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Abstract. In order to compute orthogonal eigenvectors of a symmetric tridiagonal matrix
without Gram-Schmidt orthogonalization, the MRRR algorithm finds a shifted LDLT factorization
(representation) for each eigenvalue such that the local eigenvalue is a singleton, that is defined to
high relative accuracy and has a large relative gap.

MRRR’s representation tree describes how, by successive shifting and refinement, each eigenvalue
becomes relatively isolated. Its shape plays a crucial role for complexity: deeper trees are associated
with more eigenvalue refinement to resolve clustering of eigenvalues.

Motivated by recently observed deteriorating complexity of the LAPACK 3.1 MRRR kernels for
certain matrices of large dimension, we here re-examine and refine the representation tree concept.

We first describe the discovery of what we call a spectrum peeling problem: even though the
matrix at hand might not have a spectrum with clusters within clusters, the representation tree
might still contain a long chain of large nodes.

We then formulate a refined proposal for the representation tree that aims at avoiding the un-
warranted work while preserving tight accuracy bounds where possible. The trade-off between per-
formance and accuracy in our solution is discussed by practical examples.
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1. Introduction. In 2006, a technical report [23] comparing several parallel
algorithms for the symmetric eigenvalue problem showed surprisingly poor perfor-
mance of a ScaLAPACK prototype [2] of the algorithm of Multiple Relatively Robust
Representations, MRRR or MR3 [8, 21, 22, 9, 10, 12], on certain large matrices from
electronic structure calculations. An additional remarkable finding was that an earlier
implementation of parallel MRRR [3] did not exhibit the same kind of problem.

Interested in shedding light on this mystery, we investigated the behavior of the
ScaLAPACK code on these matrices and were surprised to find the root cause for
its poor performance to be beyond a parallelization issue. As we show in this paper,
design decisions aimed at achieving greater accuracy of the LAPACK 3.1 version [17]
of MRRR, which were adapted in the parallel code, can ‘backfire’ for certain large
matrices and result in an artificially ‘bloated’ representation tree involving a huge
amount of unwarranted computations.

In order to address this problem, we propose here a refined formulation of the
representation tree that allows us to reap accuracy benefits without incurring high
performance penalties. The key idea is to combine a strict requirement on the relative
gap of singletons with an additional criterion for eigenvalue groups. This yields a
refined representation tree that is beneficial for both the sequential and parallel MRRR
algorithm.

The rest of this paper is organized as follows. Section 2 gives an overview of the
MRRR algorithm with an emphasis on the role and construction of the representa-
tion tree. In Section 3, we present examples of representation trees associated with
extreme amounts of computation, including the worst-case example from [23]. The
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Switzerland, cvoemel@inf.ethz.ch

1



negative impact of such trees on computational complexity and also the paralleliza-
tion of MRRR is discussed. Based on these observations, we propose in Section 4 the
use of refined criteria to automatically build a preferable representation tree. The
effect of our proposal is evaluated in Section 5. Section 6 summarizes our results and
conclusions.

2. The role of the representation tree in the MRRR algorithm. This
section gives a terse but self-contained description of the aspects of MRRR impor-
tant for this paper. Further information on the representation tree can be found in
particular in [9], but see also [8, 21, 22, 10, 12].

2.1. Basic description of the MRRR algorithm. Let the symmetric tridi-
agonal matrix T be represented in factored form

T − σI = LDLT .(2.1)

Further, for an eigenvalue λ of LDLT , let its approximation λ̂ satisfy

‖λ − λ̂‖ = O(ε|λ|).(2.2)

Here, ε denotes the relative machine precision. To be able to compute λ̂, we require
that small relative changes in each entry of L and D should only cause small relative
changes in λ. Such an LDLT factorization is called a Relatively Robust Representa-
tion (RRR) for this eigenvalue.

At the heart of the MRRR algorithm lies the idea of being able to compute an
eigenvector approximation v̂, ‖v̂‖2 = 1 to the the true eigenvector v that satisfies

‖(LDLT − λ̂I)v̂‖2 = O(nε|λ̂|).(2.3)

