
BLOCK ALGORITHMS FOR REORDERING
STANDARD AND GENERALIZED SCHUR FORMS

LAPACK WORKING NOTE 171

DANIEL KRESSNER∗

Abstract. Block algorithms for reordering a selected set of eigenvalues in a standard or gen-
eralized Schur form are proposed. Efficiency is achieved by delaying orthogonal transformations
and (optionally) making use of level 3 BLAS operations. Numerical experiments demonstrate that
existing algorithms, as currently implemented in LAPACK, are outperformed by up to a factor of
four.

Key words. Schur form, reordering, invariant subspace, deflating subspace.

AMS subject classifications. 65F15, 65Y20.

1. Introduction. Applying the QR algorithm to a real square matrix A yields
a decomposition of the form

A = QTQT ,(1.1)

where Q is orthogonal and T is in real Schur form (also called Murnaghan/Wintner
form [19]), i.e.,

T =













T11 T12 · · · T1m

0 T22
. . .

...
...

. . .
. . . Tm−1,m

0 · · · 0 Tmm













,(1.2)

where all diagonal blocks of T are of order one or two. Scalar blocks contain the real
eigenvalues and two-by-two blocks contain the complex conjugate eigenvalue pairs
of A. To compute an orthonormal basis for an invariant subspace X belonging to
k eigenvalues of A, one can reorder the diagonal blocks in T such that the upper
left k × k block of T contains these eigenvalues. Then the first k columns of the
updated transformation matrix Q form a basis for X . The LAPACK [1] routine
DTRSEN provides such a reordering procedure, based on work by Bai and Demmel [2].
In this paper, we will show how to considerably increase the efficiency of DTRSEN

by delaying the application of the involved orthogonal transformations, which in turn
allows the use of level 3 BLAS [10] operations (matrix-matrix multiplications). Similar
ideas have been used to speed up other numerical linear algebra algorithms, such as
the QR algorithm [4, 6, 18] and the QZ algorithm [9, 14]. In contrast to these works,
the orthogonal transformations involved in reordering Schur forms have a much less
regular and also less predictable structure. The newly developed block algorithm takes
care of this irregularity and attains higher efficiency for a wide range of settings, no
matter whether only a few or nearly all of the diagonal blocks of T are to be reordered.

Although we will mainly focus on the computation of invariant subspaces, it
should be emphasized that reordering Schur forms plays an important role in many

∗
kressner@math.hr, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia. This au-

thor has been supported by a DFG Emmy Noether fellowship and in part by the Swedish Foundation
for Strategic Research under the Frame Programme Grant A3 02:128.

1



2 D. KRESSNER

other applications. For example, this technique is used for performing deflations
and restarts in the Jacobi-Davidson algorithm [11, 20] as well as the Krylov-Schur
algorithm [22]. It will be briefly discussed how our block algorithms can be adapted
to such applications.

The rest of this paper is organized as follows. Section 2 briefly summarizes ex-
isting algorithms for reordering Schur forms. In Section 3, the newly developed block
algorithm is described. Section 4 contains numerical experiments, investigating the
performance of the block algorithm. Finally, in Section 5, we show how the obtained
results can be extended to reordering generalized Schur forms.

2. Existing Algorithms. The building block for reordering a given Schur form
is the computation of an orthogonal matrix V so that

V T AV = V T

[

A11 A12

0 A22

]

V =

[

Ã11 Ã12

0 Ã22

]

,
λ(A11) = λ(Ã22),

λ(A22) = λ(Ã11),
(2.1)

where A11, Ã22 ∈ R
n1×n1 , A22, Ã11 ∈ R

n2×n2 and n1, n2 ∈ {1, 2}; λ(·) denotes the set
of all eigenvalues of a matrix. This procedure is commonly called swapping of A11

and A22.
There exist several approaches to perform swapping numerically. Stewart [21] has

described an iterative algorithm using QR iterations with the eigenvalues of A11 as
shifts. Based on earlier work by other authors, Bai and Demmel [2] have developed
and analyzed a direct swapping procedures that relies on the solution of a Sylvester
equation. In [5], an alternative direct approach is proposed, which instead of solving
a Sylvester equation relies on the eigenvectors of A. In the following we focus on the
Sylvester equation approach, which is implemented in LAPACK and also forms the
basis of our implementation. Nevertheless, it is worth pointing out that the newly
developed block algorithms can be used with any swapping procedure.

