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Abstract

Let LDLt be the triangular factorization of a real symmetric n�n tridiagonalmatrix
so that L is a unit lower bidiagonal matrix, D is diagonal. Let (�;v) be an eigenpair,
� 6= 0, with the property that both � and v are determined to high relative accuracy
by the parameters in L and D. Suppose also that the relative gap between � and its
nearest neighbor � in the spectrum exceeds 1=n; nj�� �j > j�j.

This paper presents a new O(n) algorithm and a proof that, in the presence of
round-o� error, the algorithm computes an approximate eigenvector v̂ that is accurate
to working precision: j sin\(v; v̂)j = O(n"), where " is the round-o� unit. It follows
that v̂ is numerically orthogonal to all the other eigenvectors. This result forms part
of a program to compute numerically orthogonal eigenvectors without resorting to the
Gram-Schmidt process.

The contents of this paper provide a high-level description and theoretical justi�ca-
tion for LAPACK (version 3.0) subroutine DLAR1V.
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1 Setting the Scene

A real symmetric n�n matrix has a full set of orthogonal eigenvectors and users of software
expect computed eigenvectors to be orthogonal to working accuracy. Excellent programs
are available to diagonalize real symmetric matrices so we could say that the problem of
computing orthogonal eigenvectors is solved. Unfortunately users are always in a hurry
and the standard programs require O(n3) arithmetic operations in diÆcult cases. The time
consuming calculation in the standard QR algorithm is the accumulation of O(n2) plane
rotations, each of which requires O(n) operations. Yet we must remember that it is this
accumulation that guarantees numerically orthogonal eigenvectors however close some of
the eigenvalues may be and that is a beautiful feature of the QR-based algorithm.

As values of n near 103 become common and values exceeding 104 do occur it is hard
to stop people dreaming of an O(n2) algorithm to do the job. An expert will point out
that it requires (8=3)n3 operations to reduce a dense matrix to tridiagonal form so that an
O(n2) algorithm is not possible. Nevertheless operation counts, though useful, are not a
sure guide to execution time on current computers. Even with n exceeding 1000 there are
cases where the O(n3) reduction of a dense matrix to tridiagonal form T takes much less

time (10{20%) than computing T 's eigenpairs. So it seems desirable to seek a guaranteed
O(n2) algorithm for T 's eigenproblem.

It is the presence of parallel distributed memory computer systems that has vitalized the
search for algorithms that can compute each eigenvector of a tridiagonal matrix indepen-
dently of the others. Ideally the n eigenvalues would be distributed to n processors, along
with a copy of the tridiagonal, and all n eigenvectors would be computed independently at
the same time and would turn out to be orthogonal to working accuracy.

There are formidable obstacles that impede the realization of this dream and these will
be reviewed in the next section.

This paper presents a useful step towards the goal. The main Theorem 9 in Section 7
shows that in special, but important, situations our new algorithm produces an eigenvector
that is guaranteed to be within O(n") of the true eigenvector whenever the eigenvalue has
a relative separation from its neighbors that exceeds 1=n. It has been known for years that
inverse iteration can produce fully accurate eigenvectors whenever the eigenvalue has an
absolute separation that is above the average (�max � �min)=(n � 1). So our contribution
is to change absolute to relative in the separation condition. Our examples show that
the resulting speedups can be dramatic (from 822 seconds to 6 seconds). See Section 8
for details. To establish our result, roundo� errors included, we were obliged to jettison
the traditional representation of a tridiagonal matrix by its diagonal and next-to-diagonal
entries. Instead, we use a bidiagonal factorization LDLT of a carefully chosen translate of
the original tridiagonal T . Properties of L and D allow us to compute eigenpairs of LDLT

very accurately.
The proof of the main Theorem 9 rests on the existence of relative perturbation results

for the bidiagonal factors and on a special interpretation of the roundo� errors in di�erential
qd algorithms that yields what is called mixed stability: carefully selected small relative
perturbations of both the input and the output of our subroutines reveal the existence of
an exact relationship of the form �L �D �Lt� �I = ~N ~D ~N t, where ~N is a twisted factor de�ned
in Section 4. The translation by � preserves eigenvectors while shifting the eigenvalue of
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interest very close to 0. The middle part of this paper presents the relevant error analysis.
Although essential for our results this analysis will be indigestible for most readers but it
tells us that changes of only 3 or 4 units in the last digit of each entry of the input L, D
and the output N̂ and D̂ (rather than 300 or 30000 units) suÆce to give the exact relation.

Let us sketch our new sequential algorithm that is based on the results of this paper.
Compute the extreme eigenvalues of T and start with a base � at one end of the spectrum.
Compute the positive (or negative) de�nite factorization LDLt = �(T � �I) and �nd all its
eigenvalues to high relative accuracy. Next �nd the eigenvectors for all the shifted eigenval-
ues ��� that have large relative gaps. If some eigenvalues remain without eigenvectors then
pick a new base �new at, or close to, one end of the remaining spectrum. Perform a careful
factorization LnewDnewL

t
new = LDLt � �newI and monitor element growth. If growth is

too great then perturb � (away from the cluster) until growth is acceptable. Then re�ne,
to high relative accuracy, all new small eigenvalues with large relative gaps and compute
their eigenvectors. Repeat the process with suitable bases � until all eigenvectors have been
computed. A more detailed outline of this algorithm is given in [9] and [10].

The organization of the paper is revealed in the list of contents. Householder notation
(capital letters for matrices, Greek lower case for scalars, and lower case bold Roman for
vectors) is generally followed. Eigenvalues are ordered by �1 � �2 � �3 � � � � � �n.
Section 4 is derived from Chapter 4 of [9].

2 DiÆculties

The quality of an approximate eigenvector y is measured by its residual. The basic result
that goes back to Temple in the 1930's, if not earlier, will be needed later. See [33, Chaps. 10
and 11] for details and a proof.

Theorem 1 Let A = At be a real matrix that has a simple eigenvalue � with normalized

eigenvector v. For any unit vector y and a scalar �, closer to � than to any other eigenvalue,

j sin\(v;y)j � kAy � y�k=gap(�); (1)

where gap(�) = minfj� � �j : � 6= �; � 2 spectrum(A)g. In addition, the error in the

eigenvalue is bounded by the residual norm, i.e.,

j�� �j � kAy � y�k:

The sad fact is that a small residual norm does not guarantee an accurate eigenvector
when gap(�) is also small. On the other hand, accurate approximations y and z to u and
v respectively (where u and v are eigenvectors), in the strong sense that

j sin\(u;y)j < n" and j sin\(v;z)j < n"; (2)

where " is the roundo� unit, do ensure numerically orthogonality of the computed eigenvec-
tors since

j cos\(y; z)j � j sin\(u;y)j+ j sin\(v; z)j < 2n":
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Thus accuracy yields orthogonality. This observation is not as vacuous as it appears. In
the QR algorithm the computed eigenvectors are acceptable because they are orthogonal
(numerically) and their residuals are small but they are not always accurate in the sense
of (2). Part of the explanation for this anomaly is that A may not determine some of its
eigenpairs to high accuracy. Thus the eigenvector v used above may be highly sensitive as
soon as there is uncertainty in the entries of A and so the concept of accuracy goes out
of focus. That is why, in the sense of (2), accuracy is not the only way, or even the best
way, to compute numerically orthogonal eigenvectors. The QR algorithm does produce a
numerically orthonormal basis for all the invariant subspaces that are well de�ned by the
tridiagonal.

Let us return to the residual norm. In general, the best we can hope for is to produce
residuals r = r(y) = Ay � y� satisfying

krk � " � (�max � �min): (3)

The average separation between eigenvalues is

�max � �min

n� 1
(4)

and so, by (1) and (3), if gap(�) is above this average then

j sin\(v;y)j � (n� 1)"

and accuracy is assured. On the other hand in the many cases when gap(�)� (4) then the
residual norm must be much smaller than the right hand side of (3) in order to deliver such
accuracy.

In general we see no possibility for reducing the residuals without using higher precision
arithmetic in parts of the computation. Instead we turn to special matrices and special
situations, in particular, to a symmetric tridiagonal matrix T . Our goal is to compute
residuals satisfying

krk = kTy � y�̂k � K"j�̂j; (5)

for some modest constant K independent of y and �̂, so that

j sin\(v;y)j � K"j�̂j
gap(�̂)

=
K"

relgap(�̂)
: (6)

Note that if �̂ = O("(�max � �min)) then (5) requires krk = O("2). How is that possible
since even the rounded version of the `true' eigenvector may not achieve (5)?

We can achieve (5) in the presence of three separate properties.

(I) � must be determined to high relative accuracy by the matrix parameters.

(II) The computed �̂ must approximate � to high relative accuracy.

(III) The vector y must be computed so that kr(y)k � j�� �̂j � "j�̂j.



4

A tridiagonal matrix T is traditionally represented by its diagonal and o�-diagonal
entries. We achieve Property I by discarding this representation in favor of LDLt = T � �I
for a suitable shift � . Section 3 shows the necessity for this change of representation.
Property II is then easily achieved by using bisection or, in the positive de�nite case, by the
dqds algorithm, see [13]. Given a factorization LDLt, and a highly accurate �̂, we can think
of satisfying Property III by using inverse iteration. While traditional inverse iteration often
works well in practice, we employ an elegant alternative that uses a rank-revealing twisted
factorization of T � �̂I.

A subtle point in our analysis is that (5) is achieved, not for T or LDLt but for a small
relative perturbation of LDLt.

Much of this paper, from Section 4 onwards, is devoted to a proof that Property III can
be achieved in the presence of roundo� error.

3 Standard Tridiagonal Form is Inadequate

In this Section, we show that the standard representation of tridiagonals is inadequate for
our purpose of computing highly accurate eigenvectors. Recent work has shown that some
tridiagonal classes do determine all their eigenvalues to high relative accuracy. However for
most tridiagonals small relative changes in the diagonal and o�-diagonal entries can cause
huge relative changes in the small eigenvalues.

We now give a carefully contrived example which exhibits this relative instability even
when n = 3.

