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in IEEE standard floating point arithmetic [1]. Hnally, we wish to
provi de perfornmance eval uati on tools for newarchitectures.
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and result in cleaner and easier-to-read code. Another useful feature
is the dynamc allocation of workspace. Anost all block routines
need work space, with the opti nal anount of storage determned de-
pendi ng on the problemparaneters at run-tine. Chrrently, the user
will pass a vwork arrayin the argunent 1ist in the hope that it will be
big enough; if it is not, the bl ock size used may be 1 ess than optinal .
In Fortran 90, vwork space coul d be allocated dynam cally at run-ti ne
ina fashion that is transparent to the user. This woul d significantly
shorten calling sequences and avoi d sone common progranmmi ng m s-

takes resul ting frompassing toolittle vwork space.

In a future project we plan to develop a Fortran 90 version of
LAPACK and also a Cversion, using tools for automatic transfor-
mation as far as possible. However, for the current phase of initial
devel opnent and testing, Fortran 77 was the onl y reasonable choi ce.

10 Future Work

Qur first prelimnary softvare rel ease in April 1989 distributed codes
for linear equation sol ving and QR deconposition to over 65 test
sites. Qur second prelimmnary release occured in April 1990 and
includes softvare for iterative refinenent, the nonsymmetric eigen-
probl em symetric ei genprobl em and SVD Banded ei genprobl ens,
generalized eigenproblens and the generalized SVD, condition esti-
nation for the ei genprobl em and updates of various deconposi tions
will followin 1990. W are worki ng toward the first public rel ease of
LAPACKat the beginning of 1991.

For the longer term we have identified a nunber of research
directions. First, we are interested in extending our approach to
distributed- nenory nachi nes. These are nore challenging than the
shared- nenory nachi nes we have been working on, because of the
addi tional cost of communication between different processors and
nenories. Second, we would like to systematically devel op parane-
terized software that is both portable and effecient. In section 3 we
identified the bl ock size 7as one such paraneter. Third, we wish
toidentifyfeatures of conputer architectures that either hel p or hin-
der production of good nunerical software. Two exanpl es of hel pful
features are the ability to access rows and col umms of natrices with
simlar speeds, and friendly error recovery such as the overflowflag
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conpute the SVI) and for pairs of natrices, it will conpute the gen-
eralized SV It will also do rank-1 updates of the bidi agonal SVD
and tridi agonal symetric ei genprobl em

LAPACKwi 11 i ncl ude condi tionesti nators for linear systens, ei gen-
val ues, eigenvectors, andinvariant subspaces. It will sol ve the Syl vester
equation and general i zed Syl vester equati onand canreorder the eigen-
val ues al ong the di agonal of a matrixin Schur form

The nonsymetric eigenroutines will be based on the QR al go-
rithm Inverse iteration will be available if only a feweigenvectors
are desired. lor the symetric tridiagonal eigenproblem(the final
phase of the dense symetric ei genprobl em) al gori thns based on QR
di vi de- and- conquer [13], and bisection will be included; these al go-
rithns have di flerent attainabl e accuracies, require different anounts
of storage, and run at di flerent speeds on di flerent archi tectures and
dependi ng on whether sone or all eigenval ues and eigenvectors are
desired. In other words, no single algorithmis best inall cases [10].
The sane is true for the bidiagonal SVI) which is the final phase
of the general SV W also plan toinclude Jacobi’s nethod for the
dense symetric ei genprobl emand SVDin alater release, for reasons
given earlier.

9.2 Language and Style

The software is being developed in portable Fortran 77, with ex-
tensions to the standard only where necessary. Single- and doubl e-
precision versions will be prepared; conversion between different pre-
cisions will be perforned autonmatically by sof tware tools fromTool -
pack/1.

Routines for conpl ex matrices will use the COWLEX data type
(like LINPACK but unlike KISPACK); hence the availability of a
doubl e- precision conpl ex ( COVPLEX*16 or DOUBLE COVPLEX)
data type will be assumed as an extension to Fortran 77. Routines
for real and conplex matrices will be written to maintain a close
correspondence between the two, however, in sone al gorithns (e.g.,
unsynmetric ei genval ue probl ens ) the correspondence will necessarily
be weaker.

W realize that Fortran 90 is likely to have a nunber of features
that woul d i nprove the design and coding of the library. In particu-
lar, its built-inarrayfeatures woul d repl ace sone of the BLAS kernel s
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W can showthat Jacobi’s nethod (with a nodi fied stopping cri -
terion) will attain these newerror bounds, but in general (Rwill
not. For the exanple in the last paragraph, QRconputes two out of
the three eigenval ues as negative, whereas H is positive definite. In
contrast, Jacobi conputes all the eigenval ues to nearly full nachine
precision. In fact for this exanple we can showJacobi conputes all
conponents of all eigenvectors to nearly full relative accuracy, even
though they vary by 16 orders of nagni tude; again QRwill not even
get the signs of many snall conponents correct.

All these resul ts nay be extended to the dense SVD), except that
the notion of perturbation used is that each col umm of 6 H must be
small in normconpared to the correspondi ng col umm of H.

9 LAPAXCK Structure, Language, and Style

9.1 Contents

In this subsection, we outline the planned contents of the LAPACK
library; see [5] for details.

For sol ving ¢ near equati ons, LAPACKwi 11 performtri angul ar fac-
torization, solutionviaforwardand backsubstitution, iterative refine-
nent [ 10, 2] and equilibration. It will handle general natrices (dense
only), positive defini te natrices (dense or banded), symetric indef-
inite matrices (dense or banded), and triangul ar natrices (dense or
banded). In addition, symetric and triangular natrices may be
stored in a packed format. It will also update triangular factoriza-
tions.