Assuming that λ(A11)∩ λ(A22) = ∅, the approach described in [2] first computes
the solution of the Sylvester equation

A11X − XA22 = γA12,(2.2)

where γ ∈ (0, 1] is a scaling factor to prevent possible overflow in the solution X. This
yields the following block diagonal decomposition:

[

A11 A12

0 A22

]

=

[

In1
−X

0 γIn2

] [

A11 0
0 A22

] [

In1
X/γ

0 In2
/γ

]

.

By a QR decomposition, an orthogonal matrix V is constructed so that

V T

[

−X
γIn2

]

=

[

R
0

]

, R ∈ R
n2×n2 .

Partition V =
[

V11

V21

V12

V22

]

so that V12 ∈ R
n1×n1 , then V12 is invertible and

V T

[

A11 A12

0 A22

]

V =

[

? R
V T

12 0

] [

A11 0
0 A22

] [

0 V −T
12

R−1 ?

]

=

[

RA22R
−1 ?

0 V T
12A11V

−T
12

]

.



Reordering Schur forms 3

Thus, V produces the desired swapping. In finite-precision arithmetic, the zero (2, 1)
block becomes polluted by roundoff errors. Explicitly setting this block to zero is not
feasible if its entries are significantly larger than the unit roundoff multiplied with the
norm of A. The perturbation analysis given in [2] results in an error bound which
suggests that such an unfortunate situation may occur if the separation, see [12],
between the matrices A11 and A22 is small. In practice, however, this situation is an
extremely rare event, even in the presence of tiny separations. Developing an error
analysis which explains this phenomenon is an open problem.

Algorithm 1 Reordering a real Schur form

Input: A matrix T ∈ R
n×n in real Schur form (1.2) with m diagonal blocks,

an orthogonal matrix Q ∈ R
n×n and a subset of eigenvalues Λs, closed

under complex conjugation.

Output: A matrix T̃ ∈ R
n×n in real Schur form and an orthogonal matrix Q̃ ∈

R
n×n so that T̃ = Q̃T TQ̃. For some integer j, the set Λs is the union

of eigenvalues belonging to the j upper-left-most diagonal blocks of T̃ .
The matrices T and Q are overwritten by T̃ and QQ̃, respectively.

j ← 0
for i← 1, . . . , m do

if λ(Tii) ⊂ Λs then

j ← j + 1, select(j)← i

end if

end for

top← 0
for l← 1, . . . , j do

for i← select(l), select(l)− 1, . . . , top + 1 do

Swap Ti−1,i−1 and Tii by an orthogonal similarity transformation and apply this
transformation to the rest of the columns and rows of T , and the columns of Q.

end for

top← top + 1
end for

Having a swapping procedure on hand, we can reorder a selected set of eigen-
values in a bubble sort fashion to the top left corner of a given real Schur form, see
Algorithm 1. This algorithm is implemented in the LAPACK routine DTRSEN, which
also provides (estimates of) condition numbers for the eigenvalue cluster Λs and the
corresponding invariant subspace. If Λs contains k eigenvalues then Algorithm 1 re-
quires O(kn2) flops. The exact computational cost depends on the distribution of
selected eigenvalues over the block diagonal of T .

3. A Block Algorithm. For large matrices, Algorithm 1 performs poorly on
modern computers with a deep memory hierarchy, ranging from large and slow to small
and fast memory. This is due to the fact that each outer loop of Algorithm 1 performs
only O((select(l)− top)n) flops while moving O((select(l)− top)n) memory, resulting
in an O(1) communication/computation ratio. This ratio can be considerably reduced
by delaying the update of those parts of T that are far off the diagonal.

