
1 ,

ntroduction

LAPACK is planned to be a linear algebra library for high-performance computers. The

library will include Fortran 77 subroutines for the analysis and solution of systems of si-

multaneous linear algebraic equations, linear least-squares problems, and matrix eigenvalue

problems. Our approach to achieving high e�ciency is based on the use of a standard set of

Basic Linear Algebra Subprograms (the BLAS), which can be optimized for each computing

environment. By con�ning most of the computational work to the BLAS, the subroutines

should be transportable and e�cient across a wide range of computers.

This working note describes how to install and test the second test release of LAPACK.

LAPACK is still under development and all of the routines presented at this time should be

regarded as preliminary versions. This release is being made available only to our test sites

and is intended only for testing, and not for general distribution. We expect the testing to

reveal weaknesses in the design, and we plan to modify routines to correct any de�ciencies.

The instructions for installing, testing, and timing are designed for a person whose

responsibility is the maintenance of a mathematical software library. We assume the installer

has experience in compiling and running Fortran programs and in creating object libraries.

The installation process involves reading the tape, creating a set of libraries, and compiling

and running the test and timing programs.

This guide combines the instructions for the Unix and non-Unix versions of the LAPACK

test package, so most installers will not have to read every section. The following sections

�

s s s e NS N . AS -87157 8.

1

describe the installation process and should be considered required reading:

Unix version: Sections 1, 2, 3.5, and 4

Non-Unix version: Sections 1, 2, and 5

Section 2 describes how the �les are organized on the tape, and Section 3 gives a general

overview of the parts of the test package. Step-by-step instructions appear in Section 4 for

the Unix version and in Section 5 for the non-Unix version.

For users desiring additional information, Sections 6 and 7 give details of the test and

timing programs and their input �les. Appendices A and B brie
y describe the LAPACK

routines and auxiliary routines provided in this release. Appendix C lists the operation

counts we have computed for the BLAS and for some of the LAPACK routines. Appendix

D, entitled \Caveats", is a compendium of the known problems from our own experiences,

with suggestions on how to overcome them. Appendix E contains the execution times of

the di�erent test and timing runs on two sample machines.

Release 2 of LAPACK includes updates of all of the software from Release 1, with the

following additions:

� Routines for the matrix eigenvalue problem, including the reductions to bidiago-

nal, tridiagonal, or upper Hessenberg form, some of the routines for �nding eigen-

values/eigenvectors and singular values/singular vectors, test programs, and timing

programs

� New block factorization algorithms for some of the linear equations routines, including

SGBTRF (U factorization of a general band matrix), SSYTRF (factorization of a

symmetric inde�nite matrix), and SGELQF (factorization of an m�n matrix for

m n)

� Iterative re�nement of solutions obtained using each of the factorization routines for

linear equations

There have also been a number of revisions to correct bugs, improve e�ciency, simplify

calling sequences, and improve the appearance of output. You should destroy the �rst

release version of LAPACK.

This release contains only some of the routines that will be part of LAPACK; for a

complete list of the proposed contents, see [2].

We have planned one more test release of LAPACK before the public release in 1991.

The third test release will be in the fall of 1990.

Tape ormat

The software for LAPACK is distributed in the form of a tape which contains the Fortran

source for LAPACK, the Basic Linear Algebra Subprograms (the Level 1, 2, and 3 BLAS)

needed by LAPACK, the testing programs, and the timing programs.

2

LAPACK

INSTALL

Machine depen-

dent routines

BLAS

SRC

L
L

Level 1 BLAS

Level 2 BLAS

Level 3 BLAS

TESTING

L
L

BLAS2 & 3 test

routines

SRC

LAPACK routines

& auxiliary routines

TESTING

L
L
L
L
L

LIN

L
L

MATGEN

L
L

EIG

L
L

Linear eqn.

test routines

Test matrix

generators

Eigensystem

test routines

TIMING

LIN

L
L

EIG

L
L

Linear eqn.

timing routines

Eigensystem

timing routines

Figure 1: Unix organization of LAPACK

2. ni ersion

In the Unix version, the software is distributed on a tar tape containing a number of

directories as shown in Figure 1. Each of the lowest level directories in the tree structure

contains a make�le to create a library or a set of executable programs for testing and timing.

Libraries are created in the LAPACK directory and executable �les are created in one of

the directories BLAS, TESTING, or TIMING. Input �les for the test and timing programs

are also found in these three directories so that testing may be carried out at that directory

level.

2.2 on ni version

In the non-Unix version, the software is distributed on an unlabeled ASCII tape con-

taining 161 �les. All �les consist of 80-character �xed-length records, with a maximum

block size of 8000.

In the installation instructions, each �le will be identi�ed by the name given below, and

we recommend that you assign these names to the �les when the tape is read. Files with

names ending in `F' contain Fortran source code; those with names ending in `D' contain

data for input to the test and timing programs. There are two sets of data for each test

and timing run; data �le 1 for small, non-vector computers, such as workstations, and data

�le 2 for large computers, particularly Cray-class supercomputers. All �le names have at

most eight characters.

The leading one or two characters of the �le name generally indicates which of the

di�erent versions of the library or test programs will use it:

3

A: all four data types

SC: REAL and COMPLEX

DZ: DOUBLE PRECISION and COMPLEX*16

S: REAL

D: DOUBLE PRECISION

C: COMPLEX

Z: COMPLEX*16

Many of the �les occur in groups of four, corresponding to the four di�erent Fortran
oating-

point data types, and we will frequently refer to these �les generically, using `x' in place of

the �rst letter (for example, xLASRCF).

1. README List of �les as in this section

2. ALLAUXF LAPACK auxiliary routines used in all versions

3. SCLAUXF LAPACK auxiliary routines used in S and C versions

4. DZLAUXF LAPACK auxiliary routines used in D and Z versions

5. SLASRCF LAPACK routines and auxiliary routines

6. CLASRCF

7. DLASRCF

8. ZLASRCF

9. LSAMEF LSAME: function to compare two characters

10. TLSAMEF Test program for LSAME

11. SLAMCHF SLAMCH: function to determine machine parameters

12. TSLAMCHF Test program for SLAMCH

13. DLAMCHF DLAMCH: function to determine machine parameters

14. TDLAMCHF Test program for DLAMCH

15. SECONDF SECOND: function to return time in seconds

16. TSECONDF Test program for SECOND

17. DSECNDF DSECND: function to return time in seconds

18. TDSECNDF Test program for DSECND

19. ALLBLASF Auxiliary routines for the BLAS (and LAPACK)

20. SBLAS1F Level 1 BLAS

21. CBLAS1F

22. DBLAS1F

23. ZBLAS1F

24. SBLAS2F Level 2 BLAS

25. CBLAS2F

26. DBLAS2F

27. ZBLAS2F

4

28. SBLAS3F Level 3 BLAS

29. CBLAS3F

30. DBLAS3F

31. ZBLAS3F

32. SBLAT2F Test program for Level 2 BLAS

33. CBLAT2F

34. DBLAT2F

35. ZBLAT2F

36. SBLAT2D Data �le for testing Level 2 BLAS

37. CBLAT2D

38. DBLAT2D

39. ZBLAT2D

40. SBLAT3F Test program for Level 3 BLAS

41. CBLAT3F

42. DBLAT3F

43. ZBLAT3F

44. SBLAT3D Data �le for testing Level 3 BLAS

45. CBLAT3D

46. DBLAT3D

47. ZBLAT3D

48. SCATGENF Auxiliary routines for the test matrix generators

49. DZATGENF

50. SMATGENF Test matrix generators

51. CMATGENF

52. DMATGENF

53. ZMATGENF

54. ALINTSTF Auxiliary routines for the linear equation test program

55. SLINTSTF Test program for linear equation routines

56. CLINTSTF

57. DLINTSTF

58. ZLINTSTF

59. SLINTSTD Data �le 1 for linear equation test program

60. DLINTSTD

61. CLINTSTD

62. ZLINTSTD

5

63. SLINTS2D Data �le 2 for linear equation test program

64. DLINTS2D

65. CLINTS2D

66. ZLINTS2D

67. AEIGTSTF Auxiliary routines for the eigensystem test program

68. SCIGTSTF

69. DZIGTSTF

70. SEIGTSTF Test program for eigensystem routines

71. CEIGTSTF

72. DEIGTSTF

73. ZEIGTSTF

74. NEPTSTD Data �le 1 for testing Nonsymmetric Eigenvalue Problem

75. SEPTSTD Data �le 1 for testing Symmetric Eigenvalue Problem

76. SVDTSTD Data �le 1 for testing Singular Value Decomposition

77. NEPTS2D Data �le 2 for testing Nonsymmetric Eigenvalue Problem

78. SEPTS2D Data �le 2 for testing Symmetric Eigenvalue Problem

79. SVDTS2D Data �le 2 for testing Singular Value Decomposition

80. ALINTIMF Auxiliary routines for the linear system timing program

81. SCINTIMF

82. DZINTIMF

83. SLINTIMF Timing program for linear equations

84. CLINTIMF

85. DLINTIMF

86. ZLINTIMF

87. SLINTIMD Data �le 1 for timing dense linear equations

88. DLINTIMD

89. CLINTIMD

90. ZLINTIMD

91. SBNDTIMD Data �le 1 for timing banded linear equations

92. DBNDTIMD

93. CBNDTIMD

94. ZBNDTIMD

95. SBLTIMAD Data �le 1-a for timing the BLAS

96. DBLTIMAD

97. CBLTIMAD

6

98. ZBLTIMAD

99. SBLTIMBD Data �le 1-b for timing the BLAS

100. DBLTIMBD

101. CBLTIMBD

102. ZBLTIMBD

103. SBLTIMCD Data �le 1-c for timing the BLAS

104. DBLTIMCD

105. CBLTIMCD

106. ZBLTIMCD

107. SLINTM2D Data �le 2 for timing dense linear equations

108. DLINTM2D

109. CLINTM2D

110. ZLINTM2D

111. SBNDTM2D Data �le 2 for timing banded linear equations

112. DBNDTM2D

113. CBNDTM2D

114. ZBNDTM2D

115. SBLTM2AD Data �le 2-a for timing the BLAS

116. DBLTM2AD

117. CBLTM2AD

118. ZBLTM2AD

119. SBLTM2BD Data �le 2-b for timing the BLAS

120. DBLTM2BD

121. CBLTM2BD

122. ZBLTM2BD

123. SBLTM2CD Data �le 2-c for timing the BLAS

124. DBLTM2CD

125. CBLTM2CD

126. ZBLTM2CD

127. AEIGTIMF Auxiliary routines for the eigensystem timing program

128. SCIGTIMF

129. DZIGTIMF

130. SEIGTIMF Timing program for the eigensystem routines

131. CEIGTIMF

132. DEIGTIMF

133. ZEIGTIMF

7

134. SEIGSRCF Instrumented LAPACK routines and auxiliary routines

135. CEIGSRCF

136. DEIGSRCF

137. ZEIGSRCF

138. SNEPTIMD Data �le 1 for timing Nonsymmetric Eigenvalue Problem

139. SSEPTIMD Data �le 1 for timing Symmetric Eigenvalue Problem

140. SSVDTIMD Data �le 1 for timing Singular Value Decomposition

141. CNEPTIMD

142. CSEPTIMD

143. CSVDTIMD

144. DNEPTIMD

145. DSEPTIMD

146. DSVDTIMD

147. ZNEPTIMD

148. ZSEPTIMD

149. ZSVDTIMD

150. SNEPTM2D Data �le 2 for timing Nonsymmetric Eigenvalue Problem

151. SSEPTM2D Data �le 2 for timing Symmetric Eigenvalue Problem

152. SSVDTM2D Data �le 2 for timing Singular Value Decomposition

153. CNEPTM2D

154. CSEPTM2D

155. CSVDTM2D

156. DNEPTM2D

157. DSEPTM2D

158. DSVDTM2D

159. ZNEPTM2D

160. ZSEPTM2D

161. ZSVDTM2D

Overvie of Tape Contents

Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION, COM-

PLEX, and COMPLEX*16. The �rst three versions (REAL, DOUBLE PRECISION, and

COMPLEX) are written in standard Fortran 77 and are completely portable; the COM-

PLEX*16 version is provided for those compilers which allow this data type. For conve-

nience, we often refer to routines by their single precision names; the leading `S' can be

8

replaced by a `D' for double precision, a `C' for complex, or a `Z' for complex*16. For

LAPACK use and testing you must decide which version(s) of the package you intend to

install at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLE

PRECISION and COMPLEX*16 on an IBM computer).

3. LAPAC outines an Au iliar outines

A slight distinction is made between LAPACK routines and LAPACK auxiliary rou-

tines. An LAPACK routine is a subroutine to perform a distinct algorithmic task, such

as computing the U decomposition of an m � n matrix or �nding the eigenvalues and

eigenvectors of a symmetric tridiagonal matrix using the algorithm. The LAPACK

routines are described in [2] and follow the naming conventions given there. An LAPACK

auxiliary routine is a subroutine to perform a speci�c task which is called from one of the

LAPACK routines. The tasks performed by the auxiliary routines are usually simpler and

may be applicable in more than one context. Most auxiliary routines have the pre�x xLA;

exceptions are our extensions to the Level 1 and 2 BLAS, which have BLAS-type names,

and the special routines LSAME, ENVIR, XENVIR, and XERBLA.

For a complete list of the LAPACK routines in this release, see Appendix A. For a

complete list of the LAPACK auxiliary routines, see Appendix B. Further details on the

scope of the LAPACK project are available in [2].

3.2 Level 2 an 3 BLAS

The BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,

matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1, 2,

and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in the

BLAS. Therefore, the key to getting good performance from LAPACK lies in having an

e�cient version of the BLAS optimized for your particular machine. If you have access to

a library containing optimized versions of some or all of the BLAS, you should certainly

use it (but be sure to run the BLAS test programs). If an optimized library of the BLAS is

not available, Fortran source code for the Level 1, 2, and 3 BLAS is provided on the tape.

Users should not expect too much from the Fortran BLAS; these versions were written to

de�ne the basic operations and do not employ the standard tricks for optimizing Fortran

code.

The formal de�nitions of the Level 1, 2, and 3 BLAS are in [7], [5], and [3]. Copies of

the BLAS Quick Reference card are available from the authors.

3.3 LAPAC est outines

This release contains two distinct test programs for LAPACK routines in each data type.

One test program tests the routines for solving linear equations and linear least squares

problems (as in the �rst release) and the other tests routines for the matrix eigenvalue

problem. The routines for generating test matrices are used by both test programs and are

separated from the other test routines.

9

3. LAPAC i in outines

This release also contains two distinct timing programs for the LAPACK routines in

each data type. One timing program can be used to gather performance data in mega
ops

on the routines for solving linear equations and linear least squares problems, and also on

the BLAS. The operation counts used in computing the mega
op rates are computed from

a formula. The other timing program is used with the eigensystem routines and returns

the execution time, number of
oating point operations, and mega
op rate for each of the

requested subroutines. In this program, the number of operations is computed while the

code is executing using special instrumented versions of the LAPACK subroutines.

3. a e les for ni sers

In the Unix version, the libraries and test programs are created using the makefile in

each directory. Target names are supplied for each of the four data types and are called

single, double, complex, and complex1 . To create a library from one of the �les

called makefile, you simply type make followed by the data types desired. Here are some

examples:

make single

make double complex1

make single double complex complex1

Alternatively,

make

without any options creates a library of all four data types. The make command can be run

more than once to add another data type to the library if necessary.

