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Abstract

We show that Jacobi's method (with a proper stopping criterion) computes small eigenval-
ues of symmetric positive de�nite matrices with a uniformly better relative accuracy bound
than QR, divide and conquer, traditional bisection, or any algorithm which �rst involves
tridiagonalizing the matrix. In fact, modulo an assumption based on extensive numerical
tests, we show that Jacobi's method is optimally accurate in the following sense: if the
matrix is such that small relative errors in its entries cause small relative errors in its eigen-
values, Jacobi will compute them with nearly this accuracy. In other words, as long as the
initial matrix has small relative errors in each component, even using in�nite precision will
not improve on Jacobi (modulo factors of dimensionality). We also show the eigenvectors
are computed more accurately by Jacobi than previously thought possible. We prove similar
results for using one-sided Jacobi for the singular value decomposition of a general matrix.

1The �rst author would like to acknowledge the �nancial support of the NSF via grants DCR-8552474

and ASC-8715728, and the support of DARPA via grant F49620-87-C-0065. Part of this work was done

while the �rst author was visiting the Fernuniversit�at Hagen, and he acknowledges their support as well. He

is also a Presidential Young Investigator.

1



Contents

1 Introduction 3

2 Perturbation Theory 7

2.1 Symmetric Positive De�nite Matrices : : : : : : : : : : : : : : : : : : : : : : 7
2.2 Optimality of the Bounds for Symmetric Positive De�nite Matrices : : : : : 12
2.3 Singular Value Decomposition : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.4 Optimality of the Bounds for the Singular Value Decomposition : : : : : : : 18

3 Two-sided Jacobi 20

3.1 Error Bounds for Eigenvalues Computed by Two-sided Jacobi : : : : : : : : 21
3.2 Error Bounds for Eigenvectors Computed by Two-sided Jacobi : : : : : : : 26

4 One-sided Jacobi 32

4.1 Error Bounds for Singular Values Computed by One-sided Jacobi : : : : : : 33
4.2 Error Bounds for Singular Vectors Computed by One-sided Jacobi : : : : : 35
4.3 Using Cholesky Followed by One-sided Jacobi for the Symmetric Positive

De�nite Eigenproblem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

5 Bisection and Inverse Iteration 42

6 Upper Bounds for maxm �(Am)=�(A0) 45

7 Numerical Experiments 50

7.1 Test Matrix Generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50
7.2 Accuracy of the Computed Eigenvalues : : : : : : : : : : : : : : : : : : : : 51
7.3 Accuracy of the Computed Eigenvectors : : : : : : : : : : : : : : : : : : : : 52
7.4 Growth of maxm �(Am)=�(A0) : : : : : : : : : : : : : : : : : : : : : : : : : 53
7.5 Convergence Rates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

8 Conclusions 58

2



1 Introduction

Jacobi's method and QR iteration are two of the most common algorithms for solving
eigenvalue and singular value problems. Both are backward stable, and so compute all
eigenvalues and singular values with an absolute error bound equal to p(n)" kHk2, where
p(n) is a slowly growing function of the dimension n of the matrix H , " is the machine
precision, and kHk2 is the spectral norm of the matrix. Thus, large eigenvalues and singular
values (those near kHk2) are computed with high relative accuracy, but tiny ones may not
have any relative accuracy at all. Indeed, it is easy to �nd symmetric positive de�nite
matrices where QR returns negative eigenvalues. This error analysis does not distinguish
Jacobi and QR, and so one might expect Jacobi to compute tiny values with as little relative
accuracy as QR.

In this paper we show that Jacobi (with a proper stopping criterion) computes eigen-
values of positive de�nite symmetric matrices and singular values of general matrices with
a uniformly better relative error bound than QR, or any other method which initially tridi-
agonalizes (or bidiagonalizes) the matrix. This includes divide and conquer algorithms,
traditional bisection, Rayleigh quotient iteration, and so on. We also show that Jacobi
computes eigenvectors and singular vectors with better error bounds than QR.

