
LAPACK WORKING NOTE 166:

COMPUTING THE BIDIAGONAL SVD USING

MULTIPLE RELATIVELY ROBUST REPRESENTATIONS

PAUL R. WILLEMS†‡ , BRUNO LANG‡ , AND CHRISTOF VÖMEL§

Technical Report UCB//CSD-05-1376
Computer Science Division

UC Berkeley

Abstract. We describe the design and implementation of a new algorithm for computing the
singular value decomposition of a real bidiagonal matrix. This algorithm uses ideas developed by
Großer and Lang that extend Parlett’s and Dhillon’s MRRR algorithm for the tridiagonal symmetric
eigenproblem. One key feature of our new implementation is, that k singular triplets can be computed
using only O(nk) storage units and floating point operations, where n is the dimension of the matrix.
The algorithm will be made available as routine xBDSCR in the upcoming new release of the LAPACK
library.

Key words. Bidiagonal Singular Value Decomposition, Tridiagonal Symmetric Eigenproblem,
MRRR algorithm, Coupling Relations, LAPACK library

AMS subject classifications. 15A18, 65-04, 65F15

1. Introduction. Starting in the mid 90s, Dhillon and Parlett developed the
algorithm of Multiple Relatively Robust Representations (MRRR) that computes k
numerically orthogonal eigenvectors of a symmetric tridiagonal matrix T ∈ R

n×n with
O(nk) cost [7, 8, 15, 17, 18]. This algorithm has subsequently been extended by Großer
and Lang using so-called coupling relations [10–12] for the stable computation of the
bidiagonal Singular Value Decomposition (bSVD). Due to recent improvements for the
tridiagonal MRRR algorithm (see, e.g. [9, 20, 21]) as well as for the coupling technique
itself, the references [11, 12] no longer describe the most efficient implementation of the
bidiagonal MRRR algorithm. The present paper focuses on these recent developments
and our resulting new implementation, which is to be incorporated as routine xBDSCR
into the next release of the widely used LAPACK library [1].

Throughout this article, we have tried to present the MRRR algorithm and its
adaption to the bSVD via coupling relations in such a way that readers without prior
expertise in this area should be able to follow the arguments and understand the inner
workings of the algorithms in an intuitive way. That is, we will present the topics in
enough detail but without too much theory, giving all needed references to update
the latter on the way, if desired.

First we will recall some basic concepts and fix our notation. For a bidiagonal
matrix B ∈ R

n×n, the problem bSVD consist of finding orthogonal matrices U and
V and a diagonal matrix Σ such that

B = UΣV T . (1.1)

†Central Institute for Applied Mathematics, Research Centre Jülich, Germany
‡Applied Computer Science and Scientific Computing, University of Wuppertal, Germany,

E-mail: {willems,lang}@math.uni-wuppertal.de
§Computer Science Division, University of California, Berkeley, CA 94720, USA. E-mail:

voemel@eecs.berkeley.edu. The work of this author has been supported by a grant from the
National Science Foundation (Cooperative Agreement no. ACI-9619020). Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

1

2 P. R. WILLEMS, B. LANG, AND C. VÖMEL

We will follow the convention that Σ contains the singular values σ1, . . . , σn of B in
descending order. The columns ui of U and vi of V are called the left and right
singular vectors, respectively, of B. For the scope of this paper we will furthermore
assume B to be upper bidiagonal, as it differs from the lower bidiagonal case only
concerning the roles of U and V .

Any algorithm solving the bSVD should guarantee small deviations from orthog-
onality for the matrices U and V

||UT U − I|| = O(nε), ||V T V − I|| = O(nε), (1.2)

along with small residuals

||BV − UΣ|| = O(nε||B||), (1.3)

where ε denotes the machine precision. In addition, for some applications (but not
all) it is required that the computed singular values approximate the exact ones to
high relative accuracy, so our algorithm should be able to deliver this if requested.

The problem bSVD can be reduced to the tridiagonal symmetric eigenproblem
(tSEP) in two ways, using three different matrices. One way works with the normal
equations of B to compute

BTB = V Σ2V T , BBT = UΣ2UT . (1.4)

Alternatively, one can use the Jordan-Wielandt form of B to compute U and V
simultaneously via

[

0 B
BT 0

]

= Q

[

−Σ 0
0 Σ

]

QT , where Q =
1√
2

[

U U
−V V

]

. (1.5)

Note that (1.5) can be permuted to be symmetric tridiagonal, resulting in the so-called
Golub-Kahan matrix.

A very efficient method for tSEP is the MRRR algorithm by Dhillon and Parlett,
which we will describe in Section 2. In practice, the straight-forward use of MRRR to
solve either (1.4) or (1.5) does not necessarily imply that both (1.2) and (1.3) hold.
This has been observed by Großer and Lang [10–12] and we will explain their results in
Section 3. They proposed a remedy to this problem using so-called coupling relations
to adapt the MRRR algorithm for the bSVD.

We have found that in order to get an efficient and robust computer implemen-
tation of this method, the strategy presented in [11, 12] could be improved. This is
our main contribution and described together with the coupling relations in Section
4. Finally, in Section 5, we describe additional important issues relevant for high
performance, and we will compare our implementation with the Divide&Conquer and
QR routines from LAPACK [1].

Some words concerning notation. The symbols already introduced above will
remain fixed throughout this article. For example, B will always denote the upper
bidiagonal matrix of dimension n for which we want to compute its bSVD. We will
refer to the diagonal elements of B as ai and to its offdiagonal elements as bi. Besides
this, we will deal extensively with diagonal matrices D, R, and unit lower or upper
bidiagonal matrices L, U . These matrices have only a linear number of nontrivial
entries each, which we will denote using a single index as di, ri, li, ui, respectively. It

THE BIDIAGONAL MRRR ALGORITHM 3

will be convenient to define for a given m-vector x and k ∈ N, diag(x, k) as square
matrix of order m + |k| with its k’th offdiagonal being x and all other entries set to
zero. As an example using this notation, we could write B alternatively as

B = diag([a1, . . . , an], 0) + diag([b1, . . . , bn−1], +1).

One possible point of confusion we are aware of is the fact that we use U both for
the left singular vectors as well as for some upper unit bidiagonal matrix, and ui for
the columns of U as well as for offdiagonal elements. We did not want to break with
one of these uses, as they are part of an evolved and wide-spread standard, and the
meaning will always be clear from the context. Additional notation will be specified
where needed.

2. The MRRR Algorithm. A quite new method for the tridiagonal symmetric
eigenproblem is the MRRR algorithm by Dhillon and Parlett (MRRR stands for
“Multiple Relatively Robust Representations”). For brevity, we will sometimes call it
simply “MRRR”.

For a symmetric tridiagonal matrix T ∈ R
n×n, the MRRR algorithm is able to

compute k eigenpairs (λi, qi) in optimal O(kn) time, at the same time guaranteeing
small residual norms

||Tqi − λiqi|| = O(nε||T ||) (2.1)

and numerically orthogonal eigenvectors with

|qT
i qj | = O(nε), j 6= i. (2.2)

For these reasons, together with the fact the MRRR is well suited for parallelization,
the MRRR algorithm is sometimes inofficially also dubbed “holy grail”.

In this section, we want to give a short overview of the basic principles underlying
MRRR, as this will be necessary for the remainder of the paper. We will omit most of
the theory, but give enough information such that readers without prior knowledge of
the algorithm should be able to get an intuitive understanding. For a more detailed
description see [6, 8, 18].

