Implementing Linear Algebra Routines
on Multi-Core Processors
with Pipelining and a Look Ahead

LAPACK Working Note 178

Jakub Kurzak®, Jack Dongarra'?

! Department of Computer Science,

University Tennessee,
Knozuville, Tennessee 37996

2Computer Science and Mathematics Division,
Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 37831

September 18, 2006

Abstract

Linear algebra algorithms commonly encapsulate parallelism in Basic

Linear Algebra Subroutines (BLAS). This solution relies on the fork-join

model of parallel execution, which may result in suboptimal performance
on current and future generations of multi-core processors. To overcome
the shortcomings of this approach a pipelined model of parallel execu-
tion is presented, and the idea of the look ahead is utilized in order to
suppress the negative effects of sequential formulation of the algorithms.
Application to one-sided matrix factorizations, LU, Cholesky and QR, is
described. Shared memory implementation using POSIX threads is pre-

sented.

Keywords

linear algebra, multi-core processors, pipelining, look ahead



1 Introduction

The standard approach to parallelization of numerical linear algebra algorithms
for shared memory systems, utilized by the LAPACK library [1, 2], is to rely
on parallel implementation of BLAS [3]. It is a proven method to extract par-
allelism from Level 3 BLAS routines. However, as the number of processors
or cores grow, practice shows that parallelization of Level 1 and 2 routines is
unlikely to yield speedups and can even result in slowdowns. By the same token
Level 1 and 2 BLAS portions of the algorithms effectively decrease the benefits
of parallelization and limit achievable performance. A more flexible approach is
required to address new generations of multi-core processors, which are expected
to have tens, and possibly hundreds, of cores in near future.

The technique of the look ahead can be used to remedy the problem by
overlapping the execution of less efficient operations with the more efficient
ones. Also, the use of different levels of the look ahead is investigated and
the idea of a dynamic look ahead is introduced, where the algorithm execution
path is decided at runtime. The following section describes briefly three one-
sided matrix factorizations, LU, Cholesky and QR, more precisely their block
versions implemented in the LAPACK library. Then the technique of the look
ahead is introduced. Static and dynamic variants are discussed. Presentation
of performance results and their discussion follows.

2 Factorizations

The LU factorization with partial row pivoting of an m x n real matrix A has
the form
A= PLU,

where L is an m X n real unit lower triangular matrix, U is an n X n real upper
triangular matrix and P is a permutation matrix. The description of the block
algorithm can be found in [4, 5]. In LAPACK the double precision algorithm
is implemented by the DGETRF routine. A single step of the algorithm is im-
plemented by a sequence of calls to the following LAPACK and BLAS routines:
DGETF2, DLASWP, DTRSM, DGEMM, where DGETF2 factorizes a block
of columuns of the matrix (the panel) and DLASWP, DTRSM, DGEMM apply
appropriate transformations to the submatrix to the right from the panel.

The Cholesky factorization of an nxn real symmetric positive definite matrix
A has the form

A=LL"T,

where L is an n X n real lower triangular matrix with positive diagonal el-
ements. The formulation of the block algorithm is analogous to the one for
LU factorization. In LAPACK the double precision algorithm is implemented
by the DPOTRF routine. A single step of the algorithm is implemented by
a sequence of calls to the following LAPACK and BLAS routines: DSYRK,
DPOTF2, DGEMM, DTRSM. Here, for simplicity, only the case of lower tri-
angular coefficient matrix is considered. In this case the routines DSYRK and



DPOTF2 factorize a block of rows of the matrix (the panel) and the DGEMM
and DTRSM apply appropriate transformations to the submatrix below the
panel.

The QR factorization of an m x n real matrix A has the form

A=QR,

where Q is an m X m real orthogonal matrix and R is an m X n real upper
triangular matrix. The traditional algorithm for QR factorization applies a
series of elementary Householder matrices of the general form

H=1-7v",

where v is a column vector and 7 is a scalar. In the block form of the algorithm
a product of nb elementary Householder matrices is represented in the form|6, 7]

H\Hy...Hyp=1-VTVT,

where V is an n X n real matrix those columns are the individual vectors v
and T is an nb X nb real upper triangular matrix. For the derivation of the
blocked algorithm the reader is referred to the original papers mentioned above.
In LAPACK the double precision algorithm is implemented by the DGEQRF
routine. A single step of the algorithm is implemented by a sequence of calls
to the following LAPACK routines: DGEQR2, DLARFT, DLARFB, where
DGEQR2 and DLARFT operate on a block of columns of the matrix (the panel)
and DLARFB operates on the submatrix to the right from the panel.

