Evaluating Block Algorithm Variants in LAPACK *
* This work was supported by the National Science Foundation
under Grant No. ASC-8715728.
This paper was submitted to the proceedings of
the Fourth SIAM Conference on Parallel Processing for Scientific
Computing, held in Chicago, lllinois, December 1989.

Edward Anderson and Jack Dongarra
Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37996

April 23, 1990

Abstract. The LAPACK software project currently under development is intended to provide a
portable linear algebra library for high performance computers. LAPACK will make use of the
Level 1, 2, and 3 BLAS to carry out basic operations. A principal focus of this project is to im-
plement blocked versions of a number of algorithms to take advantage of the greater parallelism
and improved data locality of the Level 3 BLAS. In this paper, we describe our work with vari-
ants of some of these algorithms and the performance data we have collected.

LAPACK is planned to be a collection of Fortran 77 subroutines for the analysis and solution of
systems of simultaneous linear algebraic equations, linear least-squares problems, and matrix
eigenvalue problems [1]. This project will combine the functionality of LINPACK and
EISPACK in a single package, incorporate recent algorithmic improvements, and restructure the
algorithms to use the Level 2 and 3 BLAS (Basic Linear Algebra Subprograms) for efficiency on
today’'s high-performance computers. We are investigating variant versions of many of the rou-
tines in LAPACK. The building blocks of the LAPACK library are the BLAS, a set of standard
subroutines for the most common operations in linear algebra [2,3,4]. The original set of BLAS,
consisting of vector-vector operations, was used in LINPACK. Recently, specifications have
been drawn up for matrix-vector operations (Level 2 BLAS) and matrix-matrix operations (Level

3 BLAS) to meet the demands of multiprocessing, vectorization, and hierarchical memory in
today’'s_high-performance computers. In particular, the Level 3 BLAS perfa(ni) operations
onO(n") data elements, which helps to improve the ratio of computation to memory references
on machines that have a memory hierarchy. This paper describes some of the block factorization
routines in LAPACK. The blocked version calls the Level 3 BLAS and, if necessary, an un-
blocked version of the algorithm to do the processing within a block. The unblocked version
calls only Level 1 and 2 BLAS routines and is called directly from the blocked routine if the user
has set the blocksize to 1. Thé&) decomposition is derived by equating the product of a unit
lower triangular matrix. and an upper triangular matrix to the original matrixA. As an illus-

11 U 11

A, A A L 12 Ui
Ay Ay Ays | = | Ly
A, A A L

u,u
L2y Uz Uss
L3y Las U

31 33

2.

In the left-looking algorithmL ,,, L,,, andL , are already known and we want to solve for the
next block column of widtiNB in L andU . If we equate the second column of the product with
the second column &, we obtain the two matrix equations

A22
A32

L21 L22

A=l Uy, = Up+ Uy,

L31 L32

Solving forU,, in the first equation requires a solve (with multiple right hand sides) using the
lower triangular matrixt ;. A matrix-matrix multiply is then used to compute the term involving

U, in the second equation and subtract it from the left hand side. An unblddiefhctoriza-

tion is then applied to the rectangular column of wititB to computel ,,, L 5,, andU ., along

with the pivot indices. Block routines have been written for the dense and banded factorizations
for solving linear systems, the reductions using orthogonal transformations for eigenvalue com-
putations, and selected other operations. In this section, we provide details on the variants we
have implemented for the factorization of dense matrices.

Figure 1. Memory access patterns for variants of LU decomposition
The three block variants we have implemented for lthe factorization of a general matrix are
shown in Figure 1. The shaded parts indicate the matrix elements accessed in forming a block
row or column, and the darker shading indicates the block row or column being computed. The
left-looking variant (described in Section 2) computes a block column at a time using previously
computed columns. The right-looking variant (the familiar recursive algorithm) computes a
block row and column at each step and uses them to update the trailing submatrix. The Crout
variant is a hybrid algorithm in which a block row and column is computed at each step using
previously computed rows and previously computed columns. All of the computational work for
the LU variants is contained in three routines: the matrix-matrix multiply SGEMM, the triangu-
lar solve with multiple right hand sides STRSM, and the unblodkddfactorization for opera-
tions within a block column. Table 1 shows the distribution of work among these three routines
and the average performance rates on one processor of a Cray 2 for a sample matrix of order 500
using a blocksize of 64. Each variant calls its own unblocked variant, and the row interchanges
use about 2% of the total time. The average speed of SGEMM is over 400 megaflops for all three
variants, but the average speed of STRSM depends on the size of the triangular matrices. For the
left-looking variant, the triangular matrices at each step range in sizeNi®rto N-NB, and the
average performance is 268 megaflops, while for the right-looking and Crout variants, the tri-
angular matrices are always of ordéB and the average speed is only 105 megaflops. Clearly
the average performance of the Level 3 BLAS routines in a blocked routine is as important as the
percent of Level 3 BLAS work.