The reward for the residual norm being small relative to |λ̂| (and to |λ|) is revealed
by the classical gap theorem [4, 5, 19]. In general, inverse iteration [16, 19] with T
satisfies

| sin 6 (v, v̂)| ≤
‖(T − λ̂I)v̂‖2

gap(λ̂)
=

O(nε‖T ‖2)

gap(λ̂)
(2.4)

where gap(λ̂) = min
{

|λ̂ − µ| : λ 6= µ, µ ∈ spectrum(T )
}

. But with (2.3), one has

| sin 6 (v, v̂)| ≤
‖(LDLT − λ̂I)v̂‖2

gap(λ̂)
=

O(nε)

relgap(λ̂)
(2.5)

where

relgap(λ̂) :=
gap(λ̂)

|λ̂|
(2.6)

and |λ̂| could be much smaller than ‖T ‖2.
For the bound (2.5) on the angle between computed and true eigenvector to

be small, relgap(λ̂) should be as large as possible. In practice, a threshold τminrgp
is employed to decide when a relative gap is large enough. A (shifted) eigenvalue
approximation satisfying (2.2) and

gap(λ̂) ≥ τminrgp · |λ̂|(2.7)
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is called a singleton; by (2.5) MRRR can guarantee that the corresponding eigenvector
satisfies

| sin 6 (v, v̂)| = O(nε/τminrgp).(2.8)

2.2. Construction of the representation tree. The definition (2.6) of the
relative gap shows that in theory, a relative gap can be made arbitrarily large by
shifting close to the eigenvalue. Thus, for a matrix where several eigenvalues might
agree to many or all their figures, one can compute a new RRR

L+D+LT
+ = LDLT − σI(2.9)

for the eigenvalues in the cluster. This can be done stably by differential stationary
qds (dstqds) factorization [13, 14, 18]. If one shifts close enough to the cluster, at least
one of the eigenvalues of the new, shifted RRR becomes a singleton. If there are still
clusters with respect to the new RRR, the procedure can be repeated for them. Note
that because of the shifting, the computed eigenvalues lose some of their correct figures
and need to be refined to become sufficiently accurate again. The idea of using various
shifted RRRs to refine the spectrum, until each eigenvalue becomes a singleton, gives
the algorithm its name, MRRR = multiple relatively robust representations.

The so-called representation tree is a graph that describes the application of
MRRR. The root node is an RRR for all the desired eigenvalues. A descendant is
an RRR for an eigenvalue subset, the edge between them a shift relation (2.9). The
singletons are the leafs.

Choosing a good shift is of key importance. It has to be guaranteed that [9]
• the new factorization L+D+LT

+ is an RRR for all eigenvalues of the group,
and that

• at least one eigenvalue of the group, the one closest to the shift, becomes a
singleton.

In order to guarantee that one finds at least one singleton as a child of the current
RRR, one has to shift close enough so that subsequent eigenvalue refinement for the
new RRR can reveal a large enough relative gap. Furthermore, one prefers to shift
just outside of an eigenvalue group rather than inside as to reduce the risk of element
growth in the factorization which could spoil the RRR property. One can shift at
both ends of a cluster, and also back off slightly from the ends, to find a location with
small element growth, see [12].

A second issue that is of particular importance for this paper is how to group those
eigenvalues that are not singletons. The approach that is used in LAPACK 3.0 [1]
and 3.1 [17] is to inspect one-sided gaps. Following [19], we number the eigenvalues
of an unreduced tridiagonal in increasing order

λ1 < λ2 < . . . < λn.

Then, define the right gap

rgap(λ̂i) := |λ̂i+1 − λ̂i|,(2.10)

and choose a threshold τminrgp. Then a boundary from one child to the next is defined
through the separation criterion

rgap(λ̂k) ≥ τminrgp · |λ̂k|.(2.11)

If multiple eigenvalues are enclosed between rgaps satisfying (2.11), one has found
a group for which a new RRR is computed. Otherwise one has found a singleton.
Algorithm 1 gives the details.
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Algorithm 1 Construction of the representation tree in the MRRR algorithm in
LAPACK 3.0 and 3.1. See also Figure 2 in [9].

Let LDLT be an RRR for λ̂i, . . . , λ̂j .

Assume that λ̂i, . . . , λ̂j have suitable accuracy (e.g. by bisection).
Initialize start index s = i of eigenvalue group.
for k = i : j do

if rgap(λ̂k) ≥ τminrgp · |λ̂k| then

A boundary between groups has been found.
if start index s > k then

An eigenvalue group has been found.
Choose shift σ outside the group.
Compute new RRR, L+D+LT

+
= LDLT − σI.

else

A singleton has been found.
The corresponding eigenvector can be computed.

end if

Set s = k + 1 to be the start index for the next group.
end if

end for

2.3. The choice of τminrgp. A threshold of τminrgp = 1/n, with n being the
dimension of the unreduced tridiagonal matrix, was initially suggested in [8]. All
experimental evidence available at the time indicated that residual norms and dot
products between different computed vectors were bounded by multiples of nε rather
than what a pessimistic interpretation of ‘crude’ bounds such as (2.8) would predict,
see comments in [8]. Consequently, it was used for all matrices of size greater than
100 in the LAPACK 3.0 [1] implementation.

