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Abstract. This paper describes a parallel Hessenberg reduction in the
context of multicore architectures using tile algorithms. The Hessenberg
reduction is very often used as a pre-processing step in solving dense
linear algebra problems, such as the standard eigenvalue problem. Al-
though expensive, orthogonal transformations are accepted techniques
and commonly used for this reduction because they guarantee stability,
as opposed to elementarily transformations similar to what is used in
Gaussian elimination. The state of the art, high performance dense linear
algebra software libraries, i.e., LAPACK and ScaLAPACK, reduce the
matrix to Hessenberg form through a one-stage process by using block
Householder approach with compact WY representation. However, the
main drawback of the tile algorithms approach for the Hessenberg reduc-
tion is that the full reduction can not be obtained similarly in a one-stage
standard process. A two-stage approach has to be considered. The first
stage corresponds to a redesign of the block Hessenberg matrix reduc-
tion, introduced by Dongarra et. al [12], to benefit from tile algorithms in
the multicore environment. The second stage further reduces the matrix
bandwidth to achieve the required Hessenberg form using a parallel bulge
chasing procedure. On the one hand, by exploiting the concepts of tile
algorithms in the multicore environment, the block Hessenberg reduc-
tion (first stage) achieves 72% of the DGEMM peak on a 12000 x 12000
matrix with 16 Intel Tigerton 2.4 GHz processors. On the other hand,
the parallel bulge chasing procedure (second stage) is not appropriate for
tile algorithms and therefore poorly performs on multicore architectures
and slows down dramatically the overall algorithm.

1 Introduction

This paper describes a parallel Hessenberg Reduction (HR) in the context of
multicore architectures using tile algorithms. The HR is very often used as a pre-
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processing step in solving dense linear algebra problems, such as the standard
EigenValue Problem (EVP) [18]:

(A - A)z = 0,
withAe R™™", z ¢ C", A € C.

The need to solve EVPs emerges from various computational science disci-
plines including system and control theory, geophysics, molecular spectroscopy,
particle physics, structure analysis, and so on. The basic idea is to transform the
dense matrix A to an upper Hessenberg form H by applying successive trans-
formations from the left (Q7) as well as from the right (Q) as follows:

H =Q"AQ,
A c ]R’I’an’ Q c Rnxn’ H c Rnxn.

Although expensive, orthogonal transformations (i.e, Householder reflectors and
Givens rotations) are accepted techniques and commonly used for this reduction
because they guarantee stability, as opposed to elementarily transformations
similar to what is used in Gaussian elimination [30].

Furthermore, in the last Top500 list from June 2009 [1], 99% of the fastest
parallel systems in the world are based on multicores. This confronts the scientific
software community with both a daunting challenge and a unique opportunity.
The challenge arises from the disturbing mismatch between the design of sys-
tems based on this new chip architecture — hundreds of thousands of nodes, a
million or more cores, reduced bandwidth and memory available to cores — and
the components of the traditional software stack, such as numerical libraries, on
which scientific applications have relied for their accuracy and performance. The
manycore trend has even further exacerbated the problem, and it becomes judi-
cious to efficiently develop existing or new numerical linear algebra algorithms
suitable for such hardware. As discussed by Buttari et al. in [9], a combination
of several parameters define the concept of tile algorithms and are essential to
match the architecture associated with the cores: (1) Fine Granularity to reach
a high level of parallelism and to fit the core small caches; (2) Asynchronicity to
prevent any global barriers; (3) Block Data Layout (BDL), a high performance
data representation to perform efficient memory access; and (4) Dynamic Data
Driven Scheduler to ensure any queued tasks can immediately be processed as
soon as all their data dependencies are satisfied. While bullets (1) and (3) rep-
resent important items for one-sided and two-sided transformations, (2) and (4)
are even more critical for two-sided transformations because of the tremendous
amount of tasks generated by such transformations. Indeed, as a comparison, the
algorithmic complexity for the QR factorization used for least squares problems
is 4/3 n® while it is 10/3 n® for the HR algorithm, with n the matrix size.

The state of the art, high performance dense linear algebra software li-
braries, i.e., LAPACK [7] (routine DGEHRD) and ScaLAPACK [10] (routine
PDGEHRD), reduce the matrix to Hessenberg form through a one-stage process
by using the block Householder approach with compact WY representation [26].



However, the main drawback of the tile algorithms approach for the HR is that
the full reduction can not be obtained similarly in a one-stage standard pro-
cess. A two-stage approach has to be considered. The first stage corresponds
to a redesign of the block Hessenberg matrix reduction (BHR), introduced by
Dongarra et al. [12], to benefit from tile algorithms in the multicore environ-
ment. The original dense matrix A is reduced to a block Hessenberg matrix H
with b being the number of subdiagonals. Two versions of the BHR, algorithms
using tile algorithms for the first stage reduction are presented, the first one
with Householder reflectors and the second one with Givens rotations. A short
investigation on variants of Fast Givens rotations is also mentioned, but the
work in this direction had to be resumed in favor of standard Givens rotations
due to the lack of an efficient mechanism to accumulate the orthogonal trans-
formations. The second stage annihilates those additional b — 1 subdiagonals
to achieve the required Hessenberg form by performing a parallel bulge chasing
procedure using the parallel programming framework SMP Superscalar [3]. Un-
fortunately, this latter procedure does not run on top of tile algorithms and thus
the obtained performance negates dramatically the overall performance of the
two-stage approach on multicore architectures. It is also noteworthy to mention
that this two-stage transformation process has already been studied in detail by
Dackland et. al in [11] on single core, by Adlerborn et. al in [4] on distributed
memory and more recently, by Kagstrom in [21] for the QZ algorithm (a slightly
different problem, but still presents many similarities).

The reminder of this document is organized as follows: Section 2 recalls the
standard HR algorithm and reviews the two orthogonal transformations based
on Householder reflectors and Givens rotations. Section 3 describes the parallel
implementation of the tile BHR algorithms for both orthogonal transformations
as well as the bulge chasing procedure. Section 4 presents performance results of
the two versions. Also, comparison tests are run on shared-memory architectures
against the corresponding routines from LAPACK, ScaLAPACK and the vendor
library MKL [2]. Finally, Section 5 summarizes the results of this paper and
presents the ongoing work.