The basic idea of the resulting block reordering algorithm is best explained by an
example. Let us consider a 16 × 16 upper triangular matrix T having the eigenval-
ues at diagonal positions 2, 6, 12, 13, 15 and 16 selected, marked by the black discs in
Figure 3.1 (a). We activate the eigenvalues in the ev = 4 upper-left-most positions
(2, 6, 12, 13), those correspond to the gray disks in Figure 3.1 (b). The active eigen-



4 D. KRESSNER

(a) (b)

(c) (d)

Fig. 3.1. Illustration of Algorithm 2.

values will be reordered to the top in a window-by-window fashion. The first window
of order w = 6 contains the bottom active eigenvalue in its bottom right corner. This
window is illustrated by the light gray area in Figure 3.1 (b). The eigenvalues at
positions 12 and 13 are reordered to the top of the window, i.e., positions 8 and 9.
The corresponding orthogonal transformations are saved and applied afterwards to
the rest of the matrix, this will be discussed in more detail below. The next 6 × 6
window contains active eigenvalues at positions 6, 8 and 9, see Figure 3.1 (c). Again,
these eigenvalues are reordered to the top of the window. The last window contains
all active eigenvalues, which reach their final positions after having been reordered
within this window. This process is repeated with the next bunch of at most ev dis-
ordered eigenvalues, which in our example are the eigenvalues sitting at positions 15
and 16.

Algorithm 2 contains an extension of the idea to the general setting. To simplify
the presentation, it is assumed that all diagonal blocks of T are scalars, i.e., T has
only real eigenvalues. In order to cover complex conjugate pairs of eigenvalues, the
active window T (ilow : ihi, ilow : ihi) must be slightly adjusted to avoid the window
borders crossing two-by-two blocks of T . Here, the colon notation T (i1 : i2, j1 : j2) is
used to designate the submatrix of T defined by rows i1 through i2 and columns j1
through j2.

3.1. Implementation details. Some remarks concerning the actual implemen-
tation of Algorithm 2 are in order.



Reordering Schur forms 5

Algorithm 2 Reordering a Schur form (block algorithm)

Input and Output: See Algorithm 1. Additional input: block parameters ev

(max #eigenvalues in each window) and w (window size).

iord ← 0 % iord = #number of eigenvalues already in order

while iord < #Λs do

% Find first nev ≤ ev disordered eigenvalues from top.

nev ← 0, ihi ← iord + 1
while nev ≤ ev and ihi ≤ n do

if Tii ∈ Λs then nev ← nev + 1 end if

ihi ← ihi + 1
end while

% Reorder these eigenvalues window-by-window to top.

while ihi > iord + nev do

ilow ← max{iord + 1, ihi − w + 1}, nw ← ihi − ilow + 1
(1) Apply Algorithm 1 to the active window T (ilow : ihi, ilow : ihi) in order to reorder the

k ≤ nev selected eigenvalues that reside in this window to top of window. Let the
corresponding orthogonal transformation matrix be denoted by U .

(2a) Update T (ilow : ihi, ihi + 1 : n)← UT T (ilow : ihi, ihi + 1 : n).
(2b) Update T (1 : ilow − 1, ilow : ihi)← T (1 : ilow − 1, ilow : ihi)U .
(2c) Update Q(1 : n, ilow : ihi)← Q(1 : n, ilow : ihi)U .

ihi ← ilow + k − 1
end while

iord ← iord + nev

end while

Step (1). To maintain data locality, the orthogonal transformations used for
swapping diagonal blocks in the active window T (ilow : ihi, ilow : ihi) are only applied
within this window. The information encoding these transformations (Givens rota-
tions or Householder reflectors of order 3) is stored successively in a one-dimensional
array DTRAF. An upper bound on the length of this array is given by 5(nw − k)k,
provided that k ≤ nw/2.

Step (2a)–(2c). In these three steps, the transformations pipelined in DTRAF are
used to update the rest of T as well as the orthogonal matrix Q. This can be done
in at least two different ways. First, the transformations can be used in their original
factored form, which amounts to applying successively the stored Givens rotations
and Householder reflectors. Rows are updated in stripes of nb columns in order to
maintain locality of the memory reference pattern. (In our experiments, nb was set
to 32.) Second, the transformations can be accumulated into an nw × nw matrix U ,
which is then be applied using calls to the level 3 BLAS routine DGEMM (matrix-matrix
multiplication). Both alternatives are provided in our implementation. The decision
about which one to use is based on the ratio

rflops =
#flops for applying transformations in factored form

#flops for applying transformations in accumulated form
.(3.1)

Note that the value of rflops depends not only on the number of selected eigenvalues
in the active window but also on their distribution over the block diagonal of T .
Matrix-matrix multiplications are used whenever rflops exceeds a certain threshold
rmmult ∈ [0, 1]. The optimal value for rmmult depends very much on the performance
of DGEMM.