Subsequently, with more extensive testing on much larger matrices with more and
more challenging eigenvalue distributions, it was felt that τminrgp should be bounded
by a constant to better prevent deteriorating orthogonality with increasing matrix
size observed in experiments. Secondly, the LAPACK 3.0 threshold cannot be chosen
independently from the matrix size which makes it inflexible when more accuracy is
desired. For these reasons, the current version of MRRR [12] in the latest LAPACK
3.1 release [17] uses, in double precision, a fixed threshold τminrgp = 10−3. This
means that eigenvalues that agree to less than three digits are declared relatively
isolated, independent of the matrix dimension.

A comparison [7] of LAPACK’s tridiagonal eigensolvers using a comprehensive
set of test problems [6] shows improvements in the accuracy of MRRR in LAPACK
3.1 compared to version 3.0. These were attributed in part to the modified threshold
τminrgp.

2.4. The representation tree for W+

21. As an example, we consider the ap-
plication of Algorithm 1 to a Wilkinson matrix [24]

W+
2m+1 = tridiag





1 1 . . . 1 1
m m − 1 . . . 0 . . . m − 1 m

1 1 . . . 1 1



 .(2.12)

What follows is a summary of the representation tree construction for W+

21, a de-
tailed exposition is given in [11] using the same threshold τminrgp = 10−3. (That is,
eigenvalues that agree to fewer than three digits are declared relatively isolated.) The
large eigenvalues of Wilkinson matrices of odd order come in very close pairs which
are separated by large gaps. This is reflected in the representation tree.
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MRRR first computes an RRR for all eigenvalues, shifting to the outside of the
rightmost eigenvalue. The eigenvalues of this root RRR are inspected. The leftmost
nine eigenvalues are declared singletons. The remaining ones come in close pairs
(close with respect to τminrgp) for each of which a new RRR is computed. At the
next level of the tree, once the clustered eigenvalues have been refined, their relative
gaps are found to be larger than τminrgp. This concludes the construction. of the
representation tree which is depicted in Figure 2.1.

Leaves (singletons)

Root representation

{11} {21}{20}{10} {19}{18}

{1,...,21}

{5 }{4 }{3 }{2 } {20,21}{18,19}{16,17}{14,15}{12,13}{10,11}

{17}{16}{15}{14}{13}{12}

{1 } {9 }{8 }{7 }{6}

Fig. 2.1. The representation tree for W+

21
. Square boxes correspond to singletons. Boxes with

round corners correspond to eigenvalue groups for which an individual RRR is computed whose local
eigenvalues are subsequently refined.

3. The eigenvalue peeling problem. We now return to the starting point
of our investigation. The introduction, Section 1, mentioned severe performance dif-
ferences between different versions of parallel MRRR on certain large matrices. As
we will see shortly, the cause of this problem is the definition of separation between
eigenvalue groups as in (2.11) and the resulting representation tree produced by Al-
gorithm 1.

3.1. The peeling problem in LAPACK 3.1. For sake of illustration, let us
consider a large Wilkinson matrix W+

2m+1 from (2.12) where m is extremely large, say

W+

20001. It can be verified that all eigenvalues are contained in an interval [−2, m+1]
and that the larger eigenvalues of Wilkinson matrices of odd order come in very close
pairs which are separated from each other by absolute gaps of size about one. Further,
to simplify the discussion, we assume that MRRR at the beginning shifts to the left
so that the root representation is positive definite.

With the LAPACK 3.1 threshold τminrgp = 10−3, see Section 2.3, criterion (2.11)
implies that the separation between eigenvalue groups needs to satisfy

rgap(λ̂k) ≥ 10−3|λ̂k|.(3.1)

We then observe that for λ̂k larger than τ−1

minrgp = 1000, an absolute gap of size

about one will not pass the test (3.1). As a consequence, all these eigenvalues, in
our example about 18,000, are declared to be part of a giant ‘group.’ On the next
representation tree level, the process repeats itself: about one thousand eigenvalue
pairs each become a child, all others are declared grouped together. Thus, at each
level of the tree, the algorithm cumbersomely ‘peels off’ a fraction of the spectrum.