Similarly, the make�les for the test routines create separate test programs for each data

type. These programs can be created one at a time:

make single

make double

. . .

or all at once:

make single double complex complex1

where the last command is equivalent to typing make by itself. In the case of the BLAS

test programs, where the make�le has a name other than makefile, the -f option must be

added to specify the �le name, as in the following example:

make -f makeblat2 single

10

The make�les used to create libraries call ranlib after each ar command. Some com-

puters (for example, CRAY computers running UNICOS) do not require ranlib to be run

after creating a library. On these systems, references to ranlib should be commented out or

removed from the make�les in LAPACK/SRC, LAPACK/BLAS/SRC, LAPACK/TESTING/MATGEN,

and LAPACK/TIMING/EIG/EIGSRC.

nstallin LAPAC on a nix S stem

Installing and testing the Unix version of LAPACK involves the following steps:

1. Read the tape.

2. Test and install the machine-dependent routines.

3. Create the BLAS library, if necessary.

4. Run the Level 2 and 3 BLAS test programs.

5. Create the LAPACK library.

6. Create the library of test matrix generators.

7. Run the LAPACK test programs.

8. Run the LAPACK timing programs.

9. Send the results from steps 7 and 8 to the authors at the University of Tennessee.

. ea the ape

To unload the tape, type one of the following commands (the device name may be

di�erent at your site):

tar xvf /dev/rst0 (cartridge tape), or

tar xvf /dev/rmt (9-track tape)

This will create a top-level directory called LAPACK. You will need about 12 megabytes to

read in the complete tape. On a Sun SPARCstation, the libraries used 3.9 MB and the

LAPACK executable �les used 8.7 MB. In addition, the object �les used 6.5 MB, but the

object �les can be deleted after creating the libraries and executable �les. The total space

requirements including the object �les is approximately 31 MB for all four data types.

.2 est an nstall the achine epen ent outines.

There are �ve machine-dependent functions in the test and timing package, at least

three of which must be installed. They are

11

LSAME LOGICAL Test if two characters are the same regardless of case

SLAMCH REAL Determine machine-dependent parameters

DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a �xed starting time

DSECND DOUBLE PRECISION Return time in seconds from a �xed starting time

If you are working only in single precision, you do not need to install DLAMCH and

DSECND, and if you are working only in double precision, you do not need to install

SLAMCH and SECOND.

These �ve subroutines are provided on the tape in LAPACK/INSTALL, along with �ve test

programs and a make�le. To compile the �ve test programs, go to LAPACK/INSTALL and edit

the make�le. De�ne FORTRAN and OPTS to refer to the compiler and desired compiler options

for your machine. Then type make to create test programs called testlsame, testslamc ,

testdlamc , testsecond, and testdsecnd. The expected results of each test program

are described below.

. .

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.

if A and B are the same regardless of case, or .FALSE. if they are di�erent. For example,

the expression

LSAME(UPLO, U)

is equivalent to

(UPLO.EQ. U).OR.(UPLO.EQ. u)

The supplied version works correctly on all systems that use the ASCII code for internal

representations of characters. For systems that use the EBCDIC code, one constant must be

changed. For CDC systems with 6-12 bit representation, alternative code is provided in the

comments. The test program in lsametst.f tests all combinations of the same character

in upper and lower case for A and B, and two cases where A and B are di�erent characters.

Run the test program by typing testlsame. If LSAME works correctly, the only message

you should see is Tests completed. Once LSAME is working, copy the �le lsame.f to both

LAPACK/BLAS/SRC and LAPACK/SRC. The function LSAME is needed by both the BLAS and

LAPACK, so it is safer to have it in both libraries as long as this does not cause trouble in

the link phase when both libraries are used.

. .

SLAMCH and DLAMCH are real functions with a single character parameter that

indicates the machine parameter to be returned. The test program in slamc tst.f simply

prints out the di�erent values computed by SLAMCH, so you need to know something about

what the values should be. For example, the output of the test program for SLAMCH on

a Sun SPARCstation is

12

Epsilon = 5. 04 E-0

Safe minimum = 1.1754 E-3

Base = 2.00000

Number of digits in mantissa = 24.0000

Rounding mode = 1.00000

Minimum exponent = -125.000

Underflow t res old = 1.1754 E-3

Largest exponent = 12 .000

Overflow t res old = 3.402 2E 3

Reciprocal of safe minimum = .5070 E 37

Values of 0 or NaN for any of the parameters are obvious indicators that something has

gone wrong. Suspect results should be documented and reported to the authors.

Run the test program by typing testslamc . If the results from the test program are

correct, copy slamc .f to LAPACK/SRC for inclusion in the LAPACK library. Do the same

for DLAMCH and the test program testdlamc . If both tests were successful, go to Section

4.2.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own

version of this function. The following options are used in LAPACK and must be set:

`U': Under
ow threshold

`S': Safe minimum (often same as under
ow threshold)

`O': Over
ow threshold

`E': Epsilon (relative machine precision)

`B': Base of the machine

Some people may be familiar with R1MACH (D1MACH), a primitive routine for set-

ting machine parameters in which the user must comment out the appropriate assignment

statements for the target machine. If a version of R1MACH is on hand, the assignments in

SLAMCH can be made to refer to R1MACH using the correspondence

SLAMCH(`U') = R1MACH(1)

SLAMCH(`O') = R1MACH(2)

SLAMCH(`E') = R1MACH(3)

SLAMCH(`B') = R1MACH(5)

The safe minimum returned by SLAMCH('S') is initially set to the under
ow value, but

if 1=(over
ow) (under
ow) it is recomputed as (1=(over
ow)) � (1 + "), where " is the

machine precision.

13

. .

Both the timing routines and the test routines call SECOND (DSECND), a real function

with no arguments that returns the time in seconds from some �xed starting time. Our

version of this routine returns only \user time", and not \user time + system time". The

version of second in second.f calls ETIME, a Fortran library routines available on some

computer systems. If ETIME is not available or a better local timing function exists, you

will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in secondtst.f performs a million operations using 5000 iterations of

the SAXPY operation := +� on a vector of length 100. The total time and mega
ops

for this test is reported, then the operation is repeated including a call to SECOND on

each of the 5000 iterations to determine the overhead due to calling SECOND. Run the test

program by typing testsecond (or testdsecnd). There is no single right answer, but the

times in seconds should be positive and the mega
op ratios should be appropriate for your

machine. The working versions of SECOND and DSECND should be copied to LAPACK/SRC

for inclusion in the LAPACK library.

.3 Create the BLAS Li rar

Ideally, a highly optimized version of the BLAS library already exists on your machine.

In this case you can go directly to Section 4.4 to make the BLAS test programs. You

may already have a library containing some of the BLAS, but not all (Level 1 and 2, but

not Level 3, for example). If so, you should use your local version of the BLAS wherever

possible.

a) Go to LAPACK/BLAS/SRC and edit the make�le. De�ne FORTRAN and OPTS to refer to

the compiler and desired compiler options for your machine. If you already have some

of the BLAS, comment out the lines de�ning the BLAS you have.

b) Type make followed by the data types desired, as in the examples of Section 3.5. The

make command can be run more than once to add another data type to the library if

necessary.

The BLAS library is created in LAPACK/blas.a and not in the current directory.

. un the BLAS est Pro ra s

Test programs for the Level 2 and 3 BLAS are in the directory LAPACK/BLAS/TESTING.

A test program for the Level 1 BLAS is not included, in part because only a subset of the

original set of Level 1 BLAS is actually used in LAPACK, and the old test program was

designed to test the full set of Level 1 BLAS.

a) To make the Level 2 BLAS test programs, go to LAPACK/BLAS/TESTING and edit

the make�le called makeblat2. De�ne FORTRAN and OPTS to refer to the compiler

and desired compiler options for your machine, and de�ne LOADER and LOADOPTS to

refer to the loader and desired load options for your machine. If you are not using

the Fortran BLAS, de�ne BLAS to point to your system's BLAS library, instead of

../../blas.a.

14

b) Type make -f makeblat2 followed by the data types desired, as in the examples of

Section 3.5. The executable �les are called xblat2s, xblat2d, xblat2c, and xblat2z

and are created in LAPACK/BLAS.

c) Go to LAPACK/BLAS and run the Level 2 BLAS tests. For the REAL version, the

command is

xblat2s sblat2.in

Similar commands should be used for the other test programs, with the leading `s' in

the input �le name replaced by `d', `c', or `z'. The name of the output �le is indicated

on the �rst line of the input �le and is currently de�ned to be SBLAT2.SUMM for the

REAL version, with similar names for the other data types.

d) To compile and run the Level 3 BLAS test programs, repeat steps a{c using the

make�le makeblat3. For step c, the executable program in the REAL version is

xblat3s, the input �le is sblat3.in, and output is to the �le SBLAT3.SUMM, with

similar names for the other data types.

If the tests using the supplied data �les were completed successfully, consider whether

the tests were su�ciently thorough. For example, on a machine with vector registers, at

least one value of greater than the length of the vector registers should be used; otherwise,

important parts of the compiled code may not be exercised by the tests. If the tests were

not successful, either because the program did not �nish or the test ratios did not pass

the threshold, you will probably have to �nd and correct the problem before continuing. If

you have been testing a system-speci�c BLAS library, try using the Fortran BLAS for the

routines that did not pass the tests. For more details on the BLAS test programs, see [6]

and [4].

. Create the LAPAC Li rar

a) Go to the directory LAPACK/SRC and edit the make�le. De�ne FORTRAN and OPTS to

refer to the compiler and desired compiler options for your machine.

b) Type make followed by the data types desired, as in the examples of Section 3.5. The

make command can be run more than once to add another data type to the library if

necessary.

The LAPACK library is created in LAPACK/lapack.a.

. Create the est atri enerator Li rar

a) Go to the directory LAPACK/TESTING/MATGEN and edit the make�le. De�ne FORTRAN

and OPTS to refer to the compiler and desired compiler options for your machine.

b) Type make followed by the data types desired, as in the examples of Section 3.5. The

make command can be run more than once to add another data type to the library if

necessary.

The test matrix generator library is created in LAPACK/tmglib.a.

15

. un the LAPAC est Pro ra s

There are two distinct test programs for LAPACK routines in each data type, one for

the linear equation routines and one for the eigensystem routines. Two sets of input �les

are provided, a small set for workstation-class computers and a large set for Cray-class

computers. A shar �le is provided in LAPACK/TESTING for each of the two sets of input �les.

Type

s lgtst.s ar for the large set of input �les, or

s smtst.s ar for the small set of input �les

Either command creates three input �les for the eigensystem routines and one input �le in

each data type for the linear equation routines.

For more information on the test programs and how to modify the input �les, see Section

6.

. .

a) Go to LAPACK/TESTING/LIN and edit the make�le. De�ne FORTRAN and OPTS to refer

to the compiler and desired compiler options for your machine, and de�ne LOADER

and LOADOPTS to refer to the loader and desired load options for your machine. If you

are not using the Fortran BLAS, de�ne BLAS to point to your system's BLAS library,

instead of ../../blas.a.

b) Type make followed by the data types desired, as in the examples of Section 3.5.

The executable �les are called xc ks, xc kc, xc kd, and xc kz and are created in

LAPACK/TESTING.

c) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,

the command is

xc ks stest.in stest.out

The tests using xc kd, xc kc, and xc kz are similar with the leading `s' in the input

and output �le names replaced by `d', `c', or `z'.

d) Send the output �les to the authors as directed in Section 4.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

a) Go to LAPACK/TESTING/EIG and edit the make�le. De�ne FORTRAN and OPTS to refer

to the compiler and desired compiler options for your machine, and de�ne LOADER

and LOADOPTS to refer to the loader and desired load options for your machine. If you

are not using the Fortran BLAS, de�ne BLAS to point to your system's BLAS library,

instead of ../../blas.a.

16

b) Type make followed by the data types desired, as in the examples of Section 3.5. The

executable �les are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and are

created in LAPACK/TESTING.

c) Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigensys-

tem routines use three separate input �les, for testing the nonsymmetric eigenvalue

problem, the symmetric eigenvalue problem, and the singular value decomposition.

The tests in single precision are as follows:

xeigtsts nep.in snep.out

xeigtsts sep.in ssep.out

xeigtsts svd.in ssvd.out

The tests using xeigtstc, xeigtstd, and xeigtstz use the same three input �les,

but the leading `s' in the output �les must be changed to `c', `d', or `z'.

d) Send the output �les to the authors as directed in Section 4.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. un the LAPAC i in Pro ra s

There are two distinct timing programs for LAPACK routines in each data type, one

for the linear equation routines and one for the eigensystem routines. The timing program

for the linear equation routines is also used to time the BLAS. We encourage you to con-

duct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION and

COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input �les are provided, a small set for workstation-class computers and

a large set for Cray-class computers. The values of N in the large data set are �ve times

larger than those in the small data set, and the large data set uses �ve values for the block

size NB and two values for the leading array dimension LDA, while the small data set uses

only two values for NB and one for LDA. Computers in between should run the large set if

possible; suggestions for paring back the large data set are given in the instructions below.

A shar �le is provided in LAPACK/TIMING for each of the two sets of input �les. Type

s lgtim.s ar for the large set of input �les, or

s smtim.s ar for the small set of input �les

Either command creates 8 input �les in each data type, two for the linear equation routines,

three for the eigensystem routines, and three for the BLAS. Note that the main programs

are dimensioned for the large data sets, so the parameters in the main program may have

to be reduced; otherwise the compiled program may be too large to run on a small machine.

The minimum time each subroutine will be timed is set to zero in each of these input

�les and may need to be increased. If the timing interval is not long enough, the time for the

subroutine after subtracting the overhead may be very small or zero, resulting in mega
op

rates that are very large or zero. (To avoid division by zero, the mega
op rate is set to zero

17

if the time is less than or equal to zero.) The minimum time that should be used depends

on the machine and the resolution of the clock.

For more information on the timing programs and how to modify the input �les, see

Section 7.

. .

Two input �les are provided in each data type for timing the linear equation routines,

one for full matrices and one for band matrices. The data sets for the REAL version are in

LAPACK/TIMING/stime.in and LAPACK/TIMING/sband.in.

a) To make the linear equation timing programs, go to LAPACK/TIMING/LIN and edit

the make�le. De�ne FORTRAN and OPTS to refer to the compiler and desired compiler

options for your machine, and de�ne LOADER and LOADOPTS to refer to the loader and

desired load options for your machine. If you are not using the Fortran BLAS, de�ne

BLAS to point to your system's BLAS library, instead of ../../blas.a.

b) Type make followed by the data types desired, as in the examples of Section 3.5.

The executable �les are called xtims, xtimc, xtimd, and xtimz and are created in

LAPACK/TIMING.

c) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value, or to

restrict the size of the tests if you are using a computer with performance in between

that of a workstation and that of a supercomputer. The computational requirements

can be cut in half by using only one value of LDA. If it is necessary to also reduce the

matrix sizes or the values of the blocksize, corresponding changes should be made to

the BLAS input �les (see Section 4.8.2).

d) Run the programs for each data type you are using. For the REAL version, the

commands are

xtims stime.in stime.out

xtims sband.in sband.out

Similar commands should be used for the other data types.

e) Send the output �les to the authors as directed in Section 4.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

Three input �les are provided in each data type for timing the Level 2 and 3 BLAS.

These input �les time the BLAS using the matrix shapes encountered in the LAPACK

routines, and we will use the results to analyze the performance of the LAPACK routines.

