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Abstract. The sequential algorithm of Multiple Relatively Robust Representations, MRRR,
can compute numerically orthogonal eigenvectors of an unreduced symmetric tridiagonal matrix
T ∈ Rn×n with O(n2) cost.

This paper describes the design of ScaLAPACK’s parallel MRRR algorithm. One emphasis is
on the critical role of the representation tree in achieving both numerical accuracy and parallel
scalability. A second point concerns the favorable properties of this code: subset computation, the
use of static memory, and scalability.

Unlike ScaLAPACK’s Divide & Conquer and QR, MRRR can compute subsets of eigenpairs
at reduced cost. And in contrast to inverse iteration which can fail, it is guaranteed to produce a
numerically satisfactory answer while maintaining memory scalability.

ParEig, the parallel MRRR algorithm for PLAPACK, uses dynamic memory allocation. This is
avoided by our code at marginal additional cost. We also use a different representation tree criterion
that allows for more accurate computation of the eigenvectors but can make parallelization more
difficult.
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1. Introduction. Since 2005, the National Science Foundation has been funding
an initiative [19] to improve the LAPACK [3] and ScaLAPACK [14] libraries for
Numerical Linear Algebra computations. One of the ambitious goals of this initiative
is to put more of LAPACK into ScaLAPACK, recognizing the gap between
available sequential and parallel software support. In particular, parallelization of the
MRRR algorithm [24, 50, 51, 26, 27, 28, 29], the topic of this paper, is identified as
one key improvement to ScaLAPACK.

ScaLAPACK already provides several other symmetric eigensolvers, including QR
algorithm, bisection and inverse iteration [23]), and the parallel Divide and Conquer
method [60]. However, there are still good reasons for parallelizing MRRR.

1. MRRR allows the computation of subsets at reduced cost whereas QR and
Divide & Conquer do not. For computing k eigenpairs of an n × n matrix
on p processors, the tridiagonal parallel MRRR requires O(nk/p) operations
per processor.

2. Inverse iteration does not guarantee a satisfactory answer with O(n2/p) mem-
ory per processor. Depending on the spectrum of the matrix at hand, tridiag-
onal inverse iteration can require up to O(n3) operations and O(n2) memory
on a single processor to guarantee a satisfactory set of computed eigenpairs.
If the eigenvalues of the matrix are tightly clustered, the eigenvectors have
to be computed (and re-orthogonalized against each other) on the same pro-
cessor; parallelism in the inverse iteration is lost. MRRR is guaranteed to
produce a satisfactory answer with O(n2/p) memory and does not need re-
orthogonalization.
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ParEig, another parallel version of the MRRR algorithm for the tridiagonal eigen-
value problem has already been developed [7]. The algorithm depends on PLA-
PACK [2, 62] for the orthogonal transformation to tridiagonal form and the back-
transformation to obtain the eigenvectors of the original matrix. This excellent work
invents the key concept of traversing MRRR’s representation tree in parallel to guar-
antee orthogonality between eigenvectors on different processors. It is implemented
in C and makes use of LAPACK 3.0 f77 kernels of MRRR. Memory is allocated
dynamically as needed; MPI [35, 59] is used for parallel communication.

Our original motivation for parallelizing MRRR in the ScaLAPACK environment
was to provide the same functionalities as ParEig, without requiring dynamic memory
allocation. By its policy, ScaLAPACK only uses memory provided by the user. It is
one contribution of this paper to show that indeed this is possible without substantial
memory overhead. A second key difference to ParEig is the representation tree used
for the computation. A comparison of a previous version of our code [4] in [67,
66] showed ParEig to be several times faster for a certain class of matrices. An
investigation revealed the culprit [63]: one MRRR kernel from the new LAPACK
3.1 [44] was prone to generating long chains of large nodes in the representation
tree, in contrast to the older LAPACK 3.0 kernel used by ParEig. The intent for
changing this particular kernel in LAPACK 3.1 was to better prevent deteriorating
orthogonality with increasing matrix size. Yet the implemented modification had
the unintended bad side-effect of creating, for certain matrices of large dimension,
artificially complex trees which where much more complicated to treat in parallel! A
remedy to address this problem has been suggested in [63]. It is now implemented in
our code and does cure the extreme behavior observed in [66].

This paper is organized as follows. The general ScaLAPACK approach to paral-
lel eigencomputations is described in Section 2. Following the common three-phase
approach, the parallel MRRR driver takes the dense distributed matrix at hand and
transforms it to real symmetric tridiagonal form, solves the tridiagonal eigenvalue
problem, and then applies the appropriate orthogonal/unitary transformations to ob-
tain the eigenvectors of the original matrix.

The next three sections are the key part of this paper.

Section 3 gives a short overview of the MRRR algorithm, focusing on the role
of the representation tree. It is exhibited how the requirement for numerical accu-
racy may stand in conflict with achieving parallel scalability. Various parallelization
strategies with their benefits and shortcomings are discussed. The importance of a
homogeneous computing environment for parallel correctness is highlighted.

Section 4 consists of a comparison of the differences between ScaLAPACK’s
MRRR and ParEig and further illuminates the impact of the different representa-
tion trees on accuracy, performance, and scalability.

Section 5 presents a performance and scalability analysis of the tridiagonal part
of ScaLAPACK’s MRRR. As comparison, results with parallel Divide & Conquer are
shown.

Then, conclusions and ideas for future work are presented. Appendix A describes
the design of the ScaLAPACK tester. Appendix B contains examples that illustrate
the differences between the parallelization strategies in Section 3.2. Appendix C com-
pares the interfaces of parallel MRRR and bisection/inverse iteration. Appendix D
considers applications of this current work, focusing on electronic structure calcula-
tions.
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2. Outline of the parallel design. The MRRR ScaLAPACK distribution con-
sists of four drivers. To keep the description simple, the presentation in this paper
focuses on the real double precision driver pdsyevr. There also are drivers called
pssyevr, pcheevr, and pzheevr for real single and complex Hermitian single and
double precision, respectively. From the user’s point of view, the only difference be-
tween the real and complex versions is that storing complex numbers needs twice
the amount of memory required for the corresponding real number. The code does
exploit that every Hermitian matrix can be reduced to real tridiagonal form. Thus,
the internal MRRR kernels are required in real format only.

2.1. The existing ScaLAPACK environment. This section gives a short
overview of the ScaLAPACK environment to explain its philosophy and constraints.
For a more complete description, see [54, 14].

2.1.1. ScaLAPACK, BLACS, and PBLAS. Except for the (significant) ad-
ditional complexity of parallel communication, ScaLAPACK [14] algorithms look sim-
ilar to their LAPACK [3] counterparts. Both LAPACK and ScaLAPACK rely heavily
on block-partitioned algorithms. In principle, ScaLAPACK uses two fundamental
building blocks.

• The Parallel Basic Linear Algebra Subprograms, PBLAS [16] are distributed-
memory versions of the BLAS [9, 31, 32, 45].

• The Basic Linear Algebra Communication Subprograms, BLACS [30, 33] pro-
vide interfaces for common communication tasks that arise frequently in par-
allel linear algebra computations.

Furthermore, on individual processors, ScaLAPACK makes frequent use of the avail-
able LAPACK computational kernels or slight modifications of them.

As an example, Algorithm 1 describes the principal structure of pdsyevx, the
ScaLAPACK expert driver for the symmetric eigenvalue problem. It has the same
structure as the respective sequential LAPACK expert driver dsyevx, solely the
prefix ’p’ indicates that the called subroutines work on distributed data. As usual,
the eigenvalue problem is solved not using A but an equivalent tridiagonal T . ∗

First, the eigenvalues are computed by bisection [18]. Afterwards, the corresponding
eigenvectors are computed by inverse iteration [25, 38, 39].