For sol ving [ east squares, LAPACKw 11 do QRdeconpositionwi th
and wi thout pivoting, as well as least squares sol utions using this de-
conposition. It will also conpute the generalized QR deconposition
of two matrices (this is needed for the generalized SVDbel ow) and
update the QR deconposition.

For sol vi ng ei genprobl ens, LAPACKwi 11 conpute ei genval ues, the
Schur form and ei genvectors for general matrices or natrix pencils
(i.e., the generalizedeigensystemof A—AB). For symetric natrices
(dense or banded) it will conpute eigenval ues and ei genvectors. It
will also handle the generalized symmetric eigenproblemA — A B for
A and B symetric (dense or banded) and B positive definite. For
general matrices (dense or banded) and triangular matrices, it will
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In contrast, the new perturbation theory uses the neasure n =
relp(6 H) introducedinsection 6, but applies only to positive definite
matrices. 1o present the results, we rewite H as H =DAD, where
D :djag(Hlll/Q,.. . ,%7/3'1) is diagonal and A has unit di agonal. It
is known that A’s condition nunber x(A) = [|4]] A2 satisfies
k(A) < nipk (DHD), where the minimmis over all nonsingul ar
di agonal matrices) [31]. Inother vords, A is nearly the best di agonal
scaling of H. Then we nay show[ 12]

|A; = Al
A;

sinf(p,

< n-n- k(A)

(n —132. 5 - k(A
e L LS NEIE

IN

where the rel ative gap between ei genval ues is

rel gua=zpnin 7| 2= Al
S (A AV
There is al so a nonasynptotic version of the eigenvector bound, but
weomt it for sinplicityof presentation.
Nowwe contrast the neww th the ol d bounds. Fom(10) we get
the conventional rel ative error bound
Y

K3

(13)

tocontrast with (12). Tosee howmichstronger (12) nay be, consider
the symmetric positive definite matrix H =DAD where

1010 1022 10'° 1 .1
H = 10* 10%* 10° , A= .1 1 .
101 10° 1 .11

and D =diag (102°, 1¥, 1). Here s (H) ~*0and x (A) = 1. 33.
Thus, n relative perturbations in the matrix entries only cause 4n
rel ative perturbations in the eigenval ues according to the newtheo-
rem and 3- 16°. g relative perturbations according to the conven-
tional theorem Aso, the absolute gaps for the eigenval ues of H are
gap 3~ 1020, 16, 1, vhereas the relative gaps r e\f g ape

all approximatel y 1{P. Thus the newtheory predicts errors ipand

vg of norm2- 10*° 5, whereas the ol d theory predicts errors &f7l0
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convergent; neverthel ess, no speed is lost, because it is applied only
when o min/0mx , 1ts convergence factor, is quite small. Thus, con-
vergence is guaranteed to be fast, even though linear. See [11] for
detailed resul ts of nunerical tests.

8 Jacobi’s Method for the Symmetric Posi-
tive Definite Eigenprobl em

W begin by review ng the conventional perturbation theory, algo-
rithns and error anal ysis for the symetric positive definite eigen-
probl em and then discuss the newapproach. See [12] for details and
proofs.

The conventional perturbation theory, al gorithns and error anal -
ysis work equally well for all symetric natrices. lLet H be ann by
n symetric matrix and 6 H a perturbation. Iet; And v; denote
the ei genval ues and uni t ei genvectors of H, respectivel y, vhere we as-
sune Ap < - - - 5.ALet X and v! be the corresponding val ues for
H'=H +6 H. 'Then the following results are well known [ 26, 8]:

| A= XN < || ¢ H|
| 6 Hy|
g ap-| 6 HY

where the absolute gap betveen ei genval ues is

sinf (v B <

k3

(10)

gap=mn| )= A (11)
iy

As in the last section, sinf (z, y) denotes the sine of the acute angle
between the vectors  and y .

Any of the conventional al gorithns for the symetric ei genprob-
lem including QRiteration, Jacobi, bisection and inverse iteration,
are known to be backward stable: they conpute the exact eigende-
conposition of H 46 H, where || 6 HHO(e)|| Hlp. Thus, just as
with the conventional SVDalgorithm large eigenval ues (those near
An =|| H||2) are conputed wi th hi gh rel ati ve accuracy, but snall ones
(A <€ A,) may be totallyinaccurate if g X A;. Simlarly, if there
are at least tvwo tiny eigenval ueg, AN A ,, then both g ¢;and g a p
are smal |l and the error bound on the ei genvectors is large.
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by 3 bidi agonal natrix with singul ar valueg &1, o =2+ 10%° ,

and 03 =10 ?° . Note that g sp=g a p =10 20 and that r e [ g ep
rel gapl/ 3. Since the normof this perturbation is about*q(Q

we may apply (6) to get the absol ute error bound 18° > o3 for &;
and, since 18° >¢ a p, no error bound for the singul ar vectors at
all. Applying (8), we get arelative error bound of about 5 it

o3. 'Thus, we have at 1east 9 decinal digits of accuracy gn whereas

(6) predicts changes P8 tines larger. Applying (8) again, we get an
error bound of about 2. 1-#0inthe directionof the singul ar vectors,
whereas (6) provi des no error bound at all. The sane resul ts hol d for
oy and its singul ar vectors.

In summary, absolute uncertainties in the entries of a general
matrix yield absolute error bounds on its singul ar values, and error
bounds depending on the absolute gap for its singul ar vectors. In
contrast, relative uncertainties in the entries of a bidiagonal matrix
vield relative error bounds on its singular val ues, and error bounds
dependi ng on the relative gap for its singul ar vectors.