Since LAPACK 3.0, the algorithm has been included as routine xSTEGR. There
have been many recent improvements of this implementation, especially for the sup-
port of partial spectra and better robustness (see for example [9]).

In order to describe the MRRR algorithm, we first need to establish the concept
of relative distances between eigenvalues, which is defined in slightly varying ways in
the literature. In accordance with [8] we will use

reldist(λ, µ) :=
|λ − µ|
|λ| . (2.3)

Then the relative gap of an eigenvalue is defined as

relgap(λ) := min {reldist(λ, µ) | λ 6= µ ∈ spec(T)} . (2.4)

An eigenvalue is (relatively) isolated or a singleton, if its relative gap exceeds some
threshold (for example 10−3). A group λc:d of successive non-singleton eigenvalues
λc, λc+1, . . . , λd is called a cluster.

From a distant point of view, the MRRR algorithm can be seen as a sophisticated
variant of inverse iteration without need for explicit reorthogonalization. A closer
perspective reveals two simple but elegant ingredients responsible for its immense
success:

4 P. R. WILLEMS, B. LANG, AND C. VÖMEL

1. A method based on so-called twisted factorizations to compute, for a relatively
isolated eigenvalue λ, in O(n) work an eigenvector q̄ satisfying

| sin ∠(q, q̄)| = O (nε/relgap(λ)) , (2.5)

where q denotes the true eigenvector. We will describe this technique in more detail
shortly; let it for now suffice that twisted factorizations are a generalization of the
standard LDLT and URUT bidiagonal factorizations.

2. Eigenvectors are shift-invariant, but the relative distances of eigenvalues are
not. More precisely, if a shift µ ≈ λ close to an eigenvalue is chosen, the relative gap
of λ′ = λ − µ with respect to T ′ := T − µI becomes

relgapT ′(λ′) = relgapT (λ)
|λ|

|λ − µ| � relgapT (λ).

With these two ideas, the obviuos approach is to repeatedly shift the matrix until an
eigenvalue is relatively isolated and the corresponding eigenvector can be computed
using twisted factorizations.

As we will see shortly, in order to make this strategy work, it is necessary that each
encountered shifted matrix defines its eigenvalues and eigenvectors to high relative
accuracy. To this end, the MRRR algorithm employs the concept of Relatively Robust
Representations (RRRs) of a matrix. Any set of numbers defining a matrix is called
a representation of the matrix. A representation is relatively robust, if small relative
changes in these numbers only cause small relative changes in the eigenvalues and
eigenvectors. If this holds only for some eigenpairs, the representation is called a
partial RRR.

It is an interesting fact that most tridiagonal matrices represented directly by
their diagonal and offdiagonal elements do not have this property, but a representa-
tion based on a bidiagonal factorization of the matrix usually does (see [6] for more
details). Therefore the algorithm does not work directly on tridiagonal matrices, but
on LDLT factorizations of these matrices instead, such that the data (L, D) forms an
RRR.

Armed with these concepts and ideas, the MRRR algorithm can now informally
be described as follows. First, an RRR (L, D) is found for the original matrix T ,
possibly by shifting T . Then the eigenvalues of interest are approximated accurately
enough to categorize them into singletons and clusters (for example using bisection
or the dqds algorithm [15, 19]). For each singleton, the eigenvector can be computed
directly using twisted factorizations. Because the relative gap of a singleton is per
definitionem large enough, this leads to excellent results according to (2.5).

If there is a cluster of eigenvalues, the algorithm chooses a shift τ close to the
cluster, s.t. LDLT − τI =: L+D+(L+)T and (L+, D+) does again form a partial
RRR for the eigenvalues in the cluster. This factorization is computed using the
stationary differential qds algorithm (dstqds) [6, 15], as shown in Algorithm 2.1. This
transformation is carefully designed to allow a mixed relative error analysis, that
is, tiny relative changes to the input (L, D) and the output (L+, D+) give an exact
relation. Note that this property, together with the fact that (L, D) and (L+, D+)
are ensured to be (partial) RRRs, are essential to guarantee that the shifting process
does not spoil the relation between the eigenpairs of L+D+(L+)T and of LDLT . This
allows to treat L+D+(L+)T recursively in the same fashion.

THE BIDIAGONAL MRRR ALGORITHM 5

Algorithm 2.1 Factorize LDLT − τI = L+D+(L+)T = U+R+(U+)T using the
differential stationary (left side) and progressive (right side) qds-transformations.

dstqds

Input: L, D, τ
Output: L+, D+, S+

1: s+
1 = −τ

2: for i = 1 : n − 1 do

3: d+
i = di + s+

i

4: l+i = dili/d+
i

5: si+1 = l+i lis
+
i − τ

6: endfor

7: d+
n = dn + s+

n

dpqds

Input: L, D, τ
Output: U+, R+, P+

1: p+
n = dn − τ

2: for i = n − 1 : −1 : 1 do

3: r+
i+1 = dil

2
i + p+

i+1

4: u+
i = lidi/r+

i+1

5: p+
i = p+

i+1di/r+
i+1 − τ

6: endfor

7: r+
1 = p+

1

A convenient way to describe the resulting flow of computation is as traversal of
a representation tree. A node in this tree is given by an index range of eigenvalues,
a partial RRR for these eigenvalues and the accumulated shift from the root. Leaf
nodes have only one index, otherwise each index of a node is contained in exactly one
of the index ranges of the node’s children.

Twisted Factorizations. We will finish our description of the MRRR algorithm
giving a more detailed explanation of the method used to compute highly accurate
eigenvectors with orthogonality levels inversely proportional to the relative gaps of
the eigenvalues.

Given an RRR (L, D), we can (for example using bisection) compute an approx-
imation λ̄ to an eigenvalue λ of LDLT satisfying

|λ − λ̄| = O(ε|λ|). (2.6)

Then the idea is to find a vector q̄ with a small relative residual

||(LDLT − λ̄I)q̄|| = O(nε|λ̄|). (2.7)

The reward is revealed by the classical gap theorem [2, 14], because if q denotes the
true eigenvector, we get the desired result (2.5).

In order to ensure (2.7), a double factorization

LDLT − λ̄I = L+D+(L+)T = U+R+(U+)T (2.8)

is computed using the stationary and progressive differential qds transformations
shown in Algorithm 2.1. If one or both of these factorizations does not exist, the
following method can be easily modified; see for example [8]. Assuming for now that
they do exist, this opens n possible ways to compute an approximation q(k), 1 ≤ k ≤ n,
to the eigenvector q via

q
(k)
k = 1,

q
(k)
i = −l+i q

(k)
i+1, i = k − 1, . . . , 1,

q
(k)
i+1 = −u+

i q
(k)
i , i = k, . . . , n − 1.

(2.9)

6 P. R. WILLEMS, B. LANG, AND C. VÖMEL

Formally, applying (2.9) is equivalent to solving the system

NkGk(Nk)T q(k) = γkek, q
(k)
k = 1, (2.10)

where NkGkNT
k = LDLT − λ̄I, Gk = diag(d1, . . . , dk−1, γk, rk+1, . . . , rn) and Nk is a

tridiagonal matrix with

(Nk)1:k,1:k = L+
1:k,1:k and (Nk)k:n,k:n = U+

k:n,k:n.