Algorithm 1 Outline of ScaLAPACK’s driver pdsyevx based on parallel bisection
and inverse iteration.

Input: distributed symmetric matrix A and a range of values or indices of desired
eigenvalues
Output: eigenvalues W and distributed eigenvector matrix Z
(1) Transform A into tridiagonal form Q · T · QT (pdsyntrd).
(2) Broadcast tridiagonal matrix T to all processors.
(3) Compute eigenvalues and eigenvectors of T in parallel (pdstebz and pdstein).
(4) Apply distributed orthogonal matrix Q to eigenvectors of T to obtain the dis-
tributed Z containing the eigenvectors of A (pdormtr).

2.1.2. Memory management. Currently, both LAPACK and ScaLAPACK
only use memory provided by the user; no memory is allocated internally. The required
workspace is an explicit part of the interface, a program will not run unless enough

∗Note the use of pdsyntrd in Algorithm 1. It is an update to pdsytrd [15] to improve scalability.
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memory is supplied. For convenience, a user can issue a query to find out how much
work space is needed for a given problem (and processor configuration) and then
allocate the required amount.

There are two major benefits of this policy. First, the user has complete control
over memory management. No LAPACK or ScaLAPACK library function aborts
unexpectedly due to insufficient memory when dynamic allocation fails. Second, there
is no unknown run-time cost in terms of memory and time on each allocation and de-
allocation in the libraries.

The algorithm developer however has to carefully manage and reuse the provided
workspace which can be tedious prone to errors that are hard to debug. Another
concern is to anticipate potential future algorithmic changes that might require a
larger amount of workspace from the user and thus changes in users’ codes.

2.1.3. Communication management. The BLACS provide only synchronous
send and receive routines for communication [14]. Thus, each communication implic-
itly serves as a barrier. Furthermore, this implies that calls to sequential LAPACK
codes cannot be overlapped with BLACS-based communication. Depending on the
application, this can be less efficient than the use of non-blocking communication.

2.2. The new driver pdsyevr. The design of pdsyevr is given as Algorithm 2.
It is very similar to the existing ScaLAPACK driver pdsyevx shown in Algorithm 1.
The difference lies in the way communication is handled. Whereas part of the commu-
nication in pdsyevx is hidden inside of pdstebz and pdstein, we decided to gather
all communication in pdsyevr itself.

Algorithm 2 Outline of the new ScaLAPACK driver pdsyevr based on the MRRR
algorithm.

Input: distributed symmetric matrix A and a range of values or indices of desired
eigenvalues
Output: eigenvalues W and distributed eigenvector matrix Z
(1) Transform A into tridiagonal form Q · T · QT (pdsyntrd).
(2) Broadcast tridiagonal matrix T to all processors.
(3) Compute eigenvalues and eigenvectors in parallel using an MRRR-based kernel.
(4a) Broadcast the computed eigenvalues to all processors.
(4b) Distribute the eigenvectors into Z (pdlaevswp).
(5) Apply distributed orthogonal matrix Q to eigenvectors to obtain the distributed
Z containing the eigenvectors of A (pdormtr).

The key part is (3): based on some division of work, the processors compute
the wanted eigenvalues and subsequently their eigenvectors in parallel; details are
given in Section 3. Then the eigenvalues are shared so that they are available on
all processors(4a), and the eigenvector matrix is distributed (4b). As the input ma-
trix A is stored in ScaLAPACK’s 2D-block-cyclic layout, the eigenvector matrix Z
uses 2D-block-cyclic layout as well. This is required by ScaLAPACK to make the
orthogonal matrix-matrix multiply in step (5) efficient. However, MRRR computes
the eigenvector matrix column-wise, that is, all of an eigenvector is computed on a
single processor. For this reason, the eigenvectors are distributed in 1D form across
the processors, and step (4b) is responsible for the redistribution of the eigenvector
data from 1D into 2D form.
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3. A road map for the computational MRRR-based kernel. This section
describes the heart of the new ScaLAPACK driver pdsyevr, that is, step (3) from
Algorithm 2 in Section 2.2. To set the stage, Section 3.1 gives a short overview of
the MRRR algorithm. The emphasis is on introducing the representation tree as
principal concept governing the eigenvector computation. Afterwards, in Section 3.2,
we discuss different ways of using it in a parallel environment.

3.1. The MRRR algorithm and the representation tree. This section
presents a very short introduction to the MRRR algorithm in order to show different
sources of parallelism in the computation. More details can be found in [29, 50, 51,
26, 27].

For simplicity of presentation, we assume the tridiagonal T ∈ Rn×n to be unre-
duced: all its off-diagonal entries are nonzero [48, Definition 7.1.2]. This is not an
algorithmic restriction, we merely prefer not to introduce additional notation for unre-
duced sub-blocks. In practice, MRRR scans the matrix for unreduced blocks and
works separately on each of them: this decreases the complexity of the computation
and creates additional parallelism. Note also that the eigenvalues of an unreduced
matrix, in exact arithmetic, are simple [48, Lemma 7.7.1]. Nevertheless, the task
of computing orthogonal eigenvectors without resorting to Gram-Schmidt is still a
difficult one: in [28] it is shown that despite being unreduced and without any off-
diagonal entry being particularly small, a tridiagonal can have eigenvalues that are
indistinguishable when being represented as floating point numbers.

In order to compute orthogonal eigenvectors, one of MRRR’s goals is to find an
approximation λ̂ to each desired true eigenvalue λ so that

|λ − λ̂| = O(ǫ|λ|).(3.1)

Here, ǫ refers to the relative machine precision. The interpretation of (3.1) is that λ̂
has high relative accuracy.

However, in finite precision, the original tridiagonal T need not define its eigen-
values to high relative accuracy: small relative changes in the entries of T can cause
much larger changes in its eigenvalues, see [48, Section 2.7] and [49]. It is known

from backward error analysis [18] that the finite-precision computation of λ̂ from T
is associated with such small componentwise changes. Hence, requiring (3.1) to hold
for the eigenvalues of T may be unrealistic. For this reason (and others that will
become clear shortly), the algorithm replaces the original tridiagonal matrix T by a
factorization

LDLT = T − σI.(3.2)

Here L ∈ Rn×n is a lower bidiagonal matrix with unit diagonal, and D ∈ Rn×n

is diagonal containing the pivots from Gaussian elimination. One requires from the
shift σ to yield an LDLT where small relative changes in entries of L and D cause
small relative changes in some or all of its eigenvalues. Such an LDLT factorization
is called a Relatively Robust Representation (RRR) for those of its eigenvalues that
are defined to high relative accuracy. When σ is chosen such that LDLT becomes
definite, it can be computed stably without element growth and it is an RRR for all
its eigenvalues, see [20, 52].

As LDLT is thus better suited for finite precision computation, MRRR does not
work with T except to compute (3.2). For each desired eigenvalue λ of LDLT with

an eigenvalue approximation λ̂ satisfying (3.1), one can hope to also compute an
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approximate eigenvector v with a residual norm small compared with |λ| instead of
‖LDLT‖2:

‖(LDLT − λ̂I)v‖ = O(nǫ|λ|).(3.3)

Note that the small relative residual (3.3) can only be achieved with respect to LDLT

and not with respect to T . Note that the left-hand side |λ − λ̂| of (3.1) constitutes
a lower bound on the residual norm (3.3) of the computed vector v. Thus, the right-
hand side of (3.1) can only hold with LDLT , as T does not allow an eigenvalue
approximation to high relative accuracy.