W have devel oped a new bi di agonal SVD al gori thmthat com
putes singul ar val ues and singul ar vectors withinthe accuracy bounds
of this perturbation theory. The al gorithns are not backward stable
in the usual sense, as indeed they cannot be, since setting an offdi-
agonal entry of B to zero (convergence) is alarge relative change in
an entry of B. Nonetheless, we can showthat the conbined effects
of roundoff and the stopping criterionpermt all singul ar val ues to be
conputed wi th rel ative accuracy O(¢ ) and singul ar vectqrand v;
to be conputed with accuracy O(e )/ rel,g ap

The al gori thmis a hybrid of the conventional, shifted QR al go-
rithmand a new, stable i npl enentation of QRwith a zeroshift [11].
There is al so anewstopping criterion(criterionfor setting offdi agonal
entries of B to zero). 'The zero-shift QRalgorithmhas the property
that it conputes each entry of the transformed natrix to high rela-
tive accuracy. It is used on deflated subnmatrices of B whose condi-
tion nunber oy / Gin is solarge that the round offi ntroduced by the
standard shifted QR, ¢ ¢, woul d nake unacceptabl y | arge changes
in the conputed opyy,. Standard shifted QRis used on submatrices
where oax / Gun is snall.

In nunerical tests, this newal gorithmwas approxinatel y as fast
and occasionall y much faster thanits conventional counterpart. Zero-
shift QRis only linearly convergent, whereas shift QRis cubically
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foll owing resul ts are well known [ 26, 8]:

| o—oil < ¢ Bl

: : 1 ¢ By
mx(sing (u ), sinf () <
( ( ﬂ) ( )) g ap H(SBZH

(6)
where the absolute gap between singul ar val ues is

ap=mn — 05 7

gap=min|g-—oi (7)

Here sinf (2, y ) denotes the sine of the acute angl e betweenthe vectors
x and y .

The conventional algorithmfor the bidiagonal SVDis (Riter-
ation, which can be shown to be backward stable: it conputes the
exact SVDof B 46 B where || § BJ|=0(¢ )|| BY| Thus, large singul ar
val ues (those near g=|| B|;) are conputed wi th hi gh rel ative accu-
racy, but snall ones (p< 0o, ) muy be totallyinaccurate if ¢ % o;.
Simlarly, if there are at least two tiny singul ar val,ues <o,
then both g ajand g @ pare snall and the error bound on the singul ar
vectors is large.

In contrast, the newperturbation theory uses the foll owi ng nea-
sure:

7= (0 - 1) mixlog ot
K3 2]

whichis approximately (2n — 1)rp{d B) when both are small. Che
can prove [ 11, 9]

| ¢— o
oy

el —1

IN

2120 (147 )
rel gapn

max(sing (w %, sin€; () (8)

where the rel ative gap between singul ar val ues is

L g—ail
rel mn ——— 9
LIS (9)
(he can easily see that bounds (8) are at least about as strong as
their conventional counterparts (6). T see hownuch stronger they
may be, consider making relative perturbations of siza’l(in a 3
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cases noni tor their accuracy and produce useful error bounds. The
algorithns are usually small variations on conventional al gorithns,
perhaps with aslightlydiflerent stopping criterion, although the bidi-
agonal SVDal gorithmhas a quite new conponent. In all cases the

al gorithns run approxi natel y as fast as their conventional counter-
parts, sonetines a little slover and sometines a little faster. Since
they are based on the conventional al gorithns, all the techni ques us-
ing the Level 3 BLAS appl y to them

Thi s approach has been applied tolinear equation sol ving[2], lin-
ear least-squares problens [3], the bidiagonal SVD[11, 9], the tridi-
agonal symetric eigenproblem|[28, 4], the dense symetric positive
defini te eigenproblem[12], and the dense defini te generalized eigen-
problem[4, 12]. W have simlar but slightly weaker results for the
dense SVDand general i zed SVD[12]. These al gori thns ei ther will be
included directly in LAPACKor can be easily constructed by using
LAPACK subroutines as “buil di ng bl ocks.”

In the next two sections, we shall describe these newal gorithns
for the bidiagonal SVDand dense symetric positive defini te ei gen-
problem respectively. The LAPACKroutine SBIBCR inpl enents
the newbi di agonal SVDal gorithm the work on the symetric ei gen-
probl emi s a nore recent devel opnent, and sof tware has not yet been
prepared for inclusionin LAPACK

7 The Bidiagonal SVD

Abi di agonal matrixis one that is nonzero only on the main di agonal
and first superdi agonal. The probl emof conputing its SVDarises
both as the final stage of conputing the SVDof a general natrix
[14] and in the symetric positive definite tridiagonal eigenproblem
[4]. W begin by reviewing the conventional perturbation theory,
algorithm and error analysis and then discuss the new approach.
See [11, 9] for details and proofs.

The conventional perturbation theoryis the sane for the SVDof
a bi di agonal nmatrix as for a dense matrix. Suppose B is the n by
n bidi agonal matrix and § B a perturbation. Igt @ and v; be
the singul ar val ues, unit left singul ar vectors, and unit right singul ar
vectors of B, respectively, where we assump € - - - 5.0let d,
w: and v/ be the corresponding values for’ BB +6 B. 'TThen the

16



analysis, but is by no neans the only way to proceed.