Variant Routine % operations % time avg. megaflops
Left-looking unblocked LU 10 20 146
(SLUBL) SGEMM 49 32 438
STRSM 41 45 268
Right-looking | unblocked LU 10 19 151
(SLUBR) SGEMM 82 56 414
STRSM 8 23 105
Crout unblocked LU 10 16 189
(SLUBC) SGEMM 82 57 438
STRSM 8 24 105

Table 1: Breakdown of operations and timeslftt variants
for N =500, NB = 64 (Cray 2-S, 1 processor)

Despite the differences in the performance rates of their components, the block variant& Of thetori-

zation tend to show similar overall performance, with a slight advantage to the right-looking and Crout
variants because more of the operations are in SGEMM. Figure 2 shows the performance rates in
megaflops of these three variants for different matrix sizes on an 8-processor Cray YMP, along with the
performance of the LINPACK routine SGEFA. The optimal blocksize on the Cray computers is 64 for
most matrix sizes, but the performance varies less than 10% over a wide range of blocksizes. We have
considered three block variants for the Cholesky factorizatioq of a symmetric positive definite matrix. For
the purpose of discussion, we consider the factorizaf\grLL . In the I-variant, also called the top-
looking algorithm, a block row is computed at each step using previously computed rows. The major part
of the computation is in updating the current block row using a triangular solve with the leading triangle,
which involves the Level 3 BLAS routine STRSM. In the J-variant or left-looking algorithm, a block
column is computed at a time using previously computed columns. The major operation is the update of
the block column using the matrix-matrix multiply routine SGEMM. In the K-variant or right-looking
algorithm, a block column is factored at each step and used to update the trailing submatrix. The update
using SSYRK is the dominant operation in this case. Similar performance is observed for these three vari-
ants when the three dominant Level 3 BLAS routines are implementeg equally well. Figure 2 shows the
performance in megaflops v&l for the three block variants oA=LL , named SLLTBI, SLLTBJ,
SLLTBK, along with the performance of the LINPACK factorization SPOFA, on an 8-processor Cray
YMP. As in the case of theU decomposition, the right-looking variant (SLLTBK) and the variant which
calls SGEMM for most of its Level 3 BLAS work (SLLTBJ) are slightly better than the left-looking vari-
ant, which does more of its Level 3 BLAS work in STRSM.

Figure 2. Performance &fU and Cholesky variants (Cray YMP, 8 processors)
We have considered two factorizations for symmetric indefinite matrices, the Bunch-Kaufman diagonal

pivoting method, which was used in LINPACK, and Aasen’s method [5]. The form of the Bunch-Kaufman
factorization is

PAP' =LDL"

whereP is a permutation matrixl. is unit lower triangular, andD is block diagonal with1x1 or 2x2
diagonal blocks. A2x2 pivot block is chosen in order to avoid large entries in the faktevhen the diag-
onal entries are small in magnitude relative to the offdiagonal entries. The factorization from Aasen’s

method has the form
PAP' =LTL'

whereT is tridiagonal. Block versions of each of these factorizations have been developed [6]. The block

versions accumulate the elementary transformations and apply them as k& tpuate, in one of the
forms

A HA—XDXT(Bunch—Kaufman)
A < A-XTX' (Aasen)

Table 2 compares the performance of the unblocked (Level 2 BLAS) and blocked (Level 3 BLAS) versions
of each method on one processor of a Cray 2. We see that while the unblocked form of Aasen’s method is

better than the unblocked Bunch-Kaufman factorization for large matrices, blocking favors the Bunch-
Kaufmann factorization for all matrix sizes.

N Aasen Bunch-Kaufman
Level2 | Level3| Level2| Level3

100 37 40 44 48
200 79 92 88 109
300 114 147 115 168
400 142 180 132 198
500 165 215 140 238
700 201 257 158 265
1000 236 292 171 314

Table 2: Performance in megaflops of symmetric indefinite factorizations (Cray 2, 1 processor)

-5-

The QR decomposition, used in solving linear least squares problems, factors aAnas@@R,
whereQ is orthogonal andR is upper triangular. The matriQ is a product oh-1 elerqentary
reflectors (or. Householder transformation®=H H,---H _;, where H;=I-t,v,v,; and
v;=[0---01x] . Inthe unblocked QR decomposition, a refledtbris computed at each step

and then applied to the matrix. A block form of the QR decomposition is obtained by combin-

ing several elementary Householder matrices into a block Householder matrix. The product of

elementary matrices can be written as
k

M0-tviv,')=1-VSV'