At this point, the classical gap theorem [17, 48] implies

| sin 6 (v, z)| ≤ ‖(LDLT − λ̂I)v‖
gap(λ̂)

=:
O(nǫ)

relgap(λ̂)
.(3.4)

where z denotes the true eigenvector of LDLT from (3.2). The gap of λ̂ approximating
the true λ is defined as

gap(λ̂) = min
{

|λ̂ − µ| : λ 6= µ, µ ∈ spectrum(LDLT )
}

,(3.5)

and the relative gap as relgap(λ̂) = gap(λ̂)/|λ̂|. It is noteworthy that in (3.4), it is
the relative gap, not the usual standard gap as in [48, Theorem 11.7.1], that governs
the deviation from orthogonality. One defines a singleton to be a shifted eigenvalue
approximation satisfying (3.1) and

gap(λ̂) ≥ τminrgp · |λ̂|,(3.6)

that is, relgap(λ̂) ≥ τminrgp when λ̂ 6= 0. Here, τminrgp is a threshold that specifies
the smallest admissible relative gap. Admissibility is to be understood in terms of
allowable orthogonality loss: by (3.4), MRRR can guarantee that the corresponding
eigenvector satisfies

| sin 6 (v, z)| =
O(nǫ)

τminrgp
.(3.7)

The smaller the threshold, the higher is the potential deviation from orthogonality
between different computed vectors each satisfying (3.7). Section 4 discusses different
choices for τminrgp and their impact on accuracy, performance, and parallelism.

Once an approximation λ̂ to high relative accuracy for each λ has been computed,
and provided that the relative gaps are large enough, MRRR can also compute each
approximate eigenvector v with small relative residual and a small angle to its cor-
responding true eigenvector. This guarantees orthogonality between the computed
vectors without Gram-Schmidt. What then remains is to ensure an acceptable resid-
ual with respect to T . It is shown in [26] that because of the stable computation

of (3.2) without element growth, the approximate eigenpair (λ̂ + σ, v) will satisfy

‖(T − (λ̂ + σ)I)v‖ = O(nǫ‖T ‖).
We now turn to the realistic complication of LDLT having clustered eigenvalues

such that not all relative gaps are large enough to pass (3.6). For this case, MRRR
exploits that the relative gaps depend on the magnitude of the eigenvalue approxi-
mation. For a cluster with eigenvalues that are each not passing the test (3.6), a new
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RRR is computed using a shift that is close to the cluster. The differential stationary
qd algorithm dstqds [47] provides a stable way of computing the new RRR

L+D+LT
+ = LDLT − σ′I.(3.8)

‘Stable’ here means a mixed relative stable factorization: small relative componentwise
perturbations in the entries of D, L and D+, L+ give an exact shift relation, see [27,
Theorem 2 and Figure 3]. The choice of the incremental shift σ′ for the new RRR is
of key importance. One needs to guarantee that [26]

• the new factorization L+D+LT
+ is an RRR for all eigenvalues of the group,

and that
• at least one eigenvalue of the group, the one closest to the shift, becomes a

singleton.
The former requirement on the RRR property guarantees that the local eigenvalues of
L+D+LT

+ remain meaningful. Note that by shifting close to the cluster, the eigenval-
ues of L+D+LT

+ are smaller in magnitude than the corresponding ones from LDLT

and thus the relative gaps become larger. For the latter requirement, finding at least
one singleton per RRR is not only motivated by efficiency but also by correctness:
it guarantees a finite procedure with a limited number of RRRs and limited error
growth, see [26]. (In practice, the algorithm usually finds more than one singleton per
RRR which is key to its efficiency.) In order to guarantee that at least one singleton
will be found, one has to shift close enough so that subsequent eigenvalue refinement
for the new RRR can reveal a large enough relative gap. Furthermore, one prefers
to shift just outside an eigenvalue group rather than inside as to reduce the risk of
element growth in the factorization which could spoil the RRR property.

Element growth in a factorization can be dangerous as componentwise small rela-
tive perturbation in the entries of D and L will result large absolute perturbations to
L+D+LT

+. Thus, MRRR samples different locations for finding a factorization with
small element growth. It evaluates shifts at both ends of the cluster and also backs
off the cluster ends if necessary, see [29]. (It is interesting to note that even if ele-
ment growth occurs, it need not destroy the RRR property of the factorization for
the eigenvalues in the cluster, see [24, Example 5.1.2].)

The MRRR procedure can be described via the representation tree [24, 26, 63].
Each node of the tree represents the RRR for a group of eigenvalues that is separated
from its neighbors but whose eigenvalues are close in the sense of relative gaps. The
root node is the initial representation and an RRR for all the wanted eigenvalues, it
is called the root representation. Each child of a parent is either a singleton (and thus
a leaf of the tree), or an RRR for a subset of clustered eigenvalues of the parent. The
edge between a parent and a (non-leaf) child stands for a dstqds computation (3.8).
A simplified summary of the MRRR procedure is given in Algorithm 3. An example
of a representation tree will be shown in Figure 3.1 of Section 3.2.1.

An investigation of the different steps of Algorithm 3 yields the following sources
of potential parallelism.

1. Root representation: the computation of the factorization costs O(n) opera-
tions and is essentially sequential. However, the computation of all wanted
eigenvalues by bisection is an embarrassingly parallel operation: each indi-
vidual eigenvalue can be computed independently from all the others.

2. General RRR: the computation of a child RRR from its parent is again essen-
tially sequential. However, in order to detect large relative gaps in an RRR,
eigenvalues need to be refined by bisection. This is again embarrassingly
parallel.
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Algorithm 3 Outline of the (sequential) MRRR algorithm.

(1) For (unreduced) T , compute a root representation LDLT = T − σI and its
wanted eigenvalues (user-specified by range of values or indices)
(2) Build the representation tree. Using a series of incremental shifts and qd trans-
formations of the form (3.8), find suitable RRRs so that, eventually, all eigenvalues
become singletons.
(3) For each singleton, compute the corresponding eigenvector so that (3.3) holds.
This guarantees orthogonality by (3.4).

3. Singleton: as soon as an RRR is known for which a local eigenvalue is a
singleton, the eigenvector computation becomes independent from the com-
putation of all other eigenvectors. Thus, once such an RRR is known for each
eigenvector, the computation of all eigenvectors is embarrassingly parallel.

3.2. Setting up the MRRR-based parallel kernel.

3.2.1. Subset-based parallelization. Given a set of k ≤ n wanted eigenpairs,
a straightforward idea for parallelization is to assign non-overlapping subsets of k/p
eigenpairs to each of the p processors. Then, the subset feature [46] of the sequen-
tial code (Algorithm 3) could be invoked to compute on each processor the assigned
k/p eigenpairs. As no communication or synchronization between the processors is
involved, this approach is perfect with respect to complexity and memory.

Even though this approach has been used in ScaLAPACK’s driver pdsyevx, it is
too simplistic and does not guarantee numerical accuracy without resorting to Gram-
Schmidt which spoils memory scalability, see the later Section 3.3.

If the sequential MRRR code is called just on the subset of k/p eigenpairs assigned
to the processor, it returns eigenpairs that have small residuals and eigenvectors that
are mutually orthogonal among each other. No orthogonality is guaranteed between
computed eigenvectors from different non-overlapping subsets. †

The orthogonality problem is reflected in different representation trees. Figure 3.1
shows the representation tree of a sample matrix when all eigenpairs are computed
on a single processor.