In fact, for the symmetric positive de�nite eigenproblem, we show that Jacobi is opti-
mally accurate in the following sense. Suppose the initial matrix entries have small relative
uncertainties, perhaps from prior computations. The eigenvalues will then themselves have
inherent uncertainties, independent of which algorithm is used to compute them. We show
that the eigenvalues computed by Jacobi have error bounds which are nearly as small as
these inherent uncertainties. In other words, as long as the initial data is slightly uncer-
tain, even using in�nite precision cannot improve on Jacobi (modulo factors of n). For
the singular value decomposition, we can prove a similar but necessarily somewhat weaker
result.

These results depend on new perturbation theorems for eigenvalues and eigenvectors (or
singular values and singular vectors) as well as a new error analysis of Jacobi, all of which
are stronger than their classical counterparts. They also depend on an empirical observa-
tion for which we have overwhelming numerical evidence but somewhat weaker theoretical
understanding.

First we discuss the new perturbation theory for eigenvalues, contrasting the standard
error bounds with the new ones. Let H be a positive de�nite symmetric matrix, and
�H a small perturbation of H in the sense that j�Hij=Hij j � �=n for all i and j. Then
k�Hk2 � � kHk2. Let �i and �0i be the i-th eigenvalues of H and H + �H , respectively
(numbered so that �1 � � � � � �n). Then the standard perturbation theory [14] says

j�i � �0ij
�i

� � kHk2
�i

� �kHk2 � kH�1k2 = ��(H) (1:1)

where �(H) � kHk2 �kH�1k2 is the condition number ofH . We prove the following stronger

result: Write H = DAD where D = diag (H
1=2
ii ) and Aii = 1. By a theorem of Van der

Sluis [16, 6] �(A) is less than n times min
D̂
�(D̂HD̂), i.e. it nearly minimizes the condition
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number of H over all possible diagonal scalings. Then we show that:

j�i � �0ij
�i

� ��(A) (1:2)

i.e. the error bound ��(H) is replaced by ��(A). Clearly, it is possible that �(A)� �(H)
(and it is always true that �(A) � n�(H)), so the new bound is always at least about as
good and can be much better than the old bound.

In the case of the singular values of a general matrix G, we similarly replace the conven-
tional relative error bound ��(G) with ��(B), where G = BD, D chosen diagonal so the
columns of B have unit two-norm. This implies �(B) � n1=2min

D̂
�(GD̂), and as before it

is possible that �(B)� �(G).
The e�ects of rounding errors in Jacobi are bounded as follows. We can weaken the

assumption of small componentwise relative error j�Hij=Hij j � �=n in the perturbation
theory to j�Hijj=(HiiHjj)

1=2 � �=n without weakening bound (1.2). This more general
perturbation bounds the rounding errors introduced by applying one Jacobi rotation, so
that one Jacobi rotation causes relative errors in the eigenvalues bounded by O(")�(A).
(In contrast, QR, or any algorithm which �rst tridiagonalizes the matrix, only computes
eigenvalues with relative error bound O(")�(H).)

To bound the errors from all the Jacobi rotations we proceed as follows: Let H0 =
D0A0D0 be the original matrix, and Hm = DmAmDm where Hm is obtained from Hm�1 by
applying a single Jacobi rotation, Dm is diagonal, and Am has unit diagonal. The desired
error bound is proportional to �(A0), i.e. it depends only on the original matrix. But
our analysis only says that at step m we get an error bounded by something proportional
to �(Am). Thus the error bound for all the Jacobi steps is proportional to maxm �(Am).
So for Jacobi to attain optimal accuracy, maxm �(Am)=�(A0) must be modest in size. In
extensive random numerical tests, its maximum value was less than 1.82. Wang [21] has
recently found isolated examples where it is almost 8. Our theoretical understanding of this
behavior is incomplete and providing it remains an open problem.