Example 1 Consider the tridiagonal

T1 =

2
4 1�p" "1=4

p
1� 7"=4 0

"1=4
p
1� 7"=4

p
"+ 7"=4 "=4

0 "=4 3"=4

3
5 ;

and a small relative perturbation to the o�-diagonals of T1,

T1 + ÆT1 =

2
4 1�p" "1=4(1 + ")

p
1� 7"=4 0

"1=4(1 + ")
p
1� 7"=4

p
"+ 7"=4 "(1 + ")=4

0 "(1 + ")=4 3"=4

3
5 :

where " is a small quantity of the order of the machine precision. The two smallest eigen-
values of T1 and T1 + ÆT1 are

1

�1 = "=2 + "3=2=8 +O("2); �1 + Æ�1 = "=2� 7"3=2=8 +O("2)

�2 = "� "3=2=8 +O("2); �2 + Æ�2 = "� 9"3=2=8 +O("2)

while

�3 = 1 + "+O("2); �3 + Æ�3 = 1 + "+O("2):
1we carefully constructed this matrix to have the desired behavior which may be veri�ed by using a

symbol manipulator such as Maple [4] or Mathematica [40].
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Thus ����Æ�i�i
���� = (3� i)

p
"+O("); i = 1; 2

and the relative change in these eigenvalues is much larger than the initial relative pertur-
bations in the entries of T1. Similarly the corresponding eigenvectors of T1 and T1 + ÆT1
are:

v1 =

2
664

"1=4p
2
(1 +

p
"
2 ) +O("5=4)

� 1p
2
(1�

p
"
2 ) +O(")

1p
2
(1� 3"

4 ) +O("3=2)

3
775 ; v1 + Æv1 =

2
664

"1=4p
2
(1 + 5

p
"

2 ) +O("5=4)

� 1p
2
(1 + 3

p
"

2 ) +O(")
1p
2
(1� 2

p
") +O(")

3
775 :

and

v2 =

2
664
� "1=4p

2
(1 +

p
"
2 ) +O("5=4)

1p
2
(1�

p
"
2 ) +O(")

1p
2
(1 + 3"

4 ) +O("3=2)

3
775 ; v2 + Æv2 =

2
664
� "1=4p

2
(1� 3

p
"

2 ) +O("5=4)

1p
2
(1� 5

p
"

2 ) +O(")
1p
2
(1 + 2

p
") +O(")

3
775 ;

whereby ����Ævi(j)vi(j)

���� = O(
p
") for i = 1; 2 and j = 1; 2; 3:

Since a small relative change of " in the o�-diagonal entries of T1 results in a much
larger relative change in its eigenvalues and eigenvectors, we say that T1 does not determine
its eigenvalues and eigenvector components to high relative accuracy. Consequently, in the
face of roundo� errors, it is unlikely that we can compute numerically orthogonal eigen-
vectors without explicit orthogonalization. To corroborate this, we gave the best possible
approximations to �1 and �2 as input to the EISPACK and LAPACK implementations of
inverse iteration but turned o� all orthogonalization within these procedures. As expected,
we found the computed vectors to have dot products as large as O(

p
"). 2

In contrast, when T is positive de�nite, the representations LDLt and ~L~Lt, where ~L =
LD1=2, each determine all the eigenvalues to high relative accuracy. See [8, Theorem 5.13] for
more details. Thus these factored forms are preferable to the standard form for eigenvalue
calculations.

When D is not positive de�nite the situation is more complicated. Often LDLt deter-
mines its eigenvalues to high relative accuracy, particularly the small ones. Of course we
may use the representation U�D�U t� derived from Gaussian elimination in reverse order
or even a twisted factorization. The important point is that the positive de�nite case is
not the only one in which some eigenvalues are determined to high relative accuracy by a
factored form.

Let LDLt
v = v�, � 6= 0. An appropriate relative condition number de�ned in [9] is

relcond(�) := v
tLjDjLt

v=j�j:
Note that when D is positive de�nite then relcond(�) = 1 but we do not need such stability
for our results. A value of relcond(�) such as 10 or 20 is adequate to ensure numerically
orthogonal eigenvectors.

The focus of this paper is on how to exploit high relative accuracy when it occurs, not
to give conditions for its occurrence. See Section 5 and [30] for more details.
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4 Computation with Bidiagonals

In the remaining pages, we show that we can compute a very accurate eigenvector when
(i) relcond(�) is modest and (ii) � has a large relative gap. Our algorithm achieves this
by obtaining residual norms that are small in a relative sense. In this section, we �rst
review twisted factorizations, and then present a novel \mixed" relative error analysis for
the methods that compute them. This error analysis, given in Section 4.3, is essential for
our results; indeed a \standard" backward error analysis turns out to be totally inadequate.

4.1 Twisted Factorizations

If �̂ is an extremely accurate approximation to an eigenvalue � of T then T � �̂I is almost
singular. In order to compute the eigenvector, i.e., to solve (T � �̂I)z � 0, we seek a
factorization that reveals this singularity. In the tridiagonal case we can always construct
such a factorization from the forward and backward triangular factors. This procedure is
described in [29] along with the necessary theory. For reference in later sections we quote
here the results we need, without proof, and add a few comments and re�nements.

Suppose that

LDLt � �̂I = L+D+L
t
+ = U�D�U t

�

where L+ is unit lower bidiagonal and U� is unit upper bidiagonal. Note that by the
discussion in Section 3, we have replaced T by LDLt. It may happen that neither D+ nor
D� reveals the rank. A twisted factorization, written as

LDLt � �̂I = NkDkN
t
k

is constructed as follows. Nk and Dk are formed by factoring the matrix from top down
and from bottom up meeting at row k. Nk takes rows 1 : k of L+ and rows k : n of U�.
Thus row k has three nonzero entries

(l+k�1 1 u�k )

and

Dk = diag(D+(1); : : : ;D+(k � 1); 
k;D�(k + 1); : : : ;D�(n)):

Clearly, there are n such twisted factorizations, one for each k = 1; : : : ; n. One such twisted
factor, with n = 6 and k = 3 is shown in Figure 1.

The only new entry is 
k and it is of great importance. There are several formulae for

k and we will give some of them in Fact 2.

Fact 1.


�1k = e
t
k(LDL

t � �̂I)�1ek:

Our twisted factorization will reveal the rank if 
k � � � �̂. Fact 1 implies that, in
cases of interest, there exists such a 
k (see Theorem 2 below). The goal is to �nd an
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2
6666664
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3
7777775

Figure 1: Twisted Triangular Factor Nk with n = 6, k = 3.

appropriate index k and we do so by computing 
k for every choice of k, 1 � k � n, and
then choosing an index which gives a minimal or nearly minimal value to j
kj. The surprise
is that this can be done for little extra work as shown in Fact 2 below. The case 
k = 1
for all k can occur but we are free to choose �̂ to avoid such situations, see also [9, Sec. 3.3].

Fact 2. In exact arithmetic,


k =

�
D+(k) +D�(k)� (dk�1l2k�1 + dk � �̂);

D+(k)� (dklk)
2=D�(k + 1):

The expression in parentheses in the �rst formula above is the (k; k) entry of LDLt � �̂I
(here dk = D(k; k) and lk�1 = L(k; k � 1)). More robust expressions are given in (16).

We present next the relation of 
k to the spectral factorization of LDLt � �̂I using an
eigenvector expansion. These results do not rely on the tridiagonal form.

Let LDLt = V �V t. Replace LDLt by V �V t in Fact 1 to �nd, for each k,

1


k
=
jvj(k)j2
�j � �̂

+
X
i6=j

jvi(k)j2
�i � �̂

; (7)

where � = �j is the eigenvalue closest to �̂ and its normalized eigenvector is vj . Theorem 2
shows that the twist index k for which jvj(k)j is large leads to a small value of 
k.
Theorem 2 Let 
k be as in (7), where �̂ approximates �j, and let �j be isolated enough,

i.e.,

j�j � �̂j
gap(�̂)

� 1

M
� 1

n� 1
;

where M > 1 and gap(�̂) = mini6=j j�i � �̂j. Then, for k such that vj(k) � 1=
p
n,

j
kj � j�j � �̂j
jvj(k)j2 �

M

M � 1
� nj�j � �̂j � M

M � 1
:

Proof. A proof is given in [9, Section 3.2]. 2

Next we show how to exploit the twisted factorizations to compute an accurate approxi-
mate eigenvector. Let z(k) be de�ned by (LDLt� �̂I)z(k) = ek
k where I = [e1;e2; : : : ; en]
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and z(k)(k) = 1. Theorem 3 shows that z(k) enjoys a small relative residual norm under
suitable conditions and serves as an excellent approximation to the eigenvector vj [15, 29].

Note that our approximate eigenvector z(k) is a carefully chosen column of (LDLt� �̂I)�1.

Theorem 3 Let 
k be as in (7), where �̂ approximates �j, �̂ 6= �j. Then, if vj(k) 6= 0, the
residual norm

j
kj
kz(k)k �

j�j � �̂j
jvj(k)j ;

and thus for at least one k,

j
kj
kz(k)k �

p
nj�j � �̂j:

Proof. A proof is given in [29, Section 5] and [9, Section 3.2], but we repeat it here for
the sake of completeness. Recall that LDLt = V�V t. Then

z
(k) = (LDLt � �̂I)�1ek
k;

) kz(k)k2 = j
kj2eTk V (�� �̂I)�2V T
ek;

= j
kj2
nX
i=1

jvi(k)j2
j�̂� �ij2

;

) j
kj
kz(k)k � j�j � �̂j

jvj(k)j ; 8k:

Noting that jvj(k)j � 1=
p
n for at least one k completes the proof. 2

However (�̂;z(k)) is not the best approximate eigenpair because �̂ is not the Rayleigh
quotient of z(k). By using the Rayleigh quotient we obtain a useful decrease in residual
norm.

Lemma 1 Let LDLt = T and (T � �̂I)z(k) = ek
k; z(k)(k) = 1. Then the Rayleigh

quotient � with respect to T � �̂I is

�(z(k)) = 
k=kz(k)k2;
and k(T � (�̂+ �)I)z(k)k=kz(k)k =


k
kz(k)k2

�
kz(k)k2 � 1

�1=2
:

Proof. Write z for z(k), 
 for 
k, and note that

z
t(T � �̂I)z = z

t
ek
 = 
; since z(k) = 1;

and

(T � (�̂+ �)I)z = ek
 � z�;

k(T � (�̂+ �)I)zk2 = 
2 + kzk2�2 � 2
�;

=

2

kzk2
�kzk2 � 1

�
: 2
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4.2 qd-like Recurrences

To �nd an individual eigenvector we need to know the L+D+L
t
+ and U�D�U t

� decomposi-
tions. Algorithm 4.1 given below implements the transformation

LDLt � �I = L+D+L
t
+: (8)

We call this the \stationary quotient-di�erence with shift"(stqds) transformation for his-
torical reasons. The term was �rst coined by Rutishauser for similar transformations that
formed the basis of his qd algorithm �rst developed in 1954 [34], [36] and [37]. Although (8)
is not identical to the stationary transformation given by Rutishauser, the di�erences are
not signi�cant enough to warrant inventing new terminology. The term `stationary' is used
for (8) since it represents an identity transformation when � = 0. Rutishauser used the
term `progressive' instead for the formation of U�D�U t

� from LDLt � �I or of L+D+L
t
+

from UDU t � �I.
In the rest of the paper, we will denote L+(i+ 1; i) by L+(i), U�(i; i+ 1) by U�(i) and

the ith diagonal entries of D+ and D� by D+(i) and D�(i) respectively.

Algorithm 4.1 (stqds)

D+(1) := d1 � �

for i = 1; n� 1

L+(i) := (dili)=D+(i) (9)

D+(i+ 1) := dil
2
i + di+1 � L+(i)dili � � (10)

end for

We now see how to eliminate some of the additions and subtractions from the above
algorithm. We introduce the intermediate variable

si+1 = D+(i+ 1)� di+1;

= dil
2
i � L+(i)dili � �; by (10)

= L+(i)li(D+(i) � di)� �; by (9)

= L+(i)lisi � �: (11)

Using this intermediate variable, we get the so-called di�erential form of the stationary
qd transformation (dstqds). This term was again coined by Rutishauser in the context of
similar transformations in [34], [36]. We will see later that the di�erential transformations
play a crucial role in proving the main result of the paper, Theorem 9.

Algorithm 4.2 (dstqds)-di�erential form of the stationary qd transformation

s1 := ��
for i = 1; n� 1

D+(i) := si + di

L+(i) := (dili)=D+(i)

si+1 := L+(i)lisi � �

end for

D+(n) := sn + dn
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In the next section we will show that the above di�erential algorithm has some nice
properties in the face of roundo� errors.

We also need to compute the transformation

LDLt � �I = U�D�U t
�:

which we call the \progressive quotient-di�erence with shift"(qds) transformation. The
following algorithm gives an obvious way to implement this transformation.