This situation is unsatisfying for the following reasons:
1. The human eye immediately recognizes that an RRR is needed for each pair

of close eigenvalues, whereas the automatic criterion produces an ‘artificially
long’ chain in the representation tree. The computer suggests that the spec-
trum consists of clusters within clusters of eigenvalues where in reality, it does
not.

5



2. From the efficiency point of view, the repeated refinement of eigenvalues for
each RRR with a deep representation tree is hugely expensive. Plus the
potential for rounding errors spoiling the results increases.

The example of a large Wilkinson matrix in the previous exposition was chosen
in retrospect, to give a simple illustration of a real problem. We now turn to our
original motivation of understanding the results in [23]. It turns out that the same
peeling phenomenon can be observed. An analysis of the largest matrix, of dimension
63504 and arising from Hubbard models in electronic structure calculations, reveals
a group of size 61735, spanning eigenvalues 1115 to 62849, that contains a group of
eigenvalues 1115 to 59566, in which eigenvalues 4226 to 59566 again forms a group,
and so forth. The maximum depth of the representation tree is 17.

3.2. The representation tree in LAPACK 3.0. For the LAPACK 3.0 thresh-
old τminrgp = 1/n, with n being the dimension of the unreduced tridiagonal matrix,
criterion (2.11) implies that the separation between eigenvalue groups needs to satisfy

rgap(λ̂k) ≥
|λ̂k|

n
.(3.2)

One can see that this criterion leads to a weaker bound (2.8) than (3.1) which was
the motivation to change it in LAPACK 3.1. Nevertheless, let us investigate the
representation trees for the examples from Section 3.1 with this criterion.

For the Wilkinson matrix, because the width of the spectrum is less than m+3 ≈
N/2, each gap of size about one is large enough to pass the threshold test (3.2).
As a result, the children of the root representation are either singletons or pairs of
eigenvalues. In this case, the automatic criterion produces exactly what would be
decided by a human: compute an RRR for each of the close pairs and use the new
representation for the eigenvector computation. The resulting representation tree is
shallow.

In the case of the Hubbard matrix, one finds that the largest group in the rep-
resentation tree with criterion (3.2). consists of 16 eigenvalues. Again, the tree is
shallow with a maximum depth of two.

3.3. Summary and impact of the peeling problem. Table 3.1 summa-
rizes the characteristics of the different representation trees discussed in Sections 3.1
and 3.2.

Matrix Size Tree depth Max. group size
(3.2) (3.1) (3.2) (3.1)

Wilkinson 20001 1 11 2 18003
Hubbard 63504 2 17 16 61735

Table 3.1

Comparison of representation tree properties when using criteria (3.2) and (3.1). Reported are
the maximum tree depth and the size of the largest eigenvalue group in an RRR except for the root.

What we call the eigenvalue peeling problem manifests itself as a long ‘artificial’
chain of fat nodes in the representation tree from criterion (3.1): the representation
tree can suggest that the spectrum consists of clusters within clusters of eigenvalues
where in reality, it might not. In the example of the Wilkinson matrix, the repre-
sentation tree merely gives the illusion of a difficult matrix where the human eye
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immediately recognizes that one representation is needed for each pair of close eigen-
values. (And incidentally in this case, the automatic criterion (3.2) does produce
such a tree.) To our surprise we learn, compared to [9], that grouping eigenvalues by
relative gaps might become less reliable a criterion when the matrix size increases.

In the case of the Hubbard matrix, we also note the spectrum peeling phenomenon
with criterion (3.1). Whether this is indeed a difficult matrix or whether the repre-
sentation tree complexity is unwarranted, will be discussed later, in Section 5. Here,
we discuss the impact of spectrum peeling on complexity and also parallelization of
MRRR.

First and foremost, each additional level of RRRs in the representation tree is
associated to refinement of eigenvalues. In the Wilkinson example from Section 3.1,
one first needs to refine 18,000 eigenvalues, then 16,000 of those, then again 14,000,
and so forth. This makes a deep representation tree hugely expensive. Plus the
potential for rounding errors spoiling the results increases. When the tree is shallow
as in Section 3.2, this overhead is not present.

We also mention that when MRRR is parallelized, such trees can cause additional
scalability issues: when the eigenvector computation is equally distributed among
processors, the work load is highly unbalanced between a processor working on a
shallow part of the representation tree and one assigned to a deep part arising from
peeling. We note that the eigenvector computation in MRRR is only embarrassingly
parallel if the root representation consists of singletons.