2 The Standard HR

In this section, we review the original HR algorithm as well as the orthogonal
transformations based on Householder reflectors and Givens rotations. A short
discussion on Fast Givens rotations is also included.

2.1 The Algorithm with Householder Reflectors

The standard HR algorithm based on Householder reflectors is written as in
Algorithm 1. It takes as input the dense matrix A and gives as output the
matrix in Hessenberg form. The reflectors v could be saved in the lower part of
A for storage purposes and used later if necessary. The bulk of the computation
is located in line 5 and in line 6 in which the reflectors are applied to A from



the left and then from the right, respectively. 4 flops are needed to annihilate
one element of the matrix, which makes the total number of operations for
such algorithm 10/3 n3 (the lower order terms are neglected). It is obvious that
Algorithm 1 is not efficient as described, especially for multicore architectures,
not only because it is based on Level 2 BLAS, i.e., matrix-vector operations,
but also because a single column is reduced at a time, which engenders a large
stride access of memory. The whole idea is to transform this algorithm to work
on small square chunks of data or tiles instead, in which elements are contiguous
in memory (the processed data would then fit entirely in the cache) in order to
improve data locality and cache reuse. The Householder reflectors can now be
accumulated within the tiles and efficiently applied to the left and right of the
matrix in the form of Level 3 BLAS, i.e., matrix-matrix operations.

Algorithm 1 Hessenberg Reduction with Householder reflectors
1: forj = 1ton—2do

2: T = Ajtin,j

3 v sign(zy) ||z|l2 e1 + =

4: v = v/ |2

5. Ajyimgm = Ajrtmgm — 20 (07 Ajiiingim)

6

T

T
Al:n,,j+1:n = Al:n,j-{»l:n -2 (Alzn,j+1:n U) v
end for

In the next section, we present a quite similar algorithm using standard
Givens rotations.

2.2 The Algorithm with Standard Givens Rotations

The Givens rotation matrix is a rank-2 modification of the identity matrix and
can be represented as follows:

g(i, j,0) =

g € R™", c=cos(), s =sin(d), ¢* + s =1.



Let z, y € R". We have:

exxi—sxxy, if k=1
y = 9(i,5,0)" x  with yx = sxwi+exa;,ifk=j (2)
Tk, otherwise.

The multiplication g(i,j,0)” x is a counterclockwise rotation of z through
an angle 6 in the (i, 7) plane and affects only the rows ¢ and j. Therefore, if we

. —X; . .
want y; = 0, then ¢ = —- s = L In the same manner, this rotation
yj ’ ‘L?-'r.l/? ! ,/w?-&-x? ’

can be applied from the right, i.e., z ¢(j,,0), and only columns j and ¢ are
involved. For the sake of simplicity, we omit 6 in the formulation of the Givens
rotations in the next algorithm.

The standard HR algorithm based on Givens rotations is written as in Algo-
rithm 2. The cost to annihilate one element of the matrix with Givens rotations
is 6 flops (Equation 2), which gives an overall operation count of 5n, 50%
more compared to the same reduction with Householder reflectors. Moreover,
the predominance of vector-vector operations and the overhead of cache misses
makes Givens rotations even less efficient. Thus, although their implementations
are much simpler than Householder reflectors, Givens rotations are expected to
poorly perform for the HR algorithm on multicore architectures. But, as seen
later in Section 3, the algorithm can be expressed in term of tiles and can benefit
from higher Level BLAS operations as well.

Algorithm 2 Hessenberg Reduction with Givens rotations
1: G «— Id,

2: forj = 1,2ton—2do

3: fori =n,n—1toj+2do

4: Build the local g(i — 1,) such that A; ; =0
5: Update A = g7 (i —1,i) A

6: Update A = A g(4,i — 1)

7:  end for

8: end for

The next section introduces the Fast Givens rotations, which are as expen-
sive as Householder reflectors and still considered as orthogonal similarity, i.e.,
stable.

2.3 Discussion on Fast Givens Rotations

One disadvantage with standard Givens rotations is the two additional flops
needed to annihilate one element of the matrix.

First introduced by Gentleman [16] and then by Hammarling [20] for the
QR decomposition, Fast Givens rotations (FGs) are interesting because they
only requires 4 flops to annihilate one element of the matrix. However, there are



major issues of arithmetic underflow or overflow and the proposed way to fix it
actually creates overhead and may not improve performance, especially in the
context of multicores.

Rath [25] applied FGs to the Jacobi method, the reduction to Hessenberg
form and the QR algorithm for Hessenberg matrices. The novelty of his approach
allows us to eliminate the computation of the square roots for the computation
of cosine and sine. However, a close monitoring has to be done to avoid un-
der/overflow and occasionally the matrix A has to be rescaled.

Anda and Park [6] introduced the self-scaling chained FGs, which delete
the periodic rescaling that has been necessary to guard against under/overflow.
While they focused only on the orthogonal one-sided transformations, their work
could be easily extended to two-sided transformations. The idea basically is to
decompose A as follows:

A=DY, with A, DandY € IR™*",

with a diagonal matrix D and the scaled matrix Y. The goal is to dynamically
scale the diagonal factor matrix D to be close to an identity matrix. For example,
let us compute the new matrix A with the two bottom left elements located in
a particular column annihilated:
ABG) — pB®) y6)
— DB g y(2)
=p® p@ p) y@)

with F' representing the 2 x 2 FG matrix. F' has this typical simplified form:

10]
X
61

and can be expressed up to eight different forms to ensure the diagonal elements
of the matrix D stay within an absolute bound after any rotations. So, in the
general case, we have:

Ak+1) — plk+1) p(k) pk=1)  p(1) y (1) (4)

1«

01

F:

],aandﬂE]R7 (3)

Let y; be the k** row of the matrix Y and ¢ the corresponding transformed
k" row of the matrix Y. By plugging one of the particular form of F expressed
from Equation (3) into Equation (4), we end up with the following equation:

MM
]

yi‘i‘Oéij ]
yi+6x(yi + ay;)




Achieving of 4 flops per zeroed element is done by chaining the components of
the vectors g; and g;, i.e., the components of the vector ¢; have to be computed
first and then their values are used to obtain the final result for the components
of the vector ¢;. As opposed to the standard Givens rotations, where the up-
dates are performed concurrently, the updates of the components with FGs are
now serialized. But this is not really a limitation since the component pairs are
contiguous in memory and each one would be loaded at once to the cache and
then processed serially.