Now assume that the computation were parallelized among four processors using
the subset approach. As each processor only regards its part of the assigned spec-
trum, it derives a representation tree for only its own eigenpairs, these are shown
in Figure 3.2. However, by ignoring the rest of the spectrum, only the eigenvec-
tors within each processor are guaranteed to be orthogonal. Orthogonality across
processors depends on the cluster structure and is not guaranteed as (3.6) may be
violated between the sets assigned to different processors. An example for a failure of
subset-based parallelization is given in Appendix B.1.

Note that it would be possible to allow overlapping subsets and make each pro-
cessor perform redundant computation in order to guarantee the use of ’consistent’

†ScaLAPACK’s driver pdsyevx calls bisection and inverse iteration on non-overlapping subsets
for parallelization. There is no guarantee for orthogonal eigenvectors unless reorthogonalization is
performed inside tight clusters. For reorthogonalization to be done for a given cluster, all eigenvectors
must be computed on the same processor. Thus, pdsyevx cannot guarantee the right answer unless
the user supplies enough memory. In the most extreme case, all or almost all wanted eigenvectors
have to be computed on a single processor; memory scalability has to be sacrificed to guarantee
orthogonal vectors. Note that the current ScaLAPACK tester does not report poor orthogonality as
a failure when it stems from insufficient memory, see Appendix A.3.
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Fig. 3.1. Illustration of a (sequential) representation tree for computing all eigenpairs of a
matrix of dimension 11. Square boxes correspond to singletons, rectangular ones correspond to
eigenvalue groups for which an individual RRR is needed to improve relative gaps. Upon inspection
of the root RRR (top level) for large relative gaps, MRRR finds that a new RRR needs to be computed
for λ1, λ2, for λ3, λ4, for λ5, . . . λ8, and for λ10, λ11. λ9 is a singleton with respect to the root RRR.
At the next deeper level, inspection of the RRRs reveals that all local eigenvalues are now singletons,
except for λ6, λ7. For these, one more RRR needs to be computed.
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Fig. 3.2. Illustration: each processor computes a subset of the wanted eigenpairs for the ma-
trix from Figure 3.1. This approach does not guarantee orthogonality of eigenvectors computed on
different processors.

root representations on all processors. This approach will work, according to the
classical gap theorem (3.4), provided an isolated superset of eigenvalues is known for
each processor. However, there need not be a small isolated superset; in the worst
case, each processor would have to compute all of the eigenvalues to some accuracy.
Thus, in none of its forms, does the subset based approach guarantee both accuracy
and scalability at the same time.
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3.2.2. Parallelization of the eigenvector computation via conformal em-
bedding of subset representation trees. In this section, we suggest an approach
that achieves the desired O(nk/p) storage per processor (for k wanted eigenpairs)
while at the same time guaranteeing orthogonal eigenvectors. This strategy imple-
ments the idea proposed in [7] for a parallel traversal of the representation tree.

The algorithm starts with a superset of the wanted eigenvalues that is isolated
from the rest of the spectrum. For simplicity of presentation, we assume it to be the
full spectrum. Then, the relevant part of the full representation tree is constructed.
All those representations are computed that define at least one of the wanted eigenval-
ues. The procedure is then repeated. The computation of irrelevant representations
as well as of unwanted eigenvectors is omitted.

When used in parallel (as step (2) of Algorithm 3), this procedure yields consistent
representation trees among all processors, that is, all processors start from the same
root. Consequentially the parallel algorithm does produce mutually orthogonal sets of
eigenvectors on different processors. In Figure 3.3, we illustrate this approach by the
example from Figure 3.1 and the eigenpairs 4 − 6 assigned to processor 1 (processor
numbering and subset assignment according to Figure 3.2).
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 Computation of shaded boxes omitted
 Processor 1 (assigned eigenpairs: 4−6)
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Fig. 3.3. Illustration of the conformal embedding of the subset representation tree into the
representation tree for the full spectrum. (Compare to Figures 3.1 and 3.2.)

3.2.3. Implementation with static memory. For the ScaLAPACK imple-
mentation with fixed memory, the question of how to store intermediate representa-
tions needs to be addressed. In the sequential case, RRRs for clusters are stored in
the eigenvector matrix Z and later overwritten by the eigenvectors. This is based
on the observation that one only needs to compute a new RRR when there are at
least two clustered eigenvalues. Thus, there always is enough space in the eigenvector
matrix to store the entries of the RRR, see also [29].
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We recently found that it is possible to store the RRRs in the parallel case with
only one additional vector on each side of the wanted spectrum. The additional
difficulty concerns the case when an extremal wanted eigenvalue is part of a cluster
whose other eigenvalues do not belong to the wanted spectrum. In this case, we need
to compute an RRR for the single eigenvalue. This requires 2n storage of which only
n are available from the usual eigenvector storage. This is illustrated in Figure 3.4.
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Conformal embedding of subset tree

Z columns used for RRR storage

 Storage layout map for RRRs
 Processor 1 (assigned eigenpairs: 4−6)

L  4  5  6  R

L  4  5  6  R

L  4  5  6  R

L  4  5  6  R

Z columns for eigenvectors 4−6

Fig. 3.4. Storage map for the RRRs in the eigenvector matrix when the subset tree is embedded.

Note that the use of fixed storage does not incur a performance penalty. The
RRRs are stored in a continuous chunk of memory that corresponds to the way the
RRRs are stored in the sequential code. Further, there is no overhead in data structure
reorganization: as in the sequential case, the RRR is stored in a fixed place in the
array of the eigenvectors and a vector copy operation is used for retrieving it.

One issue remains. The algorithm requires a superset of the wanted eigenvalues
that is well isolated. Depending on the matrix, this superset can be substantially
larger than the k/p eigenvalues one would ideally like to work with; in the extreme
case it can contain all k wanted eigenvalues on each processor. This does not jeopar-
dize the important memory scalability, each processor still requires O(nk/p) memory.
However, the worst case bound for the computational complexity is O(nk) instead
of the optimal O(nk/p) unless the eigenvalue computation (step (1) of Algorithm 3)
is parallelized, too. (In the context of the dense symmetric eigenvalue problem, the
O(nk) complexity of the tridiagonal eigensolver is a cosmetic imperfection because
the transformation to tridiagonal form is O(n3/p) at best.)

3.2.4. Parallelization of the eigenvalue computation. The sequential MRRR
algorithm uses dqds [52] to compute the eigenvalues of the root representation. This is
an O(n2) process. Consequently, bisection is preferable in the case of a large matrix on
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many processors to prevent the eigenvalue computation from becoming a bottleneck.
In this section, we describe how to achieve O(nk/p) complexity in step (1) of

Algorithm 3, when computing k eigenpairs. The following simple procedure (almost)
solves the problem:

• Call bisection in parallel on the wanted part of the spectrum.
• Send the eigenvalues to all processors that need them.

However, the procedure does not take into account that the code always computes
eigenvalues of a shifted root representation LDLT and not the original matrix. Thus,
it has to be ensured that different processors use a consistent root representation when
eigenvalues are computed in parallel. This yields the following modified procedure for
each processor:

• The RRR for the cluster at hand is computed redundantly.
• Bisection is called to refine a subset of eigenvalues from the cluster.
• The refined eigenvalues and their uncertainties are broadcast to all processors

that need them (synchronization between the subset of processors responsible
for the cluster at hand).

• Other information such as relative gaps is redundantly recomputed from the
refined eigenvalues. The computation of the representation tree and the eigen-
vectors now proceeds independently from the other processors.

The same idea of parallelizing the eigenvalue computation between processors can
be used not only for the root node but also for RRRs further down in the representa-
tion tree. Using this feature results in finer-grained parallelism for the representation
tree. It reduces the amount of redundant computations at the price of increased
communication.