The observations in this section explain the results in [23], in particular the most
extreme case of the Hubbard matrix considered here. The ScaLAPACK prototype [2]
of MRRR used the newer LAPACK 3.1 criterion (3.1) which has the peeling prob-
lem. The earlier implementation of parallel MRRR [3] uses the original LAPACK 3.0
criterion (3.2) which can produce shallow and skinnier representation trees.

4. Refining the definition of the representation tree. In this section, we
discuss possible remedies for the peeling issue with some representation trees generated
by MRRR in LAPACK 3.1.

4.1. Necessary stability of invariant subspaces. Before we start introducing
modifications, it is instructive to revisit the foundations of the MRRR algorithm.

For an LDLT factorization, consider a set of its eigenvalues λi, . . . , λj with eigen-
vectors vi, . . . , vj . Let Γ = {i, . . . , j} denote the corresponding index set. Assume
that MRRR decides, by some criterion, that one should work with a new shifted fac-
torization L+D+LT

+ = LDLT −σI, see (2.9), to compute eigenvector approximations
to vi, . . . , vj .

For the moment, we are not yet interested in the computation itself. Instead,
let us rather ask what is required from the true eigenpairs of L+D+LT

+ in question.
For k ∈ Γ, denote those eigenvalues by µk, and the corresponding eigenvectors by
wk. Without rounding errors in the computation of L+D+LT

+, one would have exact
relations

λk − σ = µk, vk = wk, k ∈ Γ.(4.1)

In finite precision, the computation of L+D+LT
+ involves rounding errors so (4.1)

holds only in some approximate way.
Nevertheless, MRRR has decided to treat the group and its invariant subspace

independent from the rest of the spectrum and the associated vectors. If

VΓ = span{vk : k ∈ Γ}(4.2)
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-

6

-

?

L̄D̄L̄T L̄+D̄+L̄T
+

LDLT L+D+LT
+

dstqds

exact

L̄D̄L̄T − σI = L̄+D̄+L̄T
+

dstqds

computed

change each

D(i) by 1 ulp,

L(i) by 3 ulps.

change each

D̄+(i) by 2 ulps,

L̄+(i) by 3 ulps.

Fig. 4.1. Commutative Diagram illustrating the mixed relative stability of the differential sta-
tionary qds (dstqds) algorithm in finite precision [8, 9, 10].

and similarly

WΓ = span{wk : k ∈ Γ},(4.3)

then a necessary condition for correctness in the sense of numerically orthogonal
vectors as promised in (2.8) is for the subspace distance (see Section 2.6.3 of [15]) to
fulfill

dist (VΓ,WΓ) = max
v∈V⊥

Γ
,‖v‖2=1

max
w∈WΓ,‖w‖2=1

|vT w| = O(nε).(4.4)

Another interpretation of (4.4) is that the sine of the largest principal angle between
VΓ and WΓ satisfies

dist (VΓ,WΓ) = sin 6 (VΓ,WΓ) = O(nε)(4.5)

see Section 12.4.3 of [15].
Note that this discussion does not affect singletons. Here, one can continue work-

ing with LDLT and only the approximation errors in the computed v̂ matter, which
are controlled by (2.7) to yield (2.8).

4.2. Necessary RRR property. As mentioned in Section 2.2, the differen-
tial stationary qds (dstqds) factorization is the key tool for computing L+D+LT

+ =
LDLT − σI in MRRR and hence, we need to assess what errors are introduced in
finite precision. This is where relative perturbation theory enters the scene [10, 9, 20].

Figure 4.1 gives the main result of the mixed relative stability of dstqds, see
also [8, 9, 10]. D(i) and L(i) denote the i-th diagonal and sub-diagonal entry of
D and L, respectively. First, D(i) and L(i) are changed by one and three relative
Units in the Last Place (ulps), to obtain the respective D̄(i) and L̄(i). Second, an
exact dstqds computation yields the D̄+(i) and L̄+(i). Last, another component-wise
small relative perturbation yields D+(i) and L+(i), the results of the finite precision
computation.