For the REAL version, the data �les are sblas.in1, sblas.in2, and sblas.in3. There

18

are three sets of inputs because there are three parameters in the Level 3 BLAS, M, N, and

K, and in most applications one of these parameters is small (on the order of the blocksize)

while the other two are large (on the order of the matrix size). In sblas.in1, M and N are

large but K is small, while in sblas.in2 the small parameter is M, and in sblas.in3 the

small parameter is N. The Level 2 BLAS are timed only in the �rst data set, where K is

also used as the bandwidth for the banded routines.

a) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value. If

you modi�ed the values of N or NB in Section 4.8.1, set M, N, and K accordingly. The

large parameters among M, N, and K should be the same as the matrix sizes used in

timing the linear equation routines, and the small parameter should be the same as

the blocksizes used in timing the linear equation routines. If necessary, the large data

set can be simpli�ed by using only one value of LDA.

b) Run the programs for each data type you are using. For the REAL version, the

commands are

xtims sblas.in1 sblas.out1

xtims sblas.in2 sblas.out2

xtims sblas.in3 sblas.out3

Similar commands should be used for the other data types.

c) Send the output �les to the authors as directed in Section 4.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

Three input �les are provided in each data type for timing the eigensystem routines, one

for the nonsymmetric eigenvalue problem, one for the symmetric eigenvalue problem, and

one for the singular value decomposition. For the REAL version, these data sets are called

sneptim.in, sseptim.in, and ssvdtim.in. Each of the three input �les reads a di�erent

set of parameters and the format of the input is indicated by a 3-character code on the �rst

line.

The timing program for eigenvalue/singular value routines accumulates the operation

count as the routines are executing using special instrumented versions of the LAPACK

routines. The �rst step in compiling the timing program is therefore to make a library of

the instrumented routines.

a) To make a library of the instrumented LAPACK routines, �rst go to

LAPACK/TIMING/EIG/EIGSRC and edit the make�le. De�ne FORTRAN and OPTS to refer

to the compiler and desired compiler options for your machine, and de�ne LOADER

and LOADOPTS to refer to the loader and desired load options for your machine. Then

type make followed by the data types desired, as in the examples of Section 3.5. The

library of instrumented code is created in LAPACK/TIMING/EIG/eigsrc.a.

19

b) To make the eigensystem timing programs, go to LAPACK/TIMING/EIG and edit the

make�le. De�ne FORTRAN and OPTS to refer to the compiler and desired compiler

options for your machine, and de�ne LOADER and LOADOPTS to refer to the loader and

desired load options for your machine. If you are not using the Fortran BLAS, de�ne

BLAS to point to your system's BLAS library, instead of ../../blas.a.

c) Type make followed by the data types desired, as in the examples of Section 3.5.

The executable �les are called xeigtims, xeigtimc, xeigtimd, and xeigtimz and are

created in LAPACK/TIMING.

d) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. You

may need to set the minimum time a subroutine will be timed to a positive value,

or to restrict the number of tests if you are using a computer with performance in

between that of a workstation and that of a supercomputer. Instead of decreasing

the matrix dimensions to reduce the time, it would be better to reduce the number of

matrix types to be timed, since the performance varies more with the matrix size than

with the type. For example, for the nonsymmetric eigenvalue routines, you could use

only one matrix of type 4 instead of four matrices of types 1, 3, 4, and 6. See Section

7 for further details.

e) Run the programs for each data type you are using. For the REAL version, the

commands are

xeigtims sneptim.in sneptim.out

xeigtims sseptim.in sseptim.out

xeigtims ssvdtim.in ssvdtim.out

Similar commands should be used for the other data types.

f) Send the output �les to the authors as directed in Section 4.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. Sen the esults to ennessee

Congratulations You have now �nished installing and testing LAPACK. Your partici-

pation is greatly appreciated. If possible, results and comments should be sent by electronic

mail to

eanderso cs.utk.edu

Otherwise, results may be submitted either by sending the authors a hard copy of the output

�les or by returning the distribution tape with the output �les stored on it.

We encourage you to make the LAPACK library available to your users and provide us

with feedback from their experiences. You should make it clear that this software is still

under development, and many parts of it will be changed before the project is completed.

The changes may a�ect the calling sequences of some routines, so the public release of

LAPACK is not guaranteed to be compatible with this version.

20

If you would like to do more, please contact us so that we may coordinate your e�orts

with the development of the �nal test release of LAPACK. One option is to look at ways

to improve the performance of LAPACK on your machine. At the time of the �rst test

release of LAPACK in April, 1989, many people did not yet have optimized versions of the

BLAS. If this is still the case at your site, improvements to the BLAS would likely have

a dramatic e�ect on performance. Other suggestions on �ne-tuning speci�c algorithms are

also welcome. For example, one of our test sites noticed that the row interchanges in the

LU factorization routine SGETRF were degrading performance on the IBM 3090 because of

the non-unit stride in SSWAP [1]. In response we added the auxiliary routine SLASWP to

interchange a block of rows, so that users of the IBM 3090 could easily replace this routine

with one in which the row interchanges are applied to one column at a time.

nstallin LAPAC on a non nix S stem

Installing and testing the non-Unix version of LAPACK involves the following steps:

1. Read the tape.

2. Test and install the machine-dependent routines.

3. Create the BLAS library, if necessary.

4. Run the Level 2 and 3 BLAS test programs.

5. Create the LAPACK library.

6. Create the library of test matrix generators.

7. Run the LAPACK test programs.

8. Run the LAPACK timing programs.

9. Send the results from steps 7 and 8 to the authors at the University of Tennessee.

. ea the ape

Read the tape and assign names to the �les, preferably as indicated in Section 2. The

�rst �le (named README) is a list of the �les in the order speci�ed in Section 2. You

will need about 12 megabytes to read in the complete tape. On a Sun SPARCstation,

the libraries used 3.9 MB and the LAPACK executable �les used 8.7 MB. In addition, the

object �les used 6.5 MB, but the object �les can be deleted after creating the libraries and

executable �les. The total space requirements including the object �les is approximately 31

MB for all four data types.

.2 est an nstall the achine epen ent outines.

There are �ve machine-dependent functions in the test and timing package, at least

three of which must be installed. They are

21

LSAME LOGICAL Test if two characters are the same regardless of case

SLAMCH REAL Determine machine-dependent parameters

DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a �xed starting time

DSECND DOUBLE PRECISION Return time in seconds from a �xed starting time

If you are working only in single precision, you do not need to install DLAMCH and

DSECND, and if you are working only in double precision, you do not need to install

SLAMCH and SECOND. These �ve subroutines and their test programs are provided in

the �les LSAMEF and TLSAMEF, SLAMCHF and TSLAMCHF, etc.

. .

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.

if A and B are the same regardless of case, or .FALSE. if they are di�erent. For example,

the expression

LSAME(UPLO, U)

is equivalent to

(UPLO.EQ. U).OR.(UPLO.EQ. u)

The supplied version works correctly on all systems that use the ASCII code for internal

representations of characters. For systems that use the EBCDIC code, one constant must

be changed. For CDC systems with 6-12 bit representation, alternative code is provided in

the comments. The test program in TLSAMEF tests all combinations of the same character

in upper and lower case for A and B, and two cases where A and B are di�erent characters.

Compile LSAMEF and TLSAMEF and run the test program. If LSAME works correctly,

the only message you should see is Tests completed. The working version of LSAME

should be appended to the �le ALLBLASF. This �le, which also contains the error handler

XERBLA, will be compiled with either the BLAS library in Section 5.3 or the LAPACK

library in Section 5.5.

. .

SLAMCH and DLAMCH are real functions with a single character parameter that

indicates the machine parameter to be returned. The test program in TSLAMCHF simply

prints out the di�erent values computed by SLAMCH, so you need to know something about

what the values should be. For example, the output of the test program for SLAMCH on

a Sun SPARCstation is

Epsilon = 5. 04 E-0

Safe minimum = 1.1754 E-3

Base = 2.00000

Number of digits in mantissa = 24.0000

Rounding mode = 1.00000

22

Minimum exponent = -125.000

Underflow t res old = 1.1754 E-3

Largest exponent = 12 .000

Overflow t res old = 3.402 2E 3

Reciprocal of safe minimum = .5070 E 37

Values of 0 or NaN for any of the parameters are obvious indicators that something has

gone wrong. Suspect results should be documented and reported to the authors.

Compile SLAMCHF and TSLAMCHF and run the test program. If the results from

the test program are correct, save SLAMCH for inclusion in the LAPACK library. Repeat

these steps with DLAMCHF and TDLAMCHF. If both tests were successful, go to Section

5.2.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own

version of this function. The following options are used in LAPACK and must be set:

`U': Under
ow threshold

`S': Safe minimum

`O': Over
ow threshold

`E': Epsilon (relative machine precision)

`B': Base of the machine

Some people may be familiar with R1MACH (D1MACH), a primitive routine for set-

ting machine parameters in which the user must comment out the appropriate assignment

statements for the target machine. If a version of R1MACH is on hand, the assignments in

SLAMCH can be made to refer to R1MACH using the correspondence

SLAMCH(`U') = R1MACH(1)

SLAMCH(`O') = R1MACH(2)

SLAMCH(`E') = R1MACH(3)

SLAMCH(`B') = R1MACH(5)

The safe minimum returned by SLAMCH('S') is initially set to the under
ow value, but

if 1=(over
ow) (under
ow) it is recomputed as (1=(over
ow)) � (1 + "), where " is the

machine precision.

. .

Both the timing routines and the test routines call SECOND (DSECND), a real function

with no arguments that returns the time in seconds from some �xed starting time. Our

version of this routine returns only \user time", and not \user time + system time". The

version of second in SECONDF calls ETIME, a Fortran library routine available on some

23

computer systems. If ETIME is not available or a better local timing function exists, you

will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in TSECONDF performs a million operations using 5000 iterations of

the SAXPY operation := +� on a vector of length 100. The total time and mega
ops

for this test is reported, then the operation is repeated including a call to SECOND on

each of the 5000 iterations to determine the overhead due to calling SECOND. Compile

SECONDF and TSECONDF and run the test program. There is no single right answer,

but the times in seconds should be positive and the mega
op ratios should be appropriate

for your machine. Repeat this test for DSECNDF and TDSECNDF and save SECOND

and DSECND for inclusion in the LAPACK library in Section 5.5.

.3 Create the BLAS Li rar

Ideally, a highly optimized version of the BLAS library already exists on your machine.

In this case you can go directly to Section 5.4 to make the BLAS test programs. Otherwise,

you must create a library using the �les xBLAS1F, xBLAS2F, xBLAS3F, and ALLBLASF.

You may already have a library containing some of the BLAS, but not all (Level 1 and 2,

but not Level 3, for example). If so, you should use your local version of the BLAS wherever

possible and, if necessary, delete the BLAS you already have from the provided �les. The

�le ALLBLASF must be included if any part of xBLAS2F or xBLAS3F is used. Compile

these �les and create an object library.

. un the BLAS est Pro ra s

Test programs for the Level 2 and 3 BLAS are in the �les xBLAT2F and xBLAT3F. A

test program for the Level 1 BLAS is not included, in part because only a subset of the

original set of Level 1 BLAS is actually used in LAPACK, and the old test program was

designed to test the full set of Level 1 BLAS.

a) Compile the �les xBLAT2F and xBLAT3F and link them to your BLAS library or

libraries. Note that each program includes a special version of the error-handling

routine XERBLA, which tests the error-exits from the Level 2 and 3 BLAS. On most

systems this will take precedence at link time over the standard version of XERBLA

in the BLAS library. If this is not the case (the symptom will be that the program

stops as soon as it tries to test an error-exit), you must temporarily delete XERBLA

from ALLBLASF and recompile the BLAS library.

b) Each BLAS test program has a corresponding data �le xBLAT2D or xBLAT3D. As-

sociate this �le with Fortran unit number 5.

c) The name of the output �le is indicated on the �rst line of each input �le and is

currently de�ned to be SBLAT2.SUMM for the REAL Level 2 BLAS, with similar

names for the other �les. If necessary, edit the name of the output �le to ensure that

it is valid on your system.

d) Run the Level 2 and 3 BLAS test programs.

24

If the tests using the supplied data �les were completed successfully, consider whether

the tests were su�ciently thorough. For example, on a machine with vector registers, at

least one value of greater than the length of the vector registers should be used; otherwise,

important parts of the compiled code may not be exercised by the tests. If the tests were

not successful, either because the program did not �nish or the test ratios did not pass

the threshold, you will probably have to �nd and correct the problem before continuing. If

you have been testing a system-speci�c BLAS library, try using the Fortran BLAS for the

routines that did not pass the tests. For more details on the BLAS test programs, see [6]

and [4].

. Create the LAPAC Li rar

Compile the �les xLASRCF with ALLAUXF and create an object library. If you have

compiled either the S or C version, you must also compile and include the �les SCLAUXF,

SLAMCHF, and SECONDF, and if you have compiled either the D or Z version, you must

also compile and include the �les DZLAUXF, DLAMCHF, and DSECNDF. If you did not

compile the �le ALLBLASF and include it in your BLAS library as described in Section

5.3, you must compile it now and include it in your LAPACK library.

. Create the est atri enerator Li rar

Compile the �les xMATGENF and create an object library. If you have compiled either

the S or C version, you must also compile and include the �le SCATGENF, and if you have

compiled either the D or Z version, you must also compile and include the �le DZATGENF.

. un the LAPAC est Pro ra s

There are two distinct test programs for LAPACK routines in each data type, one for

the linear equations routines and one for the eigensystem routines. Two sets of input �les

are provided, a small set for workstation-class computers and a large set for Cray-class

computers. The small input �les end with the four characters `TSTD' and the large input

�les end with the characters `TS2D'. You need only use one of these sets of �les.

For more information on the test programs and how to modify the input �les, see

Section 6.

. .

a) Compile the �les xLINTSTF and link them to your matrix generator library, your

LAPACK library, and your BLAS library or libraries in that order (on some systems

you may get unsatis�ed external references if you specify the libraries in the wrong

order).

b) There are two sets of data �les for the linear equation test program, xLINTSTD

for small computer systems and xLINTS2D for large systems. For each of the test

programs, associate the appropriate data �le with Fortran unit number 5.

25

c) The output �le is written to Fortran unit number 6. Associate a suitably named �le

(e.g., SLINTST.OUT) with this unit number.

d) Run the test programs.

e) Send the output �les to the authors as directed in Section 5.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

a) Compile the �les xEIGTSTF and link them to your matrix generator library, your

LAPACK library, and your BLAS library or libraries in that order (on some systems

you may get unsatis�ed external references if you specify the libraries in the wrong

order).

b) There are two sets of data �les for the linear equation test program, NEPTSTD,

SEPTSTD, and SVDTSTD for small computer systems and NEPTS2D, SEPTS2D,

and SVDTS2D for large systems. Note that the same three input �les are used

regardless of the data type of the test program. For each run of the test programs,

associate the appropriate data �le with Fortran unit number 5.

c) The output �le is written to Fortran unit number 6. Associate suitably named �les

with this unit number (e.g., SNEPTST.OUT, SSEPTST.OUT, and SSVDTST.OUT

for the three runs of the REAL program).

d) Run the test programs.

e) Send the output �les to the authors as directed in Section 5.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. un the LAPAC i in Pro ra s

There are two distinct timing programs for LAPACK routines in each data type, one

for the linear equations routines and one for the eigensystem routines. The timing program

for the linear equations routines is also used to time the BLAS. We encourage you to

conduct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION

and COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input �les are provided, a small set for workstation-class computers and

a large set for Cray-class computers. The values of N in the large data set are �ve times

larger than those in the small data set, and the large data set uses �ve values for the block

size NB and two values for the leading array dimension LDA, while the small data set uses

only two values for NB and one for LDA. Computers in between should run the large set if

possible; suggestions for paring back the large data set are given in the instructions below.

The small input �les end with the four characters `TIMD' and the large input �les end with

the characters `TM2D' (except for the BLAS timing �les, see Section 5.8.2). Note that

the main programs are dimensioned for the large data sets, so the parameters in the main

26

program may have to be reduced; otherwise the compiled program may be too large to run

on a small machine.