3 Parallelization

Block formulations of the three factorizations discussed, as well as many other
one-sided factorizations, follow a common scheme. In a single step of each
algorithm, first operations are applied to a single block of rows or columns,
referred to as the panel, then the result is applied to the remaining portion of the
matrix. The panel operations are usually implemented with Level 1 and 2 BLAS,
and, in most cases, achieve the best performance when executed on a single
processor. By the same token, it is most straightforward to use one dimensional
partitioning of work for parallel implementation, by cyclic assignment of blocks
of rows or blocks of columns to processors, depending on the orientation of the
panel; this is the approach used here.

It is a well known fact that matrix factorizations have left-looking and right-
looking formulations [4]. It has even been observed that transition between
the two can be done by automatic code transformations [8], although more
powerful methods than simple dependency analysis is necessary. Another well
known fact is that the technique of the look ahead can be used to significantly
improve the performance of matrix factorizations, a method based on performing
panel factorizations in parallel with the update to the remaining submatrix from
previous step of the algorithm [9]. Also, the look ahead can be of arbitrary depth



and an example of software utilizing this idea is the high performance LINPACK
benchmark (HPL) [10, 11]. The look ahead is nothing else, but altering the order
of operations in the factorization. A great number of permutations are legal, as
long as algorithmic dependencies are not violated (Figure 1). It can be observed
that the right-looking and left-looking formulation of a matrix factorization are
on two opposite ends of a wide spectrum of possible execution paths, with the
look ahead providing a transition between them. If the straight right-looking
formulation is regarded as one with the look ahead of zero, then the left-looking
formulation is equivalent to the right looking formulation with the maximum
possible look ahead for a given problem.

Right - Looking Look Ahead = 1 Left - Looking

PANEL (1:4,1) PANEL (1:4,1) PANEL (1:4,1)
TRAIL (1:4,2) TRAIL (1:4,2) TRAIL (1:4,2)
TRAIL (1:4,3) ) )
TRAIL (1:4,4) PANEL (2:4,2) PANEL (2:4,2)

PANEL (2:4,2) TRAIL (1:4,3) TRAIL (1:4,3)

TRAIL (1:4,4)
TRAIL (2:4,3) TRAIL (2:4,3)

TRAIL (2:4,3))
TRAIL (2:4,4)
PANEL (3:4,3)

PANEL (3:4,3)

U

TRAIL (2:4,4)
TRAIL (3:4,4)

PANEL (3:4,3)
Q TRAIL (3:4,4))

PANEL (4:4 4)

U

PANEL (4:4,4)

TRAIL (1:4,4)
TRAIL (2:4,4)

TRAIL (3:4,4))

PANEL (4:4 4)

PANEL (1:4,1) PANEL (1:4,1)
TRAIL (1:4,2) TRAIL (1:4,2)
TRAIL (1:4,3)

TRAIL (1:4,4) PANEL (2:4,2)

PANEL (2:4,2) TRAIL (1:4,3)

TRAIL (1:4,4)
TRAIL (2:4,3) TRAIL (2:4,3)
TRAIL (2:4,4)
PANEL (3:4,3)

PANEL (3:4,3)

TRAIL (2:4,4)
TRAIL (3:4,4) TRAIL (3:4,4)
PANEL (4:4 ,4) PANEL (4:4,4)

PANEL (1:4,1)

TRAIL (1:4,2)

PANEL (2:4,2)

TRAIL (1:4,3)
TRAIL (2:4,3)

PANEL (3:4,3)

TRAIL (1:4,4)
TRAIL (2:4,4)
TRAIL (3:4,4)

PANEL (4:4,4)

Figure 1: Different variants of block LU factorization with 1D block cyclic work
partitioning for a problem with the coefficient matrix of size 4 by 4 blocks. The
top part shows dependencies, the bottom part illustrates the rearrangement of
execution stages.



4 Arbitrary (Static) Look Ahead

Classic implementation of a one-sided matrix factorization follows the execution
pattern where the panel factorizations and the updates to the submatrix to the
right from the panel are sequentially ordered. Panel factorization is performed
by a single processor, while other processors are idle. Alternatively, when the
first block of columns (block of rows) from step N of the factorization has been
updated, one processor can perform panel factorization from step N + 1 on that
block, when the remaining processors continue applying the update from step
N, which decreases the idle time.