Like in Section 4.1, let (λk, vk) and (µk, wk) be the exact eigenpairs of LDLT and
computed L+D+LT

+ respectively, where k ∈ Γ = {i, . . . , j}. Denote by λ̄i, . . . , λ̄j and
µ̄i, . . . , µ̄j the relevant eigenvalues of L̄D̄L̄T and L̄+D̄+L̄T

+.
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First, we discuss the impact of the commutative diagram on the eigenvalues.
Because LDLT is an RRR for λi, . . . , λj , we can expect that

|λk − λ̄k| = O(nε|λk|), k ∈ Γ.(4.6)

Likewise, the RRR property of L+D+LT
+ yields

|µk − µ̄k| = O(nε|µk|), k ∈ Γ,(4.7)

where the µ̄k are the eigenvalues of L̄+D̄+L̄T
+. Furthermore,

λ̄k − µ̄k = σ.(4.8)

This shows that

|λk − (σ + µk)| ≤ |λk − λ̄k| + |µk − µ̄k| = O (nε[|µk| + |λk|]) .(4.9)

We now proceed to investigating how the commutative diagram gives robustness
of the invariant subspace in the sense of (4.4). Let the gap between the eigenvalues
of LDLt that are in Γ and those that are not be

gap
(

Γ, LDLt
)

:= min
k∈Γ,l/∈Γ

|λk − λl|.(4.10)

Further, in accordance to Section 3 of [9], let the subspace relative gap

relgap
(

Γ, LDLt
)

:= min
k∈Γ,l/∈Γ

|λk − λl|

|λk|
=

gap (Γ, LDLt)

|λk|
.(4.11)

Last define, in analogy to (4.2) and (4.3), the invariant subspaces V̄Γ and W̄Γ of L̄D̄L̄T

and and L̄+D̄+L̄T
+, respectively.

Then Section 4 of the same paper shows that with

dist

(

VΓ, V̄Γ

)

= O

(

nε

relgap (Γ, LDLt)

)

, dist

(

WΓ, W̄Γ

)

= O

(

nε

relgap
(

Γ, L+D+Lt
+

)

)

,

(4.12)
and

relgap
(

Γ, LDLt
)

> τminrgp, relgap
(

Γ, L+D+Lt
+

)

> τminrgp,(4.13)

one has

sin 6 (VΓ,WΓ) ≤
Knε

τminrgp
.(4.14)

The proof is based on the exact shift relation L̄D̄L̄T − σI = L̄+D̄+L̄T
+ at the bottom

of the commutative diagram in Figure 4.1. It implies that L̄D̄L̄T and L̄+D̄+L̄T
+ have

the same eigenvectors.

4.3. Addressing the peeling problem. In this section, we study one remedy
for the peeling problem with the strict LAPACK 3.1 threshold. The idea is to continue
using the threshold τminrgp = 10−3 where possible for stricter accuracy bounds. On
the other hand, by adding an additional, compatible criterion, we want to reduce the
size of large groups at the root level of the representation tree without falling back
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to lower accuracy. The criterion should be economical and efficient at the same time:
without requiring too much accuracy for the local eigenvalues, it should recognize
as much in advance as possible what RRRs are needed to limit possibly redundant
eigenvalue refinement.

In this regard, the alternative to a smaller threshold τminrgp is to choose a shift-
invariant criterion: from standard inverse iteration [16, 19], it is known that the abso-
lute distance between eigenvalues can be used as indicator of whether Gram-Schmidt
orthogonalization is necessary. If an eigenvalue, or a cluster of eigenvalues, is well
separated from its neighbors, the associated subspace will be naturally orthogonal.
This can also be seen from the original Davis-Kahan bound (2.4). Second, a shift
invariant criterion reflects what a human would understand by a cluster: arguably,
one would group eigenvalues based on their closeness, independent of the position of
the eigenvalues relative to zero. Yet, this idea has not yet been exploited for MRRR.

A natural measure of what gaps one can consider large is the following. Define
the spectral diameter of an unreduced tridiagonal by

spdiam := λn − λ1,(4.15)

then the average spectral gap is

avgap :=
spdiam

n − 1
.(4.16)

This yields the following grouping criterion: the non-singletons λ̂i, λ̂i+1 belong to two
different groups if

rgap(λ̂i) = |λ̂i+1 − λ̂i| ≥ avgap; λ̂i, λ̂i+1 no singletons.(4.17)

The criterion is shift-invariant as desired. It is solely aimed at creating smaller
groups in the root representation. Since the gaps don’t change noticeably when com-
puting an RRR of a child, see (4.9), the criterion will not be applied again.

What can we say about eigenvalue distances passing criterion (4.17) but not the

associated relative gap test (2.11)? From rgap(λ̂i) < τminrgp · |λ̂i|, we conclude that

|λi| >
spdiam

(n − 1)τminrgp
.(4.18)

Thus the criterion effects the eigenvalues of larger magnitude, precisely those respon-
sible for the artificial peeling problem.