6 D. KRESSNER

If all eigenvalues in the active window are real then only 1×1 blocks are swapped.
In this case, the matrix U has the following block structure:

U =

[

U11 U12

U21 U22

]

=





@
@



 ,(3.2)

i.e., the submatrices U12 ∈ R
(nw−k)×(nw−k) and U21 ∈ R

k×k are lower and upper
triangular, respectively. This structure is exploited in our implementation, replacing
the single call to DGEMM by two calls to DGEMM and DTRMM (triangular matrix-matrix
multiplication). If there are pairs of complex conjugate eigenvalues then the off-
diagonal blocks of U have only banded structure, which is more difficult to exploit
using level 3 BLAS operations.

Complex matrices. The purpose of the two-by-two diagonal blocks in the Schur
form (1.2) is to preserve the realness of A. If A is a complex matrix, the corresponding
(complex) Schur form is an upper triangular matrix T , i.e., all diagonal blocks are
one-by-one. This considerably simplifies the implementation of Algorithms 1 and 2,
which both can be extended in a direct manner to complex matrices. Moreover, the
unitary transformation matrix U always has the structure displayed in (3.2).

Extension to other orderings. Some applications, such as the Jacobi-Davidson
algorithm, require all eigenvalues of T to be sorted in a certain, specified order. To
simplify the discussion, let us assume that one wants to sort the eigenvalues in de-
scending magnitude. Algorithm 2 can be effectively applied to achieve this goal.
First, the largest ev eigenvalues are selected and ordered to the upper left part of T ,
using Algorithm 2. Then these ev eigenvalues are sorted in descending magnitude,
by at most ev applications of Algorithm 1 to T (1 : ev, 1 : ev). The off-diagonal part
T (1 : ev, ev+1 : n) and the transformation matrix Q are updated as in Steps (2a)–(2c)
of Algorithm 2. This procedure is repeated with the next largest ev eigenvalues, which
are sorted to T (ev + 1 : 2 × ev, ev + 1 : 2 × ev). Proceeding in this manner, dn/eve
runs of Algorithm 2 yield all eigenvalues in descending magnitude on the diagonal of
the updated matrix T .

4. Numerical Experiments. Algorithm 2 has been implemented in a Fortran
77 routine called BDTRSEN, partly based on slightly modified versions of the LAPACK
routines DTREXC and DLAEXC. The numerical experiments have been executed on a
dual Athlon MP2000+ (1.66 Ghz) with 1 GB memory. The relevant functionality of
the LAPACK library as well as our implementation were compiled with the Portland
Group Inc. Fortran 90/95 compiler 6.0 using the options -Kieee -O3 -Mscalarsse

-Mnoframe -Munroll -Mnontemporal -tp athlonxp -fast and the BLAS imple-
mentation provided by ATLAS [24].

Choice of block parameters. First, several numerical experiments were per-
formed with 1500×1500 random matrices, reduced to real Schur form, having 750 se-
lected eigenvalues randomly distributed over the block diagonal. The purpose of these
experiments was to find good choices for the parameters ev (max #eigenvalues in each
window), w (window size), rmmult (matrix-matrix multiplication threshold), and to
gain insight into the sensitivity of the performance of BDTRSEN with respect to changes
of these parameters. Within a search space covering all possible combinations of
ev ∈ {20, 24, . . . , 120}, w ∈ {2×ev, 5/2×ev, . . . , 4×ev}, rmmult ∈ {0%, 5%, . . . , 100%},
we found ev = 60, w = 2 × ev, rmmult = 30% to be optimal.