3.2.5. Requirements of the computing environment. In [8], the authors
identify the following key aspects of homogeneity:

• Hardware (processors) and software (compiler and operating system) store
floating point numbers in the same way and produce the same results for
floating point operations.

• Communication transmits floating point numbers exactly.
Heterogeneous computing poses enormous challenges for some of the ScaLAPACK
algorithms. In [18], the authors devise ways to ensure the correctness of parallel
bisection in a non-homogeneous environment.

At this point, we only have practical experience with MRRR in a homogeneous
environment. Since MRRR is much more complicated than bisection, it is highly
non-trivial to find criteria for its parallel correctness. For this reason, we advise
the use of the parallel MRRR algorithm only in an environment that guarantees the
computation to be consistent with the sequential code.

3.3. Usage of memory. A common question a user faces is the question of the
maximum matrix size that an algorithm permits with the amount of memory available
on a system. The answer depends on the user data as well as the system architecture
and the compiler. For this reason, it is most convenient to describe memory usage in
terms of data volume. To find the required memory in bytes, one would multiply the
data amount by the storage costs per data. ‡

For the computation of all eigenpairs the memory requirements for pdsyevr are
⌈4n2/p⌉ per processor, this includes space for the matrices A and Z. When A is

‡For example, a system might store an integer as 4 bytes, a real single and double precision
number in 4 and 8 bytes respectively, with the respective complex numbers being twice as costly.
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complex Hermitian, half of this amount is needed as real, the other half as complex
data. For the computation of a subset of k eigenpairs, the code needs ⌈(n2 + 3kn)/p⌉
memory per processor. For complex A, ⌈2kn/p⌉ of this are real numbers. §

Algorithm 2 requires storage for the input matrix A and its eigenvector matrix
Z. Both are of the same type, real or complex. The orthogonal reduction of A to
tridiagonal form T is stored by overwriting the input matrix A. However, ScaLAPACK
does not currently support packed storage for symmetric matrices, and thus A is also
associated to n2 storage. Thus the lower bound on storage per processor for the full
eigenproblem in ScaLAPACK is given by ⌈2n2/p⌉.

The eigenvector matrix of the tridiagonal is always real. However, for higher
efficiency of the matrix-matrix multiplication in the backtransformation of the eigen-
vectors of T to the eigenvectors of A, there is one additional memory-intensive step in
Algorithm 2. Z is stored using ScaLAPACK’s 2D-block-cyclic layout but the eigen-
vector computation requires 1-D layout (see Section 2.2). Thus, the code requires
additional ⌈n2/p⌉ intermediate workspace per processor for storing the eigenvectors
column-wise. The remaining ⌈n2/p⌉ workspace are used as communication buffer
by the redistribution routine pdlaevswp mentioned in Section 2.2: for each pair of
processors, it sends all the information from the 1D grid in one shot, thus the large
worst-case memory bound.

Compared to bisection and inverse iteration pdsyevx, one can see that the
work space roughly equals the minimum required work space. On the other hand,
when Gram-Schmidt orthogonalization is required, the additional memory required
by pdsyevx on a single processor can become almost as large as the eigenvector
matrix itself. Thus, MRRR’s avoidance of Gram-Schmidt additionally pays off by
memory scalability in the parallel case.

4. Performance role of the representation tree and comparison with
ParEig. This section illuminates the difference between the representation trees used
by ParEig and pdsyevr. This comparison sheds light on some results published
in [66].

4.1. Runtime scalability: easy and hard cases. To set the stage, we con-
sider two model problems that illustrate how the performance and scalability of
MRRR can vary depending on the representation tree at hand.

1. (The easy case for MRRR.) Consider a tridiagonal matrix with a shallow
representation tree, consisting of only one root node whose children are all
relatively isolated, that is singletons. In this ideal case, each processor can
directly compute its part of the eigenvectors from the root RRR, the compu-
tation is embarrassingly parallel.

2. (The hard case for MRRR.) Consider a tridiagonal matrix whose eigenvalues
are all strongly clustered. If the clustering can only be resolved gradually,
that is clusters within clusters are present, the representation tree becomes
deep. Even though the eigenvector computation itself is fully parallelized, the
construction of the representation tree requires a substantial overhead that is
redundant on each processor before the eigenvectors can be computed. This
overhead mainly consists of repeated eigenvalue refinement that may also
involve communication between processors.

§Additional real and integer workspaces of respective sizes about 25n and 14n per processor
are required for the MRRR-based computational kernel and storage of intermediate data. This is
independent of the number of eigenpairs to be computed.
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In general, a representation tree at hand may lie somewhere in between these two
extreme cases. The part of the spectrum that is well spread out like in the first case
can be dealt with easily. If there is a part of the spectrum that is clustered as in the
second case, the workload associated with this part of the representation tree is more
significant.

While the processors do the same amount of computation for the eigenvectors
of the singletons, the amount of work for constructing the intermediate parts of the
representation tree can be substantially different. A processor with a deep part of
the tree needs to compute more intermediate representations and their eigenvalues.
Consequently, load imbalance can occur and hamper the overall performance of the
code.

4.2. Clustering in MRRR. The issue that is of particular importance for
the following is how MRRR groups those eigenvalues that are not singletons. The
approach that is used in LAPACK 3.0 [3] and 3.1 [44] is to inspect one-sided gaps.
This was motivated as follows. If an eigenvalue has large relative gap on its left-hand
side but not its right, it seemed natural to consider the eigenvalue the left end of a
new cluster. Vice-versa, with a small left but a large right relative gap, an eigenvalue
can be considered the right end of a cluster. In this case, (3.6) which requires for a
singleton to have large enough relative gaps on both sides, characterizes singletons as
clusters of size one.

Consider a cluster with given RRR and eigenvalue approximations. Starting from
the left of a cluster, the right gap rgap(λ̂) of each eigenvalue is inspected. Then a
boundary from one child to the next is defined through the separation criterion

rgap(λ̂) ≥ τminrgp · |λ̂|,(4.1)

where λ̂ approximates a local eigenvalue of the RRR.
If multiple eigenvalues are enclosed between rgaps satisfying (4.1), one has found

a group for which a new RRR is computed. Otherwise one has found a singleton.
The following section describes two choices, the ones used in LAPACK 3.0 and 3.1,

for the minimum relative gap threshold in (4.1). The point of the discussion is to show
that the thresholds can produce very different representation trees. ParEig [7] uses
the LAPACK 3.0 criterion. The previous version [4] of pdsyevr that was evaluated
in [66] used the LAPACK 3.1 criterion.

4.3. Two choices for τminrgp . Based on a careful analysis of the propaga-
tion of rounding errors in the representation tree [24, 27], the initial LAPACK 3.0
implementation of the MRRR algorithm used

τLAPACK 3.0
minrgp := min

{

10−2, 1/n
}

,(4.2)

with n being the dimension of the (unreduced) tridiagonal matrix.
While the (pessimistic) bound from (3.4) would predict a loss of orthogonality

proportional to n2, a more careful analysis shows that using (4.2), the loss of orthog-
onality should be proportional to n

√
n at worst. Moreover, based on experimental

evidence, until around 2004 it was believed that residual norms and dot products
between different computed vectors were bounded by multiples of nǫ.