There is a great deal of choicein the neasures we choose to bound
errors and neasure distances. In conventional error anal ysis as in-
troduced by Wlkinson, we bound || f(H +6 H) — f (H)|| in terns
of || 6 H|, and shoft H) = f (H +6 H) where || § H|| < O(e )| H| .
Here, || - || denotes a norm like the one-normor Irobenius norm
Typi cally one proves a formul a of the form| f (H 46 H) — f (H)| <
k(f, H)- |6 H|| +OA) ) WHdlre x (H) is called the condition num
ber of H with respect to f. Inthis formilation, it is easy to see that
k(f, H)issinplythe normof the gradient of f at H: || Vf (H)| ; other
scalings are possible. Thus, conbining the perturbation theory and
error anal ysis, one can write

I (H+6 H) = f(H)|| <O()r(f, H)- |PH| +0(e

The drawback of this approach is that it does not respect the
structure of the original data. In particular, if the original datais
sparse or graded (large in sone entries, snmall in others), bounding
6 H only by normcan gi ve very pessimstic results. Atrivial exanple
is solving a di agonal systemof equations. Fach conponent of the
solution is conputed to full accuracy by a single divide operation,
but the conventional condition nunber is the ratio of the largest to
smal l est diagonal entries and nay be arbitrarilylarge.

Instead of boundingé H byits norm|| é H|l , one nayinsteaduse the
neasure 7 eff(6 H) =max;| 6 ff / |, thelargest rel ative change in
any entry (we use the notation r g ko indicate the dependence on
H). This neasure respects sparsity, since imft be zeroif H;is
zero, and also grading, since every entryis perturbed by an anount
smal | conpared toits magni tude. For exanpl e, inthe case of di agonal
linear equation sol ving, one can easily see that a perturbationé H of
size r g6 H) in the nmatrix can only change the sol ution relatively
by r ed(6 H) ineach conponent, and that the al gorithmis backward
stable with r g(é6 H) < e . 'Thus, the newperturbation theory and
error anal ysis with respect tog(é[H) accurately predict that each
conponent of the solutionis conputed to full rel ative accuracy.

W have successfully devel oped new perturbation theory, algo-
rithns, and error anal ysis for the neasure g(é [H) for much of nu-
nerical linear al gebra. W cannot al ways guarantee to sol ve probl ens
as though we had a small 7 ef(é H), but the algorithns can in all
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the LAPACK codes have been carefully designed in a nodul ar fash-
ion and wi th the objective of m nimnizing data novenent. Since data
novenent is the key issue in distributed-nenory as well as shared-
nenory nachi nes, the LAPACKcodes shoul d be easily “tunable” to
nore experinental architectures.

Several of the algorithns we intend to inplenent [19] will re-
quire nore than loop-based parallelism These algorithns will rely
upon t he sinpl i fied SCHEDULE nechani sm[ 20] toinvoke parallelism
These ideas m ght also be used to express top-level parallelismin a
portable fashion. W are also closely following the activities of the
Parallel Conputing Forum|23] which has been forned by conputer
vendors, software devel opers, national 1aboratories, and universities
to exchange technical infornation and to docunent agreements on
constructs for programmng parallel applications for shared-nenory
mul ti processors.

6 High Accuracy Linear Al gebra A gorithna

So far we have concentrated on the speed of the algorithms in LA
PACK But a secondary objective of the LAPAdK project is to de-

vel op new or inproved al gorithns that provide increased accuracy,
specifical | y near- opti numrel ati ve accuracy (inasense to be defined).
To present our discussion, we shall need sone notati on.

W let H denote the problemfor which we seek a solution; we
denote the solution by f (H). Ior exanple, f (H) nay denote the
eigenval ues, eigenvectors, singular values, or singul ar vectors of the
mtrix H. If H denotes the pair (A, b), then f (H) may denote the
sol ution of the linear systemAx =b , perhaps in aleast-squares sense
if Ais singular or not square. In general, f (H) cannot be conputed
exactly and hence is approxi nated by an al gorithmwhose output we
denote f( H). Walsolet ¢ denote the machine precision.

Anal yzing the accuracy of an algorithifi for f consists of two
parts. First, we use perturbation theory, where we bound the difler-
ence f(H +6 H) — f(H) in terns of 6 H. 'This part depends only
on f and not the algorithmthat approxinates it. Second, we use
error anal ysis, which attenpts to showthat the conputed sol ution
f(H) is close to f (H +6& H) for sone bounded § H. Showing that
f(H) =f (H 468 H) for somne bounded § H is called backuurd error
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Tabl es 3 and 4 give resul ts for the CRAYY-MP for 1 and 8 pro-
cessors, respectively. Hepe=64 for SAIRF and SPOIRF and
ny =16 for SQGARE. The naxi mumspeed of a single processor of a
CRAY'Y- MPi s 333 Mlops. 'Thus, we see that for | arge- enough matrix
di nensi ons, the single-processor code runs at at 90% effei ency. Wen
all 8 processors are used, the code attains 73%to 80%eflti ency.

5 Target Mchi nes

The LAPACK]i brary will be designed prinarilyto performeflei ently
on nachi nes with a nodest nunber of processors (say, 1-100), each
havi ng a powerful vector-processing capability. These nachines in-
clude all of the nost powerful conputers currently available and in
use for general - purpose scientific conputing: CRAY-2, (RAYX M,
(RAY Y- M, Fujitsu VP, TBM3090/VF, NEC SX H tachi S-820,
Aliant FX/80, Convex G 1, (bnvex G2, Stardent, Sequent Symme-
try, Fncore Miltinax, and BBN Butterfly. (h conventional serial
machi nes, the performance of the library is expected to be at least
as good as that of the current LINPACKand FH SPACKcodes. Thus
the library will be suitable across the whol e range of nachines from
personal conmputers to superconputers toexperinental architectures.
W do not claimthat the strategy of using lLevel 2 or level 3
BLAS will necessarily attain optinal perfornance on all these na-
chines; indeed, sone al gorithns can be structuredin several diflerent
ways, all calling Level 3 BLAS, but wi th diflerent perfornance charac-
teristics. Insuch cases we shall choose the structure that provi des the
best “average” perfornance over the range of target machines. Cur-
rentl y we are 1im ting nachi ne- dependent optinizations tothe BLAS
toretain portability across architectures. W encourage vendors to
provi de inpl enent ations of the BLAS kernels that are opti mzed for
their particul ar archi tectures. Wile users will be free to devel op their
own versions of the LAPACKcodes, we believe that the possible per-
formance gainwill be limted on the nore conventional archi tectures.
On the nore experinental architectures (inparticular, distributed-
nenory machi nes ), the restrictionof optimzationtothe BLAS m ght
be too limting. In particular, it m ght be advantageous to intro-
duce parallelismat the top-1level of the al gorithminstead of inside the
BLAS. o ai d users in experinenting ontheir particul ar architecture,
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and SAM (matrix-natrix mul tiply), since these are the “speed
linmts” for the al gorithms writtenin terns of the Level 2 BLAS and
Level 3 BLAS, respectively. Al codes were runinsingle precision (32
bits on the (onvex and 64 bi ts on the Gray). Al results are in Mops.