However, chained FGs present one major drawback. A bookkeeping proce-
dure has to be established on the fly to save each specific form of the chosen
matrices F' during the reduction to guard against under/overflow that may occur
in the diagonal elements of D. Unfortunately, this presents a major complexity
for implementing an automatic mechanism to efficiently aggregate the small FG
matrices within a tile in order to produce Level 3 BLAS operations during the left
and right updates. Thus, even though more expensive, standard Givens rotations
are preferred to FGs in order to efficiently generate Level 3 BLAS operations.

In the next section, we explain the modifications applied in Algorithms 1
and 2 to achieve high performance on multicore architectures using the concepts
of tile algorithms.

3 The Parallel Two-Stage Hessenberg Reduction

In this section, we describe the two-stage approach to reduce a general matrix
to Hessenberg form using tile algorithms. The idea is to decompose the original
matrix into tiles, in which elements are contiguous in memory. The matrix ele-
ments are now annihilated by square tiles. The first subsection explains why a
two-stage approach is mandatory when using tile algorithms. Then, we present
two parallel implementations of the BHR based on Householder reflectors and
Givens rotations. The parallel bulge chasing procedure as well as the overall algo-
rithmic complexity are detailed in the following subsection. Finally, two dynamic
data driven schedulers to process the kernels in parallel are outlined.

3.1 Limitations of the Tile Algorithms Approach for HR

The concept of tile algorithms is very suitable for one-sided methods (i.e., Cholesky,
LU and QR/LQ). Indeed, the transformations are only applied to the matrix
from one side. With the two-sided methods, the right transformation needs to
preserve the reduction achieved by the left transformation. In other words, the
right transformation should not destroy the zeroed structure by creating fill-in
elements. That is why the only way to keep intact the obtained structure is to
perform a shift of a tile in the adequate direction. In our BHR algorithm, the
reduction is shifted one tile bottom from the top-left corner of the matrix. There-
fore, the reduced matrix then has an upper block Hessenberg shape (first stage)
and needs to be further reduced (second stage) to get the required Hessenberg
form.



3.2 First Stage: The Block Hessenberg Reduction

In this stage, the BHR can be achieved through the use of fast orthogonal
transformation kernels, based on Householder reflectors and Givens rotations,
as described below. Furthermore, by using updating factorization techniques as
suggested in [18,28], the kernels for both implementations can be applied to
tiles of the original matrix. Using updating techniques to tile the algorithms
was first proposed by Yip [31] for LU to improve the efficiency of out-of-core
solvers, and were recently reintroduced in [19, 23] for LU and QR, once more in
the out-of-core context.

Householder Reflectors There are four kernels to perform the tile BHR ker-
nels based on Householder reflectors. Let A be a matrix composed by nt x nt
tiles of size b x b. Let A; ; represent the tile located at the row index ¢ and the
column index j.

— CORE_DGEQRT: this kernel performs the QR blocked factorization of a
subdiagonal tile Ay ;1 of the input matrix. It produces an upper triangular
matrix Ry ,—1, a unit lower triangular matrix V;, 11 containing the House-
holder reflectors and an upper triangular matrix T} ;—1 as defined by the
WY technique [26] for accumulating the transformations. Ry, x—1 and Vi x—1
are written on the memory area used for Ay, ;1 while an extra work space is
needed to store T} ;—1. The upper triangular matrix Ry, ;_1, called reference
tile, is eventually used to annihilate the subsequent tiles located below, on
the same panel.

— CORE_DTSQRT: this kernel performs the QR blocked factorization of
a matrix built by coupling the reference tile Ry ;_; that is produced by
CORE_DGEQRT with a tile below the diagonal A; j_;. It produces an up-
dated Ry ,—1 factor, V; ;1 matrix containing the Householder reflectors and
the matrix 7T; ;_1 resulting from accumulating the reflectors V; ;1.

— CORE_DORMQR: this kernel is used to apply the transformations com-
puted by CORE_.DGEQRT (Vi k—1, Tk x—1) to the tile row Ay g.ns (left up-
dates) and the tile column Aj.,; ; (right updates).

— CORE_DTSSSMQR: this kernel applies the reflectors V; 1 and the ma-
trix T; ;1 computed by CORE_DTSQRT to two tile rows Ay, .t and A; gope
(left updates), and two tile columns Aj.p,; , and Az, (right updates).

Compared to the tile QR kernels used by Buttari et. al in [9], the right variants
for CORE_.DORMQR and CORE_DTSSSMQR have been developed. The other
kernels are exactly the same as [9]. The tile BHR algorithm with Householder
reflectors then appears as in Algorithm 3. Figure 1 shows the BHR algorithm
applied on a matrix with nt=5 tiles in each direction. The dark gray tile is the
processed tile at the current step using as input dependency the black tile, the
white tiles are the tiles zeroed so far, the bright gray tiles are those which still
need to be processed and the striped tile represents the final data tile. For exam-
ple, in Figure 1(a), a subdiagonal tile (in dark gray) of the first panel is reduced



Algorithm 3 Tile BHR Algorithm with Householder reflectors.
1: for k = 2 tont do
2: Rik—1,Vek—1,Tk,k—1 — CORE_DGEQRT (A x—1)

3: for j = ktontdo

4: Ag,; — CORE_.DORMQR(left, Vk,kfl,Tk,kfl,Ak,j)

5: end for

6: for ;7 = 1tontdo

7: Ak — CORE,DORMQR(Tight, Vk,k—th,k—l,Aj,k)

8: end for

9: fori = k+1 tont do

10: Rk,kfh ‘/i’kfl,Ti,kfl — CORE,DTSQRT(Rk,kfh Ai,kfl)

11: for j = k tont do

12: Ak,j, A»L‘,]' — COR,E,DTSSSMQR(left, ‘/i,k—l,Ti,k—l, Akyj, Ai,j)
13: end for

14: for j = 1tont do

15: Aj,k, Aj,i — CORE,DTSSSMQR(Tight, ‘/i,k—h Ti,k—l, Aj,k7 Aj,i)
16: end for

17: end for

18: end for

using the upper structure of the reference tile (in black). This operation is done
by the kernel CORE_DTSQRT(Rs2,1, A41,T4,1,). In Figure 1(b), the reference
tile (in black) of the third panel is reduced and its corresponding updates are
applied, e.g., the top dark gray tile is CORE_DORMQR(right, Vi 3,1y 3, A1 4)
while the bottom one is CORE_DORMQR(left, Vi 3,743, As5). These update
kernels are exclusively performed in Level 3 BLAS thanks to the WY technique
for accumulating the transformations. Moreover, by working on small tiles with
Block Data Layout (BDL), the elements are stored contiguous in memory and
thus the access pattern to memory is more regular, which makes these kernels
achieving high performance.