While working on the latest version of MRRR [29] for the new LAPACK 3.1
and more extensive testing on much larger matrices with more and more challenging
eigenvalue distributions, it was felt that the threshold should be a constant to better

14



prevent deteriorating orthogonality with larger matrices that was observed in some
experiments. Another motivation for changing the threshold was to make the accu-
racy threshold independent from the matrix size. For this reason, the LAPACK 3.1
release [44] uses a threshold independent of n,

τLAPACK 3.1
minrgp := 10−3(4.3)

that is, eigenvalues agreeing to less than three digits are declared relatively isolated.
As fewer relative gaps pass threshold test (4.3), the clustering, with respect to the
new criterion, is stronger and the representation tree deeper.

For matrices of dimension larger than one thousand, a comparison [22] of LA-
PACK’s tridiagonal eigensolvers using a comprehensive set of test problems [21] shows
improvements in the accuracy of MRRR in LAPACK 3.1 compared to version 3.0.
These were attributed in part to the modified threshold τminrgp. In [66], one can also
see the worse accuracy of ParEig compared to pdsyevr.

4.4. The peeling problem and how it can be addressed. [66] showed that
pdsyevr, while computing eigenvectors with better orthogonality, was several times
slower than ParEig on matrices from Hubbard models in electronic structure calcula-
tions. We analyze the reason by the example of the largest Hubbard matrix, n=63504.

Let the eigenvalues be numbered in ascending order from the left of the spec-
trum to the right, then an analysis of the representation tree for pdsyevr, using
LAPACK 3.1 criterion (4.3), reveals the existence of a cluster of size 61735 (!), span-
ning eigenvalues 1115 to 62849, that contains a cluster of eigenvalues 1115 to 59566, in
which eigenvalues 4226 to 59566 form again a cluster, and so forth. The construction
of the representation tree thus involves a severe overhead in repeated eigenvalue re-
finement. On the other hand, using the old LAPACK 3.0 criterion (4.2), there are no
clusters of size larger than four! Obviously, the corresponding representation tree of-
fers very fine grain natural parallelism. This is reflected in big runtime differences: on
32 processors on the IBM SP5, the tridiagonal part of pdsyevr using criterion (4.2)
takes 237 seconds, versus 884 seconds using criterion (4.3). Moreover, scalability for
the deep tree is terrible but great for the shallow one, see also [66].

From the parallelism and efficiency point of view, the tree used by ParEig is
clearly preferable. Does the relatively small extra amount of accuracy obtained by
the pdsyevr tree justify all the additional work? Further inspection of the eigenvalue
spectrum revealed that the answer is no. The eigenvalues of the Hubbard matrix are
not strongly clustered, they only appear to be with respect to the LAPACK 3.1 cri-
terion (4.3). The representation tree has an ‘artificially long’ chain of clusters within
clusters. As discussed in Section 4.1, this situation is a nightmare as it requires
repeated refinement of eigenvalues for each RRR with a deep representation tree.
With respect to parallelism, this situation is equally critical as the depth of the rep-
resentation tree becomes very uneven and thus the workload distribution extremely
unbalanced between the processors. Since the representation tree unravels only dur-
ing repeated eigenvalue refinement, such a case is not detectable in advance without
significant work.

In [63], this ‘spectrum peeling’ problem of artificial clusters within clusters is
analyzed and a solution proposed and evaluated. It consists of supplementing the
threshold τminrgp = 10−3 with another criterion to limit possibly redundant eigenvalue
refinement. The additional criterion is based on the absolute gap separation rather
than the relative one. Given the spectral diameter of an (unreduced) tridiagonal

15



matrix, one can compute the average spectral (absolute) gap avgap := spdiam/n−1.

Then, the non-singletons λ̂i, λ̂i+1 are determined to belong to two different groups if

rgap(λ̂i) = |λ̂i+1 − λ̂i| ≥ avgap; λ̂i, λ̂i+1 no singletons.(4.4)

This criterion is similar to the one used in inverse iteration [39, 48] where the ab-
solute distance between eigenvalues is used as indicator of whether Gram-Schmidt
orthogonalization is necessary.

A proof of correctness legitimates the use of this new criterion in pdsyevr. For
the Hubbard matrix investigated above, the new combined criterion results in a max-
imum cluster size of 17, resulting in perfect scalability while achieving significantly
better accuracy than the LAPACK 3.0 criterion. This and more experimental evi-
dence is given in [63].

5. Performance analysis of pdsyevr. This section states some evaluation
results obtained on our code. We show how the tridiagonal part of our new code, in
particular with the enhancement discussed in Section 4.4, scales on larger numbers
of processors. The results are compared with the tridiagonal part of ScaLAPACK’s
Divide & Conquer (D&C) [60].

As the discussion in [21, 22] shows, performance of sequential LAPACK eigen-
solvers can strongly depend on the matrix at hand, the same is true for the parallel
case. For this reason, we are very grateful for help from collaborators who supply
us with relevant test cases and whose feedback is invaluable for understanding de-
sign tradeoffs and practical challenges. We mention again [66] (an update of [67])
which compares a previous version of our code [4] with the ScaLAPACK eigensolvers
pdsyevx, pdsyevd [60] and also ParEig [7] from PLAPACK; some results are also
reported for the block Divide & Conquer algorithm [34, 6]. Another reference includes
a pending update of [10]. Appendix D gives a short review of applications which can
both supply such systems and benefit from our new code. The test matrices studied
in this paper are summarized in Table 5.1.

Matrix name Dimension Origin
poly8 8000 B. Ward & Y. Bai, UTK
poly16 16000 B. Ward & Y. Bai, UTK
lapw 22908 A. Tate, CRAY
Poisson (1-2-1) 40001 generated

Wilkinson W
+

2m+1
40001 generated

Hubbard 63504 B. Ward & Y. Bai, UTK
Table 5.1

Tridiagonal test matrices used in this paper. Application matrices are from electronic struc-
ture calculations and computational quantum chemistry. ‘Poisson’ refers to a Toeplitz matrix with
diagonal two and off-diagonals one. W

+

2m+1
is the famous Wilkinson matrix.

Results shown in this paper were obtained on an IBM SP5 (Power 5, AIX), with
1.9 GHz and 7.6 Gflop/s peak, configured as SMP with 8 processors per node. The
compile options -O3 -qstrict -q64 -qarch=auto -qtune=auto were used. Fur-
thermore, Remote Direct Memory Access (RDMA) via the HPS (High Performance
Switch, or ”Federation”) was enabled.

As test setup, we distributed the tridiagonal matrix to all processors and then
inserted an MPI barrier in front of the calls to MPI Wtime before and after the
tridiagonal eigensolver. This guarantees that the reported runtime reflects potential
load imbalances in the tridiagonal part.
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In addition to giving runtime plots, we also report parallel efficiency. This should
allow the reader to better judge scalability. The efficiency E for p processors is defined
as the quotient

E(p) =
tpref

∗ pref

tp ∗ p
,(5.1)

where tp is the runtime for p processors and pref denotes the reference processor
configuration, the smallest number of processors on which the problem was run.

To ensure load and memory balancing, we used Integrated Performance Monitor-
ing (IPM,[37, 36]).

5.1. Scalability analysis of the tridiagonal part. Figures 5.1 and 5.2 com-
pare MRRR and Divide & Conquer on poly8 and poly16. The poly8 matrix is almost
too small to scale the codes up to 256 processors. One can see the efficiency drop
noticeably beyond 128 processors. In the poly16 case, MRRR is slightly faster as seen
in Figure 5.2.
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Fig. 5.1. Poly8. Runtime and efficiency
of the tridiagonal MRRR/D&C part on the
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Fig. 5.2. Poly16. Runtime and efficiency
of the tridiagonal MRRR/D&C part on the
IBM SP5.