The matrix NkGkNT
k is called a twisted factorization of LDLT −λ̄I (also alled BABE-

factorization for “Burn At Both Ends”) and k the twist index, because it can be
obtained by applying the Gaussian elimination process from top to row k and then in
backward direction from bottom to row k.

The remaining question now is, which k is best. As according to (2.10) the residual
for q(k) is γkek, any twist index k minimizing |γk| is an obvious candidate. Comparing
(NkGkNT

k)k,k with (LDLT − λ̄I)k,k gives

γk = d+
k + r+

k −
(

(LDLT)k,k − λ̄
)

, k = 1 : n.

A more stable way to compute γk is

γk = sk + pk + τ,

using the intermediate quanities s+
k and p+

k of Algorithm 2.1 for the factorizations
(2.8).

It is shown in [6] that if k is chosen such that |γk| is minimized (or small enough),
the resulting vector q(k) will indeed fulfill (2.7) and therefore also (2.5).

Another way to understand the above method is as a variant of inverse iteration. A
special and interesting property of the twist indices is that if λ̄ approximates λ to high
relative accuracy, i.e., if (2.6) is fulfilled, the index k minimizing |γk| will correspond
to the component of the eigenvector with largest absolute value. (Actually, this is
only true in the limit case λ̄ → λ; see [6] for details). Therefore, ek is guaranteed
to be an excellent choice as starting vector. The simplicity of this right hand side
then allows to compute the first iterate using only multiplications in (2.9). Recent
developments of this technique by Parlett and Vömel in [21] even allow more steps of
inverse iteration with twisted factorizations, again using only multiplications to avoid
spoiling the relative accuracy of the vectors.

3. The Black-Box Approach Fails. As already mentioned in Section 1, there
are mainly two different ways of reducing the bSVD to the tSEP. The first approach
employs the normal-equations and computes eigendecompositions

BT B = V Σ2V T and BBT = UΣ2UT ,

which together give us the desired bSVD B = UΣV T of B.
Alternatively, one can use the so-called Golub-Kahan matrix TGK of B, which is

defined as

TGK := Pps ·
[

0 B
BT 0

]

· PT
ps,

where Pps is a “perfect shuffle” permutation mapping a vector x ∈ R
2n to Ppsx =

[xn+1, x1, xn+2, x2, . . . , x2n, xn]T . It is easy to see that TGK is symmetric tridiagonal
with a zero diagonal and the entries of B interleaved on the offdiagonals, i.e.,

TGK = diag ([a1, b1, a2, . . . , bn−1, an],±1) .

THE BIDIAGONAL MRRR ALGORITHM 7

Given an eigendecomposition TGK = QΛQT , in exact arithmetic Q will have the
structure

Q =
1√
2
· Pps ·

[

U U
−V V

]

,

so that the singular vectors of B can easily be extracted from the odd- and even-
numbered rows of Q. Furthermore, the eigenvalues of TGK are simply the positive
and negative singular values of B. This has the additional benefit that if an adaptible
method like the MRRR algorithm is used for the computation of Q and Λ, only n
eigenpairs are needed, reducing the computation time by half.

It is tempting to use the MRRR algorithm as a “black box” on either the normal
equations or the Golub-Kahan matrix to obtain the SVD of our bidiagonal matrix B.
However, this leads to major numerical instabilities. In the following we will give only
a short description of these problems as a motivation for the remainder of the paper.
A more detailed analysis can be found in [11, 12].

Using the MRRR algorithm to compute eigendecompositions of BTB and BBT

separately can result in bad residuals for the singular vectors, in the sense of (1.3).
One reason is that MRRR uses different shifts when working on BTB and BBT ,
although in exact arithmetic the spectra of these matrices are identical. But the real
source of failure turns out to be more subtle, as it lies in computing the tridiagonal
factorizations. To be more concrete, let us assume that on the first level of the
representation trees of BTB and BBT , the same shift µ is chosen for some cluster.
Then, in order to proceed to the next level, the factorizations

BTB − µI = L̂D̂L̂T

BBT − µI = ĽĎĽT

are computed with the dstqds transformation in Algorithm 2.1. As already mentioned,
these factorizations are carefully designed and highly accurate. Nevertheless, rounding
errors do still occur, and they can cause the local eigenvalues λ̂i of L̂D̂L̂T and λ̌i of
ĽĎĽT to be different. In fact, it has been shown in [12] that their absolute difference
can be as large as

|λ̂i − λ̌i| = O(σiε). (3.1)

For the purpose of computing well coupled singular vector pairs, this difference can
be (and will be) devastating, especially for tight clusters of large singular values
σi. Essentially, the explicit separate factorizations destroy most of the relationship
between the computed vectors.

However, it should be mentioned at this point that the high absolute deviation
(3.1) has no negative effect on the tridiagonal MRRR algorithm itself, which is why
we still get nicely orthogonal matrices U and V . The large residuals ||Bvi − uiσi||
come from the fact that for tight clusters, MRRR computes in some sense a random
orthogonal basis, where the randomness is caused by the rounding errors during the
factorizations. But as all representations are ensured to be RRR’s and the cluster is
tight, this does spoil neither the orthogonality levels ||UT U − I|| and ||V T V − I||, nor

the “tridiagonal residuals” ||BTBvi − (λ̂i + µ)vi|| and ||BBT ui − (λ̌i + µ)ui||.
For the Golub-Kahan matrix the situation is reversed. The residuals (1.3) of the

singular vectors are always excellent, but the deviation from orthogonality (1.2) can
become bad for some bidiagonals with tight clusters of very small singular values.

8 P. R. WILLEMS, B. LANG, AND C. VÖMEL

The main reason lies in the fact that every minor of TGK with an odd dimension
is singular. This can make it more difficult for the algorithm to find RRR’s for the
next level. Additionally, we often observe quite differing element growth in the even-
numbered and odd-numbered elements of the representations, which can intuitively
cause a “displacement of information”. This is problematic, as only one twist index
is used to compute two singular vectors (via Q).

At this point we want to give an example of the impact of these problems on the
orthogonality level of the vectors. As test matrix we took the upper bidiagonal

B := diag ([1, α, . . . , α], 0) + diag ([α, . . . , α], +1) , α = 200ε. (3.2)

This matrix has one singular value around one and the rest clustered at 10−27. We
tested for different dimensions of B the newest tridiagonal MRRR implementation
DSTEGR on the resulting Golub-Kahan matrix TGK . The following table shows in the
second column the measured orthogonality ||QT Q − I||/(nε) for the tSEP posed by
TGK . The third column shows the orthogonality max(||UT U − I||, ||V T V − I||)/(nε)
of the extracted singular vectors from Q, and in the fourth column the same measure
is shown for the results obtained by our software DBDSCR.

n
DSTEGR on TGK DBDSCR on B

tSEP bSVD bSVD

100 4.45 > 1010 3.71
200 5.10 > 1010 4.13
400 2.93 > 1010 3.80

Note that Q itself fulfills the requirements (2.2) for the tSEP posed by TGK nicely,
but the singular vectors extracted from Q are effectively useless. As can be seen in
the last column, the coupling techniques which we will present in the next section
avoid this problem.

A short note on notation. In the remaining part of this paper we will have to
deal constantly with the three matrices BTB, BBT and TGK and the various bidi-
agonal factorizations occuring in their respective representation trees for the MRRR
algorithm. In order to distinguish between these matrices, we will continue to use
superscripts ∧,∨ and ∼, as introduced in this section and presented in the following
diagram.

BTB TGK BBT

?

µ2

?

µ

?

