
Lapack Working Note 156 / ICL-UT-02-03 / UT-CS-02-477

Polynomial acceleration of optimised

multi-grid smoothers; basic theory

Victor Eijkhout∗

March 2002

1 Introduction

It is possible to implement multi-grid smoothers such as the Gauss-Seidel and SOR
method in such a way that there is considerable cache-reuse [2]. The resulting code
can have a performance several times higher than that of a naive implementation.
The crux to this optimisation is the out-of-order execution of several iterations
at one time: the part of the residual in cache is subjected to several smoothing
steps before the same iterations are applied to another part of the vector. Such a
reordering of the operations does not change the semantics of the floating point
numbers produced in any way.

While from a numerical point of view one might want to accelerate the smoother by
a polynomial method such as CG or GMRES, in practice this cache-aware perfor-
mance optimisation precludes such a numerical optimisation, since the inner prod-
ucts make out-of-order iterating impossible. However, it is possible to store several
iterations worth of the Stationary Iteration (SI) vectors, and reconstruct from them
the iterates that would have been produced by an orthogonality-based method with
the smoother as preconditioner.

We will derive the relevant mathematics here, and indicate various computational
aspects of the algorithm.

The advantages of such an approach to constructing CG iterates are twofold. First of
all we optimise the computation of the matrix vector product and the preconditioner
application, giving them a measure of cache re-use. Secondly, the vector operations
that occur in normal CG are now largely bundled into a QR decomposition, raising
their efficiency from Blas Level 1 to Level 3.

2 Mathematical underpinnings

Sequences of residuals constructed by different iterative methods, but from the same
starting vector, all span the same Krylov space. Thus, it is possible in principle to

∗ This research was funded by SciDAC: TeraScale Optimal PDE Simulations (TOPS), DoE
Contract #DE-FC02-01ER25480, and DoE Contract #W-7405-ENG-48 B519921.

1



construct CG residuals and iterates from SI residuals and iterates by taking linear
combinations. The problem is how to find the exact coefficients of the combinations.

Here we are helped by the following lemma.

Lemma 1 Let R(1) and R(2) be the sequences of residuals of two different itera-
tive methods with the same coefficient matrix A, preconditioner M , and starting
vector r1, then each sequence consists of convex combinations of the other:

r
(2)
i =

i∑
j=1

αi,jr
(1)
j ,

∑
j

αi,j = 1.

Proof. Let X(1) the series of iterates of which R(1) are the residuals. The iterates
satisfy a relation

x
(1)
i+1 = x

(1)
1 + π

(1)
i (M−1A)M−1r1,

(where {π(1)
i }i are a series of inhomogeneous polynomials), from which

M−1r
(1)
i+1 = M−1r

(1)
1 + M−1Aπ

(1)
i (M−1A)M−1r1

That is, r
(1)
i = π̃

(1)
i (AM−1)r1 where π̃

(1)
i (0) = 1. We can also write this as

R(1) = KU (1)

where K is the Krylov sequence based on AM−1 and r1, and U (1) is an upper
triangular matrix with u

(1)
1j ≡ 1. Likewise, R(2) = KU (2) for a similarly normalized

upper triangular matrix U (2).

This gives us R(2) = R(1)V with V = U (1)−1
U (2). Writing U (2) = U (1)V , we find

1 = u
(2)
1j =

∑
k

u
(1)
1k vkj =

∑
k

vkj ,

that is, V has column sums ≡ 1. •

If the residuals of one method are convex combinations of those of another method,
the iterates follow from the same combination process.

Lemma 2 Let R(1) and R(2) be residual sequences such that R(2) = R(1)U where
U has unit column sums, then the iterates sequences X(1) and X(2) follow the same
relation: X(2) = X(1)U .

Proof. We can write in matrix notation R(1) = AX(1) − fet where et = (1, . . .).
Noting that etU = et, we get

R(2) = R(1)U ⇔
AX(2) − fet = (AX(1) − fet)U

= AX(1)U − fet

2



which by nonsingularity of A gives the stated result. •

Although lemma 1 implies that any iterative method can be formed by re-combining
any other method, it is not constructive in giving the coefficients of the combina-
tion process. In the case of conjugacy-based methods we are helped out by the
orthogonality properties of the method.

The specific iterative method we are constructing from the SI iterates is a function
of the inner product under which we orthogonalise. For CG (or its nonsymmetric
generalisation OrthoRes) we observe that the residuals are orthogonal under the
M−1 inner product; for MinRes or GMRES we use the fact that the residuals are
orthogonal under the AM−1 inner product.