The minimum time each subroutine will be timed is set to zero in each of these input

�les and may need to be increased. If the timing interval is not long enough, the time for the

subroutine after subtracting the overhead may be very small or zero, resulting in mega
op

rates that are very large or zero. (To avoid division by zero, the mega
op rate is set to zero

if the time is less than or equal to zero.) The minimum time that should be used depends

on the machine and the resolution of the clock.

For more information on the timing programs and how to modify the input �les, see

Section 7.

. .

Two input �les are provided in each data type for timing the linear equation routines,

one for full matrices and one for band matrices. The small data sets are in xLINTIMD and

xBNDTIMD and the large data sets are in xLINTM2D and xBNDTM2D.

a) Compile the �les xLATIMF, and link them to your LAPACK library and your BLAS

library or libraries in that order (on some systems you may get unsatis�ed external

references if you specify the libraries in the wrong order).

b) Make any necessary modi�cations to the input �les. You may need to set the minimum

time a subroutine will be timed to a positive value, or to restrict the size of the tests

if you are using a computer with performance in between that of a workstation and

that of a supercomputer. The computational requirements can be cut in half by using

only one value of LDA. If it is necessary to also reduce the matrix sizes or the values

of the blocksize, corresponding changes should be made to the BLAS input �les (see

Section 5.8.2).

Associate the appropriate input �le with Fortran unit number 5.

c) The output �le is written to Fortran unit number 6. Associate a suitably named

�le with this unit number (e.g., SLINTIM.OUT and SBNDTIM.OUT for the REAL

version).

e) Run the programs for each data type you are using with the two data sets.

f) Send the output �les to the authors as directed in Section 5.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

Three input �les are provided in each data type for timing the Level 2 and 3 BLAS.

These input �les time the BLAS using the matrix shapes encountered in the LAPACK

routines, and we will use the results to analyze the performance of the LAPACK routines.

For the REAL version, the small data sets are SBLTIMAD, SBLTIMBD, and SBLTIMCD

and the large data sets are SBLTM2AD, SBLTM2BD, and SBLTM2CD. There are three

27

sets of inputs because there are three parameters in the Level 3 BLAS, M, N, and K, and

in most applications one of these parameters is small (on the order of the blocksize) while

the other two are large (on the order of the matrix size). In SBLTIMAD, M and N are

large but K is small, while in SBLTIMBD the small parameter is M, and in SBLTIMCD

the small parameter is N. The Level 2 BLAS are timed only in the �rst data set, where K

is also used as the bandwidth for the banded routines.

a) Make any necessary modi�cations to the input �les. You may need to set the minimum

time a subroutine will be timed to a positive value. If you modi�ed the values of N

or NB in Section 5.8.1, set M, N, and K accordingly. The large parameters among M,

N, and K should be the same as the matrix sizes used in timing the linear equation

routines, and the small parameter should be the same as the blocksizes used in timing

the linear equations routines. If necessary, the large data set can be simpli�ed by

using only one value of LDA.

Associate the appropriate input �le with Fortran unit number 5.

b) The output �le is written to Fortran unit number 6. Associate a suitably named �le

with this unit number (e.g., SBLTIMA.OUT, SBLTIMB.OUT, and SBLTIMC.OUT

for the three runs of the REAL version).

c) Run the timing programs in each data type you are using for each of the three input

�les.

d) Send the output �les to the authors as directed in Section 5.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. .

Three input �les are provided in each data type for timing the eigensystem routines,

one for the nonsymmetric eigenvalue problem, one for the symmetric eigenvalue problem,

and one for the singular value decomposition. For the REAL version, the small data sets

are SNEPTIMD, SSEPTIMD, and SSVDTIMD and the large data sets are SNEPTM2D,

SSEPTM2D, and SSVDTM2D. Each of the three input �les reads a di�erent set of param-

eters and the format of the input is indicated by a 3-character code on the �rst line.

The timing program for eigenvalue/singular value routines accumulates the operation

count as the routines are executing using special instrumented versions of the LAPACK

routines. The �rst step in compiling the timing program is therefore to make a library of

the instrumented routines.

a) Compile the �les xEIGSRCF and create an object library. If you have compiled either

the S or C version, you must also compile and include the �le SCIGSRCF, and if you

have compiled either the D or Z version, you must also compile and include the �le

DZIGSRCF. If you did not compile the �le ALLBLASF and include it in your BLAS

library as described in Section 5.3, you must compile it now and include it in the

instrumented LAPACK library.

28

b) Compile the �les xEIGTIMF with AEIGTIMF and link them to your test matrix

generator library, the instrumented LAPACK library created in the previous step,

your LAPACK library from Section 5.5, and your BLAS library in that order (on

some systems you may get unsatis�ed external references if you specify the libraries

in the wrong order).

c) Make any necessary modi�cations to the input �les. You may need to set the minimum

time a subroutine will be timed to a positive value, or to restrict the number of tests

if you are using a computer with performance in between that of a workstation and

that of a supercomputer. Instead of decreasing the matrix dimensions to reduce the

time, it would be better to reduce the number of matrix types to be timed, since the

performance varies more with the matrix size than with the type. For example, for

the nonsymmetric eigenvalue routines, you could use only one matrix of type 4 instead

of four matrices of types 1, 3, 4, and 6. See Section 7 for further details.

Associate the appropriate input �le with Fortran unit number 5.

d) The output �le is written to Fortran unit number 6. Associate a suitably named �le

with this unit number (e.g., SNEPTIM.OUT, SSEPTIM.OUT, and SSVDTIM.OUT

for the three runs of the REAL version).

e) Run the programs in each data type you are using with the three data sets.

f) Send the output �les to the authors as directed in Section 5.9. Please tell us the type

of machine on which the tests were run, the compiler options that were used, and

details of the BLAS library or libraries that you used.

. Sen the esults to ennessee

Congratulations You have now �nished installing and testing LAPACK. Your partici-

pation is greatly appreciated. If possible, results and comments should be sent by electronic

mail to

eanderso cs.utk.edu

Otherwise, results may be submitted either by sending the authors a hard copy of the output

�les or by returning the distribution tape with the output �les stored on it.

We encourage you to make the LAPACK library available to your users and provide us

with feedback from their experiences. You should make it clear that this software is still

under development, and many parts of it will be changed before the project is completed.

The changes may a�ect the calling sequences of some routines, so the public release of

LAPACK is not guaranteed to be compatible with this version.

If you would like to do more, please contact us so that we may coordinate your e�orts

with the development of the �nal test release of LAPACK. One option is to look at ways

to improve the performance of LAPACK on your machine. At the time of the �rst test

release of LAPACK in April, 1989, many people did not yet have optimized versions of the

BLAS. If this is still the case at your site, improvements to the BLAS would likely have

a dramatic e�ect on performance. Other suggestions on �ne-tuning speci�c algorithms are

29

also welcome. For example, one of our test sites noticed that the row interchanges in the

LU factorization routine SGETRF were degrading performance on the IBM 3090 because of

the non-unit stride in SSWAP [1]. In response we added the auxiliary routine SLASWP to

interchange a block of rows, so that users of the IBM 3090 could easily replace this routine

with one in which the row interchanges are applied to one column at a time.

ore A out Testin

There are two distinct test programs for LAPACK routines in each data type, one for the

linear equation routines and one for the eigensystem routines. Each program has its own

style of input, and the eigensystem test program accepts three di�erent sets of parameters,

for the nonsymmetric eigenvalue problem, the symmetric eigenvalue problem, and the sin-

gular value decomposition. The following sections describe the di�erent input formats and

testing styles.

. estin the Linear uation outines

The test program for the linear equation routines is driven by a data �le from which the

following parameters may be varied:

� M, the matrix row dimension

� N, the matrix column dimension

� NB, the blocksize for the blocked routines

For symmetric or Hermitian matrices, the values of N are used for the matrix dimension.

The input �le also speci�es a set of LAPACK path names and the test matrix types to

be used in testing the routines in each path. Path names are 3 characters long; the �rst

character indicates the data type, and the next two characters identify a matrix type or

problem type. The test paths for the linear equation test program are as follows:

S, C, D, Z GE General matrices (LU factorization)

S, C, D, Z GB General banded matrices

S, C, D, Z PO Positive de�nite matrices (Cholesky factorization)

S, C, D, Z PP Positive de�nite packed

S, C, D, Z PB Positive de�nite banded

S, C, D, Z SY Symmetric inde�nite matrices (Bunch-Kaufman factorization)

S, C, D, Z SP Symmetric inde�nite packed

C, Z HE Hermitian inde�nite matrices (Bunch-Kaufman factorization)

C, Z HP Hermitian inde�nite packed

S, C, D, Z QR QR and LQ decompositions

The xQR test path also tests the routines for generating or multiplying by an orthogonal

or unitary matrix expressed as a sequence of Householder transformations.

30

. .

For each LAPACK test path speci�ed in the input �le, the test program generates test

matrices, calls the LAPACK routines in that path, and computes a number of test ratios

to verify that each operation has performed correctly. The test matrices used in each test

path are shown in Table 1. In this context, " is the machine epsilon, i.e., the smallest

positive
oating-point number such that 1:0 + " 6= 1:0, and is the condition number of

the matrix A.

Test matrix type
GE, QR GB PO, PP PB SY, SP HE, HP

Diagonal
1 1 1 1 1 1

Upper triangular
2 2

Lower triangular
3 3

Banded: k < m=2; k < n=2
4 2

Banded: k < m=2; k n=2
5

Banded: k m=2; k < n=2
6

Banded: k m=2; k n=2
7 3

Random, = 2
4 8 2 4 2 2

Random, =
0:1=" 5 9 3 5 3 3

Random, = 0:1="
6 10 4 6 4 4

Scaled near under
ow
7 11 5 7 5 5

Scaled near over
ow
8 12 6 8 6 6

Block diagonal
7

{ complex test paths only

Table 1: Test matrices for the linear equation test paths

. .

For the LAPACK paths that operate on systems of linear equations, each test matrix is

subjected to the following tests:

� Factor the matrix using xxxTRF, and compute the ratio

U � A =(n A ")

� Invert the matrix A using xxxTRI, and compute the ratio

�AA

�1

=(n A A

�1

")

For banded matrices, inversion routines are not available because the inverse would

be dense.

� Solve the system A = using xxxTRS, and compute the ratios

�A =(A ") and � =(")

where is the exact solution and is the condition number of A.

31

� Use iterative re�nement (xxxRFS) to improve the solution, and compute the ratios

� =(")

(backward error) ="

� =((error bound))

� Compute the condition number using xxxCON, and form the product RCOND � .

The solve and iterative re�nement steps are also tested with A replaced by A or A where

applicable. The test ratios computed for the real linear equation test paths (except SQR)

are listed in Table 2. The complex test ratios are the same except for the CGE and CGB

paths; there A is replaced by A , and two more tests are inserted to test the solution

(without iterative re�nement) of A = .

Test ratio
SGE SGB SPO, SPP SPB SSY, SSP

U � A =(n A ")
1 1 1 1 1

�AA

�1

=(n A A

�1

")
2 2 2

�A =(A ")
3, 8 2, 7 3 2 3

� =(")
4, 9 3, 8 4 3 4

� =("), re�ned
5, 10 4, 9 5 4 5

(backward error)="
6, 11 5, 10 6 5 6

� =((errorbound))
7, 12 6, 11 7 6 7

RCOND �
13 12 8 7 8

T { solve A =

Table 2: Tests performed for the REAL linear equation test paths

In the SQR test path, routines are tested for computing the QR decomposition

(SGEQRF), computing the LQ decomposition (SGELQF), generating an orthogonal matrix

expressed as a sequence of Householder transformations (SORGEN), and multiplying by an

orthogonal matrix expressed as a sequence of Householder transformations (SORMUL). In

the complex case, SORGEN is called CUNGEN, SORMUL is called CUNMUL, and Q is

unitary instead of orthogonal. Tests 1{7 in the list below are performed if the m � n test

matrix satis�es m n, and tests 8{14 are performed if m n.

� Compute the QR factorization using SGEQRF, generate the orthogonal matrix

from the Householder vectors using SORGEN, and compute the ratio

1. A� =(m A ")

� Test the orthogonality of the computed matrix by computing the ratio

2. � =(m")

� Generate a random matrix C and multiply it by or using SORMUL with

UPLO = `L', and compare the result to the product of C and (or) using the

explicit matrix generated by SORGEN. The di�erent options for SORMUL are

tested by computing the 4 ratios

32

3. C � C =(m C ")

4. C � C =(m C ")

5. C � C =(m C ")

6. C � C =(m C ")

where the �rst product is computed using SORMUL and the second using the explicit

matrix .

� Compute the least-squares solution to a system of equations A = using SGEQRS,

and compute the ratio

7. �A =(A ")

� Compute the LQ factorization using SGELQF, and compute the ratio

8. A� =(n A ")

� Test the orthogonality of the computed matrix by computing the ratio

9. � =(n")

� Generate a random matrix C and multiply it by or using SORMUL with

UPLO = `U', and compare the result to the product of C and (or) using the

explicit matrix generated by SORGEN. The di�erent options for SORMUL are

tested by computing the 4 ratios

10. C � C =(n C ")

11. C � C =(n C ")

12. C � C =(n C ")

13. C � C =(n C ")

� Compute the minimum-norm solution to a system of equationsA = using SGELQS,

and compute the ratio

14. �A =(A ")

When the tests are run, each test ratio that is greater than or equal to the threshold

value causes a line of information to be printed to the output �le. The �rst such line is

preceded by a header that lists the matrix types used and the tests performed for the current

path. A sample line for a test from the SGE path that did not pass when the threshold was

set to 1:0 is

M = 4, N = 4, NB = 1, t pe 2, test 13, ratio = 1.14270

To get this information for every test, set the threshold to zero. After all the unsuccessful

tests have been listed, a summary line is printed of the form

SGE: 11 out of 1 0 tests failed to pass t e t res old

If all the tests pass the threshold, only one line is printed for each path:

All tests for SGE passed t e t res old (1 0 tests run)

33

. .

From the test program's input �le, one can control the size of the test matrices, the

block size for the blocked routines, the paths to be tested, and the matrix types used in

testing. We have set the options in the input �les to run through all of the test paths. An

annotated example of an input �le for the REAL test program is shown below.

Data file for testing REAL LAPACK linear e uation routines

Number of values of M

0 1 2 3 5 10 20 70 Values of M (row dimension)

Number of values of N

0 1 2 3 5 10 20 70 Values of N (column dimension)

3 Number of values of NB

1 3 20 Values of NB (t e blocksize)

2 Number of rig t and sides

20.0 T res old value of test ratio.

SGE List t pes on next line if 0 NT PES

SGB 12 List t pes on next line if 0 NT PES 12

SPO List t pes on next line if 0 NT PES

SPP List t pes on next line if 0 NT PES

SPB List t pes on next line if 0 NT PES

SS List t pes on next line if 0 NT PES

SSP List t pes on next line if 0 NT PES

SQR List t pes on next line if 0 NT PES

The �rst 9 lines of the input �le are read using list-directed input and are used to specify

the values of M, N, NB, and THRESH (the threshold value). The remaining lines occur

in sets of 1 or 2 and allow the user to specify the matrix types. Each line contains a 3-

character path name in columns 1-3 and the number of test matrix types in columns 5-10.