Figures 5.3 and 5.4 show the results for the LAPW and Hubbard matrices. The
two algorithms behave comparably in Figure 5.3. However, Figure 5.4 is particularly
noteworthy. It shows that indeed our code now scales on the Hubbard case. Thus, the
worst-case behavior of our previous code [4] on this matrix that was observed in [66]
is now remedied.

At last, we show two test matrices on which MRRR and D&C are known to vary
widely. Figure 5.5 shows the results for the 1-2-1 matrix which is known to be difficult
for Divide & Conquer. In this case, MRRR beats it hands down. Rather the opposite
happens in the case of the Wilkinson matrix for which results are shown in Figure 5.6.
It is known [21, 22] that here, D&C benefits enormously from deflation. On the other
hand, the closeness of the eigenvalues requires substantial work by MRRR. This shows
that one cannot expect one code to perform best in all circumstances. It will depend
on the application which of the two algorithms is preferable.

5.2. Computing subsets of eigenpairs. This section gives a brief case study
for the computation of subsets of eigenpairs. We evaluate the subset feature of our
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Fig. 5.3. Lapw. Runtime and efficiency
of the tridiagonal MRRR/D&C part on the
IBM SP5.
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Fig. 5.4. Hubbard. Runtime and effi-
ciency of the tridiagonal MRRR/D&C part on
the IBM SP5.
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Fig. 5.5. Poisson. Runtime and effi-
ciency of the tridiagonal MRRR/D&C part on
the IBM SP5.
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Fig. 5.6. Wilkinson. Runtime and effi-
ciency of the tridiagonal MRRR/D&C part on
the IBM SP5.

code on the task of computing 10% of the eigenvalues at the left end of the spectrum.
¶ There are three questions of interest.

1. What fraction of time does the parallel subset computation take compared
to the full spectrum?

2. How does the subset computation scale?
3. What is the impact of the reduced cost of the tridiagonal part for subsets on

the dense computation?
In order to answer the first question, subset efficiency can be computed relative

to the runtime for the corresponding full spectrum computation. Let n denote the
matrix dimension and m the number of eigenpairs in the subset, then we define subset
efficiency as

S(p) =
t(n,p) ∗ m

t(m,p) ∗ n
,(5.2)

¶For the importance of the subset feature in applications, see Appendix D.
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where t(i,p) denotes the time taken for i eigenvalues on p processors.
As can be seen from the subset efficiency shown in Figure 5.7, definition (5.2) is

slightly flawed in that for the subset considered, the efficiency is greater than one. This
means that the representation tree for this subset (the leftmost 10% of the eigenpairs)
involves less than 10% of the time spent on the representation tree for the full set of
eigenpairs.

For the second question, by (5.1) efficiency can be computed using the subset
runtime on the smallest feasible number of processors as reference. This is shown in
Figure 5.8.
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Fig. 5.7. Subset efficiency relative to the
full spectrum computation as defined by (5.2).
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subset computation for a fixed subset by (5.1).

Computing subsets of eigenpairs instead of all of them is always beneficial because
of the smaller amount of memory required. As seen in the example, a subset com-
putation can also be easier than computing the full set of eigenpairs. In any event,
the use of the subset feature influences the total time of the dense algorithm in two
ways: first, the tridiagonal eigensolver takes less time and second, the backtransfor-
mation becomes cheaper. The reduction of the original dense matrix to tridiagonal
form is unchanged and thus constitutes a lower bound for the fastest time possible for
computing any part of the spectrum with a ScaLAPACK algorithm. For the matrices
tested in [66], the reduction to tridiagonal form typically required between 50%-60%
of the time for pdsyevr and thus use of the subset feature can speed up the overall
computation by at most a factor of about 1.7-2. The exact speedup depends on the
percentage of eigenvalues required and also the particular matrix. This issue has to
be investigated in the future in the context of the application at hand.

6. Conclusion and future work. In this paper, we described the design of
ScaLAPACK’s new MRRR algorithm. The novel features of this code are the use of
static memory and a refined representation tree for achieving better parallel scalability
even with stricter accuracy thresholds. The latter feature was shown to significantly
improve load imbalance and scalability, curing some negative results from [66] on an
earlier version [4].

Performance comparisons show that it is matrix and application dependent, which
of the two principal algorithms, MRRR and Divide & Conquer, is the fastest algo-
rithms for computing all eigenpairs. MRRR can compute subsets at reduced cost,
using O(nk/p) operations per processor for the tridiagonal part. It remedies an issue
of inverse iteration that does not guarantee a correct answer. The software is available
from the authors on request and will be part of the next ScaLAPACK release.
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Furthermore, we are studying an out-of-core extension and the impact of novel
computer architectures on our code.
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Appendix A. Testing.

A.1. Design of the tester. As part of the current release, we provide a tester
for pdsyevr. The tester allows the user to specify matrix sizes, matrix types, and
processor configurations. There are six different tests available: The user can choose
whether to compute eigenpairs or eigenvalues only; furthermore (s)he can choose
between the full spectrum, a range of eigenpairs specified by index, or the eigenpairs
from an interval.

The tester verifies that the computed eigenpairs have small residuals, that is they
satisfy

‖(A − λI)z‖ = O(ǫ‖A‖).(A.1)

We use ScaLAPACK’s pdsepchk for this test. Furthermore, the computed eigenvec-
tors must be numerically orthogonal, satisfying

‖I − ZT Z‖ = O(nǫ).(A.2)

ScaLAPACK’s pdsepqtq is used for this test. By choosing a threshold in either of
these tests, the user can decide what is considered a failure. Typically, the derivation
from orthogonality is below 100nǫ.

For subset tests, the code also checks that the computed eigenvalues are con-
sistent with those computed for the full-spectrum test. Lastly, the tester performs
memory consistency checks to ensure that no memory is accessed outside the assigned
workspace.

The driver pdseprdriver is the main program that initializes the ScaLAPACK
environment. The processor 0 is responsible for I/O, it reads in the current test from
the file ’SEPR.dat’ and prints a diagnostic message at the end of the test. pdseprreq

partitions the available memory appropriately for the processor configuration and
matrix at hand and passes it to the test subroutine pdseprtst.

A.2. Test matrices. We use the test matrices from the ScaLAPACK test matrix
collection for the symmetric eigenvalue problem, see also the ScaLAPACK Installation
Guide [13].

1. The zero matrix
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2. The identity matrix
3. A diagonal matrix with uniformly spaced entries from 1 to ǫ and random

signs
4. A diagonal matrix with geometrically spaced entries from 1 to ǫ and random

signs
5. A diagonal matrix with entries 1, ǫ, ǫ, . . . , ǫ and random sign
6. Same as (4), but multiplied by SQRT(overflow threshold)
7. Same as (4), but multiplied by SQRT(underflow threshold)
8. Same as (3), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
9. Same as (4), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
10. Same as (5), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
11. Same as (8), but multiplied by SQRT(overflow threshold)
12. Same as (8), but multiplied by SQRT(underflow threshold)
13. A symmetric matrix with random entries chosen uniformly from (-1, 1)
14. Same as (13), but multiplied by SQRT(overflow threshold)
15. Same as (13), but multiplied by SQRT(underflow threshold)
16. Same as (8), but diagonal elements are all positive.
17. Same as (9), but diagonal elements are all positive.
18. Same as (10), but diagonal elements are all positive.
19. Same as (16), but multiplied by SQRT(overflow threshold)
20. Same as (16), but multiplied by SQRT(underflow threshold)
21. A tridiagonal matrix that is a direct sum of smaller diagonally dominant

submatrices. Each unreduced submatrix has geometrically spaced diagonal
entries from 1 to ǫ.

