

in Home.

References

[1] Bischof, C., Demmel, J., Dongarra, 1.J,, Du Croz, J.J., Greenbaum, A., Ham-
marling, 5.J. and Sorensen, D)., LAPACK Working Note #3 Provisional Contents.
ANL-88-28, Argonne National Laboratory, 1985,

[2] Dayde, M. and Duff, L.5., Use of Level 3 BLAS in LU Factorization on the Cray 2,
the ETA-10P, and the IBM 3090-200/VF. CERFACS report TR 88/1, 1988,

[4] Demmel, J., Dongarra, J.J., Du Croz, J.J., Greenbaum, A., Hammarling, 5.J. and
Sorensen, I., Prospectus for the Development of a Linear Algebra Library for High-
Performance Computers, ANL/MCS-TM-97, Argonne National Laboratory, MOS
Division, 1987.

[4] Dongarra, J., Bunch, J., Mdler, 1., and Stewart, ., LINPACK Users’ Guide. SIAM
Philadelphia, 1979

[5] Dongarra, J.J., Du Croz, J.J., Duff, LS. and Hammarling, 5.1, A Set of Level 3 Ba-
sic Linear Algebra Subprograms. ANL/MCS-TM-88 (revision 1), Argonne National
Laboratory, MCS Division, 1938,

Dongarra, J.J., Du Cros, J.J., Hummarling, S.J. and Hanson, R., An Extended Set
of Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Scltware, 14,
pp. 1-17, 1988,

7] Engineering and Scientific Subroutine Library. Guide and Reference. SC23-0184-3

[8] Geers, N., Optimization of Level 2 BLAS for Siemens VP Systems. Technical report
no. 37.89, University of Karlsruhe, Computer Center, 1989,

[9] Gelub, G.I. and Van Loan, C.F., Matrix Computations, 2nd edition. The Johns
Hopkins University Press, Baltimore, 1989,

[10] Grasemann, H., Optimization of Level 3 BLAS for Siemens VE Systems. Technical
report no. 38.89, University of Karlsruhe, Computer Center, 1989,

[11] Lawson, C., Hansen, R.J., Kincaid, D. and Krogh F.T., Easic Linear Algebra
Subprograms for Fortran Usage. ACM Trans. Math, Seftware, 5, pp. 308-323,
19749,

[12] Mayes, P.J.D. and Radiati, G., LAPACK Working Note #12: Banded Cholesky
Factorization Using Level 3 BLAS. ANL/MCS-TM-134, Argonne National Labo-
ratory, MCS Division, 1989.

[13] Mayes, P.J.D. and Radicati, G., Block Factorization Algerithms on the IBM
3090/VF, in Proceedings of the 1989 International Conference on Supercomput-
ing, Crete, Greece, pp. 263-270, 19588,