We must �nally bound the errors introduced by Jacobi's stopping criterion. To achieve
accuracy proportional to �(A), we have had to modify the standard stopping criterion.
Our modi�ed stopping criterion has been suggested before [20, 5, 3, 19], but without our
explanation of its bene�ts. The standard stopping criterion may be written

if jHij j � tol �max
kl

jHklj; set Hij = 0

whereas the new one is

if jHij j � tol � (HiiHjj)
1=2; set Hij = 0

(here tol is a small threshold value, usually machine precision).
Now we consider the eigenvectors and singular vectors. Here and throughout the paper

whenever we refer to an eigenvector we assume its eigenvalue is simple. Again let H be a
positive de�nite symmetric matrix with eigenvalues �i and unit eigenvectors vi. Let �H be
a small componentwise relative perturbation as before, and let �0i and v0i be the eigenvalues
and eigenvectors of H + �H . Then the standard perturbation theory [14] says that v0i can
be chosen such that 

vi � v0i



 � �

absgap�i
+O(�2) (1:3)
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where the absolute gap for eigenvalues is de�ned as

absgap�i � min
j 6=i

j�i � �jj
kHk2

(1:4)

We prove a generally stronger result which replaces this bound with



vi � v0i


 � (n� 1)1=2�(A) � �

relgap�i
+O(�2) (1:5)

where the relative gap for eigenvalues is de�ned as

relgap�i � min
j 6=i

j�i � �j j
j�i � �j j1=2

(1:6)

The point is that if H has two or more tiny eigenvalues, their absolute gaps are necessarily
small, but their relative gaps may be large, so that the corresponding eigenvectors are re-
ally well-conditioned. We prove an analogous perturbation theorem for singular vectors of
general matrices. We also prove a perturbation theorem which shows that even tiny compo-
nents of eigenvectors and singular vectors may be well-conditioned. Again, we show Jacobi
is capable of computing the eigenvectors and singular vectors to their inherent accuracies,
but QR is not.

To illustrate, consider the symmetric positive de�nite matrix H = DAD where

H =

2
64 1040 1029 1019

1029 1020 109

1019 109 1

3
75 ; A =

2
64 1 :1 :1
:1 1 :1
:1 :1 1

3
75 and D = diag (1020; 1010; 1)

Here �(H) � 1040 and �(A) � 1:33. Thus, � relative perturbations in the matrix entries
only cause 4� relative perturbations in the eigenvalues according to the new theorem, and
3 � 1040 � � relative perturbations according to the conventional theorem. Also, the absolute
gaps for the eigenvalues of H are absgap�1;2;3 � 10�20; 10�20; 1, whereas the relative gaps
relgap�1;2;3 are all approximately 1010. Thus the new theory predicts errors in v1 and v2 of
norm 2 �10�10�, whereas the old theory predicts errors of 1020�. Jacobi will attain these new
error bounds, but in general QR will not. For this example, QR computes two out of the
three eigenvalues as negative, whereas H is positive de�nite. In contrast, Jacobi computes
all the eigenvalues to nearly full machine precision. In fact for this example we can show
Jacobi computes all components of all eigenvectors to nearly full relative accuracy, even
though they vary by 21 orders of magnitude; again QR will not even get the signs of many
small components correct.

One might object to this example on the grounds that by reversing the order of the rows
and columns before tridiagonalizing and applying QR, one computes the correct eigenvalues.
However, one can easily �nd similar matrices (see section 7) where Jacobi gets accurate
eigenvalues and QR gets at least one zero or negative eigenvalue no matter how the rows
and columns are ordered.

We also show that bisection and inverse iteration (with appropriate pivoting, and applied
to the original positive de�nite symmetric matrix) are capable of attaining the same error
bounds as Jacobi. Of course bisection and inverse iteration on a dense matrix are not
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competitive in speed with Jacobi, unless only one or a few eigenvalues are desired and good
starting guesses are available. We use these methods to verify our numerical tests.

This work is an extension of work in [2], where analogous results were proven for matrices
which are called scaled diagonally dominant (s.d.d.). The positive de�nite matrix H =
DAD is s.d.d. if kA � Ik2 < 1. This work replaces the assumption that A is diagonally
dominant with mere positive de�niteness, extending the results of [2] to all positive de�nite
symmetric matrices, as well as to the singular value decomposition of general matrices.