In the following part, we present a similar BHR approach based exclusively
on Givens rotations.

Givens Rotations The kernels of the BHR algorithm with Givens rotations are
much simpler than those with Householder reflectors. Except for the factorization
kernels, all are straight calls to the BLAS library. The skeleton of Algorithm 4
with Givens rotations is exactly the same as Algorithm 3 with Householder
reflectors. This can be proved by analyzing the dependencies between the kernels
in the directed acyclic graph (DAG) generated by both algorithms. The nodes
represent tasks, either panel factorization or update of a block-row or a block-
column, and edges represent dependencies among them. Both generated DAGs
are identical.

— CORE_DGEGRG: this kernel annihilates a subdiagonal tile Ay ;1 of the
input matrix with Givens rotations. It produces an upper triangular matrix
Ry -1 and a dense Givens rotation matrix Gy, j—1 of size b x b resulting from



(a) BHR: Reduction Step 1. (b) BHR: Reduction Step 3.

Fig. 1. BHR algorithm applied on a tiled Matrix with nt= 5.

the aggregation of the local Givens rotation transformation matrices, in order
to generate matrix-matrix operations during the left and the right updates.
These explicit accumulations are performed using a recursive formula, as
explained by Gill et. al in [17]. The components ¢ and s of the local Givens
rotation matrix can also be saved in a single element (see Stewart in [27]) and
stored in the lower zeroes part of the tile Ay 1. Rj r—1 is written on the
memory area used for Ay ,_1, while an extra work space is needed to store
the matrix Gy, ,—1. The upper triangular reference tile Ry, ,_1 is eventually
used to annihilate the subsequent tiles located below, on the same panel.
CORE_DTSGRG: this kernel eliminates a tile A; y_1 using the reference
tile Ry x—1 that is produces by CORE_DGEGRG. It yields an updated
Ry k-1 factor and a Givens rotation matrix G, ,_1 of size 2b x 2b with a
shape depicted in Figure 2, resulting from accumulating the local Givens
rotation matrices.

CORE_DORMGR: this kernel is in fact a single call to DGEMM BLAS
routine. It applies the rotations Gj y_; computed by CORE_DGEGRG to
the tile row Ay, p.ne (left updates) and the tile column Ay ., (right updates).
CORE_DTSSSMGR: this kernel corresponds to two successive calls to
DTRMM and DGEMM,, i.e., a call to DTRMM for the lower triangular
structure followed by a call to DGEMM for the upper square structure (see
Figure 2). It applies the rotations G; y_1 computed by CORE_DTSQRT to
two tile rows Ay, g.ne and A; k.t (left updates), and two tile columns Aj.p¢ i
and Ay, (right updates).

The tile BHR algorithm with Givens rotations then appears as in Algorithm 4.
Figure 3 and 4 illustrate step-by-step the sequential execution of Algorithms 3
and 4, with Householder reflectors and Givens rotations in order to eliminate
the first panel of a tile width. More specifically, in Figure 3, the first matrix
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Algorithm 4 Tile BHR Algorithm with Givens rotations.
1: for k = 2 tont do
2: Rik—1,Grk—1 — CORE,DGEGRG(Ak,kfﬂ

3: for j = ktontdo

4: Ayg,; — CORE_DORMGR(left, Gi,k—1, Ak,;)

5: end for

6: for ;7 = 1tontdo

7: Aj’k — CORE,DORMGR(TZ'ght, Gk,k—hAj,k)

8: end for

9: fori = k+1 tont do

10: Rik—1,Gi -1 «— CORE,DTSGRG(Rk,kfl,Aiykfl)

11: for j = k tont do

12: Ak,j, A»L',]' — COR,E,DTSSSMGR(left, Gi,k—h Ak,j, Ai,j)
13: end for

14: for j = 1tont do

15: Aj,k7 Aj,i — CORE,DTSSSMGR(Tight, Gi7k_1, Ajyk, Aj,i)
16: end for

17: end for

18: end for

row corresponds to the factorization of the reference tile with its associated left
updates. The second matrix row shows the factorization of the subdiagonal tile
(using the reference tile) and its associated left updates, and so on. In Figure 4,
the first matrix column shows the right updates relative to the factorization of the
reference tile. The second matrix column represents the right updates relative to
the factorization of the subdiagonal tile and so on. It appears necessary then to
efficiently schedule the kernels to get high performance in parallel. In particular,
the left and right updates can actually be interleaved, i.e., the right updates do
not need to wait for the left updates to completely finish to be triggered. Indeed,
the scheduling of these update kernels can result to an out-of-order execution,
as seen in Section 3.5.

Fig. 2. Givens rotation matrix produced by CORE_DTSQRG used during the update
procedures.
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Fig. 4. Scheduling of the Right Orthogonal Transformation.




In the following subsection, we present the second stage of the HR, which
further reduces the matrix to the Hessenberg form using a parallel bulge chasing
procedure.