Algorithm 4.3 (qds)

U�(n) := 0

for i = n� 1; 1;�1
D�(i+ 1) := dil

2
i + di+1 � U�(i+ 1)di+1li+1 � � (12)

U�(i) := (dili)=D�(i+ 1) (13)

end for

D�(1) := d1 � U�(1)d1l1 � �

As in the stationary transformation, we introduce the intermediate variable

pi = D�(i)� di�1l2i�1; (14)

= di � U�(i)dili � �; by (12)

=
di

D�(i+ 1)
(D�(i+ 1)� dil

2
i )� �; by (13)

=
di

D�(i+ 1)
� pi+1 � �: (15)

Using this intermediate variable, we get the di�erential form of the progressive qd trans-
formation,

Algorithm 4.4 (dqds)-di�erential form of the progressive qd transformation

pn := dn � �

for i = n� 1; 1;�1
D�(i+ 1) := dil

2
i + pi+1

t := di=D�(i+ 1)

U�(i) := lit

pi := pi+1t� �

end for

D�(1) := p1

Note that we have denoted the intermediate variables by the symbols si and pi to stand
for stationary and progressive respectively.



11

We also need to �nd all the 
k's in order to choose the appropriate twisted factorization
for computing the eigenvector. Since (LDLt)k;k+1 = dklk, Fact 2 in Section 4.1 leads to


k = D+(k)� (dklk)
2

D�(k + 1)
;

= sk + dk � (dklk)
2

D�(k + 1)
; by (Algorithm 4:2)

= sk +
dk

D�(k + 1)

�
D�(k + 1)� dkl

2
k

�
:

Substituting from (14), (15) and (11) in the above equation, we can express 
k by any of
the following formulae:


k =

8<
:

sk +
dk

D�(k+1)
� pk+1;

sk + pk + �;
pk + L+(k � 1)lk�1sk�1:

(16)

In the next section, we will see that the top and bottom formulae in (16) are `better'
for computational purposes. To reveal the near-singularity of LDLT � �I, we choose r as
the index where j
kj is minimum. The twisted factorization at position r is given by

LDLt � �I = NrDrN
t
r ;

where Dr = diag(D+(1); : : : ;D+(r � 1); 
r ;D�(r + 1); : : : ;D�(n)) and Nr is the corre-
sponding twisted factor, see the beginning of Section 4.1. It may be formed by the following
\di�erential twisted quotient-di�erence with shift"(dtwqds) transformation which is just
the appropriate blend of Algorithms 4.2 and 4.4.

Algorithm 4.5 (dtwqds)

s1 := ��
for i = 1; r � 1

D+(i) := si + di

L+(i) := (dili)=D+(i)

si+1 := L+(i)lisi � �

end for

pn := dn � �

for i = n� 1; r;�1
D�(i+ 1) := dil

2
i + pi+1

t := di=D�(i+ 1)

U�(i) := lit

pi := pi+1t� �

end for


r := sr +
dr

D�(r + 1)
� pr+1
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Note: In cases where we have already computed the stationary and progressive transforma-
tions, i.e., we have computed L+, D+, U� and D�, the only additional work needed for

dtwqds is one multiplication and one addition to compute 
r.
In the next section, we exhibit desirable properties of the di�erential forms of our qd-

like transformations in the face of roundo� errors. Before we do so, we emphasize that the
particular qd-like transformations presented in this section are new. Similar qd recurrences
have been studied by Rutishauser [34], [36] and [37], Henrici [20], [21, Chapter 7], Fernando
and Parlett [13], and Yao Yang [41].

4.3 Roundo� Error Analysis

First, we introduce our model of arithmetic. We assume that the 
oating point result of a
basic arithmetic operation Æ satis�es

fl(x Æ y) = (x Æ y)(1 + �) = (x Æ y)=(1 + Æ)

where � and Æ depend on x, y, Æ, and the arithmetic unit but satisfy

j�j < "; jÆj < "

for a given " that depends only on the arithmetic unit. We shall choose freely the form (�
or Æ) that suits the analysis. As usual, we will ignore O("2) terms in our analyses. We also
adopt the convention of denoting the computed value of x by x̂.

Ideally, we would like to show that the di�erential qd transformations introduced in
Section 4.2 produce an output that is exact for data that is very close to the input matrix.
Since we desire relative accuracy, we would like this backward error to be relative. However,
our algorithms do not admit such a pure backward analysis (see [41] for a backward analysis
where the backward errors are absolute but not relative). Nevertheless, we will give a hybrid
interpretation involving both backward and forward relative errors.

The best way to understand our �rst result is by studying Figure 2. Following Rutishauser,
we merge elements of L and D into a single array,

Z := fd1; l1; d2; l2; : : : ; dn�1; ln�1; dng:

Likewise, the array
!

Z is made up of elements
!

di and
!

l i, Ẑ+ contains elements D̂+(i), L̂+(i)
and so on. The acronym ulp in Figure 2 stands for units in the last place held. It is the
natural way to refer to relative di�erences between numbers. When a result is correctly
rounded the error is not more than half an ulp.

Notational Guide. In all results of this section, numbers in the computer are represented
by letters without any overbar, such as Z, or by \hatted" symbols, such as Ẑ+. For
example in Figure 2, Z represents the input data while Ẑ+ represents the output data
obtained by executing the dstqds algorithm in �nite precision. Intermediate arrays,

such as
!

Z and
_

Z+, are introduced for our analysis but are typically unrepresentable
in a computer's limited precision. Note that we have chosen the symbols! and_ in
Figure 2 to indicate a process that takes rows and columns in increasing order, i.e.,
from \left to right" and \top to bottom". Later, in Figure 3 we use  and ^ to
indicate a \right to left" and \bottom to top" process.
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-

6

-

?
!

Z
_

Z+

Z Ẑ+

dstqds

exact

dstqds

computed

change each

di by 1 ulp,

li by 3 ulps.

change each
_

D+ (i) by 2 ulps,
_

L+ (i) by 3 ulps.

Figure 2: E�ects of roundo� | dstqds transformation

Figure 2 states that the computed outputs of the dstqds transformation (see Algo-

rithm 4.2), D̂+(i) and L̂+(i) are small relative perturbations of the quantities
_

D+ (i) and
_

L+ (i) which in turn are the results of an EXACT dstqds transformation applied to the per-

turbed matrix represented by
!

Z. The elements of
!

Z are obtained by small relative changes
in the inputs L and D. Analogous results hold for the dqds and dtwqds transformations
(see Algorithms 4.4 and 4.5). As we mentioned above, this is not a pure backward error
analysis. We have put small perturbations not only on the input but also on the output in
order to obtain an exact dstqds transform. This property is called mixed stability in [3] and
[6] but note that our perturbations are relative ones. A trustful reader may wish to skip
the proofs but the very special `interpretation' of the roundo� errors is the rock on which
our results are founded.

Theorem 4 Let the dstqds transformation be computed as in Algorithm 4.2. In the absence

of over
ow and under
ow, the diagram in Figure 2 commutes and
!

di (
!

l i) di�ers from di

(li) by 1 (3) ulps, while D̂+(i) (L̂+(i)) di�ers from
_

D+ (i) (
_

L+ (i)) by 2 (3) ulps.

Proof. We write down the exact equations satis�ed by the computed quantities.

D̂+(i) = (ŝi + di)=(1 + "+);

L̂+(i) = di li(1 + "�)(1 + "=)=D̂+(i) =
di li(1 + "�)(1 + "=)(1 + "+)

ŝi + di
;

and ŝi+1 =
L̂+(i) liŝi(1 + "Æ)(1 + "��)� �

1 + "i+1
:

In the above, all "'s depend on i but we have chosen to single out the one that accounts for
the subtraction as it is the only one where the dependence on i must be made explicit. In
more detail the last relation is

(1 + "i+1)ŝi+1 =
di l

2
i ŝi

ŝi + di
(1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)� �:

The trick is to de�ne
!

di and
!

l i so that the exact dstqds relation

!
s i+1 =

!

di
!

l
2

i
!
s i

!
s i +

!

di
� � (17)
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-

6

-

?
 

Z
^

Z�

Z Ẑ�

dqds

exact

dqds

computed

change each

di by 3 ulps,

li by 3 ulps.

change each
^

D� (i) by 2 ulps,
^

U� (i) by 4 ulps.

Figure 3: E�ects of roundo� | dqds transformation

is satis�ed. This may be achieved by setting

!

di = di(1 + "i);
!
s i = ŝi(1 + "i); (18)

!

l i = li

s
(1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)

1 + "i
:

In order to satisfy the exact mathematical relations of dstqds,

_

D+ (i) =
!
s i +

!

di; (19)

_

L+ (i) =

!

di
!

l i
!
s i +

!

di
; (20)

we set

_

D+ (i) = D̂+(i)(1 + "+)(1 + "i);

_

L+ (i) = L̂+(i)

s
(1 + "Æ)(1 + "��)

(1 + "�)(1 + "=)(1 + "+)(1 + "i)
(21)

and the result holds. 2

A similar result holds for the dqds transformation.

Theorem 5 Let the dqds transformation be computed as in Algorithm 4.4. In the absence

of over
ow and under
ow, the diagram in Figure 3 commutes and
 

di (
 

l i) di�ers from di

(li) by 3 (3) ulps, while D̂�(i) (Û�(i)) di�ers from
^

D� (i) (
^

U� (i)) by 2 (4) ulps.
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Proof. The proof is similar to that of Theorem 4. The computed quantities satisfy

D̂�(i+ 1) = (di l
2
i (1 + "�)(1 + "��) + p̂i+1)=(1 + "+); (22)

t̂ = di(1 + "=)=D̂�(i+ 1);

Û�(i) = lit̂(1 + "Æ) =
di li(1 + "=)(1 + "Æ)(1 + "+)

di l
2
i (1 + "�)(1 + "��) + p̂i+1

;

p̂i =
(di=D̂�(i+ 1))p̂i+1(1 + "=)(1 + "ÆÆ)� �

1 + "i
;

) (1 + "i)p̂i =
di p̂i+1

di l
2
i (1 + "�)(1 + "��) + p̂i+1

(1 + "=)(1 + "ÆÆ)(1 + "+)� �:

Note that the above "'s are di�erent from the ones in the proof of the earlier Theorem 4.
As in Theorem 4, the trick is to satisfy the exact relation,

 
p i =

 

di
 
p i+1

 

di
 

l
2

i +
 
pi+1

� �; (23)

which is achieved by setting

 

di = di(1 + "=)(1 + "ÆÆ)(1 + "+);
 
pi = p̂i(1 + "i); (24)

and
 

l i = li

s
(1 + "�)(1 + "��)(1 + "i+1)

(1 + "=)(1 + "ÆÆ)(1 + "+)
; (25)

so that
 

di
 

l
2

i = di l
2
i (1 + "�)(1 + "��)(1 + "i+1):

The other dqds relations,

^

D� (i+ 1) =
 

di
 

l
2

i +
 
p i+1; (26)

^

U� (i) =

 

d i
 

l i
 

di
 

l
2

i +
 
pi+1

; (27)

may be satis�ed by setting

^

D� (i+ 1) = D̂�(i+ 1)(1 + "+)(1 + "i+1);

^

U� (i) =
Û�(i)
1 + "Æ

s
(1 + "�)(1 + "��)(1 + "ÆÆ)
(1 + "=)(1 + "+)(1 + "i+1)

: (28)

2

By combining parts of the analyses for the dstqds and dqds transformations, we can
also exhibit a similar result for the twisted factorization computed by Algorithm 4.5. In
Figure 4, the various Z arrays represent corresponding twisted factors that may be obtained
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-

6

-

?