Plugging LAPACK 3.0’s τminrgp = 1/n into (4.18), we see that a gap larger
than average, (4.17), implies (2.11) for this threshold. Thus, (4.17) delivers a tighter
accuracy bound (4.5) than LAPACK 3.0. For this reason, the analysis of Section 4.2
guarantees correctness of the proposed modification. 1

We do note that the average gap criterion only supplements the LAPACK 3.1
threshold (3.1) for groups of non-singletons. For a singleton, (3.1) stays in effect as
sole criterion.

1When gap
(

Γ, LDLt
)

> avgap, with the gap of the invariant subspace belonging to Γ from

(4.10), one can also show the necessary robustness (4.4) by the analogous Davis-Kahan gap theorem
for subspaces, see [5] and also Section 11.7.1 in [19].
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5. The new representation tree in practice. We consider some benchmark
problems to compare the shape of the representation trees resulting from application
of the various criteria. To simplify the presentation, we name the trees with criteria
(3.2) and (3.1) according to the respective LAPACK versions 3.0 and 3.1. As we
anticipate that the refined tree construction from Section 4.3 will be adopted in the
next LAPACK release, we call it 3.2.

As evaluation parameters, we consider the depth of the tree and the size of its
largest child (apart from the root), the results are shown in Table 5.1. Note that we
consider quite large matrices to illustrate notable differences between the criteria 3.0
and 3.1. A second purpose is to show the potential impact on the representation tree of
parallel MRRR where one can expect to encounter eigenproblems of that size. We also
show the numerical orthogonality of the eigenvectors computed by the ScaLAPACK
prototype with each of the criteria [2]. Conform to what can be expected from MRRR
by (2.8), we report the maximum deviation from numerical orthogonality, that is the
magnitude of the largest entry of V̂ tV − I, measured in units of nε.

Matrix Size n Tree depth Max. group size Num. Orthog. [nε]
3.0 3.1 3.2 3.0 3.1 3.2 3.0 3.1 3.2

1-2-1 10001 1 7 2 1963 8065 2198 0.87 0.94 3.18
20001 1 17 4 3924 18019 4394 0.88 1.15 0.82
30001 1 26 6 5886 28010 6591 0.82 1.47 2.32
40001 1 36 8 7848 38005 8789 1.03 3.14 5.92

Wilkinson 10001 2 6 2 2 8003 3 0.34 0.25 0.34
20001 1 11 2 2 18003 3 0.41 0.33 0.41
30001 1 16 2 2 28003 3 0.28 0.06 0.28
40001 2 21 2 2 38003 3 0.49 0.24 0.40

Poly 8000 0 4 4 1 3409 3409 0.32 1.33 1.33
16000 0 9 9 1 11909 11909 0.30 12.41 12.41

LAPW 22908 3 7 6 155 19898 18843 78.62 49.99 28.69
Hubbard 63504 2 17 2 16 61735 274 749.85 265.36 130.12

Table 5.1

Tridiagonal test matrices and characteristics of different representation trees. ‘1-2-1’ refers to
symmetric tridiagonal Toeplitz matrices with diagonal 2. ‘Wilkinson’ denotes W+

2m+1
from (2.12).

‘Hubbard’, see Section 3.1, and ‘Poly’ are tridiagonal matrices from [23]. ‘LAPW’ is also from
applications.

We now discuss the results in Table 5.1.

The 3.0 criterion consistently produces shallow trees. It is also remarkable that
for both the 1-2-1 matrices and Wilkinson matrices, the depth of the tree stays con-
stant even when the matrix dimension growths considerably. The Poly matrices are
interesting because every eigenvalue is treated as a singleton with respect to the root
representation. The infamous Hubbard matrix exhibits the worst orthogonality ob-
served in all tests.

Criterion 3.1 exhibits the peeling problem for both Wilkinson and 1-2-1 matrices:
the depth of the tree and the maximum eigenvalue group size increase substantially
with increasing matrix dimension. The problem with the Hubbard matrix has already
been discussed in Section 3.1, and one can defer its presence in the LAPW and Poly
matrices, too, when looking at maximum group size and tree depth. The orthogonality
result for the Hubbard matrix is better than for criterion 3.0. However, it is worth
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pointing out that the different criteria merely influence the worst-case orthogonality
bounds.