µ2

L̂D̂L̂T L̃D̃L̃T ĽĎĽT

4. The Bidiagonal MRRR Algorithm. As we have seen in the preceding sec-
tion, the main problem when trying to solve the bSVD by the application of MRRR to
BTB and BBT lies in the separate factorizations, which can cause the local eigenvalues
to drift apart.

In [12], Großer and Lang proposed a solution to this problem. They devised so
called coupling relations, which link the factorizations

BTB − µ2I =: L̂D̂L̂T , TGK − µI =: L̃D̃L̃T , and BBT − µ2I =: ĽĎĽT

THE BIDIAGONAL MRRR ALGORITHM 9

in a backward stable way. As a consequence, it is only necessary to do one of the
factorizations explicitly; the remaining two factorizations can then be computed im-
plicitly using only multiplications and divisions. This guarantees that the eigenvalues
of L̂D̂L̂T and ĽĎĽT will agree to most of their digits.

This then suggests a new algorithm for the bSVD based on the MRRR algo-
rithm. The idea is to apply MRRR simultaneously on BTB, TGK and BBT (which
we sometimes call “The Three Matrices”) with identical shifts µ2 for BTB and BBT

and µ for TGK . But the dstqds factorizations needed to proceed from one level to the
next are always done only for one of the matrices—in most cases this will be TGK ,
see below—whereas the above mentioned coupling relations are used to keep track of
the other two factorizations implicitly. The backward stable nature of the coupling
relations will ensure that the eigenvalues of a representation L̂D̂L̂T in the tree for
BTB and the corresponding representation ĽĎĽT for BBT always remain relatively
close. As a consequence, if upon encountering a singleton the singular vectors are
computed using the coupled representations of BTB and BBT , we get vectors with
small residuals and good orthogonality levels.

This section is divided into two parts. First we will present the coupling relations,
and then we describe our approach to incorporate them in an efficient and practicable
way into an MRRR algorithm for the bSVD.

4.1. The Coupling Relations. At the core of the new algorithm lies the capa-
bility to convert between shifted factorizations of the matrices BTB, BBT and TGK

in a backward stable way. In the following, we will summarize the main results from
[11, 12] needed to understand and implement the algorithm.

We will not give detailed proofs of the coupling relations in this paper, as they
can be quite technical (and the following pages are already technical enough). Their
main ingredient is that shifted factorizations of the three matrices can be related by

(

BBT − µ2I 0
0 BTB − µ2I

)

= PT
ps(TGK + µI)(TGK − µI)Pps, (4.1)

and the fact that TGK − µI = L̃D̃L̃T implies TGK + µI = L̄D̄L̄T with d̄i = −d̃i, i =
1 : 2n and l̄i = −l̃i, i = 1 : 2n − 1. A deeper analysis of this simple relation leads to
the following result.

Lemma 4.1. Let the decompositions

TGK − µI = L̃D̃L̃T = Ũ R̃ŨT = ÑrG̃rÑ
T
r , r = 1 : 2n,

exist and be RRRs. Then the decompositions

BTB − µ2I = L̂D̂L̂T = Û R̂ÛT = N̂kĜkN̂T
k , k = 1 : n,

BBT − µ2I = ĽĎĽT = Ǔ ŘǓT = ŇkǦkŇT
k , k = 1 : n,

also form RRRs, and for i = 1 : n the diagonal pivots and twist elements are given by

d̂i = −d̃2i−1d̃2i, ďi = −d̃2id̃2i+1,

r̂i = −r̃2i−2r̃2i−1, ři = −r̃2i−1d̃2i,
γ̂i = µγ̃2i−1, γ̌i = µγ̃2i,

(4.2)

where we set d̃2n+1 := d̃1 and r̃0 := r̃2n. The elements l̂i, ľi, ûi, ǔi can then be deter-
mined using

l̂id̂i = ûir̂i+1 = aibi and ľiďi = ǔiři+1 = ai+1bi. (4.3)

10 P. R. WILLEMS, B. LANG, AND C. VÖMEL

for i = 1 : n − 1.
Proof. The couplings (4.2) follow from (4.1), although some more technical ar-

gumentation is needed, which is beyond the scope of this paper; see Lemma 3.1 and
Corollary 3.2 in [12]. The identities (4.3) result from the fact that the offdiagonal
elements aibi of BTB and ai+1bi of BBT are not affected by the shift.

The requirement that each of the 2n twisted factorizations of TGK −µI has to be
an RRR is redundant, as it is shown in [6] that if a twisted factorization is an RRR
for some twist index k, then this also holds true for all twist indices.

Concerning the local eigenvalues, it was proved in [11] that if L̂D̂L̂T and ĽĎĽT

are set up from L̃D̃L̃T using (4.2) and (4.3), the relative distance of the respective

eigenvalues λ̂i and λ̌i obeys

reldist(λ̂i, λ̌i) = O(ε). (4.4)

So the local eigenvalues λ̂i and λ̌i will agree to most of their digits.

A special point in the above coupling relations is that they are completely obliv-
ious to the way in which the factorization of TGK − µI is computed. Therefore they
are also valid in the case of successive factorizations, which occur naturally during the
MRRR algorithm. As an example, let us assume we apply MRRR to TGK . Let us omit
the index ranges of the eigenvalues for now and denote by (L̃(i), D̃(i), µ(i)), i = 1, 2, . . .
a path in the representation tree, i.e.,

TGK − µ(1)I =: L̃(1)D̃(1)(L̃(1))T and

L̃(i)D̃(i)(L̃(i))T − µ(i+1)I =: L̃(i+1)D̃(i+1)(L̃(i+1))T , i = 2, 3,

Then we can use Lemma 4.1 to set up the corresponding paths (L̂(i), D̂(i), ν(i)) for
BTB and (Ľ(i), Ď(i), ν(i)) for BBT , where the shifts ν(i) are related to the GK shifts
µ(i) by

i
∑

j=1

ν(j) =





i
∑

j=1

µ(j)





2

.

Evaluating this recurrence gives

ν(i) = µ(i)(2µ̄(i−1) + µ(i)), with µ̄(i−1) :=

i−1
∑

j=1

µ(j). (4.5)

Together with (4.4) this means that we are able to run MRRR implicitly on BTB and
BBT in parallel with identical shifts, thereby guaranteeing that the local eigenvalues
of the corresponding representations L̂(i)D̂(i)(L̂(i))T and Ľ(i)Ď(i)(Ľ(i))T are always
relatively close. This is already one big step towards the solution compared to the
separate application of MRRR on BTB and BBT .

However, we are still doing much work with the Golub-Kahan matrix and its
translates. As was already hinted at in Section 3, there are two major problems when
working with TGK , namely that finding good shifts µ s.t. TGK − µI can be proved to
be an RRR is hard and that element growth in the factorizations can lead to problems
when computing the vectors. The latter is now resolved, as we can use the couplings
from Lemma 4.1 to compute the vectors directly with translates of BTB and BBT ,

THE BIDIAGONAL MRRR ALGORITHM 11

which results in good orthogonality and small residuals because of (4.4). Concerning
the first issue, the following Lemma summarizes another coupling relation presented
in [12], which utilizes the intermediate quantities arising during the differential qds
transformations in Algorithm 2.1 in order to avoid factorizing TGK −µ(1)I and to use
BTB − ν(1) instead.