If the number of matrix types is at least 1 but is less than the maximum number of possible

types, a second line will be read to get the numbers of the matrix types to be used. For

example, the input line

SGE

requests all of the matrix types for path SGE, while

SGE 3

4 5

requests only matrices of type 4, 5, and 6.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main test program:

Parameter Description Value

NMAX Maximum value for M, N, or NB 132

MAXIN Maximum number of values of M, N, or NB 12

MAXRHS Maximum number of right hand sides 10

34

The main test procedure for the REAL linear equation routines is in LAPACK/TEST-

ING/LIN/sc kaa.f in the Unix version and is the �rst program unit in SLINTSTF in the

non-Unix version.

.2 estin the ons etric i envalue outines

The test routine for the LAPACK nonsymmetric eigenvalue routines, like the test pro-

gram for the routines which solve linear systems, generates a number of di�erent test ma-

trices and computes measures of the error. The parameters which may be varied are:

� the order N of the test matrix A

� the type of the test matrix A

� three numerical parameters: the blocksize NB, the number of shifts NS for the mul-

tishift QR method, and the (sub)matrix size MAXB below or equal to which an

unblocked, EISPACK-style method will be used

The test program thus consists of a triply-nested loop, the outer one over triples

(NB;NS;MAXB), the next over N, and the inner one over matrix types. On each iteration

of the innermost loop, a matrix A is generated and used to test the eigenvalue routines.

. .

Twenty-one di�erent types of test matrices may be generated for the nonsymmetric

eigenvalue routines. Table 3 shows the types available, along with the numbers used to

refer to the matrix types. Except as noted, all matrices have (1) entries.

Eigenvalue Distribution

Type
Arithmetic Geometric Clustered Random Other

Zero
1

Identity
2

(Jordan Block)
3

Diagonal
4, 7 , 8 5 6

U U

�1

9 10 11 12

�1

13 14 15 16, 17 , 18

Random entries
19, 20 , 21

{ matrix entries are e

{ matrix entries are e

Table 3: Test matrices for the nonsymmetric eigenvalue problem

Matrix types identi�ed as \Zero", \Identity", \Diagonal", and \Random entries" should

be self-explanatory. The other matrix types have the following meanings:

(Jordan Block) Matrix with ones on the diagonal and the �rst subdiagonal, and zeros

elsewhere

35

U U

�1

Schur-form matrix with (1) entries conjugated by a unitary (or real orthogo-

nal) matrix U

�1

Schur-form matrix with (1) entries conjugated by an ill-conditioned matrix

For eigenvalue distributions other than \Other", the eigenvalues lie between " (the

machine precision) and 1 in absolute value. The eigenvalue distributions have the following

meanings:

Arithmetic: Di�erence between adjacent eigenvalues is a constant

Geometric: Ratio of adjacent eigenvalues is a constant

Clustered: One eigenvalue is 1 and the rest are " in absolute value

Random: Eigenvalues are logarithmically distributed

. .

Finding the eigenvalues and eigenvectors of a nonsymmetric matrix A is done in the

following stages:

1. A is decomposed as U U , where U is unitary, is upper Hessenberg, and U is the

conjugate transpose of U .

2. is decomposed as , where is unitary and is in Schur form; this also gives

the eigenvalues , which may be considered to form a diagonal matrix .

3. The left and right eigenvector matrices and of the Schur matrix are computed.

4. Inverse iteration is used to obtain the left and right eigenvector matrices and of

the matrix .

To check these calculations, the following test ratios are computed:

r

1

=

�

�

r

2

=

�

�

r

3

=

�

�

r

4

=

�

�

r

5

=

�

�

r =

�

�

r =

1

�

r =

1

�

r =

�

r

10

=

�

r

11

=

�

r

12

=

�

36

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at the

same time, and 0 that they were computed in separate steps. (All norms are :

1

.) The

scalings in the test ratios assure that the ratios will be (1), independent of A and ",

and nearly independent of n.

When the test program is run, these test ratios will be compared with a user-speci�ed

threshold THRESH, and for each test ratio that exceeds THRESH, a message is printed

specifying the test matrix, the ratio that failed, and its value. A sample message is

Matrix order= 25, t pe=11, seed=254 ,142 ,1713,1411, result is 11.33

In this example, the test matrix was of order n = 25 and of type 11 from Table 3, \seed" is

the initial 4-integer seed of the random number generator used to generate A, and \result"

speci�es that test ratio r failed to pass the threshold, and its value was 11:33.

. .

An annotated example of an input �le for testing the nonsymmetric eigenvalue routines

is shown below.

NEP: Data file for testing t e Nons mmetric Eigenvalue Problem

Number of values of N

0 1 2 3 5 10 20 70 Values of N (dimension)

3 Number of values of NB

1 3 20 Values of NB (blocksize)

1 Values of NSHIFT (no. of s ifts)

2 10 10 Values of MAXB (min. blocksize)

20.0 T res old value

1 Code to interpret t e seed

NEP 21

The �rst line of the input �le must contain the characters NEP in columns 1{3. Lines

2{9 are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: The number of values of the parameters NB, NS, and MAXB

line 5: The values of NB, the blocksize

line 6: The values of NS, the number of shifts

line 7: The values of MAXB, the minimum blocksize

line 8: The threshold value for the test ratios

line 9: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the �rst run

= 2: Like 1, but use the seed values on the next line

line 10: If line 9 was 2, four integer values for the random number seed

37

The remaining lines occur in sets of 1 or 2 and allow the user to specify the matrix types.

Each line contains a 3-character identi�cation in columns 1{3, which must be either NEP

or SHS (CHS in complex, DHS in double precision, and ZHS in complex*16), and the number

of matrix types must be the �rst nonblank item in columns 4{80. If the number of matrix

types is at least 1 but is less than the maximum number of possible types, a second line

will be read to get the numbers of the matrix types to be used. For example,

NEP 21

requests all of the matrix types for the nonsymmetric eigenvalue problem, while

NEP 4

10 11 12

requests only matrices of type 9, 10, 11, and 12.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main test program:

Parameter Description Value

NMAX Maximum value for N, NB, NS, and MAXB 132

MAXIN Maximum number of values of the parameters 20

For the nonsymmetric eigenvalue input �le, MAXIN is both the maximum number of values

of N and the maximum number of 3-tuples (NB, NS, MAXB). The main test procedure

for the REAL eigenvalue routines is in LAPACK/TESTING/EIG/sc kee.f in the Unix version

and is the �rst program unit in SEIGTSTF in the non-Unix version.

.3 estin the S etric i envalue outines

The test routine for the LAPACK symmetric eigenvalue routines has the following pa-

rameters which may be varied:

� the order N of the test matrix A

� the type of the test matrix A

� the blocksize NB

The testing program thus consists of a triply-nested loop, the outer one over NB, the next

over N, and the inner one over matrix types. On each iteration of the innermost loop, a

matrix A is generated and used to test the eigenvalue routines.

. .

Fifteen di�erent types of test matrices may be generated for the symmetric eigenvalue

routines. Table 4 shows the types available, along with the numbers used to refer to the ma-

trix types. Except as noted, all matrices have (1) entries. The expression U U

�1

means

a real diagonal matrix with (1) entries conjugated by a unitary (or real orthogonal)

matrix U . The eigenvalue distributions have the same meanings as in the nonsymmetric

case (see Section 6.2.1).

38

Eigenvalue Distribution

Type
Arithmetic Geometric Clustered Other

Zero
1

Identity
2

Diagonal
3, 6 , 7 4 5

U U

�1

8, 11 , 12 9 10

Random entries
13, 14 , 15

{ matrix entries are e

{ matrix entries are e

Table 4: Test matrices for the symmetric eigenvalue problem

. .

Finding the eigenvalues and eigenvectors of a symmetric matrixA is done in the following

stages:

1. A is decomposed as U U , where U is unitary, is real symmetric tridiagonal, and

U is the conjugate transpose of U .

2. is decomposed as , where is real orthogonal and is a real diagonal matrix

of eigenvalues.

3. The \PWK" method is used to compute using a square-root-free method which

does not compute .

To check these calculations, the following test ratios are computed:

r

1

=

�

�

r

2

=

�

�

r

3

=

�

�

r

4

=

�

�

r

5

=

�

�

r =

�

�

r =

1

�

r =

1

�

r = from Sturm sequence test

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at the

same time, and 0 that they were computed in separate steps. (All norms are :

1

.) The

scalings in the test ratios assure that the ratios will be (1) (typically less than 10 or 100),

independent of A and ", and nearly independent of n.

The \Sturm sequence test" is a test of how much the eigenvalues in di�er from the

eigenvalues of . Sturm sequences are used to test whether an eigenvalue of lies within an

39

interval (� ; +), where is a diagonal entry of . Increasingly larger values of are

tried until one is found such that all the diagonal entries lie within of an eigenvalue of .

The �rst (smallest) such , divided by " times the absolute value of the largest eigenvalue,

is then r .

As in the nonsymmetric case, the test ratios for each test matrix are compared to a

user-speci�ed threshold THRESH, and a message is printed for each test that exceeds this

threshold.

. .

An annotated example of an input �le for testing the symmetric eigenvalue routines is

shown below.

SEP: Data file for testing t e S mmetric Eigenvalue Problem

Number of values of N

0 1 2 3 5 10 20 70 Values of N (dimension)

3 Number of values of NB

1 3 20 Values of NB (blocksize)

20.0 T res old value

1 Code to interpret t e seed

SEP 15

The �rst line of the input �le must contain the characters SEP in columns 1{3. Lines

2{7 are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: The number of values of the parameter NB

line 5: The values of NB, the blocksize

line 6: The threshold value for the test ratios

line 7: An integer code to interpret the random number seed

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the �rst run

= 2: Like 1, but use the seed values on the next line

line 8: If line 7 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in

the nonsymmetric case. The valid 3-character codes are SEP or SST (CST in complex, DST

in double precision, and ZST in complex*16).

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main test program:

Parameter Description Value

NMAX Maximum value for N and NB 132

MAXIN Maximum number of values of N and NB 20

40

The main test procedure for the single precision real eigenvalue routines is in LAPACK/TEST-

ING/EIG/sc kee.f in the Unix version and is the �rst program unit in SEIGTSTF in the

non-Unix version.

. estin the Sin ular alue eco position outines

The test routine for the LAPACK singular value decomposition (SVD) routines has the

following parameters which may be varied:

� the number of rows M and columns N of the test matrix A

� the type of the test matrix A

� the blocksize NB

The test program thus consists of a triply-nested loop, the outer one over NB, the next over

pairs (M;N), and the inner one over matrix types. On each iteration of the innermost loop,

a matrix A is generated and used to test the SVD routines.

. .

Sixteen di�erent types of test matrices may be generated for the singular value decom-

position routines. Table 5 shows the types available, along with the numbers used to refer

to the matrix types. Except as noted, all matrix types other than the random bidiagonal

matrices have (1) entries.

Singular Value Distribution

Type
Arithmetic Geometric Clustered Other

Zero
1

Identity
2

Diagonal
3, 6 , 7 4 5

U V
8, 11 , 12 9 10

Random entries
13, 14 , 15

Random bidiagonal
16

{ matrix entries are e

{ matrix entries are e

Table 5: Test matrices for the singular value decomposition

Matrix types identi�ed as \Zero", \Diagonal", and \Random entries" should be self-

explanatory. The other matrix types have the following meanings:

Identity: A min(M;N)�min(M;N) identity matrix with zero rows or columns added to the

bottom or right to make it M� N

U V Real M � N diagonal matrix with (1) entries multiplied by unitary (or real

orthogonal) matrices on the left and right

41

Random bidiagonal: Upper bidiagonal matrix whose entries are randomly chosen from a

logarithmic distribution on ["

2

; "

�2

]

The QR algorithm used in xBDSQR should compute all singular values, even small ones, to

good relative accuracy, even of matrices with entries varying over many orders of magnitude,

and the random bidiagonal matrix is intended to test this. Thus, unlike the other matrix

types, the random bidiagonal matrix is neither (1), nor an (1) matrix scaled to some

other magnitude.

The singular value distributions are analogous to the eigenvalue distributions in the

nonsymmetric eigenvalue problem (see Section 6.2.1).

. .

Finding the singular values and singular vectors of a dense, m � n matrix A is done in

the following stages:

1. A is decomposed as B , where and are unitary and B is real bidiagonal.

2. B is decomposed as U V , where U and V are real orthogonal and is a positive real

diagonal matrix of singular values.

In addition, the LAPACK routines xBDSQR can apply the transformations that form U to

an arbitrary ~n = min(m;n)�k matrix C; the resulting matrix we call . The test routines

therefore start with a random m � k matrix with (1) entries, as well as A, and apply

all transformations to which are applied to A from the left.

To check these calculations, the following test ratios are computed:

r

1

=

�

;

r

2

=

�

;

r

3

=

�

�

r

4

=

�

�

r

5

=

�

r =

�

;

r =

�

�

r =

�

�

r =

�

�

;

r

10

=

�

;

r

11

=

�

�

r

12

=

�

�

r

13

=

1

�

r

14

= s from Sturm sequence test

where the subscript 1 indicates that U and V were computed at the same time as , and

0 that they were not. (All norms are :

1

.) The scalings in the test ratios assure that the

42

ratios will be (1) (typically less than 10 or 100), independent of A and ", and nearly

independent of m or n.

The \Sturm sequence test" is a test of how much the singular values in di�er from

the singular values of B: Sturm sequences are used to test whether a singular value of B

lies within an interval ((1� s) ; (1 + s)), where is a diagonal entry of . Increasingly

larger values of s are tried until one is found such that all the diagonal entries lie within

s of a singular value of B. The �rst (smallest) such s, divided by ", is then r

14

.

When the test program is run, these test ratios will be compared with a user-speci�ed

threshold THRESH: if a test ratio exceeds THRESH, a message such as

Matrix order= 25, t pe=10, seed=254 ,142 ,1713,1411, result is 11.33

if A is square, or

3 x 5 matrix, t pe=14, seed=1 04,2 41,224 ,1241, result 5 is 14.57

will be printed out. This speci�es the test matrix, the ratio that failed, and its value. In

the second example, m is 3, n is 5, the type number (see Table 5) is 14, which means a

\random bidiagonal" matrix, the test ratio which failed was r

5

, and the value of r

5

was

14:57. Given the seed, the size, and the type, it is possible to reconstruct the test matrix

exactly, subject only to possible di�ering numerical properties on di�erent machines, and

thus reproduce any problem with a routine.

. .

An annotated example of an input �le for testing the singular value decomposition

routines is shown below.

SVD: Data file for testing t e Singular Value Decomposition

20 Number of values of M

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 10 10 70 70 Values of M

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 10 70 10 70 Values of N

1 Number of values of NB

1 Values of NB (blocksize)

2 Values of NRHS

20.0 T res old value

1 Code to interpret t e seed

SVD 1

The �rst line of the input �le must contain the characters SVD in columns 1{3. Lines

2{9 are read using list-directed input and specify the following values:

43

line 2: The number of values of M and N

line 3: The values of M, the matrix row dimension

line 4: The values of N, the matrix column dimension

line 5: The number of values of the parameters NB and NRHS

line 6: The values of NB, the blocksize

line 7: The values of NRHS, the number of right hand sides

line 8: The threshold value for the test ratios

line 9: An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the �rst run

= 2: Like 1, but use the seed values on the next line

line 10: If line 9 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in

the nonsymmetric case. The valid 3-character codes are SVD or SBD (CBD in complex, DBD

in double precision, and ZBD in complex*16).