�Z ~Zk

Z Ẑk

dtwqds

exact

dtwqds

computed

change each

di by 1 ulp, 1 � i < k,

li by 3 ulps, 1 � i < k,

dk by 4 ulps, lk by 3 1
2
ulps,

di by 3 ulps, k < i � n,

li by 3 ulps, k < i < n.

change each
_

D+ (i) by 2 ulps, 1 � i < k,
_

L+ (i) by 3 ulps, 1 � i < k.

~
k by 2 ulps, ~U
�

(k) by 4 1
2
ulps,

^

D
�

(i) by 2 ulps, k < i � n,
^

U
�

(i) by 4 ulps, k < i < n.

Figure 4: E�ects of roundo� | dtwqds transformation

by \concatenating" the stationary and progressive factors. In particular, for any twist
position k,

Ẑk := fD̂+(1); L̂+(1); : : : ; L̂+(k � 1); 
̂k; Û�(k); D̂�(k + 1); : : : ; Û�(n� 1); D̂�(n)g;
~Zk := f_D+ (1);

_

L+ (1); : : : ;
_

L+ (k � 1); ~
k; ~U�(k);
^

D� (k + 1); : : : ;
^

U� (n� 1);
^

D� (n)g;

while

�Z := f!d1;
!

l 1; : : : ;
!

l k�1; �dk; �lk; : : : ;
 

l n�1;
 

dng:

Ẑk and ~Zk represent the twisted factorizations

N̂kD̂kN̂
t
k and ~Nk

~Dk
~N t
k

respectively (note that � is a concatenation of the symbols_ and ^, while � may also be
derived by concatenating  and !).

Theorem 6 Let the dtwqds transformation be computed as in Algorithm 4.5. In the absence

of over
ow and under
ow, the diagram in Figure 4 commutes and
!

di (
!

l i) di�ers from di

(li) by 1 (3) ulps for 1 � i < k, �dk (�lk) di�ers from dk (lk) by 4 (312 ) ulps, while
 

di (
 

l i)

di�ers from di (li) by 3 (3) ulps for k < i � n. On the output side, D̂+(i) (L̂+(i)) di�ers

from
_

D+ (i) (
_

L+ (i)) by 2 (3) ulps for 1 � i < k, 
̂k ( ~U�(k)) di�ers from ~
k ( ~U�(k)) by 2

(412 ) ulps, while D̂�(i) (Û�(i)) di�ers from
^

D� (i) (
^

U� (i)) by 2 (4) ulps for k < i � n.

Proof. The crucial observation is that for the exact stationary transformation (i. e., (17),
(19) and (20)) to be satis�ed for 1 � i � k � 1, roundo� errors need to be put only on
d1; d2; : : : ; dk�1 and l1; l2; : : : ; lk�1. Similarly for the progressive transformation (i. e., (23),
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(26) and (27)) to hold for k+1 � i < n, roundo� errors need to be put only on the bottom
part of the matrix, i.e., on dk+1; : : : ; dn and lk+1; : : : ; ln�1.

Next we turn to the entries associated with the twist position k. By the top formula
in (16),


̂k =

 
ŝk +

dk

D̂�(k + 1)
p̂k+1(1 + "�= )(1 + "�ÆÆ)

!�
(1 + "k):

Note that in the above, we have put the superscript � on some "'s to indicate that they are
identical to the corresponding "'s in the proof of Theorem 5. By (18) and (22),

(1 + "k)
̂k =

!
sk

1 + "+k
+
p̂k+1 � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)
dk l

2
k(1 + "�� )(1 + "���) + p̂k+1

;

) (1 + "k)(1 + "+k )
̂k =
!
sk +

p̂k+1(1 + "�k+1) � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k )

dk l
2
k(1 + "�� )(1 + "���)(1 + "�k+1) + p̂k+1(1 + "�k+1)

:

Note that we are free to attribute roundo� errors to dk and lk in order to preserve exact
mathematical relations at the twist position k. In particular, by setting

~
k = 
̂k(1 + "k)(1 + "+k );

�dk = dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k );

�lk = lk

s
(1 + "�� )(1 + "���)(1 + "�k+1)

(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k )
;

and recalling that
 
pk+1= p̂k+1(1 + "�k+1) (see (24)), the following exact relation holds,

~
k =
!
sk +

�dk
 
pk+1

�dk �l
2
k+

 
pk+1

:

In addition, the exact relation

~U�(k) =
�dk �lk

�dk �l
2
k+

 
pk+1

holds if we set

~U�(k) =
Û�(k)
1 + "�Æ

s
(1 + "�� )(1 + "���)(1 + "�ÆÆ)(1 + "+k )

(1 + "�= )(1 + "�k+1)(1 + "�+)
; (29)

where "�Æ is identical to the "Æ of (28). Note that since �dk �l
2
k =

 

dk
 

l
2

k the (k+1)-st diagonal

element in ~Zk remains
^

D� (k + 1) as:

�dk �l
2
k+

 
pk+1 =

 

dk
 

l
2

k +
 
pk+1 =

^

D� (k + 1); from (26): 2

Note: A similar result may be obtained if 
k is computed by the last formula in (16).
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5 Perturbations of Products of Bidiagonals

This section studies the e�ect of small relative changes in the nontrivial entries of L and
D on the eigenvalues and eigenvectors of LDLt. However LDLt should be thought of as
the most familiar of the n twisted factorizations and the results below extend, with small
modi�cations, to any twisted factorization.

5.1 Multiplicative Form

For the sake of completeness, we present the following well-known lemma and its proof.

Lemma 2 Let L be a unit bidiagonal matrix with no zero o�-diagonal entries. Independent

relative perturbations in the o�-diagonals may be represented by the two-sided scaling

E�1LE

where E = diag(e1; : : : ; en) is a diagonal scaling matrix unique to within a constant multiple.

Proof. Let Lij�ij represent the perturbation of Lij. The equations to be solved are

Li+1;iei
ei+1

= Li+1;i�i+1;i; 1 � i < n:

Letting en = 1 we get en�1 = �n;n�1. Decreasing the index i further, we get

ei = ei+1 � �i+1;i =
n�1Y
j=i

�j+1;j i = n� 1; n� 2; : : : 1: 2

Independent relative perturbations to nonzero entries of D are directly represented by
a diagonal scaling matrix that we choose to write as F 2. Thus independent relative pertur-
bations to the non-trivial entries of L and D lead to the perturbed matrix

�T = E�1LEFDFELtE�1 (30)

5.2 Perturbation Bounds

Let (�;u) be an eigenpair of LDLt, � 6= 0, kuk = 1. We may write �T in (30) in standard
multiplicative form as

�T = GtLDLtG; (31)

where G := L�tFELtE�1 (32)

is an upper triangular matrix sometimes close to I. There is an eigenpair (��; �u) of �T
associated with (�;u) and we want to investigate the closeness of � to �� and u to �u. We
�rst look at the published bounds, in terms of G, on j�� ��j and j sin\(u; �u)j. For our case
of a single eigenvector, not a subspace, the results of Ipsen and Eisenstat [11] and Ren-Cang
Li [24] are extremely close to each other. Since Li chose to keep u explicit in his bounds we
use a slight variant of the bound (3.5) from [24]:
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Theorem 7 (Variant of Theorem 3.1 in [24]) There is an eigenpair (��; �u) of �T , with
�� 6= 0, such that

j sin\(u; �u)j � k(I �G�1)uk+ k(G
t �G�1)uk
relgap(�)

(33)

where

relgap(�) :=
minfj�� ��j : �� 6= ��; det[ �T � ��I] = 0g

j�j :

A bound on j�� ��j=j�j comes from a residual norm by standard techniques. Try (G�1u; �)
as an approximate eigenpair of �T ;

�r :=
�TG�1u�G�1u�
kG�1uk

=
(Gt

u�G�1u)�
kG�1uk ; by (31):

By Theorem 1,

j�� ��j � k�rk =
kGt

u�G�1uk j�j
kG�1uk : (34)

Note that (34) and (33) yield uniform relative condition numbers for all the eigenvalues and
eigenvectors respectively since

j�� ��j
j�j � k(GtG� I)G�1uk

kG�1uk � kGtG� Ik; (35)

and j sin\(u; �u)j � kI �G�1k+ kG
t �G�1k

relgap(�)
: (36)

Writing E = I +�1, E
�1 = I +�2, EF = I +�3 and (EF )�1 = I +�4, it can be shown

that

kI �G�1k � k�1k+ cond(L)k�4k(1 + k�1k);
kGt �G�1k � k�1k+ k�2k+ cond(L) fk�3k(1 + k�2k) + k�4k(1 + k�1k)g ;

and kGtG� Ik � k�2k(2 + k�2k) + cond(L)k�3k(1 + k�2k)2(2 + cond(L)k�3k):

Thus, after substituting the above values in (35) and (36), we can de�ne

relcond(�) := 1 + cond(L);

and relcond(u) := (1 + cond(L))

�
1 +

1

relgap(�)

�

for all eigenpairs (�;u) of LDLt. Hence when L is well-conditioned, all eigenpairs of LDLt

are \relatively robust".



20

However, we have encountered many cases where L is ill-conditioned, and some of the
eigenpairs of LDLT , often its small eigenvalues and corresponding eigenvectors, are deter-
mined to high relative accuracy. To get bounds that make a distinction between di�erent
eigenpairs we need to retain the vector u in the bounds (33) and (34).

Thus we manipulate (33) into a revealing form using (32). Write L = I+
o
L and exploit

the bidiagonal form of L to pass the diagonal matrix EF to the other side of L. From
Lemma 2, E = diag(e1; : : : ; en) and F = diag(f1; : : : ; fn) satisfy

en = 1; ej = (1 + �j)ej+1; 1 � j < n;

fj =
p
1 + "j; 8 j:

It may be veri�ed that

LEF = EF (L+H1

o
L) (37)

where

H1 = diag

�
0; (1 + �1)

f1
f2
� 1; : : : ; (1 + �n�1)

fn�1
fn
� 1

�
:

Hence, to �rst order,

kH1k � h := max
i
j�ij+ kF 2 � Ik: (38)

Note that in contrast to the bound on E there is no factor of n in h. In Section 7 we
shall give speci�c values to maxi j�ij and maxj j"j j, the relative changes in the li and dj
respectively. Use (37) to �nd that

Gt = E�1LEFL�1

= E�1EF (L+H1

o
L)L

�1

= F (I +H1

o
L L�1):

In order to keep our bound (49) as simple as possible we derive an expression, in (40), for

G�1 that avoids the inverse of I +H1

o
L L�1. As in (37), we can write

(EF )�1Lt = (Lt+
o
L
t
H2)(EF )

�1 (39)

where

H2 = diag

�
0;

1

1 + �1

f2
f1
� 1; : : : ;

1

1 + �n�1

fn
fn�1

� 1

�
;

with kH2k � h, to �rst order. Hence, by (39),

G�1 = EL�t(EF )�1Lt = (I +E(
o
L L�1)tE�1H2)F

�1: (40)
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Letting P1 = H1

o
L L�1 and P2 = E(

o
L L�1)tE�1H2, we can write

Gt = F (I + P1); and G�1 = (I + P2)F
�1: (41)