22. A matrix of the form U ′DU , where U is orthogonal and D has ⌈lg n⌉ ”clusters”
at 0, 1, 2, . . . , ⌈lg n⌉ − 1. The size of the cluster at the value I is 2I .

A.3. A note on the current ScaLAPACK orthogonality test. There is
a subtle flaw in the current ScaLAPACK tester for pdsyevx. The tester does not
verify that (A.2) holds. It only verifies (A.2) for those eigenpairs that pdsyevx could
re-orthogonalize with the amount of memory supplied. This is not transparent to the
user, unfortunately.

An inspection of the orthogonality test pdsepqtq reveals that the tester scales the
submatrix of C = I−ZT Z belonging to unresolved clusters by a quantity 1.0D2∗gap.
Thus, pdsepqtq misrepresents the orthogonality. Computed eigenvectors with poor
orthogonality are not reported as failure when the corresponding eigenvalues belong
to tight clusters (that is, they have small gaps), and full reorthogonalization was
impossible within the available amount of memory.

When we substituted pdsepqtq by a ’true’ orthogonality test, we found that
pdsyevx fails on two examples in the current ScaLAPACK tester. Both these failures
are on matrices of type 10, we do not report them here. Our algorithm pdsyevr does
not fail.

Appendix B. Two illustrative examples.

We provide here an example for a failure of the subset-based parallelization and
show that the embedded approach succeeds.
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B.1. How subset-based parallelization can fail. This section gives a short
example to illustrate how the simple approach discussed in Section 3.2.1, the paral-
lelization based on the subset feature of the sequential code, can fail.

Our example is the matrix given in (B.1). It stems from the test set described in
Appendix A.2 and is of type 10.

D =













7.603714754255181× 10−2

9.239628524574373× 10−1

1.090348352668058× 10−14

−1.103610618742564× 10−14

−1.110886780132261× 10−14













,E =









2.650575404250068× 10−1

6.006645802706129× 10−15

−9.033212524378735× 10−16

1.373587734806744× 10−17









(B.1)
Its eigenvalues are shown in (B.2).

W =













−1.113099956921839× 10−14

−1.110886780132261× 10−14

−1.099358132331527× 10−14

1.110223024625157× 10−14

1













(B.2)

The experiment used p = 2 processors; eigenpairs 1 − 3 are assigned to the
first and eigenpairs 4, 5 are assigned to the second processor. Each processor calls
the sequential code (LAPACK’s dstegr) on its subset. The crossproduct of the
computed eigenvector matrix is shown in (B.3).

Z′ · Z =















1 0 −1.1 × 10−16 1.3 × 10-4 −1.2 × 10−17

0 1 0 0 0

−1.1 × 10−16 0 1 −7.5 × 10-4 −1.8 × 10−17

1.3 × 10-4 0 −7.5 × 10-4 1 3.7 × 10−18

−1.2 × 10−17 0 −1.8 × 10−17 3.7 × 10−18 1















(B.3)

Within the subset assigned to each processor, the orthogonality is fine, see the
diagonal blocks in (B.3). However, the eigenvectors computed by the first processor
are not orthogonal to the fourth eigenvector computed by the other processor.

B.2. Test result for the conformal embedding. For the same processor
configuration as in the previous section, and the sample matrix (B.1), we show in
(B.4) the crossproduct of the eigenvectors computed with the embedded approach
from Section 3.2.2. This time, the eigenvector matrix is numerically orthogonal as
desired.

Z′ · Z =













1 0 1.1 × 10−15 2.1 × 10−17 −1.1 × 10−17

0 1 0 0 0
1.1 × 10−15 0 1 1.7 × 10−17 −4.7 × 10−17

2.1 × 10−17 0 1.7 × 10−17 1 3.4 × 10−19

−1.1 × 10−17 0 −4.7 × 10−17 3.4 × 10−19 1













(B.4)

Appendix C. The interface of pdsyevr.
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This section compares the interfaces of pdsyevr and pdsyevx. For brevity, we
only point out the differences between the two interfaces. The most important differ-
ence, namely the memory requirements, have already been addressed in Section 3.3.

For reference, we first show the interface of pdsyevx from ScaLAPACK version
1.7. The meaning of all arguments is documented in [14].

SUBROUTINE PDSYEVX( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL,

$ VU, IL, IU, ABSTOL, M, NZ, W, ORFAC, Z, IZ,

$ JZ, DESCZ, WORK, LWORK, IWORK, LIWORK, IFAIL,

$ ICLUSTR, GAP, INFO )

In comparison, we show the corresponding interface of pdsyevr.
SUBROUTINE PDSYEVR( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL,

$ VU, IL, IU, M, NZ, W, Z, IZ,

$ JZ, DESCZ, WORK, LWORK, IWORK, LIWORK,

$ INFO )

Common arguments generally have the same type and meaning as for pdsyevx.
However, five parameters have been suppressed. The parameters abstol and or-

fac are related to bisection and inverse iteration and have no meaning in MRRR.
The parameters ifail, iclustr, and gap were used to report clusters for which re-
orthogonalization could not be applied due to insufficient memory. MRRR avoids
re-orthogonalization entirely, thus these parameters are no longer needed.

Appendix D. Impact on applications.
This section aims to gauge the impact of our work on applications, specifically

the field of electronic structure computations which makes heavy use of dense eigen-
solvers. Many of these calculations are based on the solution of effective single particle
Schrödinger equations due to Kohn and Sham [42] which are eigenvalue problems. The
choice of the most suitable method for their solution is determined by the discretiza-
tion basis for the problem and the number of eigenvectors (‘states’) that have to be
computed.

In a plane wave (PW) basis where the matrix (‘the Hamiltonian’) is usually
only available implicitly through matrix-vector multiplication, iterative methods such
as Nonlinear Conjugate Gradient [53, 64], Lanczos [48], or Jacobi-Davidson [58] are
preferred. Examples include ESCAN [11], PARATEC [55], and VASP [43]. Real space
discretization of the Hamiltonian as for example used in PARSEC [12, 1] generally
lead to a large sparse matrix so that again iterative eigenvalue methods are employed.
See [56] for a more detailed review.

On the other hand, direct eigensolvers as provided by ScaLAPACK [14] are used
whenever a part or all of the spectrum of a dense matrix, at least 10% say, needs to
be computed. Note that eigenvalue subsets at the left end of the spectrum usually
describe the states that are occupied by the electrons of the system. One example
is NWChem [40, 5] which is based on Gaussian basis discretization and typically
computes the full spectrum. Another example is multi-band k · p computation rely-
ing on direct diagonalization [61]. Linearized-Augmented-Plane-Wave (LAPW) codes
like WIEN2k [57] use a hybrid approach where a plane wave basis is used outside
the atomic region which is discretized using spherical harmonics. Lastly, the Linear
Combination of Bulk Bands (LCBB) method [65] uses a direct eigensolver.

Second and of equally high importance, all the iterative methods mentioned above
use a direct eigensolver for Rayleigh-Ritz subspace diagonalization. Methods which
work with larger subspaces, for example Locally Optimal Block Preconditioned Conju-
gate Gradient (LOBPCG) [41], are particularly dependent on this part being scalable.
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We quote as an example from a recent review on numerical methods for electronic
structure calculations [56]: ‘Interestingly, the large and dense eigenvalue problem will
gain importance as systems become larger. This is because most methods solve a
dense eigenvalue problem which arises from projecting the Hamiltonian into some
subspace. As the number of states increases, this dense problem can reach sizes in
the tens of thousands. Because of the cubic scaling of standard eigenvalue methods
for dense matrices, these calculations may become a bottleneck.’
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