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main test program:

Parameter Description Value

NMAX Maximum value for M, N, NB, and NRHS 132

MAXIN Maximum number of values of the parameters 20

For the singular value decomposition input �le, MAXIN is both the maximum number of

pairs (M, N) and the maximum number of pairs (NB, NRHS). The main test procedure

for the REAL eigenvalue routines is in LAPACK/TESTING/EIG/sc kee.f in the Unix version

and is the �rst program unit in SEIGTSTF in the non-Unix version.

ore A out Timin

There are two distinct timing programs for LAPACK routines in each data type, one for

the linear equations routines and one for the eigensystem routines. Results from the linear

equation timing program are given in mega
ops, and the operation counts are generally

computed as some function of the problem size. Results from the eigensystem timing

program are given in execution times, operation counts, and mega
ops, where the operation

counts are calculated during execution using special versions of the LAPACK routines which

have been instrumented to count operations. Each program has its own style of input,

and the eigensystem timing program accepts three di�erent sets of parameters, for the

nonsymmetric eigenvalue problem, the symmetric eigenvalue problem, and the singular

value decomposition. The following sections describe the di�erent input formats and timing

parameters.

44

. i in the Linear uation outines

The timing program for the linear equation routines is driven by a data �le from which

the following parameters may be varied:

� M, the matrix row dimension

� N, the matrix column dimension

� K, the bandwidth for the banded routines, or the third size parameter for the Level 3

BLAS

� NB, the blocksize for the blocked routines

� LDA, the leading dimension of the dense and banded matrices.

For banded matrices, the values of M are used for the matrix row and column dimensions,

and for symmetric or Hermitian matrices that are not banded, the values of N are used for

the matrix dimension.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main timing program:

Parameter Description Value

NMAX Maximum value of M, N, K, and NB for dense matrices 512

LDAMAX Maximum value of LDA 532

NMAXB Maximum value of M for banded matrices 5000

MAXIN Maximum number of values of M, N, K, or NB 12

MXNLDA Maximum number of values of LDA 4

The parameter LDAMAX should be at least NMAX. For the xGB path, we must have

(4 + 1) 2(NMAX)(LDAMAX), which restricts the value of K. The above lim-

its allow K to be as big as 200 for M = 1000. For the xPB path, the condition is

(2 + 1) 3(NMAX)(LDAMAX). The main timing program for the REAL linear

equation routines is found in LAPACK/TIMING/LIN/stimaa.f in the Unix version and is the

�rst program unit in SLINTIMF in the non-Unix version.

The input �le also speci�es a set of LAPACK routine names or LAPACK path names

to be timed. The path names are similar to those used for the test program, and include

the following standard paths:

S, C, D, Z GE General matrices (LU factorization)

S, C, D, Z GB General banded matrices

S, C, D, Z PO Positive de�nite matrices (Cholesky factorization)

S, C, D, Z PP Positive de�nite packed

S, C, D, Z PB Positive de�nite banded

S, C, D, Z SY Symmetric inde�nite matrices (Bunch-Kaufman factorization)

S, C, D, Z SP Symmetric inde�nite packed

C, Z HE Hermitian inde�nite matrices (Bunch-Kaufman factorization)

C, Z HP Hermitian inde�nite packed

45

S, C, D, Z QR QR decomposition

S, C, D, Z TR Triangular matrices

S, C, D, Z TP Triangular packed matrices

For timing the Level 2 and 3 BLAS, two extra paths are provided:

S, C, D, Z B2 Level 2 BLAS

S, C, D, Z B3 Level 3 BLAS

In addition, this release contains some experimental routines which can be accessed

using the following temporary path names:

S, D LU Variants of the LU decomposition

S, D CH Variants of the Cholesky decomposition

S, C, D, Z HR Reduction to Hessenberg form

S, C, D, Z TD Reduction to real tridiagonal form

The xLU path requests timing of three block variants of the LU factorization (left-looking,

Crout, and right-looking) for � matrices, as well as the corresponding unblocked vari-

ants on matrices of size � B. Timings for the Linpack routine xGEFA are included for

comparison. The xCH timing path requests timing of three block variants of the Cholesky

factorization and the corresponding Linpack routine xPOFA. Timing of the blocked and

unblocked reductions to Hessenberg and tridiagonal form are requested by the paths xHR

and xTD, and times for the Eispack routines ORTHES and TRED1 are included for com-

parision.

The timing programs have their own matrix generator that supplies computed, rather

than random, matrices for timing. Computed matrices are used because they can be gen-

erated more quickly than random matrices, and the call to the matrix generator is inside

the timing loop. The user speci�es a minimum time for which each routine should run

and the computation is repeated if necessary until this time is used. In order to prevent

in
ated performance due to a matrix remaining in the cache from one iteration to the next,

we regenerate the matrix before each call to the LAPACK routine in the timing loop. The

time for generating the matrix at each iteration is subtracted from the total time.

An annotated example of an input �le for timing the REAL linear equation routines

that operate on dense matrices is shown below.

Data file for timing REAL LAPACK linear e uation routines

5 Number of values of M

100 200 300 400 500 Values of M (row dimension)

5 Number of values of N

100 200 300 400 500 Values of N (column dimension)

5 Number of values of K

25 50 100 150 200 Values of K (bandwidt)

5 Number of values of NB

1 1 32 4 4 Values of NB (blocksize)

2 Number of values of LDA

46

512 513 Values of LDA (leading dimension)

0.0 Minimum time in seconds

SGE T T T T Put T to time: -TRF -TRI -TRS -CON

SPO T T T T -TRF -TRI -TRS -CON

SPP T T T T -TRF -TRI -TRS -CON

SS T T T T -TRF -TRI -TRS -CON

SSP T T T T -TRF -TRI -TRS -CON

SQR T T -GEQRF -GEQRS

STR T -TRI

STP T -TRI

SLU

SCH

SHR

STD

The �rst 12 lines of the input �le are read using list-directed input and are used to specify

the values of M, N, K, NB, LDA, and TIMMIN (the minimum time). By default, xGEMV

and xGEMM are called to sample the BLAS performance on square matrices of order N,

but this option can be controlled by entering one of the following on line 13:

BAND Time xGBMV (instead of xGEMV) using matrices of order M and

bandwidth K, and time xGEMM using matrices of order K.

NONE Do not do the sample timing of xGEMV and xGEMM.

The timing paths or routine names which follow may be speci�ed in any order.

When timing the banded routines it is more interesting to use one large value of the

matrix size and vary the bandwidth. An annotated example of an input �le for timing the

REAL linear equation routines that operate on banded matrices is shown below.

Data file for timing REAL LAPACK banded routines

1 Number of values of M

1000 Values of M (row dimension)

0 Number of values of N

1000 Values of N (column dimension)

5 Number of values of K

25 50 100 150 200 Values of K (bandwidt)

5 Number of values of NB

1 1 32 4 4 Values of NB (blocksize)

1 Number of values of LDA

01 Values of LDA (leading dimension)

0.0 Minimum time in seconds

BAND Time sample banded BLAS

SGB T T T Put T to time: -TRF -TRS -CON

SPB T T T -TRF -TRS -CON

Here M speci�es the matrix size and K speci�es the bandwidth for the test paths SGB and

SPB. Note that we request timing of the sample BLAS for banded matrices by specifying

\BAND" on line 13.

47

.2 i in the Level 2 an 3 BLAS

Three input �les are provided for timing the BLAS with the matrix shapes encountered

in the LAPACK routines. In each of these �les, one of the parameters M, N, and K for the

Level 3 BLAS is on the order of the blocksize while the other two are on the order of the

matrix size. The �rst of these input �les also times the Level 2 BLAS, and we include the

single precision real version of this data �le here for reference:

Data file 1 for timing t e REAL BLAS routines

5 Number of values of M

100 200 300 400 500 Values of M

5 Number of values of N

100 200 300 400 500 Values of N

5 Number of values of K

2 1 32 4 4 Values of K

1 Number of values of INCX

1 Values of INCX

2 Number of values of LDA

512 513 Values of LDA

0.0 Minimum time in seconds

none Do not time t e sample BLAS

SB2

SB3

Since the Fortran BLAS do not contain any sub-blocking, the block size NB is not required

and its value is replaced by that of INCX, the increment between successive elements of

a vector in the Level 2 BLAS. Note that we have speci�ed \none" on line 13 to suppress

timing of the sample BLAS, which are redundant in this case.

.3 i in the ons etric i enpro le

A separate input �le drives the timing codes for the nonsymmetric eigenproblem. The

input �le speci�es

� N, the matrix size

� four-tuples of parameter values (NB, NS, MAXB, LDA) specifying the block size NB,

the number of shifts NS, the matrix size MAXB less than which an unblocked routine

is used, and the leading dimension LDA

� the test matrix types

� the routines or sequences of routines from LAPACK or EISPACK to be timed

The parameters NS and MAXB apply only to the QR iteration routine xHSEQR, and NB

is used only by the block algorithms. A goal of this timing code is to determine the values

of NB, NS and MAXB which maximize the speed of the codes.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main timing program:

48

Parameter Description Value

MAXN Maximum value for N, NB, NS, or MAXB 400

LDAMAX Maximum value for LDA 420

MAXIN Maximum number of values of N 12

MAXPRM Maximum number of parameter sets 10

(NB, NS, MAXB, LDA)

The main timing program for the REAL routines is found in LAPACK/TIMING/EIG/stimee.f

in the Unix version and is the �rst program unit in SEIGTIMF in the non-Unix version.

The computations that may be timed for the REAL version are

1. SGEHRD (LAPACK reduction to upper Hessenberg form)

2. SHSEQR(E) (LAPACK computation of eigenvalues only of a Hessenberg matrix)

3. SHSEQR(S) (LAPACK computation of the Schur form of a Hessenberg matrix)

4. SHSEQR(I) (LAPACK computation of the Schur form and Schur vectors of a Hes-

senberg matrix)

5. STREVC(L) (LAPACK computation of the the left eigenvectors of a matrix in Schur

form)

6. STREVC(R) (LAPACK computation of the the right eigenvectors of a matrix in Schur

form)

7. SHSEIN(L) (LAPACK computation of the the left eigenvectors of an upper Hessen-

berg matrix using inverse iteration)

8. SHSEIN(R) (LAPACK computation of the the right eigenvectors of an upper Hessen-

berg matrix using inverse iteration)

9. ORTHES (EISPACK reduction to upper Hessenberg form, to be compared to

SGEHRD)

10. HQR (EISPACK computation of eigenvalues only of a Hessenberg matrix, to be com-

pared to SHSEQR(E))

11. HQR2 (EISPACK computation of eigenvalues and eigenvectors of a Hessenberg ma-

trix, to be compared to SHSEQR(I) plus STREVC(R))

12. INVIT (EISPACK computation of the right eigenvectors of an upper Hessenberg ma-

trix using inverse iteration, to be compared to SHSEIN).

Eight di�erent matrix types are provided for timing the nonsymmetric eigenvalue rou-

tines. A variety of matrix types is allowed because the number of iterations to compute the

eigenvalues, and hence the timing, can depend on the type of matrix whose eigendecompo-

sition is desired. The matrices used for timing are of the form

�1

where is either

orthogonal (for types 1{4) or random with condition number 1=
"
(for types 5{8), where "

is the machine roundo� error. The matrix is upper triangular with random (1) entries

in the strict upper triangle and has on its diagonal

49

� evenly spaced entries from 1 down to " with random signs (matrix types 1 and 5)

� geometrically spaced entries from 1 down to " with random signs (matrix types 2 and

6)

� \clustered" entries 1; "; . . . ; " with random signs (matrix types 3 and 7), or

� real or complex conjugate paired eigenvalues randomly chosen from the interval ("; 1)

(matrix types 4 or 8).

An annotated example of an input �le for timing the REAL nonsymmetric eigenproblem

routines is shown below.

NEP: Data file for timing Nons mmetric Eigenvalue Problem routines

4 Number of values of N

100 200 300 400 Values of N (dimension)

7 Number of values of parameters

1 1 1 12 10 Values of NB (blocksize)

12 1 12 1 1 Values of NS (number of s ifts)

20 50 100 50 100 200 300 Values of MAXB (max. blocksize)

401 401 401 401 401 401 401 Values of LDA (leading dimension)

0.0 Minimum time in seconds

4 Number of matrix t pes

1 3 4

SHS T T T T T T T T T T T T

The �rst line of the input �le must contain the characters NEP in columns 1-3. Lines

2-10 are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: The number of values of the parameters NB, NS, MAXB, and LDA

line 5: The values of NB, the blocksize

line 6: The values of NS, the number of shifts

line 7: The values of MAXB, the maximum blocksize

line 8: The values of LDA, the leading dimension

line 9: The minimum time in seconds that a routine will be timed

line 10: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 8, then line 11 speci�es NTYPES integer values which are the

numbers of the matrix types to be used. The remaining lines specify a path name and

the speci�c computations to be timed. For the nonsymmetric eigenvalue problem, the path

names for the four data types are SHS, DHS, CHS, and ZHS. A line to request all the routines

in the REAL path has the form

SHS T T T T T T T T T T T T

50

where the �rst 3 characters specify the path name, and up to 12 nonblank characters may

appear in columns 4{80. If the k

th

such character is `T' or `t', the k

th

routine will be timed.

If at least one but fewer than 12 nonblank characters are speci�ed, the remaining routines

will not be timed. If columns 4{80 are blank, all the routines will be timed, so the input

line

SHS

is equivalent to the line above.

The output is in the form of a table which shows the absolute times in seconds,
oating

point operation counts, and mega
op rates for each routine over all relevant input parame-

ters. For the blocked routines, the table has one line for each di�erent value of NB, and for

the SHSEQR routine, one line for each di�erent combination of NS and MAXB as well.

. i in the S etric i enpro le

A separate input �le drives the timing codes for the symmetric eigenproblem. The input

�le speci�es

� N, the matrix size

� pairs of parameter values (NB, LDA) specifying the block size NB and the leading

dimension LDA

� the test matrix types

� the routines or sequences of routines from LAPACK or EISPACK to be timed.

A goal of this timing code is to determine the values of NB which maximize the speed of

the block algorithms.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for N or NB 400

LDAMAX Maximum value for LDA 420

MAXIN Maximum number of values of N 12

MAXPRM Maximum number of pairs of values (NB, LDA) 10

The main timing program for the REAL routines is found in LAPACK/TIMING/EIG/stimee.f

in the Unix version and is the �rst program unit in SEIGTIMF in the non-Unix version.

The computations that may be timed depend on whether the data is real or complex.

For the REAL version the possible computations are

1. SSYTRD (LAPACK reduction to symmetric tridiagonal form)

2. SSTEQR(N) (LAPACK computation of eigenvalues only of a symmetric tridiagonal

matrix)

51

3. SSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors of a sym-

metric tridiagonal matrix)

4. SSTERF (LAPACK computation of the eigenvalues only of a symmetric tridiagonal

matrix using a square-root free algorithm)

5. TRED1 (EISPACK reduction to symmetric tridiagonal form, to be compared to

SSYTRD)

6. IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-

trix, to be compared to SSTEQR(N))

7. IMTQL2 (EISPACK computation of eigenvalues and eigenvectors of a symmetric tridi-

agonal matrix, to be compared to SSTEQR(V))

8. TQLRAT (EISPACK computation of eigenvalues only of a symmetric tridiagonal

matrix, to be compared to SSTERF).

For complex matrices the possible computations are

1. CHETRD (LAPACK reduction of a complex Hermitian matrix to real symmetric

tridiagonal form)

2. CSTEQR(N) (LAPACK computation of eigenvalues only of a real symmetric tridiag-

onal matrix)

3. CSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors of a real

symmetric tridiagonal matrix (accumulating them into a complex matrix))

4. CUNGEN+CSTEQR (LAPACK computation of the eigenvalues and eigenvectors of

a Hermitian matrix given the reduction to real symmetric tridiagonal form)

5. HTRIDI (EISPACK reduction to symmetric tridiagonal form, to be compared to

CHETRD)

6. IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-

trix, to be compared to CSTEQR(V))

7. IMTQL2+HTRIBK (EISPACK computation of eigenvalues and eigenvectors of a com-

plex Hermitian matrix given the reduction to real symmetric tridiagonal form, to be

compared to CUNGEN+CSTEQR).