Lemma 4.2. Let the factorizations

BTB − µ2I = L̂D̂L̂T = Û R̂ÛT = N̂kĜkN̂T
k , k = 1 : n,

be computed using Algorithm 2.1 with intermediate quantities Ŝ and P̂ . Then the
decompositions

TGK − µI = L̃D̃L̃T = ŨR̃ŨT = ÑkG̃kÑT
k , k = 1 : 2n,

BBT − µ2I = ĽĎĽT = ǓŘǓT = ŇkǦkŇT
k , k = 1 : n,

are given by

ďi =
ŝi+1

ŝi
d̂i ři =

p̂i

p̂i+1
r̂i+1 γ̌i = −µ2γ̂i

r̂i+1

ŝip̂i+1

and

d̃2i−1 = ŝi
µ r̃2i−1 =

p̂i
µ γ̃2i−1 =

γ̂i
µ

d̃2i = − d̂i

d̃2i−1

r̃2i = − ři

r̃2i−1
γ̃2i = − γ̌i

µ

for i = 1 : n, setting ŝn+1 := −µ2, r̂n+1 := p̂n+1 := 1.
Proof. See Lemma 2.3 and Corollaries 2.4 and 2.5 in [12].
The elements ľi, ǔi, l̃i, ũi can be obtained as in (4.3) using ľiďi = ǔiři+1 = ai+1bi,

l̃2i−1d̃2i−1 = ũ2i−1r̃2i = ai and l̃2id̃2i = ũ2ir̃2i+1 = bi. Again it holds that if (L̂, D̂)
is an RRR, then (Ľ, Ď) is too and (4.4) is fulfilled, i.e., the eigenvalues of L̂D̂L̂T and
ĽĎĽT are relatively close [11, Theorem 5.4].

4.2. Modified MRRR algorithm with Couplings. In this section we will
present the structure of our new implementation of the adapted MRRR algorithm for
the bSVD with embedded couplings.

First we want to outline the main difference between our approach and the algo-
rithm presented in [12]. There, another coupling transformation was used on deeper
levels to couple directly from (L̂+, D̂+) to (Ľ+, Ď+), similar to Lemma 4.2 for the first
level [12, p. 15]. Unfortunately, this transformation is based on an implicit partial
factorization of L̃D̃L̃T . Therfore it cannot guarantee (4.4) and the only way to use
this transformation is to compute the eigenvalues of L̂+D̂+(L̂+)T and Ľ+Ď+(Ľ+)T to
full accuracy and to compare them [12, p. 18]. The algorithm in [12] was based on the
original presentation of the tridiagonal MRRR algorithm in [6], where the eigenvalues
were computed to full accuracy on each level of the tree anyway. In this context, the
quality of the couplings could be checked easily.

However, as we pointed out in Section 2 based on [9], it is sufficient for the MRRR
algorithm to refine the eigenvalues on each level only until they can be categorized
into singletons and clusters. For example, with the cluster tolerance set to 10−3, this
implies essentially that merely the first three decimal digits of the eigenvalues have to
be computed on each level. As the computation of the eigenvalues is by far the most
expensive part during the MRRR algorithm, this optimization results in a serious
speedup of the implementation.

12 P. R. WILLEMS, B. LANG, AND C. VÖMEL

If we wanted to employ the direct coupling strategy from [12], we would have
essentially two options. We could ignore the above optimization and still refine the
eigenvalues to full precision on each level, which would pose a serious and unnecessary
runtime overhead. Alternatively, we could use the optimization but skip checking the
quality of the couplings, resulting in a loss of robustness of the method. In our opinion,
both options are unacceptable.

Therefore we propose a different strategy for deeper levels. We do the steps from
one level to the next with the local translate L̃D̃L̃T of the Golub-Kahan matrix and
use Lemma 4.1 to set up the respective representations in the trees of BTB and BBT .
As this coupling guarantees (4.4), we do not need to refine the eigenvalues to full
accuracy anymore.

As outlined in the previous section, the new algorithm can be described as im-
plicitly running MRRR on the matrices BTB, TGK and BBT simultaneously with
equivalent shifts. As a consequence, we are working in some sense on a (synchro-
nized) three-layered representation tree with nodes [L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , µ̄, jl : ju].
The local index range jl : ju denotes the subset of desired singular values of B (resp.
eigenvalues of BTB) and µ̄ is the accumulated shift from TGK , i.e., we have

BTB − µ̄2I = L̂D̂L̂T ,

TGK − µ̄I = L̃D̃L̃T ,

BBT − µ̄2I = ĽĎĽT .

Note that in order to be correct, the corresponding index range for the eigenvalues of
TGK would be n + jl : n + ju. For the sake of shorter indices we will omit this detail;
that is we refer to the (n + i)-th eigenvalue of TGK and its translates L̃D̃L̃T as λ̃i,
due to the fact that we are only interested in the n positive eigenvalues of TGK .

Recall that in the tridiagonal MRRR algorithm, the main tasks to be done for
each node are:

1. Refine the local eigenvalues of the shifted matrix in order to identifiy clusters
and singletons.

2. For singletons, compute the eigenvector using twisted factorizations.
3. For clusters, find a shift close to the cluster resulting in a new partial RRR

for the eigenvalues in the cluster. Compute and store the new representation for the
work on the next level.
These steps remain essentially the same in our approach. But as we use Lemma 4.2
to handle the couplings for the root node and Lemma 4.1 for deeper levels, the above
steps are applied to different matrices, depending on the level in the trees we are
currently on. Therefore we will treat the root node (i.e. level zero) and the deeper
levels separately in the following detailed description of our algorithm.

The Root Node. Given the upper bidiagonal B and a range il : iu for the singular
values of interest, in theory the root of our three-layered tree becomes

[BTB, TGK , BBT , 0, il : iu],

but using Lemma 4.2 we will only need to work with BTB. A structural overview of
the steps performed for the root node is given in Algorithm 4.1.

THE BIDIAGONAL MRRR ALGORITHM 13

Algorithm 4.1 Bidiagonal MRRR, Root Node.

Input: Upper bidiagonal matrix B, range il : iu of desired singular triplets.

1: Refine Eigenvalues λ̂il :iu of BTB enough to identify clusters.

2: for each singleton λ̂s do

3: compute λ̂s to full accuracy

4: compute BTB − λ̂sI = N̂kĜkN̂T
k , k = 1 : n

5: compute vs for a suitable twist index k̂

6: couple (N̂kĜkN̂T
k , k = 1 : n) → (ŇkǦkŇT

k , k = 1 : n) (Lemma 4.2)

7: compute us for a suitable twist index ǩ
8: endfor

9: for each cluster λ̂c:d do

10: find close shift µ2 s.t. BTB − µ2I = L̂D̂L̂T and

(L̂, D̂) forms a partial RRR for the eigenvalues c : d

11: modify eigenvalues for the next level: λ̂i := λ̂i − µ2, i = c : d

12: store L̂, D̂, Ŝ, µ, and c : d
13: endfor

First, the eigenvalues λ̂i = σ2
i , i = il : iu, are refined. For each singleton λ̂s,

we take advantage of the fact that Lemma 4.2 allows the direct coupling of twisted
factorizations of BTB − νI and BBT − νI. That is, after refining λ̂s to high relative
accuracy, we use Algorithm 2.1 to compute the twisted factorizations BTB − λ̂sI =
N̂kĜkN̂T

k , k = 1 : n. (Note that, as B is upper bidiagonal, BTB can be written as
LDLT with di = a2

i , li = bi/ai. So Algorithm 2.1 can be applied directly). Then

the right singular vector vs is computed using (2.9) for a suitable twist index k̂. For
the left singular vector, we invoke Lemma 4.2 to set up the twisted factorizations
BBT − λ̂sI = ŇkǦkŇT

k , k = 1 : n directly, and we use them to compute us. Note
that it is possible to choose a different twist index ǩ for the left vector. As the
couplings are backward stable this results in excellent residuals ||Bvs − σsus||.