Reordering Schur forms 7

20 40 60 80 100 120
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

k

ex
ec

ut
io

n 
tim

e 
in

 s
ec

on
ds

r
mmult

 = 0%
r
mmult

 = 30%
r
mmult

 = 100%

Fig. 4.1. Execution time of BDTRSEN for ev ∈ {20, 24, . . . , 120}, w = 2, and rmmult ∈
{0%, 30%, 100%}

.

Moreover, it was observed that the execution time is not very sensitive to modest
parameter changes. This is demonstrated in Figure 4.1, which shows that the optimal
value of ev resides in a rather flat trough of the performance curve for rmmult = 30%.
The corresponding curve for rmmult = 0% (off-diagonal update is always performed by
matrix-matrix multiplications) is nearly indistinguishably close. This does not comes
as a surprise; with so many eigenvalues to be reordered the ratio rflops defined in (3.1)
rarely falls below 30%. For rmmult = 100% (off-diagonal update is never performed
by matrix-matrix multiplications), the performance is significantly worse. Still, the
obtained optimal execution time of 8.2 seconds is favorable compared with the 20.7
seconds needed by the LAPACK routine DTRSEN.

Comparison with existing LAPACK implementation. To demonstrate the
performance of BDTRSEN for a wider range of settings, we varied the matrix di-
mension n ∈ {500, 1000, 1500} as well as the portion of selected eigenvalues d ∈
{5%, 25%, 50%}. Two different distributions of eigenvalues were considered. In the
“random” distribution, the eigenvalue(s) in each diagonal block of T are selected with
probability d. In the “bottom” distribution, all selected eigenvalues are located in the
dn × dn bottom right submatrix. All block parameters were chosen as determined
above.

Table 4.1, which contains the execution times, shows that BDTRSEN performs sig-
nificantly better than the LAPACK routine DTRSEN; if n is sufficiently large it re-
quires less than 25% of the time needed by DTRSEN. To test the numerical stability of
BDTRSEN, we measured the orthogonality of Q, ‖QT Q − I‖F , as well as the residual
‖QT TQ−T̃‖F /‖T‖F and found all values satisfactorily close to the machine precision.

5. Extension to Generalized Schur Forms. A matrix pair (S, T ) ∈ R
n×n ×

R
n×n is said to be in generalized Schur form if S is in real Schur form while T is

upper triangular. Note that the two-by-two blocks in S now correspond to complex
conjugate pairs of (generalized) eigenvalues of (S, T ), defined as the roots of det(S −
λT ). Reordering generalized Schur forms by an orthogonal similarity transformation



8 D. KRESSNER

Update of T alone Update of T, Q

n sel. distr. DTRSEN BDTRSEN DTRSEN BDTRSEN

500 5% random 0.10 0.06 0.16 0.09
500 5% bottom 0.16 0.07 0.27 0.12
500 25% random 0.30 0.14 0.53 0.23
500 25% bottom 0.59 0.25 1.08 0.35
500 50% random 0.34 0.18 0.63 0.26
500 50% bottom 0.76 0.34 1.35 0.48

1000 5% random 0.95 0.24 1.44 0.44
1000 5% bottom 1.41 0.37 2.25 0.37
1000 25% random 2.90 0.72 4.46 1.20
1000 25% bottom 5.53 1.39 8.78 2.24
1000 50% random 3.60 1.00 5.73 1.61
1000 50% bottom 7.23 1.89 11.45 3.00

1500 5% random 2.94 0.62 4.29 1.14
1500 5% bottom 5.31 1.22 8.16 2.11
1500 25% random 10.78 2.10 16.04 3.64
1500 25% bottom 20.36 4.03 31.15 6.72
1500 50% random 13.53 2.90 20.73 4.78
1500 50% bottom 26.86 5.46 40.91 9.01

Table 4.1

Execution time in seconds for unblocked (DTRSEN) and blocked (BDTRSEN) reordering of an n×n

matrix in Schur form. The figures in columns 4 and 5 exclude the time needed for updating the
orthogonal transformation matrix Q.

(QT SZ, QT TZ) serves a similar purpose as for standard Schur forms; it admits the
computation of so called deflating subspaces [12], which generalize the concept of
invariant subspaces to matrix pairs.