This work does not contradict the results of [7, 2] where it was shown how a variation
of QR could compute the singular values of a bidiagonal matrix or the eigenvalues of a
symmetric positive de�nite tridiagonal matrix with high relative accuracy. This is because
reducing a dense matrix to bidiagonal or tridiagonal form can cause large relative errors in
its singular values or eigenvalues independent of the accuracy of the subsequent processing.
In contrast, the results in this paper are for dense matrices.

We also discuss an accelerated version of Jacobi for the symmetric positive de�nite
eigenproblem with an attractive speedup property: The more its accuracy exceeds that
attainable by QR or other traditional methods, the faster it converges. See also [20] where
earlier references for Jacobi methods on positive de�nite matrices as well as for one sided
methods can be found.

We use the following terminology to distinguish among di�erent versions of Jacobi.
\Two-sided Jacobi" refers to the original method applying Jacobi rotations to the left and
right of a symmetric matrix. \One-sided Jacobi" refers to computing the SVD by applying
Jacobi rotation from one side only.

The rest of this paper is organized as follows. Section 2 presents the new perturba-
tions theorems. Section 3 discusses two-sided Jacobi for the symmetric positive de�nite
eigenproblem. Section 4 discusses one-sided Jacobi for the singular value decomposition. It
also presents the accelerated version of Jacobi just mentioned. Section 5 discusses bisection
and inverse iteration. Section 6 discusses bounds on maxm �(Am)=�(A0). Section 7 contains
numerical experiments. Section 8 presents our conclusions and discussion of open problems.
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2 Perturbation Theory

In this section we prove new perturbation theorems for eigenvalues and eigenvectors of
symmetric positive de�nite matrices, and for singular values and singular vectors of general
matrices. In the �rst subsection we consider eigendecompositions of symmetric positive
de�nite matrices. In the second subsection we discuss the optimality of these bounds. In
the third subsection we consider the singular value decomposition of general matrices. In
the fourth subsection, we discuss the optimality of this second set of bounds.

2.1 Symmetric Positive De�nite Matrices

The next two lemmas have also been proved in [2]:

Lemma 2.1 Let H and K be symmetric matrices with K positive de�nite. Let the pencil

H � �K have eigenvalues �i. Let �H and �K be symmetric perturbations and let �0i be the

(properly ordered) eigenvalues of (H + �H)� �(K + �K). Suppose that

jxT�Hxj � �H � jxTHxj and jxT�Kxj � �K � jxTKxj

for all vectors x and some �H < 1 and �K < 1. Then either �i = �0i = 0 or

1� �H

1 + �K
� �0i

�i
� 1 + �H

1� �K

for all i.

Proof. The condition on �K implies that K + �K is positive de�nite too, so the
perturbed pencil is de�nite. The condition on �H implies that it and H have the same null
space, implying that �i = �0i = 0 if one of them equals zero. Now we consider the case
�i > 0; for the other eigenvalues consider �H and ��H . The Courant-Fischer minimax
theorem [14] expresses �i as

�i = min
S

i

max
x2S

i

xTHx

xTKx

where the minimum is over all i-dimensional subspaces Si. Let the spaces Si0 and S
i
1 satisfy

�i = max
x2S

i

0

xTHx

xTKx
and �0i = max

x2S
i

1

xT (H + �H)x

xT (K + �K)x

Then

�0i = min
S

i

max
x2S

i

xT (H + �H)x

xT (K + �K)x
� max

x2S
i

0

xT (H + �H)x

xTHx
� xTKx

xT (K + �K)x
� x

THx

xTKx
� 1 + �H

1� �K
�i

and similarly

�i = min
S

i

max
x2S

i

xTHx

xTKx
� max

x2S
i

1

xTHx

xT (H + �H)x
� x

T (K + �K)x

xTKx
� x

T (H + �H)x

xT (K + �K)x
� 1 + �K

(1� �H)
�0i

completing the proof.
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Lemma 2.2 Let H = �T
HAH�H and AH be symmetric matrices. H and AH need not have

the same dimensions, and �H may be an arbitrary full rank conforming matrix. Similarly,