Given Gt and G�1 in the above form,

k(Gt �G�1)uk = k(F � F�1)u+ (FP1 � P2F
�1)uk

� kF � F�1k+ hkFkk o
L L�1uk+ hkEkkE�1kkF�1kkj oL L�1jtjujk;

� hkEkkE�1kkF�1k
�
1 + k o

L L�1uk+ kj oL L�1jtjujk
�
; (42)

since kF � F�1k � kF 2 � Ik kF�1k � h kF�1k, by (38). Note that jM j denotes the matrix
with entries jmij j. In order to derive relcond(�) from (34), we need to bound kG�1uk from
below. From (41),

FG�1u = (I + P t
1)
�1
u;

) kG�1uk � k(I + P t
1)
�1
uk

kFk : (43)

Writing u = (I + P t
1)(I + P t

1)
�1
u = (I + P t

1)
�1
u+ P t

1(I + P t
1)
�1
u, we get

k(I + P t
1)
�1
uk � 1

1 + kP1k : (44)

By (43) and (44), and using P1 = H1

o
L L�1,

kG�1uk � 1

kFk(1 + hk o
L L�1k)

: (45)

Hence, by (34), (42) and (45),

j�� ��j
j�j � hkEkkE�1kkF�1k

kFk(1 + hk o
L L�1k)

�
1 + k o

L L�1uk+ kj oL L�1jtjujk
�
; (46)

whence we de�ne (assuming that hk o
L L�1k � 1)

relcond(�) := 1 + k o
L L�1uk+ kj oL L�1jtjujk: (47)

Furthermore,

k(I �G�1)uk = k(I � F�1)u� P2F
�1
uk;

� kI � F�1k+ hkEkkE�1k kF�1k kj oL L�1jtjujk;
� hkEkkE�1k kF�1k

�
1 + kj oL L�1jtjujk

�
; (48)

where the last inequality above holds since F is diagonal, thus implying

kI � F�1k � kF�1k kF � Ik � kF�1k kF 2 � Ik � h kF�1k; by (38):
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By (33), (42) and (48),

j sin\(u; �u)j � hkEkkE�1k kF�1k
�
1 + kj oL L�1jtjujk

+
1 + k o

L L�1uk+ kj oL L�1jtjujk
relgap(�)

!
: (49)

The above bound persuades us to de�ne

relcond(u) :=
�
1 + k o

L L�1uk+ kj oL L�1jtjuj k
��

1 +
1

relgap(�)

�
: (50)

Thus, from (46), (47) and (49), (50) we have

j�� ��j
j�j � hkEkkE�1kkF�1k

kFk relcond(�);

j sin\(u; �u)j � hkEkkE�1kkF�1k relcond(u); (51)

where h is de�ned in (38).

In cases where there is no element growth when factoring T into LDLt, say k o
L k � 0:96,

then

k o
L L�1k � k o

L kkL�1k;

� k o
L k

1� k o
L k
� 24; (52)

and, from (50),

relcond(u) � 49

�
1 +

1

relgap(�)

�

for all eigenvectors of LDLt.
This result shows the importance of not automatically using LDLt but choosing the

twisted factorization NDN t with minimal k o
N k. An extreme example is the following

matrix, with � � 1:
diag(T ) = diag(1; 1 + �2; : : : ; 1 + �2); Ti;i+1 = � for all i.

The factorization LD+L
t, with twist at n, has D+ = I,

o
L= � diag([1; : : : ; 1];�1)

whereas the bottom-up factorization, UD�U t, with twist at 1, has
o
U� ��1 diag([1; : : : ; 1];+1)

and D� � diag(�2(1�n); �2; : : : ; �2+1). The omitted entries in D� increase slowly from �2

to �2 + 1.

So, as in (52), k o
U U�1k � ��1=(1� ��1) = (� � 1)�1. For this factorization,

relcond(u) =
�
k1+ o

U U�1uk+ k j o
U U�1jt juj k

��
1 +

1

relgap(�)

�

�
�
1 +

2

� � 1

��
1 +

1

relgap(�)

�
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for all u, whereas relcond(u) for LD+L
t is much larger.

The relative condition numbers given in (50) and (47) are speci�c to each eigenvalue,
and we use them in the proof of Theorem 9 in Section 7. However, as we discuss in the next
section, these relconds are not entirely satisfactory.

5.3 Element Growth

The above analysis suggests that element growth (k o
L L�1k � 1) is dangerous. However, we

have found that the presence of element growth does not prevent some of the eigenvectors
of LDLt, usually those with small eigenvalues, from being relatively robust. The relative
robustness of (�;u) seems to be governed by Dhillon's relative condition number

�rel(�) :=
u
tLjDjLt

u

j�j =
u
tLjDjLt

u

jutLDLtuj ; (53)

introduced in [9], and in many cases the relcond(u) given in (50) is too pessimistic. Unfortu-
nately, as yet we have not been able to prove a guaranteed bound in terms of (53). We have
estimates that are correct to �rst order but no bounds. The small relative perturbations
relevant to our algorithm, i.e., E and F , are not independent and it may be necessary to use
this property. In [31] one of us connected the study of LDLt to an inde�nite (or hyperbolic)
singular value decomposition. We report on these results but will not give proofs. Write
D = �
�, 
 = sign(D), and � = �2sign(�). Then if LDLt

u = u�, kuk = 1, we write

�Lt
u = p�;

L�
p = u�sign(�);

p
t
p = sign(�):

The new quantity p is called the left 
-singular vector of �Lt. It is not hard to see that
�rel(�) de�ned above in (53) equals kpk2. There is an expression for the `relative' derivative
of � with respect to each of the entries of �Lt, namely the diagonal elements Æi =

p
jdij,

and o�-diagonals bi := liÆi. Theorem 2 of [31] shows that for � > 0 and !i = 
ii,

�(k) :=
Æk
�
� @�
@Æk

=

kX
i=1

u(i)2 � sign(�)

k�1X
j=1

!jp(j)
2

�(k) :=
bk
�
� @�
@bk

= sign(�)

kX
i=1

!ip(i)
2 �

kX
j=1

u(j)2:

It was shown that j�(k)j � kpk2 and j�(k)j � kpk2. The total `relative derivative' of � is
bounded by (2n � 1)kpk2. When 
 = I then kpk = 1 and we recover the known (almost)
attainable bound in [7].

Our �rst order perturbation analysis (derivation omitted) reveals the dominant role of
p in determining relative robustness. Let �" := maxi;jfj�ij; j"j jg where li �! li(1 + �i),
di �! di(1 + "i) and T = LDLt. Then for (�;u) we can show that

jÆ�j � j�j
 
2

n�1X
k=1

j�(k)j + kpk2
!
(�"+ �"2) + u

t
o
L jDj

o
L
t

u �"2 +O(kÆTk2): (54)
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Recall that Æ� = �� �� = u
tÆTu+O(kÆTk2).

In order to get a bound on tan\(u; �u) we must refer to all eigenpairs and put subscripts
on �;u;p and on the �'s, denoting by �j(k) the �(k) for the triplet (�j;uj;pj). In addition
we must de�ne the quantity

	ij :=

 
n�1X
k=1

j�i(k)j
����pj(k)pi(k)

����+ j�j(k)j
���� pi(k)pj(k)

����
!
+ jpijt jpjj:

Then, for the jth eigenvector uj,

j tan\(uj ; �uj)j �
2
4X
i6=j

 
	ij

pj�i�j j
j�i � �jj

!2
3
5
1=2

(�"+ �"2)

+ �"2

2
4X
i6=j

 pj�i�j j
j�i � �j j

n�1X
k=1

�����i(k)pi(k)

�j(k)

pj(k)

����
!2
3
5
1=2

+O(kÆTk2): (55)

The leading term in (55) is complicated. It is well approximated, for very small �j , by

	jj

2
4X
i6=j

j�i�jj
(�i � �j)2

3
5
1=2

�"

and 	jj < (2n� 1)kpjk2.
In the cases we have examined, the quantities in (54) and (55) have been realistic and

much smaller than our relcond(u) in Section 5.2. The second term in (54) is not, in general,
proportional to � and we hope to show that it is cancelled by the O(kÆTk)2 term in the
expansion of Æ� as a power series. We hope that future work will show that the �rst
order terms do, in fact, dominate the higher order ones and then we may incorporate a
more realistic de�nition of relcond(u), namely the leading term in (55), into the bounds of
Theorem 9.

We emphasize that relative perturbation theory is not the main concern of this paper.
More analysis of relative condition numbers is given in [30, 32]. For the rest of this paper
we assume that all relconds are bounded by a modest constant like 10.

6 Algorithm for an Eigenvector

The method presented below is close in spirit to the one presented by Godunov and his co-
workers in the USSR in 1985, see [16] and [17]. They formulated the idea of taking the top
entries in the vector from one sequence and the bottom entries from another one and then
choosing the right index at which to join the two pieces into an accurate eigenvector. Inde-
pendently Fernando discovered a similar idea in terms of running the well known two-term
recurrence for D+, both forwards from D+(1) and backwards from D+(n) = 0, and then
joining the two sequences where they are closest. In [29], Parlett and Dhillon formulated
and proved Theorems 2 and 3 in Section 4 which show that at least one twisted factorization
must reveal the size of the smallest eigenvalue, thus yielding an accurate eigenvector.
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However neither Godunov nor Fernando reap the full reward for choosing the best place
to join two pieces.

The reasons are quite di�erent in the two cases. Godunov et. al. carefully select
approximate eigenvalues on opposite sides of the true eigenvalue for the two sequences that
provide the eigenvector entries. However they need directed rounding in order to establish
their bounds in �nite precision arithmetic. Directed rounding is available in most modern
computer hardware since it is part of the IEEE 
oating point standard[1]; however, modern
programming languages do not make it available to the user. Fernando does not consider
the e�ects of roundo� error but, as with Godunov et. al., computes the two factorizations
from a translate of the original matrix T that may not de�ne its eigenvalues to high relative
accuracy. The 3 � 3 example in Section 3 illustrates the problem. The algorithm given by
Fernando in Section 5 of [15], even with highly accurate eigenvalue approximations, yields
eigenvectors with error exceeding

p
".

Thus we use the LDLt representation instead of the diagonal and o�-diagonal elements
of T . Even use of a good representation is not enough to ensure that the residual norm
k(LDLt� �̂I)zk = O("j�� �̂j) for the computed z. For example, if Rutishauser's stationary
qd algorithm were used to compute L+ and D+ satisfying LDLt� �̂I = L+D+L

t
+ we could

not prove our main result, Theorem 9 in the next section. That result requires a second
innovation, beyond the use of LDLt, namely use of the di�erential qd algorithms introduced
in Section 4.2 to compute the entries of the twisted factors. The commutative diagrams
in Section 4.3 are not valid for Rutishauser's implementation. Hence the LDLT represen-
tation and di�erential qd transformations are crucial to our goal of computing orthogonal
eigenvectors when relative gaps are large. We now give details of our algorithm.

Algorithm Getvec

Assume that �̂ is much closer to one eigenvalue of LDLt than to any other.

I. Factor LDLt � �̂I = L+D+L
t
+ by the dstqds transform (Algorithm 4.2).

II. Factor LDLt � �̂I = U�D�U t
� by the dqds transform (Algorithm 4.4).

III. Compute 
k, k = 1; : : : ; n by the top formula of (16). Pick an r such that j
rj =
mink j
kj. Then NrDrN

t
r = LDLt � �̂I is the desired twisted factorization, see Sec-

tion 4.1.