Van Dooren [23], K̊agström [13], as well as K̊agström and Poromaa [15, 16] have
developed reordering algorithms for matrix pairs. In the following, we focus on the
variant described in [16], which is in the spirit of [2] and implemented in LAPACK.
The building block of this algorithm is the computation of orthogonal matrices V and
W such that

V T

([

A11 A12

0 A22

]

,

[

B11 B12

0 B22

])

W =

([

Ã11 Ã12

0 Ã22

]

,

[

B̃11 B̃12

0 B̃22

])

(5.1)

and

λ(A11, B11) = λ(Ã22, B̃22), λ(A22, B22) = λ(Ã11, B̃11),

where A11, B11, Ã22, B̃22 ∈ R
n1×n1 and A22, B22, Ã11, B̃11 ∈ R

n2×n2 with n1, n2 ∈
{1, 2}. Here, λ(·, ·) denotes the set of generalized eigenvalues of a matrix pair.

To achieve (5.1), first the solution of the so called generalized Sylvester equation

A11X − Y A22 = γA12,
B11X − Y B22 = γB12,

(5.2)

is computed, where γ ∈ (0, 1] is a scaling factor to prevent overflow in X and Y .
Under the assumption λ(A11, B11)∩λ(A22, B22) = ∅, this system of matrix equations



Reordering Schur forms 9

Update of (S, T ) (S, T ), Q, Z

n sel. distr. DTGSEN BDTGSEN DTGSEN BDTGSEN

500 5% random 0.40 0.29 0.55 0.42
500 5% bottom 0.69 0.51 0.97 0.75
500 25% random 1.22 0.79 1.72 0.97
500 25% bottom 2.51 1.50 3.58 1.74
500 50% random 1.74 1.18 2.49 1.45
500 50% bottom 3.31 2.01 4.70 2.31

1000 5% random 3.07 1.50 5.10 2.09
1000 5% bottom 4.32 1.78 7.02 2.22
1000 25% random 8.65 4.13 14.09 5.54
1000 25% bottom 16.09 6.77 26.10 8.41
1000 50% random 10.09 4.93 16.27 6.58
1000 50% bottom 21.22 8.90 34.37 11.08

1500 5% random 11.51 3.81 18.49 5.59
1500 5% bottom 16.00 5.30 27.46 7.52
1500 25% random 33.87 10.00 57.08 13.86
1500 25% bottom 60.66 16.70 106.15 22.08
1500 50% random 39.52 12.85 70.42 17.95
1500 50% bottom 79.77 22.29 142.07 29.40

Table 5.1

Execution times in seconds for unblocked (DTGSEN) and blocked (BDTGSEN) reordering of an n×n

matrix pair in generalized Schur form. The figures in columns 4 and 5 exclude the time needed for
updating the orthogonal transformation matrices Q and Z.

yields a unique solution (X, Y ). Then, using QR and RQ decompositions, orthogonal
matrices V and W are constructed such that

V T

[

−Y
γIn2

]

=

[

RY

0

]

,
[

γIn2
X

]

W =
[

0 RX

]

,

with upper triangular matrices RX , RY ∈ R
n2×n2 . Similar to the standard case, it is

simple to show that the matrices V and W produce the desired swapping (5.1).

Along the lines of Algorithm 1, the LAPACK routine DTGSEN applies this swapping
procedure in a bubble sort fashion to reorder a generalized Schur form. A block variant
of DTGSEN can be derived along the lines of Algorithm 2. We have implemented this
block algorithm in a Fortran 77 routine called BDTGSEN and repeated the numerical
experiments from Section 4, see Table 5.1.

Again, the performance improvements are significant albeit a bit less than for
reordering standard Schur forms. For example, the execution time for reordering 750
eigenvalues in a generalized Schur form from bottom to top is divided by a factor of
3.6, while the corresponding factor for performing the same task in a standard Schur
form is given by 4.9. A possible explanation for this effect is that the matrices V and
W from (5.1) are used in accumulated form in DTGSEN, which turns out to be slightly
more efficient than the factored form used in DTRSEN.