An arbitrary number of panels can be factorized ahead of updates to the
submatrix on the right. Panels can be factorized up to an arbitrary depth. When
this depth is reached an update has to be finished before another panel can be
factorized. The order of execution of operations is determined by the depth of
the look ahead and static throughout the execution of the factorization. Figure
2 shows the simplified code implementing arbitrary (static) look ahead. At each
step the cycle is followed by checking dependencies and stalling if necessary,
executing the operation, updating the progress, and making a transition to a
next operation. The transition is always known a priori based on the current
stage and the depth of the look ahead, since the static nature of the algorithm.

while (1) {
switch (task.type) {
case PANEL:
check_dependencies();
dgetf2Q; ¢ dsyrkO; i dgeqr2Q;

dpotf2Q); g dlarftQ;

update_progfess():
make_transition();
break;

case COLUMN:
check_dependencies();

dlaswpQ); f dgemm() ; { dlarfb(Q;
dtrsmQ); % dtrsmQ; ¢
dgemm(Q) ;

update_progressQ;
make_transition(Q);
break;

case END:
check_dependencies();

for O :
dlaswp(Q);

return;

Figure 2: Simplified code for one-sided factorizations with an arbitrary (static)
look ahead.



The deeper the depth, the less the processors stall at the end of the factor-
ization. This is because the necessary panel is readily available, when the time
comes to apply the update. At the same time, with deeper looks ahead, stalls
occur at the beginning of execution, when processors wait for a block of columns
(of rows) to be updated in order to apply a forerunning panel factorization.

5 Dynamic Look Ahead

The idea of the dynamic look ahead comes from the observation that the benefits
of a deep look ahead are obliterated by the stalls, or bubbles, at the beginning of
the factorization. The basic idea behind the dynamic look ahead is to implement
the left-looking variant of the algorithm, where the panel factorizations are per-
formed as soon as possible, with the modification that if the panel factorization
introduces a stall, then an update to a block of columns (or rows) of the right
submatrix is performed instead. The updating continues only until next panel
factorization is possible. By the same token, dynamic look ahead is implemented
by dynamic scheduling of work at runtime. Figure 3 shows the simplified code
implementing the dynamic look ahead. Here the steps of checking dependencies
and making a transition are merged into the step of fetching next task, where the
choice of transition is made dynamically at run-time depending on the progress
of the execution.

while(1) {
fetch_taskQ;

switch(task.type) {

case PANEL: . .
dgetf2Q); dsyrk(Q); dgeqr2Q;
' dpotf2Q); I dlarftQ;
update_progress(Q);
break;
case COLUMN :
dlaswpQ; ;" dgemm(Q) ; dlarfb(Q;
dtrsm(Q); % dtrsmQ; :
dgemm() ;
update_progress(Q);
break;
case END:
for O :
dlaswpQ;
return; '

}
}

Figure 3: Simplified code for one-sided factorizations with a dynamic look ahead.



6 Results

Results presented here were collected on a shared memory system with two 1.8
GHz dual-core AMD Opteron” 265 processors. GOTO BLAS [12] version 1.05
was used, the most recent one at the time of writing this paper. Block size of
64 was used in all cases.

Figure 4 shows Gantt chart of execution of LU factorization using different
approaches ordered from top to bottom according to their relative performance.
On top is the right-looking version, where all but one processor are stalled by
the panel factorization. Below is the left-looking version, which can also be con-
sidered the right-looking version with maximum possible amount of look ahead.
Here stalls are eliminated at the end of factorization, but multiple bubbles are
introduced at the beginning. Next are right-looking factorizations with the look
ahead of depth one and two. Lastly, at the bottom is the factorization with the
dynamic look ahead.

Figure 4: Gantt chart for illustration of execution of different variants of one-
sided factorizations. From top to bottom: right-looking (look ahead of depth
zero), left-looking (right-looking with maximum look ahead), right-looking with
look ahead of depth one, right-looking with look ahead of depth two, dynamic
look ahead.

Figure 5, 6 and 7 show performance results for LU factorization, Cholesky
factorization and QR factorization respectively.



2

2

1

Gflop/s/core

1

20004

Gflop/s/core

Gflop/s/core

500

0004

5001

000+

500

2000 4000
Problem Size

dynamic lookahead
2000+
[
s
[
o
<
4
Q
2
= 4
5 1500
T 1000 T T T T T T
6000 400 650 900 1150 1400 1650 1900

Problem Size

Figure 5: Performance of different variants of LU factorization.

1500+

10004

500+

lookahead

2000 4000
Problem Size

dynamic lookahead
--no lookahead
BLAS threads
o 17504
s
[
o
<
4
Q
2
=
O
. 1250 , . . :
6000 650 900 1150 1400 1650 1900
Problem Size

Figure 6: Performance of different variants of Cholesky factorization.