Now assume that a cluster λ̂c:d of eigenvalues of BTB has been identified. In the
same manner as MRRR applied to BTB alone would proceed, we choose a shift µ2

s.t. BTB − µ2 = L̂D̂L̂T forms a partial RRR for its eigenvalues with indices c : d.
Then we can again use Lemma 4.2 to set up the remaining data for the child node
[L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , µ, c : d].

Deeper Levels. On deeper levels of the tree we work on nodes of the form
[

L̂D̂L̂T , L̃D̃L̃T , ĽĎĽT , µ̄, jl : ju
]

,

where jl : ju is a subset of the root index range il : iu with jl < ju. The computational
structure for deeper levels is shown in Algorithm 4.2.

Again we start by refining the eigenvalues λ̂i, i = jl : ju, of L̂D̂L̂T . For singletons
λ̂s, we want to compute the singular vectors us and vs as for the root node using
twisted factorizations

L̂D̂L̂T − λ̂sI = N̂+
k Ĝ+

k (N̂T
k)+, k = 1 : n, and (4.6)

ĽĎĽT − λ̂sI = Ň+
k Ǧ+

k (ŇT
k)+, k = 1 : n. (4.7)

14 P. R. WILLEMS, B. LANG, AND C. VÖMEL

Algorithm 4.2 Bidiagonal MRRR, deeper levels (level ≥ 1).

1: if level = 1 then

2: Retrieve L̂, D̂, Ŝ, GK-shift from root µ̄ and cluster bounds jl : ju
3: else

4: Retrieve L̃, D̃, GK-shift from root µ̄ and cluster bounds jl : ju

5: couple (L̃, D̃) → (L̂, D̂) (Lemma 4.1)
6: endif

7: Refine Eigenvalues jl : ju of L̂D̂L̂T enough to identify clusters
8: if singletons found then

9: if level = 1 then

10: couple (L̂, D̂, Ŝ) → (Ľ, Ď) (Lemma 4.2)
11: else

12: couple (L̃, D̃) → (Ľ, Ď) (Lemma 4.1)
13: endif

14: for each singleton λ̂s do

15: compute λ̂s to full accuracy

16: compute L̂D̂L̂T − λ̂sI = N̂kĜkN̂T
k , k = 1 : n, to get vs

17: compute ĽĎĽT − λ̂sI = ŇkǦkŇT
k , k = 1 : n, to get us

18: endfor

19: endif

20: if new clusters found then

21: if level = 1 then

22: couple (L̂, D̂, Ŝ) → (L̃, D̃) (Lemma 4.2)
23: endif

24: for each cluster λ̂c:d do

25: approximate eigenvalues λ̃c:d based on λ̂c:d

26: find close shift µ s.t. L̃D̃L̃T − µI = L̃+D̃+(̃L+)T is an RRR
27: transform shift: ν := µ(2µ̄ + µ)

28: modify eigenvalues for the next level: λ̂i := λ̂i − ν, i = c : d

29: store L̃, D̃, µ̄ + µ and c : d
30: endfor

31: endif

Unfortunately, compared to the root node case we have lost the advantage to be able to
couple directly from (N̂+

k , Ĝ+
k) to (Ň+

k , Ǧ+
k). This leaves essentially two options. First

we could compute the twisted factorizations L̃D̃L̃T − λ̃sI = Ñ+
k G̃+

k (ÑT
k)+, k = 1 : 2n,

and then use Lemma 4.1 to set up the data N̂+
k , Ĝ+

k , Ň+
k , Ǧ+

k , k = 1 : n, to compute
the vectors. As this coupling obeys (4.4), it does lead to excellent results.

However, there is a drawback to this approach. In practice, the computation of
eigenpairs during the MRRR algorithm can be accelerated using a specialized Rayleigh
Quotient Iteration (RQI) for twisted factorizations, as described in [6, 10]. Doing this
for L̃D̃L̃T is undesirable, as this matrix is of dimension 2n and therefore the loops
in the RQI take twice as many operations as for the matrices L̂D̂L̂T and ĽĎĽT .
For this reason it was proposed in [10] to forfeit the couplings at this point, i.e., to

do RQI on L̂D̂L̂T for vs and λ̂s, and then to use the resulting approximation λ̂s to

THE BIDIAGONAL MRRR ALGORITHM 15

do the factorization of ĽĎĽT − λ̂sI explicitly to compute us. This does not spoil
the residuals, because, as we are on a deeper level of the tree, the local eigenvalues
of L̂D̂L̂T and ĽĎĽT are typically very small compared to the singular values of B.
Therefore, the resulting absolute deviation (3.1) does not cause much harm at this
point.

After dealing with the singletons we still have to handle possibly upcoming new
(sub-)clusters λ̂c:d on deeper levels, where jl ≤ c < d ≤ ju. To do the step to the next
level, we use the translate L̃D̃L̃T of the Golub-Kahan matrix with a suitable shift µ
to compute a new partial RRR L̃D̃L̃T − µI = L̃+D̃+(L̃+)T . Then we apply Lemma
4.1 to set up the representations

L̂D̂L̂T − νI = L̂+D̂+(L̂+)T and ĽĎĽT − νI = Ľ+Ď+(Ľ+)T

for the child node
[

L̂+D̂+(L̂+)T , L̃+D̃+(L̃+)T , Ľ+Ď+(Ľ+)T , µ̄ + µ, c : d
]

.

Its local eigenvalues are related via λ̃i = σi − µ̄ and

λ̂i = σ2
i − µ̄2 = (σi − µ̄)(σi + µ̄) = λ̃i(2µ̄ + λ̃i).

Remember that λ̃i refers actually to the (n + i)-th eigenvalue of L̃D̃L̃T . Together

with (4.5) we can therefore express the relations between the local eigenvalues λ̂i and
λ̃i, and between the local shifts µ and ν as

λ̂s = conv(λ̃s, µ̄), ν = conv(µ, µ̄), where conv(x, y) := x(2y + x). (4.8)

This relation is needed for two reasons. First, after choosing µ, we need ν to get
initial guesses λ̂i − ν for the local eigenvalues of L̂+D̂+(L̂+)T . Additionally, in order
to choose µ sensibly, some approximation to the eigenvalues λ̃c:d of L̃D̃L̃T is needed.
We want to avoid performing any direct eigenvalue computations for L̃D̃L̃T , as this
would be expensive, so we approximate λ̃i from λ̂i instead. The relation (4.8) implies

that λ̃i is defined as the larger root of the quadratic equation x2 +2µ̄x− λ̂i. Care has
to be taken to compute this root in a stable way, see [13] for example.

5. The Software xBDSCR. The bidiagonal MRRR algorithm as described in
the last section has been realized as software xBDSCR in FORTRAN 77 and is to be
incorporated into the upcoming release of the LAPACK library. In this section we
want to discuss several practical issues concerning the implementation.