IV. Form the approximate eigenvector z by solving N t
rz = er which is equivalent to

solving NrDrN
t
rz = er
r via

z(r) = 1;

For i = r � 1; : : : ; 1; z(i) =

� �L+(i)z(i + 1); z(i+ 1) 6= 0;
�(di+1li+1=dili)z(i+ 2); otherwise:

For j = r; : : : ; n� 1; z(j + 1) =

� �U�(j)z(j); z(j) 6= 0;
�(dj�1lj�1=djlj)z(j � 1); otherwise:

V. If wanted, compute znrm = kzk and v = z=znrm.
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Remark 1 In Step IV above, a zero entry in an eigenvector requires special handling. For
example, when z(i+ 1) = 0, i < r, we use the (i+ 1)-st equation of the tridiagonal system
(LDLT � �̂I)z = er
r to connect z(i) with z(i + 2). The case when z(j) = 0, j > r, is
handled similarly.

Remark 2 It is possible to avoid some computation in Steps I and II by using Gerschgorin
disks. In particular, it is easy to show that if the eigenvalue is not contained in the i-th
Gerschgorin disk, then r 6= i. See [9, Sec. 3.4.1] for details.

Remark 3 The above algorithm can also be used to improve the accuracy of �̂. By
Lemma 1, 
r=kzk2 is the Rayleigh Quotient correction to �̂ and so it can double the number
of correct digits when �̂ is not quite acceptable.

Remark 4 The vector z sometimes has small numerical support. During the computation
of z this situation can be detected as follows. We continue the recurrence for z until 2
consecutive entries fall below " in magnitude. In many cases all further entries of z can be
set to 0. Suppose jz(i�1)j < " and jz(i)j < ", i < r. If the elements z(j), j < i�1, are set to
zero then equations i�2 and i�1 of (LDLt� �̂I)z = er
r are no longer satis�ed and result
in a residual that equals �i�2(z(i�1)ei�2� z(i�2)ei�1), where �i�2 = D+(i�2)L+(i�2).
For the computed vector z to be accurate (see Theorem 1), we must ensure that

jD+(i� 2)L+(i� 2)j (jz(i� 1)j + jz(i � 2)j) < " � gap(�̂);

where z(i � 2) = �L+(i � 2)z(i � 1). Similarly when i > r and both z(i � 1) and z(i) dip
below " we set the elements z(j), j > i, to 0 if

jD�(i)U�(i� 1)j (jz(i)j + jz(i+ 1)j) < " � gap(�̂);

where z(i + 1) = �U�(i)z(i). Thus all our computed vectors have a �rst and last nonzero
component and we call the index set f�rst:lastg the numerical support of z and so

jsupp(z)j = last� first+ 1: (56)

Note that in exact arithmetic the �rst and last entries of an eigenvector of an unreduced
tridiagonal matrix are nonzero but in practice they are often extremely small, and so the
above situation is not so uncommon.

There is more to be said about the support. Before z is computed all the f
ig are
computed in order to �nd the smallest among them. By Lemma 11 in [29], as �̂! �j ,


r

i
! vj(i)

2

vj(r)2
; (57)

where vj is �j 's eigenvector. This suggests that if 
i > 
r="
2 then z(i) may be neglected and

it might be argued that this gives us a better way to approximate supp(z) at the time r is
chosen. Unfortunately, machine precision is sometimes not suÆcient to put �̂ close enough
to �j for (57) to hold for indices where jvj(i)j �

p
". However, when j�̂� �j j = O("j�̂j) the

above strategy almost always gives us the correct list of indices with jvj(i)j �
p
" (see (7)).
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Remark 5 It is not essential that j
rj be minimal. In principle one keeps a list of indices
i such that j
minj < j
ij < 2j
minj, and can choose r to be any of these indices.

Remark 6 Suppose �̂ approximates �j . In the next section we will show that in the
presence of roundo� errors, the computed vector z satis�es

j sin\(z;vj)j = O

 
nj�j � �̂j
gap(�̂)

!
= O

 
n"j�̂j
gap(�̂)

!
= O

 
n"

relgap(�̂)

!
;

and thus z is an accurate eigenvector when relgap(�̂) = O(1). A natural question to ask
is: can such an accurate approximation be computed when the relative gap is smaller, say,
relgap(�̂) =

p
"? A tempting solution is to extend Algorithm Getvec to do a step of inverse

iteration: (LDLT � �̂I)y = z ) (LDLT � �̂I)2y = 
rer. The tempting argument is that
by doing so,

j sin\(y;vj)j = O

 
nj�j � �̂j2
gap(�̂)2

!
= O

 
n"2

relgap(�̂)2

!
;

since the eigenvalues of (LDLT��̂I)2 are just (�i��̂)2. When relgap(�̂) =
p
", this strategy

seems to yield an accurate eigenvector y.
Unfortunately this simple solution does not work. In our experience the extra step of

inverse iteration increases the accuracy by a factor of .1 or .01 and not by a factor of
p
" as

the above reasoning indicates. As the analysis of the next section will show, this failure is
due to the presence of roundo� errors and the relative perturbation theory of Section 5.

The case of relgap(�̂) � 1=n requires radically di�erent strategies. One strategy is to
take a new shift to improve the relative gaps and to stay with the z vector. This is not
the subject of this paper but the interested reader may see [9, 10] for details. Very tight
clusters of eigenvalues that are well-separated from the rest of the spectrum may also be
handled by the overlapping submatrix ideas of [27] and [28].

7 Bounds on Accuracy (Proof of Correctness)

The formal analysis begins here. We start by showing that the vector ẑ computed by
Algorithm Getvec is very close to a vector ~z that obeys the exact relationship (58), where
~Nr and ~Dr are perturbed factors determined by step IV of the algorithm.

Theorem 8 Let N̂r and D̂r, ~Nr and ~Dr be the twisted factors represented by Ẑr and ~Zr

respectively in Figure 4 (see also Theorem 6 and Figure 5). Let ẑ be the vector computed

in Step IV of Algorithm Getvec, and let ~z be the exact solution of

~Nr
~Dr

~N t
r~z = ~
rer: (58)

Then, barring under
ow, ẑ is a small relative perturbation of ~z. Speci�cally,

ẑ(r) = ~z(r) = 1;

ẑ(i) = ~z(i) � (1 + �i); i 6= r; j�ij � 5ji� rj"; (59)

where " is the machine precision.
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Proof. The above bound accounts for the roundo� errors in the recurrence in Step IV of
Algorithm Getvec. For now, assume that no component of ẑ is zero (so that only the top

formulae for ẑ(i) and ẑ(j+1) in Step IV are used). The matrix ~Nr, built out of
_

L+ and
^

U�,
was de�ned in Theorem 6 so that the equality �L �D�Lt � �̂I = ~Nr

~Dr
~N t
r holds. Thus

~Nr is a
given matrix, not to be modi�ed, in the context of this theorem. Because of the roundo�
error in multiplication the top entries of ẑ computed in Step IV of Algorithm Getvec satisfy

ẑ(i) = �L̂+(i)ẑ(i+ 1)(1 + "i); i < r;

and the bottom entries satisfy

ẑ(i) = �Û�(i� 1)ẑ(i� 1)(1 + "i); i > r; (60)

where j"ij � ". In contrast, the ideal vector ~z satis�es

~z(i) = � _

L+ (i)~z(i+ 1); i < r; (61)

and ~z(i) = � ^

U� (i� 1)~z(i� 1); i > r:

Since ẑ(r) = ~z(r) = 1, we may de�ne �r = 0 and trivially write ẑ(r) = ~z(r)(1 + �r)
with j�rj � 4(r � r)". Now proceed by induction as i decreases in order to prove (59).
Examine (21) to �nd that

L̂+(i) =
_

L+ (i)(1 + Æi);

where jÆij <
p
(1 + ")6 � 1 = 3" +O("2) for all i < r:

Thus

ẑ(i� 1) = � _

L+ (i� 1)(1 + Æi�1)ẑ(i)(1 + "i�1);

= � _

L+ (i� 1)(1 + Æi�1)~z(i)(1 + �i)(1 + "i�1); j�ij � 4(r � i)" by induction;

= ~z(i� 1)(1 + Æi�1)(1 + �i)(1 + "i�1); by (61)

= ~z(i� 1)(1 + �i�1); thus de�ning �i�1 � (1 + �i)(1 + Æi�1)(1 + "i�1)� 1;

j�i�1j � (1 + j�ij)(1 + ")3(1 + ")� 1 = [4(r � i) + 4]"+O("2); as claimed:

For the lower half of ẑ, i � r, the argument is similar with Û� and
^

U� involved instead

of L̂+ and
_

L+. Note that Û� is related to
^

U� by (29) and (28), which, respectively, involve
112 and 1 more ulps than (21).

To begin, de�ne �r = 0 so that j�rj � 5(r�r)". For i = r+1, (59) holds since (29) gives

4:5 ulps for
^

U� (r) in (60), while "r+1 = 0 (because ẑ(r) = 1). For i > r + 1, (28) gives 4
ulps and "i gives one more ulp for an increase of at most 5 ulps each time i increases. Thus
(59) holds for all values of i.

We now consider the case when an eigenvector entry vanishes, i.e., ẑ(i+ 1) = 0. In this
case the alternate formulae in Step IV of Algorithm Getvec are used to compute the next
eigenvector entry, i.e., if i < r then

z(i) = �(di+1li+1=dili)z(i + 2); (62)
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where di and li are elements of the input matrices L and D. Examining the relations

between di and
!

di, and between li and
!

l i in the proof of Theorem 4, we can see that the
product

dili =
!

di
!

l i (1 + �i) =
_

D+ (i)
_

L+ (i)(1 + �i); j�ij � 3"; i < r:

Thus the term (di+1li+1=dili) in (62) contributes 6 ulps, and combining these with the 4
arithmetic operations in (62), we can write

ẑ(i) = �(!di+1
!

l i+1 =
!

di
!

l i)ẑ(i+ 2) � (1 + Æi);

where jÆij � 10" (a closer analysis reveals that jÆij � 8"). Thus (59) holds in this case also.
The case when ẑ(i) = 0, i > r can be handled similarly. 2

Corollary 1 (to Theorem 8) Under the hypotheses of Theorem 8,

j sin\(~z; ẑ)j � 5"jsupp(ẑ)j+O("2)

where jsupp(ẑ)j is the numerical support of ẑ as de�ned in (56).

Proof. First we establish a general result on elementwise perturbation of vectors which
shows that the term jsupp(ẑ)j above could be replaced by a weighted standard deviation of
the relative changes to ẑ's entries.

Let 0 6= v 2 Rn and let �v be given by �v(i) = (1 + �i)v(i). For expressions concerning
the angle \(v; �v) there is no loss in assuming that kvk2 = v

t
v = 1. We write

avg(�i;v) =
X

�iv(i)
2;

var(�i;v) =
X

�2i v(i)
2 � avg(�i;v)

2;

std. dev.(�i;v) =
p
var(�i;v):

Now, j cos2 \(v; �v)j =
(�vtv)2

�vt�v

=
1 + 2

P
�iv(i)

2 + (
P

�iv(i)
2)2

1 + 2
P

�iv(i)2 +
P

�2i v(i)
2

j sin2 \(v; �v)j =

P
�2i v(i)

2 � (
P

�iv(i)
2)2

1 + 2
P

�iv(i)2 +
P

�2i v(i)
2

� var(�i;v)

1 + 2 avg(�i;v) + avg(�i;v)2
; since avg2 �

X
�2i v(i)

2;

) j sin\(v; �v)j � std. dev.(�i;v)

1 + avg(�i;v)
:

A crude but simple bound on the numerator is maxi j�ij and, if each �i = O("), then
1 + avg(�i;v) = 1 + O("). Finally substitute ~z for v and ẑ for �v and use (56) and (59) to
verify that

max
i
j�ij � 5"(last� r) + 5"(r � first) � 5"jsupp(ẑ)j: 2
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-

6

-

?