25004

20004

15004

1000+

500+

lookahead dynamic lookahead
o no lookahead
2000+
—m———— “SLeTeT [
e
BLAS threads 8
L
A
<2
o
2
=
(B 15004
T T T 0 T T T T T T
2000 4000 6000 400 650 900 1150 1400 1650 1900
Problem Size Problem Size

Figure 7: Performance

of different variants of QR factorization.



The code with 1D partitioning suffers from two main performance disadvan-
tages. First problem is that, on most processors, Level 3 BLAS routines like
DGEMM do not achieve high performance unless called on a relatively big ma-
trix. In the case of 1D partitioning with arbitrary or dynamic look ahead, those
operations are always performed on relatively narrow slices of width equal to
the block size. Fortunately it was not a major problem on the system used here,
but the issue deserves a closer look on a wider range of hardware platforms. Sec-
ond, 1D partitioning introduces serious load imbalance, which is most clearly
visible in the ”tail” at the end of execution of the left-looking algorithm and the
dynamic look ahead algorithm. The disadvantages of 1D partitioning without
the look ahead show clearly for LU factorization, where the BLAS-parallel code
performs much better, especially for larger matrices.

The significant performance advantage of the code with 1D partitioning
comes from replacing the fork-join model of execution of threaded BLAS. All
BLAS operations applying the update to the submatrix on the right from the
panel can be performed by a single processor without synchronization with the
others, whereas synchronization (forking and joining) between each BLAS call
is required if BLAS-parallel model is used. The advantages of 1D partition-
ing without the look ahead are most visible for QR factorization, where the
BLAS-parallel code performs much worse, than the code with 1D partitioning.

At the same, time the introduction of the look ahead brings excellent perfor-
mance gain compared to either the code without the look ahead, as well as the
code with parallelism in the BLAS. Also, it can be concluded that the depth
of the look ahead is not performance critical, at least on shared memory sys-
tems with small numbers of cores. The impact of the depth of the look ahead
is expected to get bigger with growing number of cores. The looka head is also
expected to play an important role on distributed memory systems, where it
will provide means for hiding the communication latency.

Although at this number of cores the performance of dynamic look ahead can
be matched by static look ahead, the dynamic look ahead sets the upper bound
of the performance gains achievable from the look ahead, and at the same time,
eliminates the guesswork of setting the optimal look ahead depth.

7 Conclusions

The application of the technique of the look ahead was discussed in two algo-
rithmic variants, with arbitrary (static) look ahead, where the algorithmic path
is predetermined, and with dynamic look ahead, where the path is decided at
runtime. The results collected on a modern multi-core system showed strong
advantages of the idea of the look ahead in general. At the same time, it was
shown that dynamic look ahead sets the upper bound on achievable performance
gains.



8

Future Plans

The most important work envisioned in the future is application of the ideas
presented here to the case of 2D partitioning, which will become necessary for
load balancing with rapidly growing number of cores in multi-core processors.

9

Acknowledgements

The authors would like to thank Dr. Julien Langou for many interesting con-
versations and helpful comments about the work presented here.

References

1]

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. STAM, 1992.

V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling,
M. Marinova, J. Wasniewski, and P. Yalamov. LAPACKY95 Users’ Guide.
STAM, 1992.

Basic Linear Algebra Technical Forum. Basic Linear Algebra Technical
Forum Standard, August 2001.

J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Nu-
merical Linear Algebra for High-Performance Computers. STAM, 1998.

J. W. Demmel. Applied Numerical Linear Algebra. STAM, 1997.

C. Bischof and C. van Loan. The WY representation for products of house-
holder matrices. J. Sci. Stat. Comput., 8:2-13, 1987.

R. Schreiber and C. van Loan. A storage-efficient WY representation for
products of householder transformations. J. Sci. Stat. Comput., 10:53-57,
1991.

V. Menon and K. Pingali. Look left, look right, look left again: An appli-
cation of fractal symbolic analysis to linear algebra code restructuring. Int.
J. Parallel Comput., 32(6):501-523, 2004.

P. E. Strazdins. A comparison of lookahead and algorithmic blocking tech-
niques for parallel matrix factorization. Int. J. Parallel Distrib. Systems
Networks, 4(1):26-35, 2001.

A. Petitet, R. C. Whaley, J. J. Dongarra, and A. Cleary. HPL - A portable
implementation of the high-performance linpack benchmark for distributed-
memory computers. http://www.netlib.org/benchmark/hpl/, 2006.

10



[11] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:
past, present and future. Concurrency Computat.: Pract. Ezper., 15:803—
820, 2003.

[12] K. Goto and R. van de Geijn. On reducing TLB misses in matrix multi-
plication. Technical Report TR-02-55, Department of Computer Sciences,
University of Texas at Austin, 2002.

11