Refining the eigenvalues. Internally the approximations to the eigenvalues
λi := λ̂i of L̂D̂L̂T are handled as half-open intervals [λi, λi), with λi ≤ λi < λi. In
order to identify singletons, neighboring intervals are repeatedly refined using bisec-
tion until λi ≤ λi+1 and reldist(λi, λi+1) is larger than the cluster tolerance, or until

reldist(λi, λi+1) is smaller than the cluster tolerance or the relative width of the inter-
vals becomes smaller than 4ε. In the first case, the eigenvalues can safely be regarded
as separated, whereas in the second case they cannot.

Computing the eigenpairs. As already mentioned, the final computation of
an eigenpair is actually done using Rayleigh Quotient Iteration with twisted factoriza-
tions (Alg. 4.1, lines 3-5 and Alg. 4.2, lines 15-16). For more details on this technique

16 P. R. WILLEMS, B. LANG, AND C. VÖMEL

see [6, pp. 136ff]. Note that for each singular triplet, we only need to do this itera-
tion for L̂D̂L̂T (or BTB). The coupling relations guarantee that the resulting refined

eigenvalue λ̂ approximates the corresponding eigenvalue of ĽĎĽT to high relative
accuracy, therefore it can directly be used to compute the right singular vector (see
Alg. 4.2, line 17).

Data storage. Algorithms 4.1 and 4.2 describe only the computations for each
node in the tree, but not in which order the nodes are to be visited. In theory, this
order has no effect on the algorithm at all. In practice, however, the data for each
new child node has to be stored somewhere until it is visited.

It suffices to store enough information to rebuild the three representations belong-
ing to a node using the coupling relations. For level one, we can employ Lemma 4.2
and therefore need only the elements of L̂, D̂ and Ŝ from the dstqds-factorization of
BTB−µ2I. For deeper levels, the elements of L̃, D̃ are enough to set up the other two
representations L̂D̂L̂T and ĽĎĽT via Lemma 4.1. Taken together, we need to store
4n + O(1) numbers for any node in the three-layered tree. As each node represents
at least two singular triplets, we can use for example the storage for the first two left
and right singular vectors belonging to the node temporarily for this purpose.

With this approach, a breadth-first traversal of the tree is sensible, as this avoids
unnecessary swapping of the node data. A similar technique is used in [9] for the
implementation of the tridiagonal MRRR algorithm.

IEEE arithmetic. The MRRR algorithm has to deal with possible breakdowns
in the factorizations. This is easy to accomplish if support of the IEEE-754 standard
for floating point arithmetic is present, or at least an equivalent handling of NaN’s
(see [10, p. 47]). If this is not the case, special care is necessary to avoid divisions
by zero and overflows. The new version xSTEGR of the tridiagonal MRRR algorithm
works with or without IEEE support [9], and we adapted the employed techniques for
the factorizations within xBDSCR.

However, we also have to take care of possible division by zero when using the
couplings in Lemma 4.2. It was shown in [10, p. 80] how to fix this in the case that
IEEE arithmetic is present. In a similar manner as with the factorizations, these
modifications were extended for the case that IEEE-arithmetic is not supported.

So, as with the new xSTEGR, our code does not need IEEE arithmetic, but is
able to exploit it. Preliminary tests indicated approximately a 10% performance
improvement with IEEE support, due to the fact that the innermost loop can be
formulated with fewer conditionals.

Preprocessing. In [10] it was noticed that for some kinds of matrices, the
algorithm can benefit from having it preceded by some sweeps of the bidiagonal QR
method, which is described for example in [4]. This sort of preprocessing for the
original matrix B was integrated in the code, although only some QR sweeps are
done per default, as updating the vectors afterwards with the employed orthogonal
rotations is not cheap.

Splitting. The MRRR algorithm and consequently its bidiagonal adaption work
only on unreduced matrices, that is, no offdiagonal of the original tridiagonal T ,
respective no element of the bidiagonal B should be zero.

If some offdiagonal element bi of the original upper bidiagonal matrix B is zero,
the matrix can be split into two submatrices B1:i,1:i and Bi+1:n,i+1:n, which then can
be treated independently. If a diagonal element ai is zero, an elegant way to “deflate”
this zero out is to apply one sweep of the implicit zero-shift QR method, described
in [4]. This results in a matrix B′ with b′i−1 = b′n−1 = a′

n = 0 [4, p. 21], i.e., one

THE BIDIAGONAL MRRR ALGORITHM 17

zero singular value has been rotated out nicely and we can split the matrix into three
blocks B1:i−1,1:i−1, Bi:n−1,i:n−1 and Bn,n, the latter one being trivial.

Extensive splitting of the matrix should be exploited wherever possible, as it
has a beneficial effect on both orthogonality and runtime. Therefore it is sensible
to replace very small elements of B by zero if this affects the SVD only slightly.
Standard absolute perturbation theory for the bSVD [3, Cor. 5.1] shows that setting
an element ci of B to zero can cause an absolute change of |ci| in the singular values and
consequently also in the residual (1.3). This suggests the absolute splitting criterion

|ci| ≤ κnε||B|| ⇒ ci := 0, (5.1)

with some small constant κ. However, doing this implies that the singular values will
not be computed to high relative accuracy.

Our implementation employs a 2-phase splitting. In the first phase we split the
matrix as much as possible without spoiling the relative accuracy of the singular
values, using one or more passes of the implicit zero-shift QR method and the relative
splitting criteria described in [4, p. 18]. Based on this relative split, we apply the
absolute splitting criterion (5.1) on each of the blocks and, if necessary, do again
a zero-shift QR-sweep to deflate zeros on the block-diagonals. This results in the
absolute split, where the blocks are unreduced and subblocks of the relative split.

Then the core bidiagonal MRRR algorithm is applied to each block in the absolute
split. Should relative accuracy be desired (indicateable by a flag when calling xBDSCR),
the singular values are afterwards refined to high relative accuracy for the respective
“father” block in the relative split. Note that there is no need to refine the computed
singular vectors in order to get good orthogonality and small residuals.

This splitting approach has two advantages. First, we can always apply the
absolute splitting criterion, even if relative accuracy is desired, and if so, we exploit
the smaller blocks in the relative split to save runtime when refining the singular
values.

6. Comparison with other methods. In this section, we compare our MRRR
based bidiagonal SVD code with other algorithms available in LAPACK. In its current
release 3.0, LAPACK provides two driver routines, xGESVD and xGESDD, for computing
the singular value decomposition of a general rectangular matrix. In both cases,
the matrix is first transformed to bidiagonal form; afterwards the singular values
are computed from the bidiagonal matrix using the QR algorithm xBDSQR or Divide
& Conquer xBDSDC, respectively. As part of the new release of LAPACK, we will
provide a similar driver for our algorithm xBDSCR. In the following, we compare the
performance of the three computational kernels xBDSCR, xBDSQR, and xBDSDC for the
bidiagonal SVD.

As testbed we used a Pentium 4, 2.8GHz processor with 512kb cache. All routines
and the LAPACK library were compiled using the Intel Fortran Compiler, version 8.1,
with compiler options -O3, -tpp7 and -mp.

Figure 6.1 shows the speedup of the bidiagonal MRRR algorithm over the Divide
& Conquer algorithm for computing the full SVD. For all matrices considered, the
QR algorithm was at least five times (in some cases several hundred times) slower
than these two algorithms; therefore the QR data are not shown in the pictures.