For Wilkinson matrices, criterion 3.2 manages to produce representation trees of
identical quality as LAPACK 3.0 criterion. Furthermore, in the case of the 1-2-1 ma-
trices, the maximum group size stays comparable and the tree depth increases much
more insignificantly than when using criterion 3.1. We also note that the representa-
tion tree for the Hubbard matrix becomes benign, with a depth of two and a small
maximum cluster size. The orthogonality is improved again. This gives an answer
to the question raised in Section 3.3: the Hubbard matrix may be considered as not
such a difficult matrix, the complexity of the representation tree with criterion 3.1 is
not warranted.
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Fig. 5.1. Gersgorin discs of Poly matrix,
dimension = 16,000. The circle centers (diag-
onal entries) are in black, the circle radii are
in cyan/grey.
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Fig. 5.2. Gersgorin discs of LAPW ma-
trix, dimension = 22,908. The circle centers
(diagonal entries) are in black, the circle radii
are in cyan/grey.
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Fig. 5.3. Spectrum of Poly matrix, di-
mension = 16,000.
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Fig. 5.4. Spectrum of LAPW matrix, di-
mension = 22,908.

The LAPW and Poly matrices are interesting as they shed light on the limits of
the approach. Both criteria 3.1 and 3.2 produce a deeper tree than what criterion
3.0 deems necessary. The shape of the 3.1 and 3.2 trees can be understood from the
Gersgorin discs (Figures 5.1 and 5.2) and the spectra (Figures 5.3 and 5.4). Indeed,
in both cases, it is hard to define what should be a cluster. The matrix entries show
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little variation in a large part of the matrix but do vary drastically in one smaller
section. This is also reflected in the eigenvalues.

Do the matrices warrant the more conservative representation trees of criteria
3.1 and 3.2? The answer depends on the point of view. For example, take the Poly
matrix of size 16, 000. In retrospect and in the light of the orthogonality result for
the 3.0 criterion, it turns out to be acceptable to allow relative gaps to be as small as
1/16000 = 6.25·10−5. Prior to the computation, and only equipped with information on
the spectrum, one might agree that 11, 909 eigenvalues in the middle of the spectrum
contained in an interval of width less than .75% of the spectral diameter do form a
cluster that needs to be refined gradually. This example illustrate the difficulty of
choosing the ‘right’ criterion, not too conservative but accurate enough, for all cases.

6. Summary and conclusions. MRRR in LAPACK 3.0 used a representation
tree threshold inverse-proportional to the dimension of the unreduced tridiagonal. In
order to better prevent deteriorating orthogonality with increasing matrix size, and
also to allow a more flexible, independent setting, LAPACK 3.1 replaced the threshold
by a fixed number.

Prompted by a performance comparison of several parallel eigensolvers [23], we
investigate in this paper how the complexity of MRRR depends on the threshold
choice and the associated representation tree. As a first contribution, we show that
the representation tree construction in LAPACK 3.1 is prone to producing trees with
an artificial peeling problem.

This raises the issue of finding an economical and efficient criterion for discovering
when a new RRR can or should be used. This is not an easy task as depending on
the matrix at hand, it might be difficult to define what eigenvalue groups should be
considered clustered.

As a remedy, we propose extending the LAPACK 3.1 criterion to recognize when
groups are separated by a gap that is larger than average. It is shown that this
modification fits in the frame-work of MRRR theory. In particular, the invariant
subspace of a group that is separated in this way can be computed independently.

We present matrices that show the limitations of the average gap approach: com-
plicated representation trees are not always avoided. Nevertheless, experimental data
shows that our proposed solution often produces shallow trees and small clusters,
favorable qualities that are important for guaranteeing good complexity of both se-
quential and parallel MRRR. At the same time, numerical orthogonality is similar
to or better than for LAPACK 3.1. For these reasons, we plan on adapting our new
criterion in LAPACK as well as in our parallel MRRR algorithm for ScaLAPACK.

Last but not least, the poor complexity of the ScaLAPACK MRRR prototype on
the infamous Hubbard example reported in [23] is explained. The proposed refined
representation tree resolves the artifical peeling problem without sacrificing accuracy.

Acknowledgment. Thanks to Bob Ward and Yihua Bai for providing the in-
teresting industrial example matrices from [23] in tridiagonal form, to Paul Willems
for comments on a first version of this paper, and to Beresford Parlett for many
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Symmetric Tridiagonal Eigensolvers. Technical report LBNL-61831, Lawrence Berkeley
National Laboratory, 2006.

[7] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel. Lapack Working Note 183:
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