Tabl e 2: LAPACKon a Convex (210
Routine Mtrix Il nension

32 |64 | 128 | 256 | 512
SGMY 34 | 43 | 47| 47 47
SGMM 38 | 44 | 47| 47 47

SEIRF 612 21| 30 36
SPOIRF 8120 33| 40 44

SECRE 12 (21| 27| 33 38

Tabl e 2 gi ves the resul ts for the (onvex (210, with an al gorithm
block size of yp=1. Since matrix-vector and natrix-natrix ml tiply
are equally fast on this machine in their current inplenentations,
nothing is gained by going to the Level 3 BLAS.

Table 3: LAPACKon a (RAY ¥ WP
1 Processor
Routine Mtrix Il nension
32| 64| 128 | 256 | 512 | 1024
SEIRF 40 | 108 | 195 | 260 | 290 | 304
SPOIRF 34 | 95| 188 | 259 | 289 | 301
SECRE 54 | 139 | 225 | 275 | 294 | 301

Table 4: LAPACKon a (RAY Y- MP
8 Processors
Routine Mtrix Il nension
32| 64| 128 | 256 | 512 | 1024
SEIRF 32| 90| 205 | 375 | 1039 | 1974
SPOIRF 29 | 84 | 273 | 779 | 1592 | 2115
SECRE 50 | 133 | 328 | 807 | 1476 | 1937
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ve are updating a submatrix of size (m—(i—1)b +1)x(n —(i —1)b +1).
W can further reduce the amount of data novenent by the fol ] owi ng
al gorithm

for i =1to N do
for j=1to: —1do
AGG M, i) — appeuy (F AG 2 M, i)
end for
¥, @ —gencuy (A(i + M, i)

end for

Figure 2: left looking B ock Househol der QR Factorization A go-
rithm

A each stage of this algorithmwe are only nodifying a m X
b matrix. W shall call this algorithmthe “left-looking al gorithn?.
(bnpared to the al gori thmin figure 1, the pattern of writes is nore
localized, andthis nayresult inasubstantial reductioninthe nunber
of writes tolovwer levels in the nenory hierarchy. Thisis particularly
inportant inshared-nenory mul ti processors where cache consistency
is guaranteed by the use of “write-through” caches [27, 33]. Onthose
archi tectures read accesses to cached data can be satisfiedinone cycle,
but wite accesses are immediately flushed to nenory. A a result,
write accesses are mich sl over than read accesses.

4 Benchnarks

The first prelimnary version of LAPAK softvare was released to

test sites in April 1989. This software incl uded routines for general,
positive definite, and symetric indefinite systens and for (R de-
conposi tion w thout pivoting.

In Tables 2-4 we present resul ts for whi chnost or all of the BLAS
vwere opti mzed for the particul ar architecture. SA@IRFis the LA
PACK routine for triangul ar factorization of a general matrix with
partial pivoting, SPOIRF perforns Chol esky factorization of a posi -
tive defini te symetric nmatrix, and SQGLRF does (Rfactorization
w thout pivoting. Aso shown are S (natrix-vector multiply)
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perforns the updates (4) and (5). Fgure 1 shows the block Hbuse-

hol der al gori thmusing the conpact W representation. Here A is

partitioned as an M x N block natrix, and for sinplicity we assune

that all bl ocks are of the sane size b xb, som=Mb andn =Nb . W

use the notation A(¢ , j ) torefer toblockentry (¢, 7 )and A(¢ : 5, k: 1)
torefer to the submatrix of A consisting of block rowentries ¢ to j

and bl ock col umm entries k tol .

for: =1to N do
[V, T] —gencuy (A(i : M, i))
A(i =M, © : N) —appcuy (Y, T, A(¢ : M, i : N))

end for

Figure 1: The H ock Hbusehol der (R Factorization A gorithm

This al gorithmillustrates sone i nportant features of block al go-
rithm For one, the bl ock al gori thmnay require nore floati ng point
operations than its unbl ocked counterpart. Winvest nore workin
accumul ating a bl ock transfornation, but this is nore than nade up
for by the application of the transfornation, which will run at close
to opti mumspeed since it is not slowed down by excessive data nove-
nent overhead. This reasoningis true up to the point where adding
nore columms to a block transfornation will not result in a faster
update.

This relates to the subtle issue of partitioninga gi vennatrixinto
blocks. The block partitioning resulting in the fastest execution of
the code (the “optimnal ” bl ock partitioning)is probl em dependent (we
can use larger blocks for larger matrices), but it also depends on the
architecture of a gi ven nachi ne. Furthernore, on ml ti processor na-
chines, possibly confli ctingissues of individual processor perfornance
and overall 1oad bal ancing must be reconciled. Adiscussion of these
issues and a suggestion for a nethodol ogy to overcone this problem
can be foundin [6]. Deternini ngoptinal, or near optinal, bl ocksizes
for diflerent environnents is a major research topic for the LAPACK
project.