� ~Nr
~Dr

~N t
r~z = er ~
r

�L �D �Lt � �̂I = ~Nr
~Dr

~N t
r ,

) (�L �D �Lt � �̂I)~z = er~
r:

� N̂rD̂rN̂
t
r; ẑ�LDLt

u = u�

��L �D �Lt�u = �u��
dtwqds

exact

dtwqds

computed

3 to 312 ulps in L

1 to 4 ulps in D 2 ulps in ~Dr

3 to 412 ulps in ~Nr

Figure 5: Relationships connecting u to ẑ.

The following theorem is the heart of the paper. Figure 5 lays out the essentials given
in Figure 4 and should be consulted.

Theorem 9 Let (�;u) be an eigenpair of the real symmetric unreduced tridiagonal matrix

LDLt with kuk = 1. Let �̂ be an accurate approximation closer to � than to any other

eigenvalue of LDLt and let ẑ be the vector computed in Step IV of Algorithm Getvec in

Section 6 using �̂, N̂r, D̂r, and twist index r. Let �L and �D be the perturbations of L and

D determined by the error analysis of Section 4.3 and let (��; �u) be the eigenpair of �L �D�Lt

with �� the closest to �̂. Let " denote the roundo� unit. Then

j sin\(ẑ;u)j � 5jsupp(ẑ)j" + j��� �̂j
j�u(r)jgap(�̂) + 7:5" relcond(u) +O(n2"2): (63)

Here jsupp(ẑ)j is the numerical support of ẑ de�ned in (56) and

gap(�̂) := minfj�̂� ��j; �� 6= �� 2 spectrum of �L �D �Ltg:

For the de�nition of relcond(u) see Section 5.

Proof. There are three terms in the upper bound on sin\(ẑ;u) because we connect ẑ to
u via two `ideal' vectors ~z, �u and each transition contributes a term: ẑ �! ~z, ~z �! �u,
�u �! u, see Figure 5. Recall from Theorem 6 that the matrices �L, �D, ~Nr, ~Dr depend on
�̂ and were de�ned so that the equality

�L �D�Lt � �̂I = ~Nr
~Dr

~N t
r (64)



31

holds. That was the culmination of the error analysis in Section 4.3. Recall that ~Dr(r) = ~
r.
Then ~z is de�ned as the exact solution of

~Nr
~Dr

~N t
r~z = er~
r: (65)

First consider ẑ and ~z. Theorem 8 shows that each ~z(i) is of the form ẑ(i)(1 + �i) and
Corollary 1 proves that

j sin\(ẑ; ~z)j < 5"jsupp(ẑ)j+O("2): (66)

Next consider ~z and �u. Combine (64) and (65) and then invoke Theorem 3, in Section 4,
to �nd that

j~
rj
k~zk �

j��� �̂j
j�u(r)j :

By Theorem 1,

j sin\(�u; ~z)j < j��� �̂j
j�u(r)jgap(�̂) : (67)

Finally consider �u and u. The left side of Figure 5 indicates that �u and u are related
through the matrix perturbations given in Section 5 (see Lemma 2):

LDLt �! �L �D �Lt = E�1LEFDFELtE�1:

From Theorem 6, no entry in L changes by more than 3 ulps except for the entry at the
twist which changes by at most 3:5". By Lemma 2, the largest entry in I � E is bounded
by
�
3(n� 1) + 1

2

	
" so that

max
�kEk; kE�1k� � 1 + 3n": (68)

The perturbation F comprises half the ulps needed for changes to entries of D, namely 1
2

for i < r, 2 for i = r and 3
2 for i > r (see Figure 4 and Theorem 6). Thus

max
�kFk; kF�1k� � 1 + 2": (69)

By (38),

h � 3:5"+ 4" = 7:5": (70)

Substituting (68), (69) and (70) into the perturbation bound (51) we obtain,

j sin\(u; �u)j � 7:5" f1 + (6n+ 2)"g relcond(u) +O(n2"2): (71)

Note that relcond(u) has the term relgap(�) in the denominator, see (50). Adding the
contributions in (66), (67), and (71) yields the theorem's bound on j sin\(ẑ;u)j. 2
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The above theorem is the main result of this paper. We now examine its implications
in obtaining numerically orthogonal eigenvectors from Algorithm Getvec. The best we can
hope for is that

j sin\(ẑ;u)j = O

 
n "

relgap(�̂)

!
; (72)

where relgap(�̂) = gap(�̂)=j�j. Let us examine (63) to understand the conditions under
which (72) can be achieved. The �rst term in (63) is always O(n"). The second term
(with �u(r)) requires that the twist index should not be perversely chosen. We aim for
j�u(r)j = k�uk1 but as long as j�u(r)j is above average, 1=j�u(r)j � pn. When � is relatively
well-conditioned, i.e., relcond(�) = O(1), then it is possible to compute �̂ such that j�̂���j �
K"j�̂j, and so the middle term is O(n"=relgap(�̂)). Note that with our de�nition we can
have relgap(�̂) � 1 and to obtain an accurate eigenvector in this case, it is not necessary
to compute �̂ to full relative accuracy. However whenever relgap(�̂) < 1 then it is essential
to compute �̂ so that j�̂ � ��j � K"j�̂j. The �nal term in the bound depends entirely on
relcond(u), which is a property of the factorization LDLt. For most LDLt, relcond(u) is
bounded by M=relgap(�) where M is a modest constant; see Section 5 for more details.
Thus (72) holds when (i) relcond(�) = O(1), (ii) relcond(u) = O(1=relgap(�̂)), and (iii) �̂
is computed accurately enough (often to high relative accuracy).

The reader may have noticed that the bound (63) contains quantities from both the
factorizations LDLt and �L �D�Lt, for example gap(�̂) in the middle term is with respect to
the eigenvalues of �L �D �Lt. Recall that �L �D �Lt is an intermediate factorization created solely
for our roundo� error analysis. We could try and obtain a bound just in terms of the input
factorization LDLt, as in our stated goal at the beginning of the paper, see (6). However
we choose not to do so since we invoke Algorithm Getvec only when relgap(�̂) is not too
small (> 1000") and relcond(�) and relcond(u) are modest, implying that �� and �u are close
to � and u respectively. Thus we can preserve the spirit of (63) by replacing the eigenvalues
and eigenvectors of �L �D�Lt by those of LDLt; a formal argument is possible but is messy
and does not add to our exposition, so we omit it.

The following corollary summarizes a typical situation in which Algorithm Getvec is
invoked.

Corollary 2 In addition to the assumptions of Theorem 9 suppose that (i) r is such that
�u(r) � 1=

p
n, (ii) �̂ is computed to satisfy j�̂ � ��j=j�̂j < K", (iii) relgap(�̂) exceeds 2�8,

and (iv) relcond(u) �M . Then

j sin\(ẑ;u)j < 5n"+ 28K
p
n"+ 7:5M": 2

8 Numerical Examples

We �rst compare and contrast the behavior of Algorithm Getvec on two 3� 3 tridiagonals.
These aptly illustrate various aspects of the theory.
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Example 1 First consider the matrix

T0 =

2
4 1

p
" 0p

" 7"=4 "=4
0 "=4 3"=4

3
5

where " is the machine precision (" � 2:2�10�16 in IEEE double precision). The eigenvalues
of T0 are :

�1 = "=2 +O("2); �2 = "+O("2); �3 = 1 + "+O("2);

while the corresponding normalized eigenvectors are

v1 =

2
64 �

p
"=2 +O("3=2)

1p
2
(1 + "

4) +O("2)

� 1p
2
(1� 3"

4 ) +O("2)

3
75 ; v2 =

2
64 �

p
"=2 +O("3=2)

1p
2
(1� 5"

4 ) +O("2)
1p
2
(1 + 3"

4 ) +O("2)

3
75 ; v3 =

2
4 1� "

2 +O("3)p
"+O("3=2)

"3=2

4 +O("5=2)

3
5 :

The exact triangular factorization is given by T0 = Lexact
0 Dexact

0 (Lexact
0 )T , where

Lexact
0 =

2
4 1 0 0p

" 1 0
0 1=3 1

3
5 ; and Dexact

0 =

2
4 1 0 0
0 3"=4 0
0 0 2"=3

3
5 :

When applying Algorithm Getvec to the above matrix, we observe the following.

1. The factorization computed in IEEE double precision arithmetic, L0D0L
T
0 , turns out

to be exact, i.e., L0 = Lexact
0 and D0 = Dexact

0 .

2. The computed eigenvalues �̂i satisfy

j�̂i � �ij � 2"j�̂ij; 1 � i � 3:

3. For each �̂i, 

(i)
k can be computed by applying Steps I-III of Algorithm Getvec. The

computed values are


(1) =

2
4 1:11 � 10�16
2:46 � 10�32
2:46 � 10�32

3
5 ; 
(2) =

2
4 2:22 � 10�16
4:93 � 10�32
4:93 � 10�32

3
5 ; 
(3) =

2
4 4:44 � 10�16

�2:00
�1:00

3
5 :

Algorithm Getvec chooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that for
the �rst two eigenvalues j
rj = O("2) = O("j�ij)� "kT0k.

4. The eigenvectors v̂i computed in Step IV of Algorithm Getvec are such that

max jv̂Ti v̂j j = 1:66 � 10�16 < "; 1 � i � 3; 1 � j < i;

max
jv̂i(k)� vi(k)j
jvi(k)j = 8:88 � 10�16 < 4"; 1 � i � 3; 1 � k � 3:

Amazingly each eigenvector entry is computed to high relative accuracy, even the tiny
v3(3) entry.
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5. Instead of Algorithm Getvec, we can use one step of inverse iteration,

(L0D0L
t
0 � �̂iI)xi = random vector;

to compute the eigenvectors. These computed vectors also turn out to be accurate
and numerically orthogonal (however, the tiny v3(3) entry is not computed to high
relative accuracy). Note that the analysis of Section 7 does not extend to random
right-hand sides.

6. Both 

(3)
2 and 


(3)
3 are O(1) while the corresponding eigenvector entries are O(

p
")

and O("3=2) respectively. Thus the numerical support of an eigenvector cannot solely
be determined by the magnitudes of 
i, and illustrates our comments at the end of
Remark 4 in Section 6. 2

Example 2 The above matrix T0 is a \benign" example. Our second example, also dis-
cussed in Section 3, is a harder case.