Four di�erent matrix types are provided for timing the symmetric eigenvalue routines.

The matrices used for timing are of the form

�1

, where is orthogonal and is

diagonal with entries

� evenly spaced entries from 1 down to " with random signs (matrix type 1),

� geometrically spaced entries from 1 down to " with random signs (matrix type 2),

� \clustered" entries 1; "; . . . ; " with random signs (matrix type 3), or

52

� eigenvalues randomly chosen from the interval ("; 1) (matrix type 4).

An annotated example of an input �le for timing the REAL symmetric eigenproblem

routines is shown below.

SEP: Data file for timing S mmetric Eigenvalue Problem routines

4 Number of values of N

100 200 300 400 Values of N (dimension)

10 Number of values of parameters

1 1 32 4 4 1 1 32 4 4 Values of NB (blocksize)

400 400 400 400 400 401 401 401 401 401 Values of LDA (leading dim.)

0.0 Minimum time in seconds

4 Number of matrix t pes

SST T T T T T T T T

The �rst line of the input �le must contain the characters SEP in columns 1-3. Lines 2-8

are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: The number of values of the parameters NB and LDA

line 5: The values of NB, the blocksize

line 6: The values of LDA, the leading dimension

line 7: The minimum time in seconds that a routine will be timed

line 8: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 4, then line 9 speci�es NTYPES integer values which are the numbers

of the matrix types to be used. The remaining lines specify a path name and the speci�c

computations to be timed. For the symmetric eigenvalue problem, the path names for the

four data types are SST, DST, CST, and ZST. The (optional) characters after the path name

indicate the computations to be timed, as in the input �le for the nonsymmetric eigenvalue

problem (see Section 7.3).

. i in the Sin ular alue eco position

A separate input �le drives the timing codes for the Singular Value Decomposition

(SVD). The input �le speci�es

� pairs of parameter values (M, N) specifying the matrix row dimension M and the

matrix column dimension N

� pairs of parameter values (NB, LDA) specifying the block size NB and the leading

dimension LDA

� the test matrix types

� the routines or sequences of routines from LAPACK or LINPACK to be timed.

53

A goal of this timing code is to determine the values of NB which maximize the speed of

the block algorithms.

The number and size of the input values are limited by certain program maximums

which are de�ned in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for M, N, or NB 400

LDAMAX Maximum value for LDA 420

MAXIN Maximum number of pairs of values (M, N) 12

MAXPRM Maximum number of pairs of values (NB, LDA) 10

The main timing program for the REAL routines is found in LAPACK/TIMING/EIG/stimee.f

in the Unix version and is the �rst program unit in SEIGTIMF in the non-Unix version.

The computations that may be timed for the REAL version are

1. SGEBRD (LAPACK reduction to bidiagonal form)

2. SBDSQR (LAPACK computation of singular values only of a bidiagonal matrix)

3. SBDSQR(L) (LAPACK computation of the singular values and left singular vectors

of a bidiagonal matrix)

4. SBDSQR(R) (LAPACK computation of the singular values and right singular vectors

of a bidiagonal matrix)

5. SBDSQR(B) (LAPACK computation of the singular values and right and left singular

vectors of a bidiagonal matrix)

6. SBDSQR(V) (LAPACK computation of the singular values and multiply square ma-

trix of dimension min(M,N) by transpose of left singular vectors)

7. LAPSVD (LAPACK singular values only of a dense matrix, using SGEBRD and

SBDSQR)

8. LAPSVD(l) (LAPACK singular values and min(M,N) left singular vectors of a dense

matrix, using SGEBRD, SORGEN and SBDSQR(L))

9. LAPSVD(L) (LAPACK singular values and M left singular vectors of a dense matrix,

using SGEBRD, SORGEN and SBDSQR(L))

10. LAPSVD(R) (LAPACK singular values and N right singular vectors of a dense matrix,

using SGEBRD, SORGEN and SBDSQR(R))

11. LAPSVD(B) (LAPACK singular values, min(M,N) left singular vectors, and N right

singular vectors of a dense matrix, using SGEBRD, SORGEN and SBDSQR(B))

12. LINSVD (LINPACK singular values only of a dense matrix using SSVDC, to be

compared to LAPSVD)

13. LINSVD(l) (LINPACK singular values and min(M,N) left singular vectors of a dense

matrix using SSVDC, to be compared to LAPSVD(l))

54

14. LINSVD(L) (LINPACK singular values and M left singular vectors of a dense matrix

using SSVDC, to be compared to LAPSVD(L))

15. LINSVD(R) (LINPACK singular values and N right singular vectors of a dense matrix

using SSVDC, to be compared to LAPSVD(R))

16. LINSVD(B) (LINPACK singular values, min(M,N) left singular vectors and N right

singular vectors of a dense matrix using SSVDC, to be compared to LAPSVD(B)).

Five di�erent matrix types are provided for timing the singular value decomposition

routines. Matrix types 1{3 are of the form U V , where U and V are orthogonal or unitary,

and is diagonal with entries

� evenly spaced entries from 1 down to " with random signs (matrix type 1),

� geometrically spaced entries from 1 down to " with random signs (matrix type 2), or

� \clustered" entries 1; "; . . . ; " with random signs (matrix type 3).

Matrix type 4 has in each entry a random number drawn from [�1; 1]. Matrix type 5 is

a nearly bidiagonal matrix, where the upper bidiagonal entries are exp(�2r log ") and the

nonbidiagonal entries are r", where r is a uniform random number drawn from [0; 1] (a

di�erent r for each entry).

An annotated example of an input �le for timing the REAL singular value decomposition

routines is shown below.

SVD: Data file for timing Singular Value Decomposition routines

7 Number of values of M and N

100 100 200 200 200 400 400 Values of M (row dimension)

100 100 200 200 200 400 400 Values of N (column dimension)

1 Number of values of parameters

1 Values of NB (blocksize)

401 Values of LDA (leading dimension)

0.0 Minimum time in seconds

5 Number of matrix t pes

SBD T T T T T T T T T T T T T T T T

The �rst line of the input �le must contain the characters SVD in columns 1-3. Lines 2-9

are read using list-directed input and specify the following values:

line 2: The number of values of M and N

line 3: The values of M, the matrix row dimension

line 3: The values of N, the matrix column dimension

line 4: The number of values of the parameters NB and LDA

line 5: The values of NB, the blocksize

line 6: The values of LDA, the leading dimension

line 7: The minimum time in seconds that a routine will be timed

line 8: NTYPES, the number of matrix types to be used

55

If 0 < NTYPES < 5, then line 9 speci�es NTYPES integer values which are the numbers

of the matrix types to be used. The remaining lines specify a path name and the speci�c

computations to be timed. For the symmetric eigenvalue problem, the path names for the

four data types are SST, DST, CST, and ZST. The (optional) characters after the path name

indicate the computations to be timed, as in the input �le for the nonsymmetric eigenvalue

problem (see Section 7.3).

Ac no led ments

Jim Demmel and Alan McKenney of the Courant Institute of Mathematical Sciences, New

York University, also contributed to this report.

56

Appendix A: LAPAC Routines

In this appendix, we review the subroutine naming scheme for LAPACK as described in [2]

and indicate by means of a table which subroutines are included in this release.

Each subroutine name in LAPACK is a coded speci�cation of the computation done by

the subroutine. All names consist of six characters in the form TXXYYY. The �rst letter,

T, indicates the matrix data type as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 (if available)

The next two letters, XX, indicate the type of matrix. In this release, we include

subroutines covering only a subset of the total collection of matrix types to be provided in

LAPACK. Most of these two-letter codes apply to both real and complex routines; a few

apply speci�cally to one or the other, as indicated below:

GE general (i.e., unsymmetric, in some cases rectangular)

GB general band

PO symmetric or Hermitian positive de�nite

PP symmetric or Hermitian positive de�nite, packed storage

PB symmetric or Hermitian positive de�nite band

SY symmetric (i.e., inde�nite)

SP symmetric, packed storage

HE (complex) Hermitian (i.e., inde�nite)

HP (complex) Hermitian, packed storage

OR (real) orthogonal

UN (complex) unitary

TR triangular

TP triangular, packed storage

HS Hessenberg

ST symmetric tridiagonal

BD bidiagonal

The last three characters, YYY, indicate the computation done by a particular subrou-

tine. Included in this release are subroutines to perform the following computations:

TRF perform a triangular factorization (LU, Cholesky, etc.)

TF2 unblocked triangular factorization, if TRF is blocked

TRS solve systems of linear equations (based on triangular factorization)

TRI compute inverse (based on triangular factorization)

TI2 unblocked computation of inverse, if TRI is blocked

CON estimate condition number

RFS re�ne initial solution returned by TRS routines

QRF perform the QR factorization without pivoting

QR2 unblocked version of QRF

57

QRS solve linear least squares problems (based on QR factorization)

LQF perform the LQ factorization without pivoting

LQ2 unblocked version of LQF

LQS solve underdetermined linear systems (based on LQ factorization)

GEN generate a real orthogonal or complex unitary matrix

as a product of Householder matrices

GN2 unblocked version of GEN

MUL multiply a matrix by a real orthogonal or complex unitary matrix

by applying a product of Householder matrices

ML2 unblocked version of MUL

HRD reduce a square matrix to upper Hessenberg form

HD2 unblocked version of HRD

TRD reduce a symmetric matrix to real symmetric tridiagonal form

TD2 unblocked version of TRD

BD2 reduce a rectangular matrix to bidiagonal form

EQR compute eigenvalues and, optionally, Schur factorization or eigenvectors

using the QR algorithm

EIN compute selected eigenvectors by inverse iteration

EVC compute eigenvectors from Schur factorization

ERF compute eigenvectors using the Pal-Walker-Kahan variant of

the QL or QR algorithm

SQR compute singular values and, optionally, singular vectors

using the QR algorithm

Given these de�nitions, the following table indicates the LAPACK subroutines provided

in this release for the solution of systems of linear equations:

HE HP UN

GE GB PO PP PB SY SP OR TR TP

TRF � � � � � � �

TF2 � � � � �

TRS � � � � � � �

TRI � � � � � � �

TI2 �

CON � � � � � � �

RFS � � � � � � �

QRF �

QR2 �

QRS �

LQF �

LQ2 �

LQS �

GEN �

GN2 �

MUL �

ML2 �

58

The following table indicates the routines provided in this release for �nding eigenvalues

and eigenvectors or singular values and singular vectors:

GE HS TR SY SP ST BD

HRD �

HD2 �

TRD � �

TD2 �

BD2 �

EQR � �

EIN �

EVC �

ERF �

SQR �

59

Appendix B: LAPAC Auxiliar Routines

This appendix lists all of the auxiliary routines (except for the BLAS) that are called

from the LAPACK routines. These routines are found in the directory LAPACK/SRC in the

Unix version and in the �les xxLAUXF and xLASRCF in the non-Unix version. Routines

speci�ed with an underscore as the �rst character are available in all four data types (S, D,

C, and Z), except those marked (real), for which the �rst character may be `S' or `D', and

those marked (complex), for which the �rst character may be `C' or `Z'.

Special subroutines:

ENVIR Return parameters for use in the algorithms, such as

block size and number of shifts

XENVIR Set parameters in ENVIR's COMMON block

XERBLA Error handler for LAPACK routines

Special functions:

LSAME LOGICAL Return .TRUE. if two characters are the same

regardless of case

LSAMEN LOGICAL Return .TRUE. if two character strings are the

same regardless of case

SLAMCH REAL Return single precision machine parameters

DLAMCH DOUBLE PRECISION Return double precision machine parameters

R1MACH REAL Return single precision machine parameters

D1MACH DOUBLE PRECISION Return double precision machine parameters

Functions for computing norms:

LANGE General matrix

LANGB General band matrix

LANSY Symmetric matrix

LANSP Symmetric packed matrix

LANSB Symmetric band matrix

LANHE (complex) Hermitian matrix

LANHP (complex) Hermitian packed matrix

LANHB (complex) Hermitian band matrix

LANTR Trapezoidal matrix

LANTP Triangular packed matrix

LANTB Triangular band matrix

LANHS Upper Hessenberg matrix

Extensions to the Level 1 and 2 BLAS:

SROT (complex) Apply a real plane rotation to a complex vector

SCSUM1 Sum absolute values of a complex vector

ICMAX1 Find the index of element whose real part has max. abs. value

DZSUM1 Sum absolute values of a complex*16 vector

60

IZMAX1 Find the index of element whose real part has max. abs. value

SYMV (complex) Symmetric matrix times vector

SPMV (complex) Symmetric packed matrix times vector

SBMV (complex) Symmetric band matrix times vector

SYR (complex) Symmetric rank-1 update

SPR (complex) Symmetric rank-1 update of a packed matrix

Other LAPACK auxiliary routines:

LACGV (complex) Conjugate a complex vector

LACON Estimate the norm of a matrix for use in condition estimation

LACPY Copy a matrix to another matrix

LAE2 Compute eigenvalues of a 2 x 2 real symmetric or complex Hermitian matrix

LAEIN Use inverse iteration to �nd a speci�ed right and/or left eigenvector of an

upper Hessenberg matrix

LAESY (complex) Compute eigenvalues and eigenvectors of a complex symmetric

2 x 2 matrix

LAEV2 Compute eigenvalues and eigenvectors of a 2 x 2 real symmetric or complex

Hermitian matrix

LAHBR (complex) Factor a panel of a complex Hermitian inde�nite matrix

LAHQR Find the Schur factorization of a Hessenberg matrix (modi�ed version of

HQR from EISPACK)

LAHR2 Reduce a panel of a matrix to Hessenberg form

LAHRD Chase a K x K bulge in the reduction to Hessenberg form

LALN2 (real) Solve a 1 x 1 or 2 x 2 linear system

LAN2 (real) Compute the eigenvalues of a 2 x 2 nonsymmetric matrix:

LAPY2 Compute square root of X**2 + Y**2

LAPY3 (real) Compute square root of X**2 + Y**2 + Z**2

LARAN (real) Generate a real random number in the interval (0,1)

LARF Multiply by a Householder matrix

LARFB Multiply by a block Householder matrix

LARFG Generate a Householder matrix

LARFT Accumulate the triangular factor of a block Householder matrix

LARND Generate a random number from one of several distributions

LARTG Generate Givens rotations

LAS2 (real) Compute singular values of a 2 x 2 triangular matrix

LASBR Factor a panel of a symmetric inde�nite matrix

LASR Apply a sequence of plane rotations to a rectangular matrix

LASSQ Compute a scaled sum of squares of the elements of a vector

LASV2 (real) Compute singular values and singular vectors of a 2 x 2 triangular

matrix

LASWP Perform a series of row interchanges

LASYK Apply a rank-K update to a symmetric matrix of the form C := C � A �B

LATRD Reduce a panel of a symmetric matrix to tridiagonal form

LATRS Solve a triangular system (includes scaling)

LAULM Compute the product U*L (blocked version)

61

LAUL2 Unblocked version of LAULM

LAUUM Compute the product U*U' or L'*L (blocked version)

LAUU2 Unblocked version of LAUUM

LAVHE (complex) Multiply a vector by a matrix that has been factored by HETRF

LAVHP (complex) Multiply a vector by a matrix that has been factored by HPTRF

LAVSY Multiply a vector by a matrix that has been factored by SYTRF

LAVSP Multiply a vector by a matrix that has been factored by SPTRF

LAXPY Add a multiple of a matrix to another matrix

LAZRO Initialize a rectangular matrix (usually to zero)

62

Appendix C: Operation Counts for the BLAS and LAPAC

In this appendix we reproduce in tabular form the formulas we have used to compute

operation counts for the BLAS and LAPACK routines. In single precision, the functions

SOPBL2, SOPBL3, SOPAUX, and SOPLA return the operation counts for the Level 2

BLAS, Level 3 BLAS, LAPACK auxiliary routines, and LAPACK routines, respectively.