The al gori thmin Fgure 1 constructs a bl ock transfornation and
thenimediatel y applies it tothe remaini ngsub-natrix. Wshall call
this a “right-looking algorithn?. Notice that at each of the N stages
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of a series of m X m Hbusehol der matrices (1) in the so-called WY
represent ation

Q=r1+wy 7 (2)

where W and Y are m x b matrices. Schreiber and Van Loan [ 30]
refined this representati on by expressing W =Y T where T is ab xb
upper triangul ar matri x. Schreiber and Van Loan called the resul ting
representation

Q=I +Y TY (3)

the conpact WY representation since it requires only about half as
much storage as the original Wrepresentation(2)inthe typical case
where m >b . (bnpared to the traditional Househol der al gorithm

the accumil ation of 7' requires O(Tplextra flops and% extra vords

for storage. Since typically m >b, this is a loworder termin the
overall algorithmc conplexity. "The advantage of the conpact W
representationis that the conputationof A <I@ nowinvol ves tvo
matrix- matrix mul tiplications

7 —ATY T (4)

and a rank-b update

A—A4y 77T (5)

instead of a series of b matrix-vector multiplications and rank-one
updates.

W can nowexpress the bl ock Fbusehol der (Ral gori thmin terns
of the prinmitives gencuy (generate conpact W factor) and ap-
peuy (apply conpact Wfactor):

[V, T] —gencwy (A)

returns the conpact Wfactors T' and Y such that

A=(I —|—YT}T)(]0%).

The prim tive gencuy first conputes the QRfactorizationof A using
the traditional Househol der (R al gorithmand then accumml ates T .
Next,

A—appcuwy (Y, T, A)



o our LAPACKrouti ne SAZIRF, cal lingassenbl y1 anguage BLAS

e a highly optim zed assenbl y-1anguage al gorithm provided by

Cray
Table 1la: LUfactorization on a (ray X M
n | LINPACK LAPACK Cray
25 18 18 65
100 55 105 163
500 129 203 213

Thus, for large natrices, the Level 3 BLAS code ran at over 95%
of the speed of the highly optim zed assenbl y-1anguage code. This
resul t shows that we can achieve 95%effei ency fromthe nachine,
using portabl e Fortran code, w th nachi ne-specific codi ng confined to

t he BLAS.

3.2 QR Factorization

As another exanple of a block al gori thm ve consider an al gorithm
for computing the QRfactorization

A=0QR

of a dense matrix. Here an m xn (wl.o.g. m > n) mtrix A is
deconposed i nto an orthogonal m x m matrix ¢ and an upper trian-

gular m X n matrix R. This deconpositionis one of the basic tools

of nunerical 1inear al gebra; for applications, see [26]. The traditional
al gori thmfor conputing the QRfactorization [26, p.148] enploys a
sequence of Househol der reductions

0=l 20, |ulEl. (1)

Application of H to a given matrix A invol ves a matrix-vector mul -
tiplication 2 —H4u and a rank-one update A —A —2u%. Fach of
these Tevel 2 BLAS operations requires Ofp floating- point opera-
tions and uses O(%) data.

Toarrive at a bl ock formul ation of the Househol der QRal gori thm
we must be abl e toexpress aseries of Househol der reductions in a con-
veni ent closed form Bischof and Van Loan [ 7] expressed the product

Q=Hy - 4 H



Thus each col umm of L and U can be conputed in turn, by per-
formng steps 1 and 2inaloopwithj running froml ton. Mst of
the workin this loop can be perforned by calls to tvwo Level 2 BLAS
routines.

To derive the bl ock formof the al gori thm we assune thatyn> 1.

As before, suppose that 4, Ip1, Iz and Uy have already been
conputed. The sane approach as before yields the foll owi ng net hod
for conputing the next bl ock of gprcol unms of L and U.

1. A9 =L 11U5: the matrix {3 can be obtained by sol ving a
lover triangul ar systemof equations w th vi ght hand sides (a
Level 3 BLAS operation).

2. Ay — LyUrz =L 33Uz and
Aszg — L31Ur2 =1L 32Uzs.
First we update 4y and Az by a rectangul ar matrix-natrix
mul tiplication (another Level 3 BLAS operation). Then we fac-
torize the updated natrix as

using the Level 2 BLAS formof the al gori thmdescri bed earlier.
The bl ocks Ayy and Asp are treated together in order to allow
the necessary rowinterchanges (represented by the matrik P
These rowinterchanges must then be applied to the rest of the
mtrix.

This is just one way in whi ch LUfactorizati on nay be organi zed
interns of Tevel 2 or Level 3 BLAS operations. There are in fact at
least three ways, invol ving di flerent patterns of data novenent and
BLAS operations. Their rel ative perfornance is nachine- dependent,
but our experience to date has shown that the Level 3 BLAS forns
do not vary much in perfornance (there are greater differences in
performance betveen the Level 2 BLAS formns).

Tabl e 1a shows the speed in negaflops on one processor of a (ray
X M of:

o the LI NPACKroutine SGEFA



3.1 LU Factorization

First we show how to organize the algorithmmainly in terns of
matrix- vector (Level 2) operations. 'Then we derive the block al go-
rithm using matrix- natrix (Level 3) operations.

W want to factorize an n by n nonsingular matrix A as the
product P LU of a permutationnatrix P (representingthe rowinter-
changes), a unit lover triangul ar matrix L, and an upper triangul ar
mtrix U.