let K = �T
KAK�K and AK be symmetric positive de�nite matrices, where K and AK

need not have the same dimensions and �K may be an arbitrary full rank conforming

matrix. Let �H = �T
H�AH�H be a perturbation of H such that jxT �AHxj � �H jxTAHxj

for all x where �H < 1. Similarly, let �K = �T
K�AK�K be a perturbation of K such that

jxT�AKxj � �K jxTAKxj for all x where �K < 1. Let �i be the i-th eigenvalue of H � �K

and �0i the i-th eigenvalue of (H + �H)� �(K + �K). Then either �i = �0i = 0 or

1� �H

1 + �K
� �0i

�i
� 1 + �H

1� �K

Proof. Note that for all vectors x

jxT�Hxj = jxT�T
H�AH�Hxj � �H jxT�T

HAH�Hxj = �H jxTHxj

and
jxT�Kxj = jxT�T

K�AK�Kxj � �K jxT�T
KAK�Kxj = �K jxTKxj

Now apply Lemma 2.1.

Theorem 2.3 LetH = DAD be a symmetric positive de�nite matrix, and D = diag (H
1=2
ii )

so Aii = 1. Let �H = D�AD be a perturbation such that k�Ak2 � � < �min(A). Let �i be

the i-th eigenvalue of H and �0i be the i-th eigenvalue of H + �H. Then�����i � �0i
�i

���� � �

�min(A)
� �(A) � � (2:4)

In particular, if j�Hij=Hij j � �=n, then k�Ak2 � � and the bound (2.4) applies.

Proof. Note that for all nonzero vectors x�����x
T�Hx

xTHx

����� =
�����x

T�T �A�x

xT�TA�x

����� =
�����y

T�Ay

yTAy

����� � �

�min(A)

Lemma 2.2 yields the desired bound, using K = I and �K = 0. It remains to prove that
j�Hij=Hijj � �=n implies k�Ak2 � �. But Aii = 1 and A positive de�nite imply that no
entry of A is larger than 1 in absolute value. (Note that this means �(A) is at most n times
larger than 1=�min(A).) Therefore j�Aij j = j�Hij=Hij � Aij j � �=n and so k�Ak2 � � as
desired.

Proposition 2.13 in the next subsection shows that the bound of Theorem 2.3 is nearly
attained for at least one eigenvalue. However, other eigenvalues may be much less sensitive
than this most sensitive one. The next proposition provides individual eigenvalue bounds
which may be much tighter:

Proposition 2.5 Let H = DAD be as in Theorem 2.3, with eigenvalues �i and unit eigen-

vectors vi. Let H + �H = D(A + �A)D have eigenvalues �0i. Let k�Ak2 � � � �min(A).
Then the bound

j�i � �0ij
�i

� �kDvik22
�i

+ O(�2) (2:6)

is attainable by the diagonal perturbation �Ajj = �sign(vi(j)).
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Proof. Bound (2.6) is derived from the standard �rst order perturbation theory which
says �i(H+�H) = �i(H)+vTi �Hvi+O(k�Hk22), and substituting jvTi �Hvij = jvTi D�ADvij �
kDvik22k�Ak2. The inequality jvTi D�ADvij � kDvik22k�Ak2 is clearly attained for the diag-
onal choice of �A in the statement of the proposition.

We stated Lemmas 2.1 and 2.2 separately in order to emphasize their generality. For
example, suppose H and K are �nite element matrices, �H and �K the �xed assembly
matrices of 0's and 1's, and AH and AK the block diagonal matrices of individual elements.
If �AH and �AK are also block diagonal, perturbing each separate element in the sense
of xT�AHx=x

TAHx and xT �AKx=x
TAKx being small for all nonzero x, then the relative

perturbations of the eigenvalues of the assembled matrix H will also be small. In particular,
consider the matrix arising from modeling a series of masses m1; : : : ; mn on a line connected
by simple linear springs with spring constants k0; : : : ; kn (the ends of the extreme springs
are �xed). The natural frequencies of vibration of this system are the square roots of the
eigenvalues of the pencil M � �K where M = diag (m1; : : : ; mn) and K is tridiagonal with
diagonal k0+k1; k1+k2; : : : ; kn�1+kn and o�diagonal �k1; : : : ;�kn�1. Lemma 2.2 implies
that an � relative perturbation in any spring constant or mass makes at most � relative
changes in the eigenvalues of M � �K. Unfortunately, this property does not extend to
the matrix assembled in 
oating point, since if ki�1 � ki � ki+1 so that ki + ki�1 rounds
to ki, the computed K will be inde�nite instead of positive de�nite, meaning that some
eigenvalues are completely changed.