[|

i=1
whereV=[v,v, - - v,] and S is akxk upper triangular matrix. Some extra work is required to
computeS, so the optimal block size is usually smaller than &f or Cholesky. In order to
obtain a fair comparison of the variants, we always use the operation count for the unblocked
algorithm. Table 3 shows the performance in megaflops of four variants of the QR decomposi-
tion on one processor of a Cray 2. The two block variants are SQRR, a block right-looking algo-
rithm in which a block Householder matrix is computed and immediately applied to the rest of
the matrix as a rank- update, and SQRL, a block left-looking variant in which the previous
updates are first applied to the current block column before the next block Householder matrix is
computed. SGEQR?2 is the unblocked Level 2 BLAS variant and SQRDC is the Level 1 BLAS
variant from LINPACK. We see that the blocked variants only surpass the unblocked variant in
performance for matrices of order greater than 200.

Matrix size M =N
100 200 300 400 500

SORR(NB=32)| 106 209 269 306 328
SQORL(NB=48) | 102 198 258 293 316
SGEQR2 144 215 242 251 235
SQRDC 24 41 55 66 76

QR variant

Table 3: Performance in megaflops@R variants (Cray 2-S, 1 processor)

Block algorithms have also been developed for the CholeskylLdhdactorizations of band matrices [7].

The idea is to factor a small diagonal block using an unblocked algorithm, and then to update the matrix
within the band using Level 3 BLAS. The use of Level 3 BLAS in the factorization of band matrices can
improve the performance of the factorization as long as the bandwidth is not too small. Other block algo-
rithms in LAPACK include the routines for reducing a general rectangular matrix to Hessenberg form,
reducing a symmetric matrix to tridiagonal form, generating and multiplying by an orthogonal matrix
represented as a product of Householder transformations, and computing the inverse of a square nonsingu-
lar matrix. The reductions follow the blocking strategy outlined in [8], and as for the QR decomposition,
extra work is required to combine the updates to use Level 3 BLAS. As a result, improvements in perfor-
mance compared to the unblocked routines are typically observed only for relatively large matrices (order
300 or higher). For each factorization or reduction we have considered, the percentage of BLAS 3 work is
the same in the different block variants, but this is not the only consideration. The performance of the
Level 3 BLAS routines is dependent on the matrix shapes on which they operate, and in a block algorithm
one of the dimensions is always on the order of the blocksize. Small blocksizes will result in performance
similar to the unblocked Level 2 BLAS algorithms, for which the choice of variant is highly machine
dependent. However, blocking tends to smooth out the differences in the Level 2 BLAS algorithms, so the
choice of a block variant on computers such as Crays is not so critical. Although we are considering
different block variants now, the public release of LAPACK in 1991 will contain only one variant of each
algorithm. For shared memory machines, our current policy is to choose the unblocked variant based on
the matrix-vector multiply and the blocked variant for which the dominant Level 3 BLAS operation is the
matrix-matrix multiply. For distributed memory machines, we expect the right-looking variants based on
the rankk update to be most useful. Further data is needed before a final decision can be made on which

-6-

variants will give the best performance over the widest range of high-performance computers.

REFERENCES
C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen,
LAPACK Working Note #5: Provisional Contentsrgonne National Lab., ANL-88-38, Sept. 1988. C. L.
Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Kro@asic Linear Algebra Subprograms for Fortran
Usage ACM Trans. Math. Soft., 5 (Sept. 1979), pp. 308-323. J. Dongarra, J. Du Croz, S. Hammarling, and
R. HansonAn Extended Set of Fortran Basic Linear Algebra Subprograh@M Trans. Math. Soft., 14
(Mar. 1988), pp. 1-17. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarkrget of Level 3 Basic Linear
Algebra Subprogramsto appear in ACM Trans. Math. Soft., Mar. 1990. G. Golub and C. Van Loan,
Matrix ComputationsJohns Hopkins, Baltimore, 1989. D. Sorensen and C. Van Loan, personal communi-
cation. P. Mayes and G. RadicaiAPACK Working Note #12: Banded Cholesky Factorization Using
Level 3 BLASArgonne National Lab., ANL/MCS-TM-134, Aug. 1989. J. Dongarra, S. Hammarling, and
D. Sorensen , APACK Working Note #2: Block Reduction of Matrices to Condensed Forms for Eigenvalue
ComputationsArgonne National Lab., ANL/MCS-TM-99, Sept. 1987.

References