Assumng for sinplicitythat P =1, we wite the factorizationin
partitioned formas:

All A12 A13 Lll Ull U12 U13
A21 A22 A23 = L21 L22 U22 U23
A31 A32 A33 L31 L32 L33 U33

Let the nunbers of rows and col umms in the bl ocks of the parti-
tioned matrices be j —1pymandn —j —p+l.

o derive an al gori thmusing Level 2 BLAS, we assune n, =1.
Suppose that the first j —1 col umms of L and U (that ig,Lls1, Is1
and Uqq1) have al ready been conputed. 1o showhowthe j -th col uim
may be conputed, we equate conponents of this col um as follows:

1. A9 =L 11U13. Hence the vector §; can be obtained by sol ving
alover triangul ar systemof equations (a Level 2 BLAS opera-
tion).

2. Ay — Ly Ui =L Uy and
A3y — L31Uyp =1L 31Uy
First we update A; and Asy (treating themas asingle vector)
by computing

A o A \ [ Lan U

Ass Ass L -
which is a rectangular matrix-vector multiplication (another
Level 2 BLAS routine). At this point we can incorporate a
rowinterchange so that the single el enentyod(call it a) is the
largest el enent ino4 and Asy. Since L is unit lower triangul ar,
Lyy=1land U 9 =a. Fnally b =a* Asy (a Level 1 BLAS
operation).



(all val ues are i n Mlops)

Table 1: Speed of the BLAS on various architectures

Aliant FX/8 | IBM3090/VF (RAY 25

(8 processors) (1 processor)| (1 processor)
Peak Speed 94 108 488
Level 1 BLAS 14 26 121
Level 2 BLAS 26 60 350
Level 3 BLAS 43 80 437

Anot her

advant age of Level 3 BLASis that they offer greater scope for exploi t-

ing parallel processors on shared nenory nachi nes.

Fortraninpl enentations of all the BLAS are available; to get the
full benefit, however, the BLAS shoul d be opti mzed for each archi -
tecture. W encourage the conputer nanufacturers to performthese
optimzations; the datain Table 1 are for such optim zed i npl enen-

tations.

W also expect that the LAPACK project will reveal the

need for a fewaddi tional basic routines whose perfornmance may need
to be optimzed for diflferent architectures and nay be regarded as
extensions to the current set of BLAS (e.g., applying a sequence of
pl ane rotations to a matrix).

3 Hock Agorithm

To exploit the level 3 BLAS, one usually mist express the al gori thm
interns of operations on submatrices, or “blocks,” as conpared to
W have devel oped
such block al gori thms for LU factorization, Cholesky factorization,
Bunch- Kaufnan factorization of a symmetric indefinite matrix, QR
factorization (wth and wi thout pivoting), the nonsymetric eigen-
probl em(reduction to Hessenberg formand QRiteration), the sym
netric ei genprobl em(reductionto tridiagonal formand reductionof a
symetri c- defini te generalized probl emto standard form), and SVD
(reduction to bidiagonal form). See [18] for details of sone of these
algorithns. Wrkis continuing on block al gorithns for generalized
eigenproblens. In this section we illustrate two bl ocked al gori thns:
LUfactorization and (Rfactorizati on.

vector- or scalar-oriented operations [22, 24].



Mre recently, higher 1evel BLAS have been specified that per-
formoperations of hi gher granul ari ty and so offer nore opportuni ty
for optimzation on different architectures. The level 2 BLAS [21]
performnatri x- vector operations such as natrix-vector mul tiplica-
tion and rank- one updates. The Level 3 BLAS [15] performmatrix-
nat i x operations such as matrix-matrix mul tiplication, sol ving tri-
angul ar systens with multiple right hand sides, and rank-k matrix
updates.

To appreci ate why these Tevel 2 and Level 3 BLAS with larger
granul arity offer better opportunities for effeiency, one mist under-
stand nenory hierarchies. Al nachines (not just superconputers)
have a hierarchy of nenory level s—for exanple, with registers at the
top, folloved by cache, nain nenory, and finally di sk storage at the
bottom Toward the top of the hierarchy, nenory is snaller, nore
expensi ve, and faster. Since operations such as miltiplication and
addi tion mist be done at the toplevel, data has to nove up through
the various level s to the top to be processed, and then down again to
be stored. The result is that data at higher levels is available only
after some del ay and nmay not be available at a rate fast enough to
feed the arithmetic units. early, an algorithmthat m nimzes the
menory traffe in the hierarchy will runfaster.

(he way to neasure the anount of this nenory traffc is the ratio
of flops (floati ng point operations) to nenory references in an al go-
rithm The larger this ratio, the l onger a piece of data nay be kept at
the top of the hierarchy on average. let us use this neasure to com
pare the three operations of saxpy (Level 1 BLAS), natrix- vector mul -
tiplication (Level 2 BLAS), and natrix-matrix multiplication (Level
3 BLAS), where all vector and natrices are of dinensionn. Sinple
counting yields the ratios 2/ 3 for saxpy, 2 for matrix-vector mil tipli-
cation, and n / 2 for matrix-matrix mltiplication. The large ratio for
nat i x- matri x mul tiply represents a surface-to-volune effect, doing
O(n’) operations on O(%) data. Hence, matrix-matrix multiplica-
tion offers greater opportunity for exploiting the nenory hierarchy
than the lover-1level BLAS routines. Table 1illustrates this fact with
sone benchnark resul ts.



through netlib, for users who want copies of selected routines. W
shall also make arrangenents for the conplete package to be dis-
tri buted on nagnetic tape, for a nominal cost only. Finally we shall
encourage vendors to incorporate LAPACKI n their own nathenati -
cal libraries.