3.3 Second Stage: The Parallel Bulge Chasing Procedure

In the second stage, the block Hessenberg matrix Hy is further reduced to acquire
the full Hessenberg form by implementing a bulge chasing procedure. This well-
known procedure annihilates the nonzero lower b— 1 subdiagonals. Typically, the
elimination of a single element of the first subdiagonal will create a 2 x 2 bulge
at the top of the matrix. This bulge needs to be chased down to the end of the
matrix by successively applying orthogonal transformations (i.e., Householder
reflectors or Givens rotations) from the left and right side of the matrix. How-
ever, an element-wise elimination is not efficient because it involves only Level 1
BLAS. A blocked bulge chasing procedure is rather preferred in which an entire
column is first reduced. The orthogonal transformations are then accumulated
and the left and right updates are delayed. Then, the corresponding updates are
applied from the left and right side of the matrix in order to chase the b x b
bulges down to the end of the matrix. This chasing procedure is described in
Figure 5 for the first supersweep on a matrix with nt = 4 and b = 4. The red
and green rectangles correspond to the left and right updates respectively, i.e.,
CORE_DORMQR. or CORE_.DORMGR, depending on whether the procedure
is performed with Householder reflectors or Givens rotations. To limit the fill-in
in the unreduced part of Hy, the b x b bulge needs to be chased down before
any subsequent orthogonal transformations are applied on top of it. The blocked
bulge chasing procedure is more efficient because it is mainly based on Level
3 BLAS. This technique is also described by Dackland et. al in [11] and by
Adlerborn et. al in [4] for the QZ algorithm. To parallelize this procedure, we
used the parallel programming framework SMP Superscalar (SMPSs) [3]. This
framework allows us to perform pipelining strategy between each column anni-
hilation or supersweep and ensures that the left and right updates are applied in
the correct order (i.e., dependencies are not violated). More details about this
framework are provided in the Section 3.5.

However, the blocked bulge chasing technique presents three major draw-
backs:

— The number of floating-point operations engendered is significantly higher
and is at least half the number of floating-point operations required to
achieve the full reduction, i.e. 10/3 n®, depending on the tile size b.

— If the eigenvectors are also needed by the user, an n® term will be added to
the operation count of the back transformation procedure.

— And most of all, we can not even trade off the additional floating-point opera-
tions for a better parallel implementation on multicore architectures because
this technique can not be expressed into tile algorithms. Between each su-
persweep, a shift down of a single element is performed (and not a shift of
tile), which generates a mismatch with the block data layout (BDL) used for

13



tile algorithms. Indeed, a b x b bulge created during a supersweep may reside
within two different tiles. For example, the right updates (green rectangle)
in Figure 5(a) create a b x b block, which is shared by two different tiles.
In the same way, by chasing down the bulges, most of the updates carried
during the supersweep are applied to two different tiles at the same time.
This would require a significant change in the actual kernel implementation
and would introduce a major complexity in the scheduling scheme to detect
overlapping regions. Therefore, the parallel blocked bulge chasing technique
has been implemented such that it runs on top of the LAPACK data layout
instead (column-major).

EEEE || BN

—

(c) (d)

Fig. 5. Chasing the bulges during the first supersweep.

In the next subsection, the number of floating-point operations required for the
entire two-stage approach is presented with Householder reflectors and Givens
rotations.

14



3.4 Algorithmic Complexity

If an unblocked algorithm is used with Householder reflectors (see Algorithm 1),
the algorithmic complexity for the BHR is 10/3 n (n — b) (n — b), with b being
the tile size. So, compared to the full HR complexity, i.e., 10/3 n3, the BHR
algorithm with Householder reflectors is performing O(n? b) fewer flops. With
Givens rotations (see Algorithm 2), the algorithmic complexity of the corre-
sponding unblocked algorithm is 5 n (n —b) (n —b), i.e., 50% more compared to
the one with Householder reflectors.

In the tile algorithm with Householder reflectors presented in Algorithm 3,
we recall the four kernels and give their complexity:

— CORE_DGEQRT: 4/3b® to perform the factorization of the reference tile
Ay x—1 and 2/3b% for computing Tk j_1.

— CORE_DORMAQR: since Vi p—1 and T} ;—1 are triangular, 3b3 floating-
point operations are performed in this kernel.

— CORE_DTSQRT: 2b3 to perform the factorization of the subdiagonal tile
A; —1 using the reference tile A ;1 and 2/3b% for computing T} j—1, which
overall gives 10/3b% floating-point operations.

— CORE_DTSSSMQR: by exploiting the structure of V; 5,1 and T} _1, 553
floating-point operations are needed by this kernel.

More details can be found in [8]. The total number of floating-point operations
for the BHR with Householder reflectors is then:

nt
1
> (26 + 3(nt — k)b + Eo(nt —k)b? (6)
k=2
+ 5(nt — k)?b® + 3b®nt + 5nt(nt — k + 1)b°)

5 5

~ gmt?’b?’ + 5mt?’b3
5 5

= §n3 + 5”3
25 4

which is 25% higher than the unblocked algorithm for the same reduction. In-
deed, the cost of these updating techniques is an increase in the operation count
for the BHR reduction. However, as suggested in [13-15], by setting up inner-
blocking within the tiles during the panel factorizations as well as the trailing
submatrix updates (i.e., left and right), CORE_DGEQRT-CORE_DTSQRT ker-
nels and CORE_DORMQR-CORE_DTSSSMQR kernels respectively, those extra
flops become negligible provided s < b, with s being the inner-blocking size.
The inner-blocking size trades off actual memory load with those extra-flops.
This blocking approach has also been described in [19,24]. To understand how
this cuts the operation count of the BHR algorithm, it is important to note that
the CORE_DGEQRT, CORE_DORMQR and CORE_DTSQRT kernels only ac-
count for lower order terms in the total operation count for the tile block Hessen-
berg algorithm (see Equation 6). It is, thus, possible to ignore these terms and
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derive the operation count for the tile block Hessenberg algorithm as the sum of
the cost of all the CORE_DTSSSMQR kernels. The sequential performance of
this most compute intensive kernel can be found in [5]4. The T; j—1 generated
by CORE_DTSQRT and used by CORE_DTSSSMQR are not upper triangular
anymore but becomes upper-triangular by block thanks to inner-blocking. The
cost of a single CORE_DTSSSMQR call drops down, and by ignoring the lower
order terms, it is now 4b® + sb?. The total cost of the tile block Hessenberg
algorithm with internal blocking is then:

nt
D (467 + sb%)(nt — k)* + nt(nt — k + 1)(46° + sb?)) (7)
k=2
3 2 1 3 1 3
~ (4b° + sb )(gnt +§nt )
—ag Sy de o
f(1+4b)(3n + 2n°).