T1 =

2
4 1�p" "1=4

p
1� 7"=4 0

"1=4
p
1� 7"=4

p
"+ 7"=4 "=4

0 "=4 3"=4

3
5 ;

The eigenvalues of T1 are

�1 =
"

2
+
"3=2

8
+O("2); �2 = "� "3=2

8
+O("2); �3 = 1 + "+O("2):

while the corresponding normalized eigenvectors are

v1 =

2
664

"1=4p
2
(1 +

p
"
2 ) +O("5=4)

� 1p
2
(1�

p
"
2 ) +O(")

1p
2
(1� 3"

4 ) +O("3=2)

3
775 ;v2 =

2
664

"1=4p
2
(1 +

p
"
2 ) +O("5=4)

� 1p
2
(1�

p
"
2 ) +O(")

� 1p
2
(1 + 3"

4 ) +O("3=2)

3
775 ;v3 =

2
64 1�

p
"
2 +O(")

"1=4(1 +
p
"
2 ) +O("5=4)

"5=4

4 (1 +
p
"
2 ) +O("9=4)

3
75 :

In exact arithmetic, T1 = Lexact
1 Dexact

1 (Lexact
1 )T , where

Lexact
1 =

2
64

1 0 0
"1=4
p

1�7"=4
1�p"

1 0

0 1�p"
3 1

3
75 ; and Dexact

1 =

2
64
1�p" 0 0

0 3"
4(1�p")

0

0 0 "(8+
p
")

12

3
75 :

On this example, Algorithm Getvec behaves quite di�erently than on T0 from Example 1:

1. The computed factorization L1D1L
T
1 does not have high relative accuracy. The rela-

tive errors in L1(2);D1(2) and D1(3) are as large as 4:97 � 10�9.
2. Consequently, some of the computed eigenvalues �̂i do not have high relative accuracy

with respect to the eigenvalues of T1. In particular,

j�̂i � �ij � 10�9j�̂ij; for i = 1; 2:

Unlike �1 and �2, the third eigenvalue �3 is computed to high relative accuracy, i.e.,
j�̂3 � �3j = O("). However, the important point is that all the �̂i have high relative
accuracy with respect to the eigenvalues of L1D1L

T
1 .



35

3. The values of 

(i)
k computed by Steps I-III of Algorithm Getvec are


(1) =

2
4 �4:13 � 10�24�7:40 � 10�32
�9:86 � 10�32

3
5 ; 
(2) =

2
4 �6:62 � 10�24�9:86 � 10�32
�9:86 � 10�32

3
5 ; 
(3) =

2
4 2:22 � 10�16

1:49 � 10�8
�1:00

3
5 :

Algorithm Getvec chooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that for
the �rst two eigenvalues j
rj = O("2)� "kTk.

4. The eigenvectors v̂i computed in Step IV of Algorithm Getvec are numerically orthog-
onal, i.e.,

max jv̂Ti v̂j j = 5:55 � 10�17 < "; 1 � i � 3; 1 � j < i:

But as in the case of the computed eigenvalues, the relative errors in the computed
eigenvectors (with respect to the eigenvectors of T1) are much larger than O("), i.e.,

max
jv̂i(k)� vi(k)j
jvi(k)j = 3:72 � 10�9; 1 � i � 2; 1 � k � 3:

All components of the third eigenvector v3 are computed to high relative accuracy.

5. The following inverse iteration step:

L1D1L
t
1 � �̂iI = L+D+L

T
+; (73)

L+D+L
T
+ xi = random vector;

also leads to computed eigenvectors that are numerically orthogonal when the dstqds

transformation is used to compute (73). From our experience, the use of a twisted
factorization in Algorithm Getvec does not appear to be essential in practice; inverse
iteration using dstqds also works well. However, twisted factorizations are more elegant
to use, have better numerical behavior and allow us to prove the accuracy of our
algorithm.

6. When the diagonal and o�-diagonal elements of T1 are directly used to compute
eigenvalues and eigenvectors (either by using inverse iteration or twisted factorizations
as in Algorithm Getvec), the dot products between the computed eigenvectors are as
large as 10�8. See Example 1 in Section 3 for an explanation of this failure. Thus the
use of L1D1L

T
1 is essential for achieving numerical orthogonality in this case. 2

The above example beautifully illustrates our techniques. We do not promise high
relative accuracy for eigenvalues and eigenvectors of the given tridiagonal matrix. In fact,
it is unrealistic to hope for such accuracy as explained in Section 3. However, we get a
\good" factorization of the tridiagonal, and then proceed to compute its eigenvalues and
eigenvectors to high accuracy, which automatically leads to orthogonality.

Example 3 Our third example is

T2 =

2
64

:520000005885958 :519230209355285
:519230209355285 :589792290767499 :36719192898916

:36719192898916 1:89020772569828 2:7632618547882 � 10�8

2:7632618547882 � 10�8 1:00000002235174

3
75
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with eigenvalues

�1 � "; �2 � 1 +
p
"; �3 � 1 + 2

p
"; �4 � 2:0:

Note that the interior eigenvalues have relgap(�i) = O(
p
"). When we apply Algorithm Getvec

to the LDLT factorization of T2, the corresponding computed eigenvectors have

jv̂T2 v̂3j = 1:12 � 10�8 = O(
p
"):

As discussed in Remark 6 in Section 6, inverse iteration appears to be a natural remedy to
cure the problem. However even after ten inverse iteration steps

jv̂T2 v̂3j = 3:45 � 10�9 = O(
p
"):

Thus the simple approach of using multiple inverse iteration steps does not lead to numerical
orthogonality, as explained in Remark 6. For an approach that can achieve orthogonality
in this situation, see Chapter 5 in [9]. 2

8.1 Timing Comparisons

Algorithm Getvec can lead to substantial speedups over earlier LAPACK software2 to com-
pute eigenvectors when the relative gaps between eigenvalues are O(1) but the absolute
gaps are less than 10�3. We illustrate this speedup on four examples in Table 1. Matrices
of the �rst type have eigenvalues in an arithmetic progression,

�i = i � "; i = 1; 2; : : : ; n� 1; and �n = 1:

The second type has eigenvalues that come from a uniform random distribution in the inter-
val ["; 1]. The third type are the Toeplitz tridiagonal matrices with 2's on the diagonals and
1's as the o�-diagonal elements, with eigenvalues �i = 4 sin2[i(n+ 1)�2 ]. The �nal example
comes from a real application in computational quantum chemistry | more speci�cally it
arises in the modeling of the biphenyl molecule using M�ller-Plesset theory [9]. Most of
the eigenvalues of this positive de�nite 966� 966 Biphenyl matrix are small compared to its
norm. See Figure 6 for a plot of its eigenvalues and their relative gaps.

In Table 1 we compare the speed of Algorithm Getvec to various existing algorithms. In
our implementation, we factor T = LDLt and then use the dqds software in LAPACK (sub-
routine DLASQ1) to compute all eigenvalues of LDLt to high relative accuracy before invok-
ing Algorithm Getvec. DSTEIN and TINVIT are inverse iteration routines from LAPACK
and EISPACK respectively that perform Gram-Schmidt orthogonalization when eigenval-
ues have small absolute gaps, in particular, when j�i+1 � �ij � 10�3kTk. DSTEQR uses
the QR iteration to compute orthogonal eigenvectors[22] while DSTEDC is the Divide and
Conquer code in LAPACK[19]. Table 1 shows that on most examples, Algorithm Getvec

is about two orders of magnitude faster than DSTEIN, TINVIT and DSTEQR. Also see

2since we �rst wrote this paper, our software has been incorporated in the latest release of LAPACK
where Algorithm Getvec appears as subroutine DLAR1V
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Time Taken (in seconds)
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size DSTEIN TINVIT DSTEDC DSTEQR Getvec

125 0.21 0.14 0.01 0.13 0.04
Arithmetic 250 1.30 0.73 0.04 0.99 0.12
Progression 500 8.36 4.42 0.20 7.76 0.40
(" apart) 1000 91.98 40.10 1.26 91.18 1.51

2000 824.00 335.41 6.66 3212.80 6.77

125 0.11 0.10 0.05 0.13 0.04
Uniform 250 0.44 0.38 0.26 1.04 0.11

Distribution 500 1.81 1.55 1.63 7.78 0.38
(" to 1) 1000 91.74 6.25 12.87 91.65 1.54

2000 823.63 336.04 161.60 1308.26 6.34

125 0.12 0.10 0.05 0.13 0.02
(1,2,1) 250 0.44 0.38 0.17 0.94 0.09
Matrix 500 1.95 1.60 1.09 7.25 0.33

1000 13.23 7.58 8.84 100.79 1.41
2000 821.85 130.64 109.91 1737.15 5.94

Biphenyl 966 85.11 33.78 9.71 238.42 2.41

Table 1: Timing Results
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Figure 6: (a)Eigenvalue distribution, and (b)Relative Gaps for Biphenyl
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that Algorithm Getvec is several times faster than DSTEDC on three of the four matrix
types, and is comparable in speed on the �rst example where DSTEDC is very fast due
to de
ation of clustered eigenvalues. The reader should observe the O(n2) behavior of Al-
gorithm Getvec whereas the other subroutines, in general, show an O(n3) behavior3. All
algorithms delivered adequate numerical orthogonality on the test cases.

9 Singular Vectors

A natural application of the procedures analyzed in this paper is to compute the SVD of
a bidiagonal matrix Lt: Lt = U�V t, U t = U�1, V t = V �1. Since LLt = V �2V t, the
Cholesky factor of the symmetric positive de�nite matrix LLt is the initial input and so the
output of our method is V whose columns are the right singular vectors of Lt.

What must be done to compute U? The tempting formula

u = Lt
v=�; � 6= 0;

solve Lu = 0; � = 0;

is well-known to be treacherous. Orthogonal v's do not give rise to orthogonal u's because
of the cancellation in forming Lt

v.
A better way is to invoke Algorithm Getvec again, as shown below. Note that a natural

operation on bidiagonal and diagonal arrays is to `
ip' them: L �!� L. In practice the
order of the entries is reversed. Formally

� L = ~ILt ~I

where ~I is the reversal matrix, ~I = (en; : : : ;e1) when I = (e1; : : : ; en). For diagonal
matrices 
ipping is just reversal. If cost were of no consequence then U could be computed
by 
ipping the given Lt, calling our algorithm, and reversing the output. The justi�cation
is that

(� L)(� Lt) = (~ILt ~I)(~ILt ~I)t

= ~ILtL~I = ~IU�2U t ~I:

The defect of the high level procedure mentioned above is that the singular values will
be computed twice; a signi�cant waste. The remedy is to apply the reversal mechanism
locally. When an eigenvalue (�2) has been computed our algorithm invokes Algorithms 4.2
and 4.4 to obtain a double factorization and, after selecting an index, the desired singularity-
revealing twisted factorization. From this comes the singular vector v. In order to compute
u it is only necessary to reverse L, apply Algorithms 4.2 and 4.4 again, select a possibly
di�erent index, and form the corresponding twisted factorization. Then Algorithm Getvec,
in Section 6, will yield f~Iug. In other words very little extra code is needed in order to
compute u as well as v.

However even the use of Getvec outlined in the previous paragraph is not adequate. It
produces matrices U and V that are orthogonal to working precision but the extra coupling

3all timings were measured using Fortan BLAS on a 333-MHz UltraSPARC processor
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relations kLt
v � u�k = O("kLk) and kLu� v�k = O("kLk) may fail when singular values

are clustered.
In an interesting recent dissertation [18], Benedict Grosser has presented coupling rela-

tions that connect factorizations of LLt � �2I and LtL � �2I. By forcing these relations
to hold for the computed factorizations he found a way to use our Algorithm Getvec and
satisfy all the desired properties to working accuracy:

Lt
v � u� � 0; Lu� v� � 0; U tU � I � 0; V tV � I � 0:

This algorithm is to become part of the LAPACK library.

Acknowledgements. We would like to thank an anonymous referee for an extraordi-
narily detailed reading of our original manuscript and for several constructive suggestions
that, at the cost of some delay, greatly improved the presentation of this paper.
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