The rest of this paper is outlinedas follows. Section?2 describes the
BLAS and expl ai ns why their use can speed up al gorithns. Section
3 descri bes bl ock al gorithns and shows in sone detail howto reorga-
nize CGhussian elimnation and Rfactorization. Section 4 contains
benchnark resul ts for linear equation sol ving and (R factorization
on a variety of nachines. Section 5 outlines our general approach to
achi eving hi gh accuracy; in general , we have repl aced absol ute error
bounds (either on the backward or forward error) with relative er-
ror bounds, which better respect the sparsity and scaling structure
of the original problens. Section 6 discusses a newbi di agonal singu-
lar value deconposition (SVD) whi ch conputes singul ar val ues and
vectors mich nore accuratel y than previously t hought possible, and
Section 7 descri bes howthe Jacobi nethod (with a nodified stoppi ng
criterion) is unifornly nore accurate than Qi based al gorithns for
the symetric positi ve defini te ei genval ue probl emand SVID Section
8 reviews the target nachi nes for whi ch LAPACKi s designed to run
nost effeiently. Section 9 discusses the overall structure of the LA
PACKIi brary and expl ai ns the choi ce of programmi ng | anguage and
style. Finally, Section 10 outlines future plans to extend the 1ibrary,
includi ng the challenges faced in adapting the codes to distributed-
nenory nachi nes.

2 Basic Linear A gebra Subroutines

The original set of Basic Linear A gebra Subroutines [29], known as
the BLAS, were first proposed in 1973. After sone refinenent of
the proposal , they were used in the construction of LINPACK These
BLAS di d operations only on vectors of data, such as a dot product
or a saxpy (adding a scalar nul tiple of one vector to another). W
refer to these vector-vector operations as level 1 BLAS. The lLevel
1 BLAS permt effeient inpl enentation on scal ar machi nes, but the
granularityis toolowfor effective use on nost vector or parallel ma-
chi nes.



Chol esky, R, SV, Schur, generalized Schur) will also be provided,
as wWll related conputations such as updating or reordering of the
factorizations and condi tion nunbers (or estinates thereof ). Iknse
and banded natrices will be provided for, but not general sparse na-
trices. In all areas, simlar functionality will be provided for real and
conpl ex natrices.

The newlibrary will be based on the successful FSPACK] 32, 25]
and LINPACK[ 14] libraries, integrating the two sets of al gorithns
into a unified, systematic library. A great deal of effort has also
been expended to incorporate design nethodol ogi es and al gorithms
that nake the LAPACK codes nore appropriate for today’s high-
perfornance architectures. The LI NPACKand FI SPACK codes were
writtenin a fashion that, for the nost part, ignored the cost of data
novenent. Mst of today’s high- performance nachines, however, in-
corporate a nenory hierarchy [ 16, 27, 34] to hel p disgui se the differ-
ence in speed of nenory accesses and vectorized floati ng- poi nt oper-
ations. As aresult, codes mist be careful about reusing datain order
not torun at nenory speedinstead of floating- poi nt speed. LAPACK
codes have been carefully restructured to reuse as muich data as pos-
sible in order to reduce the cost of data novenent. Further inprove-
nents are the incorporation of newand i nproved al gorithns for the
sol ution of eigenval ue problens [ 10, 19]. LAPACKis also designed to
exploit the parallel processing capabilities of nany hi gh- performance
machi nes, especially shared menory machi nes.

LAPACKis designed to be effeient and transportable across a
w de range of conputingenvironnents, withspecial enphasis onnod-
ern hi gh- perfornance conputers. Wile we do not expect LAPACK
codes to be optinal for all architectures, we anticipate high perfor-
nance over a w de range of nachines. By relyingon the Basic Linear
Al gebra Subprograns (BLAS) [21, 15, 29] the codes can be “tuned”
to a given architecture by eflei ent—and, in all 1ikelihood, machine-
dependent —npl enent ati ons of these kernels. Mchine-specific opti-
mzations arelimtedtothose kernels, and the user i nterfaceis uni form
across machines. Wshall also distribute test and ti mng routines to
verifythe installationof the LAPACKcodes on a parti cul ar archi tec-
ture and to all owfor easy conparison wi th existing sof t ware.

W aimfor the newlibrary to be easily available. Netlib [17]
has proven to be an extrenel y conveni ent nechani smfor distri buting
sof tware by electronic mail, and we shall nake LAPACK available
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A Greenbaum S. Hammarling, A McKenney, D. Sorensen

Abstract

The goal of the LAPACK project is to design and imple-
nent a portable linear al gebralibrary for efficient use on a va-
riety of high-perfornance conputers. The library is based on
the widely used LINPACKand EI SPACKpackages for sol ving
linear equations, eigenval ue problens, and linear least-squares
problens, but extends their functionalityin a nunber of ways.
The najor nethodol ogy for nmaking the al gorithns run faster
is torestructure themto performblock matrix operations (e.g.,
nmatrix-matrixmltiplication)intheir inner loops. These block
operations nay be optimzed to exploit the nenory hierarchy
of aspecific architecture. The LAPAKproject is also working
on new divide-and-conquer al gorithns for certain eigenprob-
lems, and newal gorithns that yield higher relative accuracy
for a variety of linear al gebra problens.

1 Introduction

The Uni versity of Tennessee, the (burant Institute for Mithenatical
Sciences, the Nunerical Al gorithns Goup [td., Rice lhiversity, Ar-
gonne MNational Laboratory, and (hk R dge National Laboratory are
devel opi ng a transportabl e linear algebralibrary in Fortran 77. The
library is intended to provide a uni formset of subroutines to sol ve
the nost comon linear al gebra probl ens and to run effeiently on a
w de range of high- perfornance conputers.

The LAPACKlibrary (shorthand for Linear Al gebra Package)
will provide routines for sol ving systens of sinultaneous |inear equa-
tions, least-squares sol utions of overdetermned systens of equations,
and eigenval ue problens. The associated matrix factorizations (LU,