One may also prove a version of Lemma 2.1 in an in�nite dimensional setting [12, section
VI.3].

Now we turn to eigenvectors. A weaker version of the following theorem also appeared
in [2]:

Theorem 2.7 Let H = DAD be as in Theorem 2.3. De�ne H(�) = D(A+ �E)D, where

E is any matrix with unit two-norm. Let �i(�) be the i-th eigenvalue of H(�), and assume

�i(0) is simple so that the corresponding unit eigenvector vi(�) is well de�ned for su�ciently

small �. Then

kvi(�)� vi(0)k2 �
(n� 1)1=2�

�min(A) � relgap�i
+O(�2) � (n� 1)1=2�(A)�

relgap�i
+ O(�2)

Proof. Let vk(0) be abbreviated by vk. From [9] we have

vi(�) = vi + �
X
k 6=i

vTkDEDvi

�i � �k
� vk + O(�2)

Let yk = Dvk, so that

vi(�) = vi + �
X
k 6=i

yTk Eyi

�i � �k
� vk +O(�2) (2:8)

The pair (�i; yi) is an eigenpair of the pencil A� �D�2. Thus

�k = �ky
T
kD

�2yk = yTk Ayk � �min(A)kykk22
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and so kykk2 � (�k=�min(A))
1=2. Letting zk = yk=kykk2 lets us write

vi(�) = vi + �
X
k 6=i

�ik � zTk Ezi
(�i � �k)=(�k�i)1=2

� vk +O(�2)

where j�ikj = kykk2kyik2=(�k�i)1=2 � 1=�min(A). Taking norms yields the result.
Proposition 2.14 in the next subsection will show that the bound in Theorem 2.7 is

nearly attainable for all vi.
As in Corollary 3 in [2], it is possible to derive a nonasymptotic result from Theorem

2.7:

Corollary 2.9 Let H = DAD be as in Theorem 2.3. Suppose � � k�Ak2=�min(A) satis�es

� <
1

4
and

3 � 2�1=2 � �
1� �

< relgap�i

Let vi be the i-th unit eigenvector of H = DAD. Then the i-th unit eigenvector v0i of

H 0 = D(A+ �A)D can be chosen so that

kvi � v0ik2 �
(n� 1)1=2�

(1� 4�)((1� �)relgap�i � 3 � 2�1=2�)
Proof. Let H(�) = D(A+ � � �A=k�Ak2)D. Let �i(�) be the i-th eigenvalue of H(�),

and abbreviate �i(0) by �i. Let relgap�i(�) denote the relative gap of the i-th eigenvalue
of H(�), and relgap�(a; b) � ja � bj=(ab)1=2. The idea is that if � is small, then �i(�) can
only change by a small relative amount, and so relgap�i(�) can only change by a small
absolute or relative amount. Note that �min(A) can decrease by as much as k�Ak2. Then
by Theorem 2.3 we can bound relgap�i(�) below by

relgap�i(�) = min
k 6=i

j�i(�)� �k(�)j
(�i(�)�k(�))1=2

� min
k 6=i

j�i � �kj � �(1� �)�1(�i + �k)

(�i�k)1=2(1 + �(1� �)�1)

� (1� �)min
k 6=i

�
relgap�(�i; �k)�

�

1� �
� �i + �k

(�i�k)1=2

�

We consider two cases, relgap�(�i; �k) � 2�1=2 and relgap�(�i; �k) < 2�1=2. The �rst case
corresponds to �i and �k di�ering by at least a factor of 2, whence

�i + �k

(�i�k)1=2
� 3 � relgap�(�i; �k)

The second case corresponds to �i and �k di�ering by at most a factor of 2, whence

�i + �k

(�i�k)1=2
� 3 � 2�1=2

Altogether we have

relgap�i(�) � (1� �)

�
1� 3�

1� �

� 
relgap�i �

3 � 2�1=2 � �
1� �

!