The operation count for the tile block Hessenberg algorithm with internal block-
ing is bigger than that of the unblocked algorithm only by the factor (14 ),
which is negligible, provided that s < b. Note that, in the case where s = b, the
tile block Hessenberg algorithm performs 25% more floating-point operations
than the unblocked algorithm, as stated before. So, by adding the complexity of
this first stage with the one of the bulge chasing procedure, we end up with a
total of at least 5n> floating-point operations for the full Hessenberg reduction,
i.e., at least 50% higher than the one required by the unblocked algorithm.

In the tile algorithm with Givens rotations presented in Algorithm 4, we
recall the four kernels and give their complexity:

— CORE_DGEGRG: 2b? to perform the factorization of Ay _1 and 3b3 for
computing the explicit accumulation of the Givens rotations, i.e., Gy 1.

— CORE_DORMGR: this kernel consists of a single call to DGEMM, i.e.,
it multiplies A ; by G r—1 of size b for j € k..nt, where 2b3 floating-point
operations are thus performed in this kernel.

— CORE_DTSGRG: 3b3 to perform the factorization of the subdiagonal tile
A; ;—1 using the reference tile Ay ;—; and 6b3 for computing G; k1 of size
2b x 2b.

— CORE_DTSSSMGR: this kernel calls successively DTRMM on 2b matrix
size and DGEMM on b matrix size and therefore 203 + 4b% = 6b3 floating-
point operations are needed by this kernel.

The panel factorization kernels, i.e., CORE_DGEGRG and CORE_DTSGRG,
are expensive due the explicit accumulation of the Givens matrices compared to
those with Householder reflectors, i.e., CORE_DGEQRT and CORE_DTSQRT.

4 Note that the name of the kernel has changed since, from dssrfb to
CORE_DTSSSMQR.
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The total number of floating-point operations for the BHR with Givens rotations
is then:

nt
> (5b% + 2(nt — k)b® + 96° (nt — k) (8)
k=2

+ 6(nt — k)?b® 4 2b°nt + 6nt(nt — k + 1)b°)

) 11
~ 5p3nt3 + ?bgmf2

11
=5n’ + 3n2b,

which is 50% higher than the unblocked algorithm for the same reduction, as-
suming b < n. The authors are not aware of any existing techniques for Givens
rotations that could decrease the amount of the extra-flops, as has been done
with Householder reflectors. Finally, by adding the complexity of this first stage
with the one of the bulge chasing procedure, we end up with a total of at least
15/2n3 floating-point operations for the full Hessenberg reduction, i.e., at least
125% higher than the one required by the unblocked algorithm.

In the following part, we present two dynamic data driven execution sched-
ulers that ensure the small tasks (or kernels) generated by Algorithms 3 and 4
are processed as soon as their respective dependencies are satisfied.

3.5 Dynamic Data Driven Execution

Hand-Coded Dynamic Data Driven Scheduler A dynamic scheduling
scheme similar to [9] has been extended for the two-sided orthogonal trans-
formations. The dynamic scheduler maintains a central progress table, which is
accessed in the critical section of the code and protected with mutual exclusion
primitives (POSIX mutexes in this case). Each thread scans the table to fetch
one task at a time for execution. As long as there are tasks with all dependen-
cies satisfied, the scheduler will provide them to the requesting threads and will
allow an out-of-order execution. The scheduler does not attempt to exploit data
reuse between tasks. The centralized nature of the scheduler is inherently non-
scalable with the number of threads. Also, the need for scanning a potentially
large table window, in order to find work, is inherently non-scalable with the
problem size. However, this organization does not cause performance problems
for the numbers of threads, problem sizes and task granularities investigated in
this paper. A Directed Acyclic Graph (DAG) can be used to represent the data
flow between the nodes/kernels. While the DAG is quite easy to draw for a small
number of tiles, it becomes very complex when the number of tiles increases and
it is even more difficult to process than the one created by the one-sided or-
thogonal transformations. Indeed, the right updates impose robust constraints
on the scheduler by filling up the DAG with multiple additional edges.

Figure 6 shows a complete tracing of the dynamic data driven scheduler us-
ing eight cores, performing in that particular experiment the BHR with House-
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holder reflectors (the same figure could be generated with Givens rotations as
well) with a matrix size n = 2000 and a tile size b = 200. The four differ-
ent kernels are clearly identified with their colors. The red color represents the
CORE_DGEQRT kernel, the green color is the CORE_DTSQRT kernel, the blue
and violet colors stand for the CORE_DORMQR kernel for the left and right
transformations, respectively, and finally, the yellow and pink colors correspond
to the CORE_DTSSSMQR kernel for the the left and right orthogonal trans-
formations, respectively. From this figure, the first task scheduled is obviously
the CORE_DGEQRT kernel, which allows us to eventually generate many tasks
for the other cores. This particular task is indeed part of the critical path and
needs to be scheduled at a high priority level. As a matter of fact, the next
CORE_DGEQRT of the second panel factorization is scheduled although the
updates of the first panel are still being computed. Also, it is interesting to see
what the tasks are that can run concurrently without violating the dependen-
cies. For example, the CORE_DORMQR kernels, whether it is a left or right
transformation, can be run independently from each other, except in the case
of updating the tile Ay j, in which the left transformation has to advance the
right transformation. The CORE_DTSQRT kernels that do the panel factor-
ization are sequential, i.e., they are called successively one after the other, but
at the same time, they run concurrently with the CORE_DORMQR kernels.
The CORE_DTSSSMQR kernels, represented by the yellow and pink colors, are
clearly interleaved, which demonstrates the out-of-order execution of the DAG.
Furthermore, Figure 6 shows that all the idle times, which represent the major
scalability limit of the fork-join approach, can be removed thanks to the very
low synchronization requirements of the graph driven execution. The idle time
present at the end of the execution trace is due to the limited amount of paral-
lelism among the very last tasks of the DAG. This is characteristic of the load
imbalance in linear algebra algorithms. The graph driven execution also provides
some degree of adaptivity since tasks are scheduled to threads depending on the
availability of execution units.
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Fig.6. Tracing of Dynamic Data Driven Execution with 8 cores. Red:
CORE_DGEQRT; Green: CORE_DTSQRT; Blue, Violet: CORE_DORMQR, left and
right updates resp.; Yellow, Pink: CORE_DTSSSMQR, left and right updates resp.