Lemma 3 Let R and X be the residuals and iterates from a stationary iterative
process. Let R = QU−1 be a QR decomposition under a certain inner product.
Define dt = etU be the scaling to arrive at convex combinations. Then the sequences
R̄ = Qdiag(d)−1 and X̄ = XU−1 diag(d)−1 consist of the residuals and iterates
respectively of

Conjugate Gradients or OrthoRes if the M−1 inner product is used, and
MinRes or GMRES if the AM−1 inner product is used

for the QR factorisation.

This follows from the definition of the scaling by use of the previous lemma, and
the definitions of the respective iterative methods.

Note that the matrix U is small, of size of the number of iterations performed, and
its inversion negligible in cost.

3 Practical considerations

3.1 Construction of the residual sequences of SI

If we try to construct CG iterates, as observed above we need to orthogonalise the
residuals under the M−1 inner product. In other words, we need to orthogonalise
the sequences R and M−1R. Normally these sequences are not directly computed
in SI methods, as opposed to in CG-like methods. Additionally, for the construction
of GMRES iterates we need to orthogonalise under the AM−1 inner product, so
AM−1R is needed as well.

To obtain R, M−1R, and AM−1R from SI methods, we note that
• In stationary iterative methods xi+1 − xi = M−1ri, which gives us the

M−1R sequence. Iterating with i = 1 . . . k, this gives us M−1r1 . . .M−1rk−1.
• The residuals can be easily constructed as a byproduct of such methods as

Gauss-Seidel: with the exception of aiixi all other components have to be
calculated anyway.
Specifically, in the relaxation from xi to xi+1 the method forms AUxi and
ALxi+1. Therefore, if we iterate i = 1 . . . k, Axi is fully formed for i = 2 . . . k−
1, and we need additional computation of ALx1 to match the formation of
M−1r1 . . .M−1rk−1 in the previous point.

3



• Computing AM−1ri, proceeds likewise: AM−1ri = Axi+1 − Axi, and the
components of Axi are formed already in the computation of xi+1, as we
observed above. Iterating with i = 1 . . . k and additional computation of ALx1

and AUxk we can form AM−1r1 . . . AM−1rk−1.
Thus, at the cost of some extra storage, we can retain the necessary intermediate
quantities that allow construction of the CG iterates and residuals. Since we need
to iterate SI for one iteration more than the number of CG iterations we want to
construct, this constitutes an additional overhead of one iteration in scalar cost over
the straightforward computation of the CG method.

Above we noted that computation of ALx1 and AUxk is needed. Alternatively we
can dispense with these and compute only r2 . . . ri−2, but this probably increases the
overhead too much: the CG iteration will now be based on a subspace of dimension
lower by 3 than the SI process.

3.2 QR decomposition

In implementing the QR decomposition itself we are faced with two demands. First
of all, we do not want to degrade performance, so unmodified Gram-Schmidt is
preferable over modified GS. On the other hand, the QR process is essentially
applied to the result of a matrix power iteration, so is likely to be badly conditioned.
In our tests we used a double application of the GS orthogonalisation [1], and
found this to be satisfactory. The operation count is double that for simple GS, but
execution is fairly efficient and the stability was satisfactory.

3.3 Further possibilities for savings

If we aim at constructing the exact CG residuals and iterates, we have to perform
the orthogonalisation of the R against the M−1R sequence. However, in some cir-
cumstances it may be as feasible to orthogonalise M−1R against itself. Whether
this process makes sense depends on the application and the spectrum of the ma-
trix. In all cases it implies a savings: the QR factorisation of one sequence against
itself is performed at half the cost of that of one sequence against another. Also, not
having to construct the R sequence brings about a savings in workspace, a marginal
savings in work, and a further savings in the complexity of the algorithm. Other
inner products, for instance induced by diagonal or small-banded matrices based
on the coefficient matrix, can also be considered.

References

[1] J.W. Daniel, W.B. Gragg, L. Kaufman, and G.W. Steward. Reorthogonalia-
tion and stable algorithms for updating the Gram-Schmidt QR factorization.
Mathematics of Computation, 30:772–795, 1976.

[2] C.C. Douglas, J. Hu, W. Karl, M. Kowarschik, U Rüde, and C. Weiss. Fixed and
adaptive cache aware algorithms for multigrid methods. In Multigrid Methods
VI, E. Dick, K. Riemslagh and J. Vierendeels (eds); Lecture Notes in Computer
Sciences, pages 87–93. Springer-Verlag, Berlin, 2000.

4