Now integrate the bound of Theorem 2.7 from � = 0 to � = k�Ak2 to get the desired result.

In complete analogy to [2], we may also prove
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Proposition 2.10 Let �1 � � � � � �n be the eigenvalues of H and h1 � � � � � hn be its

diagonal entries in increasing order. Then

�min(A) �
�i

hi
� �max(A)

In other words, the diagonal entries of H can di�er from the eigenvalues only by factors

bounded by �(A).

Proof. See the proof of Proposition 2 in [2].

Proposition 2.11 Let H = DAD with eigenvalues �i. Let di be the diagonal entries of D.

Let vi be the i-th eigenvector of H normalized so that its i-th component vi(i) = 1. Then

jvi(j)j � vi(j) � (�(A))3=2 �min(
 
�i

�j

!1=2

;

�
�j

�i

�1=2
)

We also have

jvi(j)j � (�(A))3=2 �min(di
dj

;
dj

di
)

In other words, the eigenvectors are scaled analogously to the diagonal of H.

Proof. See the proof of Proposition 6 in [2].

Proposition 2.12 Let H(�) and vi(�) be as in Theorem 2.7, and vi(j) be as in Proposition

2.11. Then

jvi(�)(j)� vi(0)(j)j �
(2n� 2)1=2

�min(A) �min(relgap�i; 2�1=2)
� � � vi(j) +O(�2)

In other words, each component of each eigenvector is perturbed by a small amount relative

to its upper bound of vi(j) of Proposition 2.11. Thus small components of eigenvectors

may be determined with as much relative accuracy as large components. Note that relgap�i
exceeds 2�1=2 only when �i di�ers from its nearest neighbor by at least a factor of 2.

Proof. See the proof of Theorem 7 in [2].
We illustrate these results with two examples. First we consider the matrix H = DAD

of the introduction:

H =

2
64 1040 1029 1019

1029 1020 109

1019 109 1

3
75 ; A =

2
64 1 :1 :1
:1 1 :1
:1 :1 1

3
75 and D = diag (1020; 1010; 1)

To six correct �gures, H 's eigenvalue matrix � and eigenvector matrix V (normalized to
have the largest entry of each eigenvector equal to 1) are

� = diag (1:00000 � 1040; 9:90000 � 1019; 9:81818 � 10�1)
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and

V =

2
64 1:00000 �1:00000 � 10�11 �9:09091 � 10�22
1:00000 � 10�11 1:00000 �9:09091 � 10�12
1:00000 � 10�21 9:09091 � 10�12 1:00000

3
75

One may compute that �(H) � 1040 and �(A) � 1:33. Thus, according to Theorem 2.3,
changing each entry ofH in its 7th decimal place or beyond would not change � in the �gures
shown. The re�ned error bounds of Proposition 2.5 are essentially the same in this case.
One can further verify the assertion of Proposition 2.10 that the ratios of the eigenvalues to
the diagonal entries of H are bounded between :9 = �min(A) and 1:2 = �max(A). One may
also compute that the relative gaps relgap�i for all three eigenvalues are approximately 10

10.
Thus, according to Theorem 2.7, 7th �gure changes in H would not change its eigenvectors
by more than 10�16 in norm. In fact, the eigenvectors are even more accurately determined
than this. Let �V = f�vi(j)g be the matrix of upper bounds of entries of V as de�ned in
Proposition 2.11:

�V �

2
64 1:5 1:5 � 10�10 1:5 � 10�20
1:5 � 10�10 1:5 1:5 � 10�10
1:5 � 10�20 1:5 � 10�10 1:5 � 10�20

3
75

Then according to Proposition 2.12, 7th �gure changes in H cause changes in at most the
5th digits of all the entries of V . In other words, for this examples all the eigenvalues and
all the components of all the eigenvectors are determined to nearly full relative precision
by the data. Later, we will show Jacobi can compute them with this accuracy. In contrast,
QR does not even get the signs of the two small eigenvalues or many components of the
eigenvectors correct.