All four functions are found in the directory LAPACK/TIMING/LIN in the Unix version and

in SCINTSTF in the non-Unix version.

In the tables below, we give operation counts for the single precision real dense and

banded routines (the counts for the symmetric packed routines are the same as for the dense

routines). Separate counts are given for multiplies (including divisions) and additions, and

the total is the sum of these expressions. For the complex analogues of these routines, each

multiplication would count as 6 operations and each addition as 2 operations, so the total

would be di�erent. For the double precision routines, we use the same operation counts as

for the single precision real or complex routines.

Operation Counts for the Level 2 BLAS

The four parameters used in counting operations for the Level 2 BLAS are the matrix

dimensions m and n and the upper and lower bandwidths k

u

and k

l

for the band routines

(k if symmetric or triangular). An exact count also depends slightly on the values of the

scaling factors � and �, since some common special cases (such as � = 1 and � = 0) can

be treated separately.

The count for SGBMV from the Level 2 BLAS is as follows:

SGBMV multiplications: mn � (m� k

l

� 1)(m� k

l

)=2� (n� k

u

� 1)(n� k

u

)=2

additions: mn � (m� k

l

� 1)(m� k

l

)=2� (n� k

u

� 1)(n� k

u

)=2

total
ops: 2mn� (m� k

l

� 1)(m� k

l

)� (n� k

u

� 1)(n� k

u

)

plus m multiplies if � 6= �1 and another m multiplies if � 6= �1 or 0. The other Level 2

BLAS operation counts are shown in Table 6.

Operation Counts for the Level 3 BLAS

Three parameters are used to count operations for the Level 3 BLAS: the matrix di-

mensions m, n, and k. In some cases we also must know whether the matrix is multiplied

on the left or right. An exact count depends slightly on the values of the scaling factors �

and �, but in Table 7 we assume these parameters are always �1 or 0, since that is how

they are used in the LAPACK routines.

Operation Counts for the LAPAC outines

The parameters used in counting operations for the LAPACK routines are the matrix

dimensions m and n, the upper and lower bandwidths k

u

and k

l

for the band routines (k if

symmetric or triangular), NRHS, the number of right hand sides in the solution phase, and

q, an integer o�set for storing the Householder vectors in SORGEN and SORMUL.

63

Level 2 BLAS multiplications additions total
ops

SGEMV

1,2

mn mn 2mn

SSYMV

3,4

n

2

n

2

2n

2

SSBMV

3,4

n(2k + 1)� k(k + 1) n(2k+ 1)� k(k + 1) n(4k + 2)� 2k(k+ 1)

STRMV

3,4,5

n(n+ 1)=2 (n� 1)n=2 n

2

STBMV

3,4,5

n(k + 1)� k(k + 1)=2 nk � k(k + 1)=2 n(2k + 1)� k(k + 1)

STRSV

5

n(n+ 1)=2 (n� 1)n=2 n

2

STBSV

5

n(k + 1)� k(k + 1)=2 nk � k(k + 1)=2 n(2k + 1)� k(k + 1)

SGER

1

mn mn 2mn

SSYR

3

n(n+ 1)=2 n(n+ 1)=2 n(n + 1)

SSYR2

3

n(n+ 1) n

2

2n

2

+ n

1 { Plus m multiplies if � 6= �1

2 { Plus m multiplies if � 6= �1 or 0

3 { Plus n multiplies if � 6= �1

4 { Plus n multiplies if � 6= �1 or 0

5 { Less n multiplies if matrix is unit triangular

Table 6: Operation counts for the Level 2 BLAS

Level 3 BLAS
multiplications additions total
ops

SGEMM
mkn mkn 2mkn

SSYMM (SIDE = 'L')
m

2

n m

2

n 2m

2

n

SSYMM (SIDE = 'R')
mn

2

mn

2

2mn

2

SSYRK
kn(n+ 1)=2 kn(n+ 1)=2 kn(n+ 1)

SSYR2K
kn

2

kn

2

+ n 2kn

2

+ n

STRMM (SIDE = 'L')
nm(m+ 1)=2 nm(m� 1)=2 nm

2

STRMM (SIDE = 'R')
mn(n+ 1)=2 mn(n� 1)=2 mn

2

STRSM (SIDE = 'L')
nm(m+ 1)=2 nm(m� 1)=2 nm

2

STRSM (SIDE = 'R')
mn(n+ 1)=2 mn(n� 1)=2 mn

2

Table 7: Operation counts for the Level 3 BLAS

64

LAPACK routines:

SGETRF multiplications: 1=2mn

2

� 1=6n

3

+ 1=2mn� 1=2n

2

+ 2=3n

additions: 1=2mn

2

� 1=6n

3

� 1=2mn+ 1=6n

total
ops: mn

2

� 1=3n

3

� 1=2n

2

+ 5=6n

SGETRI multiplications: 2=3n

3

+ 1=2n

2

+ 5=6n

additions: 2=3n

3

� 3=2n

2

+ 5=6n

total
ops: 4=3n

3

� n

2

+ 5=3n

SGETRS multiplications: NRHS [n

2

]

additions: NRHS [n

2

� n]

total
ops: NRHS [2n

2

� n]

SGECON multiplications: 8n

2

+ 6n+ 10

additions: 8n

2

� 6

total
ops: 16n

2

+ 6n + 4

SPOTRF multiplications: 1=6n

3

+ 1=2n

2

+ 1=3n

additions: 1=6n

3

� 1=6n

total
ops: 1=3n

3

+ 1=2n

2

+ 1=6n

SPOTRI multiplications: 1=3n

3

+ n

2

+ 2=3n

additions: 1=3n

3

� 1=2n

2

+ 1=6n

total
ops: 2=3n

3

+ 1=2n

2

+ 5=6n

SPOTRS multiplications: NRHS [n

2

+ n]

additions: NRHS [n

2

� n]

total
ops: NRHS [2n

2

]

SPOCON multiplications: 8n

2

+ 14n+ 10

additions: 8n

2

� 6

total
ops: 16n

2

+ 14n+ 4

SPBTRF multiplications: n(1=2k

2

+ 3=2k+ 1)� 1=3k

3

� k

2

� 2=3k

additions: n(1=2k

2

+ 1=2k)� 1=3k

3

� 1=2k

2

� 1=6k

total
ops: n(k

2

+ 2k + 1)� 2=3k

3

� 3=2k

2

� 5=6k

SPBTRS multiplications: NRHS [2nk + 2n� k

2

� k]

additions: NRHS [2nk � k

2

� k]

total
ops: NRHS [4nk + 2n� 2k

2

� 2k]

SPBCON multiplications: 8nk + 11n� 4k

2

� 4k + 5

additions: 8nk + 4n� 4k

2

� 4k � 3

total
ops: 16nk + 15n� 8k

2

� 8k + 2

65

SSYTRF multiplications: 1=6n

3

+ 1=2n

2

+ 10=3n

additions: 1=6n

3

� 1=6n

total
ops: 1=3n

3

+ 1=2n

2

+ 19=6n

SSYTRI multiplications: 1=3n

3

+ 2=3n

additions: 1=3n

3

� 1=3n

total
ops: 2=3n

3

+ 1=3n

SSYTRS multiplications: NRHS [n

2

+ n]

additions: NRHS [n

2

� n]

total
ops: NRHS [2n

2

]

SSYCON multiplications: 8n

2

+ 6n+ 10

additions: 8n

2

� 6

total
ops: 16n

2

+ 6n + 4

SGEQRF multiplications: mn

2

� 1=3n

3

+mn+ 1=2n

2

+ 23=6n

additions: mn

2

� 1=3n

3

+ 1=2n

2

+ 5=6n

total
ops: 2mn

2

� 2=3n

3

+mn + n

2

+ 14=3n

SGEQRS multiplications: NRHS [2mn� 1=2n

2

+ 5=2n]

additions: NRHS [2mn� 1=2n

2

+ 1=2n]

total
ops: NRHS [4mn� n

2

+ 3n]

SORMUL (SIDE = 'L')

multiplications: 2nmk � 2nqk + 2nk � nk

2

additions: 2nmk � 2nqk + nk � nk

2

total
ops: 4nmk � 4nqk + 3nk � 2nk

2

SORMUL (SIDE = 'R')

multiplications: 2nmk � 2mqk +mk + 1=2k+ nk � qk � 1=2k

2

�mk

2

additions: 2nmk � 2mqk +mk �mk

2

total
ops: 4nmk � 4mqk + 2mk + 1=2k + nk � qk � 1=2k

2

� 2mk

2

STRTRI multiplications: 1=6n

3

+ 1=2n

2

+ 1=3n

additions: 1=6n

3

� 1=2n

2

+ 1=3n

total
ops: 1=3n

3

+ 2=3n

SGEHRD multiplications: 5=3n

3

+ 1=2n

2

� 7=6n� 13

additions: 5=3n

3

� n

2

� 2=3n� 8

total
ops: 10=3n

3

� 1=2n

2

� 11=6n� 21

SSYTRD multiplications: 2=3n

3

+ 5=2n

2

� 1=6n� 15

additions: 2=3n

3

+ n

2

� 8=3n� 4

total
ops: 4=3n

3

+ 3n

2

� 17=6n� 19

66

The operation counts for the LAPACK routines not listed here are not computed by

a formula. In particular, the operation counts for the eigenvalue routines are problem-

dependent and are computed during execution of the timing program.

67

Appendix D: Caveats

In this appendix we list the machine-speci�c di�culties we have encountered in our own

experience with LAPACK. We assume the user has installed the machine-speci�c routines

correctly and that the Level 2 and 3 BLAS test programs have run successfully, so we do

not list any warnings associated with those routines.

IBM compilers do not recognize DBLE as a generic function as used in LAPACK.

The software tools we use to convert from single precision to double precision convert

REAL(C) and IMAG(C), where C is COMPLEX, to DBLE(Z) and DIMAG(Z), where Z

is COMPLEX*16. IBM compilers use DREAL(Z) and DIMAG(Z) to take the real and

imaginary parts of a double complex number. Some e�ort has been made to avoid this

situation altogether, but in some subroutines IBM users still may have to change DBLE to

DREAL manually when the argument of DBLE is COMPLEX*16.

IBM compilers do not permit the data type COMPLEX*16 in a FUNCTION subpro-

gram de�nition. The data type on the �rst line of the function subprogram must be changed

from COMPLEX*16 to DOUBLE COMPLEX for the following functions:

ZBEG from the Level 2 BLAS test program

ZBEG from the Level 3 BLAS test program

ZLARND from the LAPACK library

ZLATM2 from the test matrix generator library

ZLATM3 from the test matrix generator library

The functions ZDOTC and ZDOTU from the Level 1 BLAS are already declared DOUBLE

COMPLEX.

We have not included test programs for the Level 1 BLAS. Users should therefore be-

ware of a common problem in machine-speci�c implementations of xNRM2, the function

to compute the 2-norm of a vector. The Fortran version of xNRM2 avoids under
ow or

over
ow by scaling intermediate results, but some library versions of xNRM2 are not so

careful about scaling. If xNRM2 is implemented without scaling intermediate results, some

of the LAPACK test ratios may be unusually high, or a
oating point exception may occur

in the problems scaled near under
ow or over
ow. The solution to these problems is to link

the Fortran version of xNRM2 with the test program.

Some of our test matrices are scaled near over
ow or under
ow, but on the Crays, prob-

lems with the arithmetic near over
ow and under
ow forced us to scale by only the square

root of over
ow and under
ow. The LAPACK auxiliary routine SLABAD (or DLABAD)

is called to take the square root of under
ow and over
ow in cases where it could cause

di�culties. We assume we are on a Cray if log

10

(over
ow) is greater than 2000 and take

the square root of under
ow and over
ow in this case. The test in SLABAD is as follows:

IF(LOG10(LARGE).GT.2000.) THEN

SMALL = SQRT(SMALL)

LARGE = SQRT(LARGE)

END IF

Users of other machines with similar restrictions on the e�ective range of usable numbers

may have to modify this test so that the square roots are done on their machine as well.

68

In the Unix version, SLABAD is found in LAPACK/SRC and in the non-Unix version it is in

SCLAUXF.

In the eigensystem timing program, calls are made to the LINPACK and EISPACK

equivalents of the LAPACK routines to allow a direct comparison of performance measures.

In some cases we have increased the minimum number of iterations in the LINPACK and

EISPACK routines to allow them to converge for our test problems, but even this may not

be enough. One goal of the LAPACK project is to improve the convergence properties of

these routines, so error messages in the output �le indicating that a LINPACK or EISPACK

routine did not converge should not be regarded with alarm.

In the eigensystem timing program, we have equivalenced some work arrays and then

passed them to a subroutine, where both arrays are modi�ed. This is a violation of the

Fortran 77 standard, which says \if a subprogram reference causes a dummy argument

in the referenced subprogram to become associated with another dummy argument in the

referenced subprogram, neither dummy argument may become de�ned during execution of

the subprogram."

1

If this causes any di�culties, the equivalence can be commented out

as explained in the comments for the main eigensystem timing programs.

1

ANSI X3.9-1978, sec. 15.9.3.6

69

Appendix E: Estimated Time

In this appendix we list the execution times (in seconds) for the test and timing runs on a

Sun SPARCstation and on one processor of a Cray YMP. The small data sets were used for

the SPARCstation and the large data sets for the Cray YMP. In both cases, the Fortran

BLAS were used. These times (particularly for the Cray) were obtained on a loaded machine

and should be considered rough approximations.

Test/timing run
Data set S C D Z

Linear eqn testing
86 657 121 594

Eigensystem testing
NEP 58 421 96 423

SEP 7 48 12 46

SVD 6 45 10 43

Linear eqn timing
Dense 101 1228 159 1011

Banded 32 318 50 265

BLAS timing
Set 1 120 2126 184 1755

Set 2 16 298 23 254

Set 3 14 279 21 246

Eigensystem timing
NEP 782 7718 1574 7930

SEP 36 631 66 675

SVD 189 2253 322 2003

Table 8: Sun SPARCstation execution times (in seconds)

Test/timing run
Data set S C

Linear eqn testing
112 197

Eigensystem testing
NEP 137 236

SEP 7 12

SVD 5 8

Linear eqn timing
Dense 569 1852

Banded 65 160

BLAS timing
Set 1 477 3540

Set 2 106 583

Set 3 68 532

Eigensystem timing
NEP 4424 5775

SEP 142 693

SVD 555 890

Table 9: Cray YMP { 1 processor, execution times (in seconds)

70

References

[1] E. Anderson and J. Dongarra, LAPACK Working Note 16: Results from the Initial

Release of LAPACK, University of Tennessee, CS-89-89, November 1989.

[2] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and

D. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne National

Laboratory, ANL-88-38, September 1988.

[3] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, A Set of Level 3 Basic Linear

Algebra Subprograms, to appear in ACM Trans. Math. Soft., March 1990.

[4] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, A Set of Level 3 Basic Linear

Algebra Subprograms: Model Implementation and Test Programs, to appear in ACM

Trans. Math. Soft., March 1990.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran

Basic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.

[6] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran

Basic Linear Algebra Subprograms: Model Implementation and Test Programs," ACM

Trans. Math. Soft., 14, 1:18-32, March 1988.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear Algebra

Subprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September

1979.

71