The matrices underlying the picture were designed for testing the robustness of
the algorithms. In particular, many of them have very tight, and sometimes large,
clusters of singular values. This situation can be favorable for the Divide & Con-
quer algorithm, which benefits from heavy deflation. By contrast, tight clusters may

18 P. R. WILLEMS, B. LANG, AND C. VÖMEL

0 20 40 60 80 100 116

0.1

1

10

100

n = 500 n = 1000 n = 2000 n = 3000

Fig. 6.1. Speedup of the bidiagonal MRRR algorithm over the Divide & Conquer algorithm for
matrices of varying dimension and distribution of the singular values.

% DBDSCR DBDSDC DBDSQR

100% 2.84 6.63 368
50% 1.56 — —
25% 1.38 — —
10% 0.63 — —

Table 6.1

Average execution times in seconds for computing a random subset of consecutive singular
triplets for the test matrix defined in (3.2) with dimension 2000. Each test was repeated 10 times.

force the bidiagonal MRRR algorithm to descend several levels in the representation
tree, thus increasing its operation count. For these reasons, none of the two algo-
rithms is consistently superior, in particular for the small matrices. As can be seen
in the picture, with increasing matrix dimension the optimal O(n2) complexity of the
bidiagonal MRRR becomes decisive, such that this algorithm is faster in most cases.

Our bidiagonal MRRR routine xBDSCR provides the option to compute only se-
lected singular vectors. Table 6.1 shows that this feature can indeed reduce the com-
putation time significantly. For algorithmic reasons, neither the QR nor the Divide
& Conquer routine can provide partial SVDs.

Concerning accuracy, each of the three bSVD routines yielded deviations from
orthogonality and residuals within the bounds (1.2) and (1.3), respectively. The errors
of the bidiagonal MRRR algorithm tend to be larger than those of the remaining
two methods, but only by a moderate factor between 10 and 20. As our routine is

THE BIDIAGONAL MRRR ALGORITHM 19

strongly based on the newest implementation xSTEGR, the behaviour is very similar
to that algorithm concerning the comparision of orthogonality, residuals and runtime
with the Divide & Conquer and QR routines. Therefore we refer readers interested
in a more detailed discussion of test cases to [5].

7. Conclusions. We have described improvements to the bidiagonal MRRR
algorithm and its realization in our new software implementation, which allows the
computation of subsets of k singular values and vectors at O(nk) cost. Due to the
nature of both the QR and the Divide & Conquer algorithms, this functionality was
not available; the whole set of singular values and vectors had to be computed at full
cost with respect to operations and storage.

As the bidiagonal MRRR algorithm is structurally very similar to the tridiago-
nal MRRR algorithm for tSEP, it inherits the superior features of the latter. The
theoretical complexity of the (bidiagonal) MRRR algorithm is O(n2), versus O(n3)
for the QR algorithm, and Divide & Conquer lies in between O(n2) and O(n3), de-
pending on the matrix and the amount of deflation. Additionally, the (bidiagonal)
MRRR algorithm is naturally parallelizable since the computation for the (singular)
vectors within a cluster does not depend on the computation for any other cluster.
Furthermore, most of the computation time is spent refining the eigenvalues, and this
part is perfectly parallelizable. We plan to develop a parallel version of our algorithm
for ScaLAPACK in the future.

As a major challenge for future research we consider the task to devise a stable
coupling scheme between successively shifted factorizations of BTB and BBT . This
would significantly improve and simplify the bidiagonal MRRR algorithm, as then
there would be no need to work with the Golub-Kahan matrix anymore. To this end
it would be sufficient to develop reliable and cheap criteria in order to test if the
couplings proposed in [12] are stable.

An alternative solution to this problem would be to eliminate the need for deeper
level couplings at all, that is to improve the tridiagonal MRRR algorithm in a way
that the depth of the representation tree remains limited to one. This would be a
major achievement indeed, but at this state of research it appears to be a very distant
goal. As one possible plan of attack in this direction we see a combination of multistep
inverse iteration as presented in [21] with some variant of the submatrix method for
tightly clustered eigenvalues [16].

Acknowledgements. The authors thank Beresford Parlett and James Demmel
for many enlightening discussions. Their contributions have greatly influenced the
work leading to this paper. We also thank Osni Marques to let us build upon his test
suite for xSTEGR in order to develop a test environment for our own code. In addition,
Paul Willems thanks the Research Centre Jülich for financial support during a research
visit in Berkeley at the end of 2004 and Beresford Parlett and James Demmel for their
hospitality during this time.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s
Guide, SIAM, Philadelphia, PA, 3. ed., 1999.

[2] C. Davis and W. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM Journal
on Numerical Analysis, 7(1) (1970), pp. 1–47.

[3] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

20 P. R. WILLEMS, B. LANG, AND C. VÖMEL

[4] J. W. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM Journal
on Scientific Computing, 11 (1990), pp. 873–912.

[5] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Performance and accuracy
of the symmetric eigensolvers in LAPACK. University of California, Berkeley, 2005. In
preparation.

[6] I. S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector
problem, PhD thesis, University of California, Berkeley, 1997.

[7] I. S. Dhillon and B. N. Parlett, Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices, Linear Algebra and its Applications, 387 (2004), pp. 1–
28.

[8] , Orthogonal eigenvectors and relative gaps, SIAM Journal on Matrix Analysis and Ap-
plications, 25 (2004), pp. 858–899.

[9] I. S. Dhillon, B. N. Parlett, and C. Vömel, The design and implementation of the MRRR
algorithm, Tech. Rep. UCBCSD-04-1346, University of California, Berkeley, 2004. (also as
LAPACK Working Note #162).

[10] B. Großer, Ein paralleler und hochgenauer O(n2) Algorithmus für die bidiagonale Sin-
gulärwertzerlegung, PhD thesis, Bergische Universität Wuppertal, Fachbereich Mathe-
matik, Wuppertal, Germany, 2001. In German.

[11] B. Grosser and B. Lang, On symmetric eigenproblems induced by the bidiagonal SVD. To
appear in SIAM J. on Matrix Analysis and Applications.

[12] B. Großer and B. Lang, An O(n2) algorithm for the bidiagonal SVD, Linear Algebra and
its Applications, 358 (2003), pp. 45–70.

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA,
2nd ed., 2002.

[14] B. N. Parlett, The symmetric eigenvalue problem, Prentice Hall, Englewood Cliffs, NJ, 1980.
[15] , Acta Numerica, Cambridge University Press, 1995, ch. The new qd algorithms, pp. 459–

491.
[16] , Invariant subspaces for tightly clustered eigenvalues of tridiagonals, BIT Num. Math.,

36 (1996), pp. 542–562.
[17] B. N. Parlett and I. S. Dhillon, Fernando’s solution to Wilkinson’s problem: an application

of double factorization, Linear ALgebra and its Applications, 267 (1997), pp. 247–279.
[18] , Relatively robust representations of symmetric tridiagonals, Linear Algebra and its

Applications, 309 (2000), pp. 121–151.
[19] B. N. Parlett and O. Marques, An implementation of the dqds algorithm (positive case),

Linear ALgebra and its Applications, 309 (2000), pp. 217–259.
[20] B. N. Parlett and C. Vömel, How the MRRR algorithm can fail on tight eigenvalue clusters,

Tech. Rep. UCBCSD-04-, University of California, Berkeley, 2004. (also as LAPACK
Working Note #163).

[21] , LAPACK working note: How to improve FP vectors in the MRRR algorithm by twisted
inverse iteration, Tech. Rep. UCBCSD-04-1365, University of California, Berkeley, 2004.