SMP Superscalar Framework SMP Superscalar (SMPSs) [3] is a paral-
lel programming framework developed at the Barcelona Supercomputer Center
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(Centro Nacional de Supercomputacién). SMPSs is a dynamic scheduler imple-
mentation that addresses the automatic exploitation of the functional paral-
lelism of a sequential program in multicore and symmetric multiprocessor envi-
ronments. SMPSs allows the programmers to write sequential applications, and
the framework is able to exploit the existing concurrency and to use the differ-
ent processors by means of an automatic parallelization at execution time. The
programmer is responsible for identifying parallel tasks, which have to be side-
effect-free (atomic) functions. However, the user is not responsible for exposing
the structure of the task graph. The task graph is built automatically, based on
the information of task parameters and their directionality. Construction of the
DAG does, however, introduce overhead. The programming environment consists
of a source-to-source compiler and a supporting runtime library. The compiler
translates C code with pragma annotations to standard C99 code with calls to the
supporting runtime library and compiles it using the platform native compiler.
The runtime takes care of scheduling the tasks and handling the associated data.
The SMPSs scheduler attempts to exploit locality by scheduling dependent tasks
to the same thread, such that output data is reused immediately. Also, in order
to reduce dependencies, SMPSs runtime is capable of renaming data, leaving
only the true dependencies. At runtime the main thread creates worker threads,
as many as necessary to fully utilize the system, and starts constructing the task
graph (populating its ready list). Each worker thread maintains its own ready
list and populates it while executing tasks. A thread consumes tasks from its
own ready list in LIFO order. If that list is empty, the thread consumes tasks
from the main ready list in FIFO order, and if that list is empty, the thread
steals tasks from the ready lists of other threads in FIFO order.

SMPSs is in particular very useful when dealing with sequential algorithms
that may not be that obvious to implement in parallel, especially those which can
not be expressed in friendly data layout, i.e., tiles / BDL. Indeed, the sequential
bulge chasing procedure is one example, because the detection of overlapping
regions during supersweeps is very challenging and critical to ensure efficient
scheduling and, at the same time, numerical correctness. Therefore, the parallel
implementation of the bulge chasing procedure presented in this paper relies
totally on SMPSs.

In the next section, we present the experimental results comparing our two
BHR implementations (i.e., with Householder reflectors and Givens rotations)
associated with the parallel bulge chasing procedure (only Householder reflec-
tors are considered for that procedure) against the state of the art library, i.e.,
LAPACK [7], ScaLAPACK [10] and MKL 10.1 [2].

4 Experimental Results

4.1 Experimental Environment

The experiments have been performed on a quad-socket quad-core machine based
on an Intel Xeon EMT64 E7340 processor operating at 2.39 GHz. The theoreti-
cal peak is equal to 9.6 Gflop/s/ per core or 153.2 Gflop/s for the whole node,
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composed of 16 cores. There are two levels of cache. The level-1 cache, local to
the core, is divided into 32 kB of instruction cache and 32 kB of data cache.
Each quad-core processor being actually composed of two dual-core Core2 ar-
chitectures, the level-2 cache has 2 x 4 MB per socket (each dual-core shares 4
MB). The effective bus speed is 1066 MHz per socket leading to a bandwidth of
8.5 GB/s (per socket). The machine is running Linux 2.6.25 and provides Intel
Compilers 11.0 together with the MKL 10.1 vendor library. All the experiments
presented below focus on asymptotic performance and have been conducted on
the maximum amount of cores available on the machine, i.e., 16 cores.

4.2 Tuning

The performance of tile algorithms strongly depends on tunable execution pa-
rameters of the outer and the inner blocking sizes [5]. The outer block size b
trades off parallelization granularity and scheduling flexibility with single core
utilization, while the inner block size s trades off memory load with extra-flops
due to redundant calculations. Manual tuning based on empirical data has been
performed to determine the optimal tile / inner blocking size (bgpnr; SHbhr)
for the BHR algorithm with Householder reflectors and only the tile size bgpp:
for the BHR algorithm with Givens rotations. The same procedure has been
repeated for the Full Hessenberg Reduction (FHR) with the parallel bulge chas-
ing procedure. More precisely, only the most compute intensive kernels, i.e.,
CORE_DTSSSMQR and CORE_DTSSSMGR, have been tuned for different ma-
trix sizes. The tile size for each implementation and different matrix sizes which
gives the best performance has been selected as optimal. Therefore, for each
matrix size, we actually get different optimal tile sizes (i.e., bgpnr # bgonr) be-
tween both algorithms. For example, for the first stage, the couples (bgpnr =
200; sgpnr = 40) and bgpn = 140 were chosen with Householder reflectors and
Givens rotations respectively, to get the asymptotic performance (n = 12000).
For the second stage, we have considered the parallel bulge chasing procedure
only with Householder reflectors, although the same experiments could be done
with Givens rotations. SMPSs parallel programming framework has been used
to schedule the two-stage approach kernels. The optimal block sizes for the first
stage (bgpnr = 200; sgpn = 40) are obviously not optimal for the second stage
when looking at asymptotic performance. Clearly, the parallel bulge chasing
is the bottleneck in this two-stage approach as mentioned in Section 3.3. So,
in order to try to get some parallel performance of the overall algorithm, one
should definitely select a different couple (by fnr; S pnr) so that at the end of
the first stage, the reduced matrix has a smaller bandwidth. To get the asymp-
totic performance for the two-stage approach (BHR algorithm followed by the
bulge chasing procedure) with Householder reflectors, the selected optimal block
size was (bgfhr = 100;sgfhr = 20). Finally, the block sizes for LAPACK and
ScaLAPACK have also been manually tuned, b = 32 and b = 64 respectively.
The MKL library is a highly optimized library tuned by the vendor.
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4.3 The BHR Performance Comparisons

The number of floating-point operations used as a reference to compute the per-
formance of both BHR implementations is 10/3 n (n—b) (n—»b). The hand coded
dynamic data driven scheduler has been used to run both BHR algorithms in
parallel. Figure 7 shows the execution time in seconds for small and large matrix
sizes on 16 cores. For a 12000 x 12000 problem size, the BHR algorithm with
Householder reflectors roughly runs 30 times faster than MKL and LAPACK,
15 times faster than ScaLAPACK and, finally, 6 times faster than the BHR im-
plementation with Givens rotation. The authors understand that it may not be
a fair comparison against those latter libraries, since the reduction is completely
achieved in that case. Indeed, as mentioned in Section 3.4, the remaining reduc-
tion from block Hessenberg to full Hessenberg is very expensive. The purpose of
showing such performance curves is only to give a rough idea, in terms of elapsed
time and performance, of the whole reduction process.