6. Conclusions. In this paper, we have described efficient algorithms for re-
ordering eigenvalues in a standard or generalized Schur form. It is demonstrated that
Fortran 77 implementations of these new algorithms outperform the corresponding



10 D. KRESSNER

LAPACK implementations significantly. Parallel versions are currently under inves-
tigation. Combined with other improvements of the QR algorithm [6, 7, 18], these
developments might eventually lead to a competitive alternative to sign function based
methods for the parallel computation of invariant subspaces, see, e.g., [3, 8]. Though,
the pleasant simplicity of sign function based methods is unlikely to be achieved that
way.

Final Note and Acknowledgments. The work presented in this article is
based on preliminary results derived in [17]. The author is grateful to Robert Granat
for several discussions on the work presented in this paper. The computational ex-
periments in Sections 4 and 5 were performed using facilities of the High Performance
Computing Center North (HPC2N) in Ume̊a, Sweden. The developed Fortran codes
are available on request from the author.

REFERENCES

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’
Guide. SIAM, Philadelphia, PA, third edition, 1999.

[2] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra
Appl., 186:73–95, 1993.

[3] Z. Bai and J. W. Demmel. Using the matrix sign function to compute invariant subspaces.
SIAM J. Matrix Anal. Appl., 19(1):205–225, 1998.

[4] C. H. Bischof, B. Lang, and X. Sun. A framework for symmetric band reduction. ACM Trans.
Math. Software, 26(4):581–601, 2000.

[5] A. Bojanczyk and P. Van Dooren. Reordering diagonal blocks in the real Schur form. In M. S.
Moonen, G. H. Golub, and B. L. R. De Moor, editors, Linear algebra for large scale and
real-time applications (Leuven, 1992), volume 232 of NATO Adv. Sci. Inst. Ser. E Appl.
Sci., pages 351–352, Dordrecht, 1993. Kluwer Acad. Publ.

[6] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I. Maintaining well-
focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl., 23(4):929–947, 2002.

[7] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II. Aggressive early
deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[8] R. Byers, C. He, and V. Mehrmann. The matrix sign function method and the computation of
invariant subspaces. SIAM J. Matrix Anal. Appl., 18(3):615–632, 1997.

[9] K. Dackland and B. K̊agström. Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.

[10] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[11] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson style QR and QZ
algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput., 20(1):94–125, 1998.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[13] B. K̊agström. A direct method for reordering eigenvalues in the generalized real Schur form of a
regular matrix pair (A, B). In M. S. Moonen, G. H. Golub, and B. L. R. De Moor, editors,
Linear algebra for large scale and real-time applications (Leuven, 1992), volume 232 of
NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 195–218. Kluwer Acad. Publ., Dordrecht,
1993.

[14] B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm with aggressive early
deflation. Report UMINF-05.11, Department of Computing Science, Ume̊a University,
Ume̊a, Sweden, 2005.

[15] B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigenvalues of a regular
matrix pair (A, B) and condition estimation: theory, algorithms and software. Numer.
Algorithms, 12(3-4):369–407, 1996.

[16] B. K̊agström and P. Poromaa. LAPACK-style algorithms and software for solving the general-
ized Sylvester equation and estimating the separation between regular matrix pairs. ACM
Trans. Math. Software, 22(1):78–103, 1996.

[17] D. Kressner. Numerical Methods and Software for General and Structured Eigenvalue Prob-
lems. PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.



Reordering Schur forms 11

[18] B. Lang. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung.
Habilitationsschrift, 1997.

[19] F. D. Murnaghan and A. Wintner. A canonical form for real matrices under orthogonal trans-
formations. Proc. Natl. Acad. Sci. USA, 17:417–420, 1931.

[20] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

[21] G. W. Stewart. Algorithm 407: HQR3 and EXCHNG: FORTRAN programs for calculating the
eigenvalues of a real upper Hessenberg matrix in a prescribed order. ACM Trans. Math.
Software, 2:275–280, 1976.

[22] G. W. Stewart. A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal.
Appl., 23(3):601–614, 2002.

[23] P. Van Dooren. Algorithm 590: DSUBSP and EXCHQZ: Fortran subroutines for computing
deflating subspaces with specified spectrum. ACM Trans. Math. Softw., 8:376–382, 1982.

[24] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software
and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.