Figure 8 presents the parallel performance in Gflop/s of both BHR algo-
rithms. The BHR algorithm with Householder reflectors scales quite well while
the matrix size increases, reaching 95 Gflop/s. It runs at 61% of the system the-
oretical peak and 72% of the DGEMM peak. The BHR algorithm with Givens
rotations is reaching around 30 Gflop/s at n = 8000 and starting to decrease
for larger matrix sizes. There are mainly three limitations that explain the defi-
ciency of the BHR algorithm with Givens rotations compared to the BHR with
Householder reflectors:

— First, the BHR with Givens rotations itself performs 50% more flops com-
pared to the BHR with Householder reflectors. To our knowledge, there exist
no inner blocking techniques for Givens rotations, which could decrease the
amount of the extra-flops.

— Second, although they are not the most called, the kernels that compute the
panel factorization (i.e., CORE_DGEGRG and CORE_DTSGRG) and that
explicitly build the orthogonal transformation matrices G are not optimized
because they do not rely on high Level BLAS.

— And third, the update kernels (i.e., CORE_DORMGR and
CORE_DTSSSMGR) are not performing their operations in-place. Although
these kernels are mostly straight calls to Level 3 BLAS, they still need
workspaces to compute the corresponding operations and to copy the re-
sults back to the right place.

Another point that adds to the above list is the fact that the optimal tile sizes
brrpnr and by, for a given matrix size are not the same. The selected optimal tile
size of the BHR with Householder reflectors by, for each matrix size is always
larger than the one selected for the BHR with Givens rotations. Therefore, the
reduced matrices from both algorithms at the end of the first stage do not
have the same bandwidth. So, the BHR algorithm with Householder reflectors
is actually performing O((n — bapnr)? (brbhr — babhr)) fewer flops.
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Fig. 7. Elapsed time in seconds for the Block Hessenberg Reduction on a quad-socket
quad-core Intel Xeon 2.4 GHz processors with MKL BLAS 10.1.
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4.4 The FHR Performance Comparisons

Our two-stage Full Hessenberg Reduction (FHR) approach is again composed by
the BHR algorithm (first stage) followed by a parallel bulge chasing procedure
(second stage). The approach presented here is only based on Householder reflec-
tors. The task scheduling of the whole algorithm relies on SMPSs. The optimal
tile sizes of the BHR algorithm for each matrix size have been selected such that
the FHR achieves the best performance. Those tile sizes are obviously smaller
than those selected when only the first stage is performed. The goal is to try
to improve as much as possible the second stage by diminishing the bandwidth.
It is a trade-off because now the first stage does not perform very well with
smaller tile sizes. By looking at the two blue curves from Figure 8, we clearly see
this behavior. The BHR represented by the dark blue curve is optimized for the
first stage (large tile sizes) while the BHR represented by the light blue curve is
optimized for the entire two-stage approach (small tile sizes). Now, by looking
at Figure 9 which zooms into the FHR curves, we clearly see how the second
stage negates the overall performance of the two-stage approach for the reasons
already explained in Section 3.3. This two-stage approach is also handicapped
by the cost of the translation from the original BDL of the first stage to the stan-
dard LAPACK layout of the second stage, which takes approximately less than
10% of the elapsed time for large matrix sizes. The authors are also surprised to
see the same curves for the FHR of LAPACK and MKL, probably because they
have a very similar implementation.
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Note that the FHR of ScaLAPACK is twice as fast as the FHR of MKL and
LAPACK thanks to the two-dimensional block cyclic distribution.

5 Summary and Future Work

The emergence and continuing use of multicore architectures require changes in
the existing software and sometimes even a complete redesign of the established
algorithms. This mismatch has been clearly identified by Agullo et al. in [5]
for one-sided factorizations (Cholesky, QR and LU) on multicore architectures
with the state of the art linear algebra libraries. Ltaief et al. [22] and this cur-
rent paper confirm that this mismatch is even more critical for the two-sided
transformations.

However, by exploiting the concepts of tile algorithms in the multicore envi-
ronment, i.e., high level of parallelism with fine granularity and high performance
data representation combined with a dynamic data driven execution, the BHR
algorithm with Householder reflectors (first stage) achieves 72% (95 Gflop/s) of
the DGEMM peak on a 12000 x 12000 matrix size with 16 Intel Tigerton 2.4
GHz cores. This algorithm performs most of the operations in Level 3 BLAS
and considerably surpasses in performance the BHR algorithm with Givens ro-
tations. Unfortunately, the FHR algorithm can not achieve any comparable per-
formance, and this is especially due to the inefficiency on multicore architectures
of the parallel bulge chasing procedure. This procedure may indeed not suitable
for multicores because of the conflict it engenders with the data layout, i.e.,
standard layout as in LAPACK versus BDL / tile layout.

The purpose of this paper is to show that going from the dense matrix to
the block Hessenberg form is really an efficient process on multicore architec-
tures thanks to tile algorithms. This block structure might be considered at
some point to solve the full non symmetric EVP, either as a pre-processing to
go to Hessenberg form or maybe to go directly from block Hessenberg to Schur
form. The efficient reduction to full Hessenberg is still an open research issue
on multicore architectures. It is also noteworthy to mention another approach
followed recently by one of the author to achieve the full reduction using hy-
brid computations [29], where the matrix-vector product occurring in the panel
factorization is off-loaded to the GPU, benefiting from the high bandwidth that
such hardware offers.

Finally, this work can be extended to the rest of the family of the two-sided
orthogonal transformations, especially the block tri-diagonalization in which the
bulge chasing procedure will definitely require fewer flops. The authors are also
looking at previous algorithms such as Jacobi methods as well as the potential
use of matrix sign functions to achieve the full reduction in the context of tile
algorithms.
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