The second example serves to illustrate the di�erence between Theorem 2.3 and the
re�ned bounds of Proposition 2.5. Let H = DAD where D is the same as before and

A =

2
64 1 1� � 1� �

1� � 1 1� �

1� � 1� � 1

3
75

where � = 10�6. The eigenvalues of H are 1040, 2 � 1014 and 1:5 � 10�6. Now �(A) � 106, so
according to Theorem 2.3, an � relative change in the matrix entries will cause as much as
a 106� relative change in the eigenvalues. In contrast, the re�ned bounds predict a relative
change of � in 1040 and 106� in the two smaller eigenvalues. Thus, the largest eigenvalue is
just as insensitive as predicted by standard norm based perturbation theory.

2.2 Optimality of the Bounds for Symmetric Positive De�nite Matrices

In this section we show that the bounds of the last section are attainable. In other words,
the only symmetric positive de�nite matrices whose eigenvalues are determined to high
relative accuracy by the matrix entries are those H = DAD where A is well conditioned.

In particular, we give explicit small componentwise relative perturbations which attain
the eigenvalue bounds; it su�ces to choose a diagonal perturbation. We have (necessarily)
slightly weaker results for the optimality of our eigenvector bounds.

We begin by showing that the assumption k�Ak2 < �min(A) of the last section is essential
to having relative error bounds at all. If this bound were violated, A+ �A (and so H + �H)
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could become inde�nite, implying that all relative accuracy in at least one eigenvalue is
completely lost. In contrast to standard perturbation theory, however, which assumes
a bound on k�Hk2 instead of k�Ak2, one cannot say which eigenvalue will lose relative
accuracy �rst. In the conventional case, as k�Hk2 grows, it is the smallest eigenvalues
which lose accuracy �rst, the larger ones remaining accurate. As k�Ak2 grows, however,
any eigenvalue in the spectrum (except the very largest) may lose its relative accuracy �rst.
The following example illustrates this:

H =

2
6664
1020

1 :99
:99 1

10�20

3
7775 ; A =

2
6664
1

1 :99
:99 1

1

3
7775 ; D = diag (1010; 1; 1; 10�10)

Note that �min(A) = :01. As k�Ak2 approaches :01, the eigenvalues near 1020, 1:99 and
10�20 retain their accuracy, but the one near :01 can lose all its relative accuracy.

We next show that the relative error bound of Theorem 2.1 can be nearly attained for
at least one eigenvalue simply by making appropriate small relative perturbations to the
diagonal of H .

Proposition 2.13 Let H = DAD be symmetric positive de�nite, with D = diag (H
1=2
ii )

diagonal and Aii = 1. Let �A = �I, 0 < � < �min(A), and H + �H = D(A+ �A)D. Then

for some i we have

�i(H + �H)

�i(H)
� (1 +

�

�min(A)
)1=n � 1 +

�

n�min(A)

Proof. We haveY
i

�i(H) = det(DAD) = det(D2) det(A) = det(D2)
Y
i

�i(A)

andY
i

�i(H + �H) = det(D(A+ �I)D) = det(D2) det(A+ �I) = det(D2)
Y
i

(�i(A) + �)

Therefore Y
i

�i(H + �H)

�i(H)
=
Y
i

�i(A) + �

�i(A)
� 1 +

�

�min(A)

implying that at least one factor �i(H + �H)=�i(H) must exceed (1+ �=�min(A))
1=n. This

last expression is approximately 1 + �=(n�min(A)) when � � �min(A).
The example at the beginning of this section showed that the error bound of Theorem

2.3 and the last proposition may only be attained for one eigenvalue. Proposition 2.5 of the
last subsection showed that for asymptotically small k�Ak2, the maximum perturbation in
each eigenvalue may be attained only with small diagonal perturbations of A.

After we show that the rounding errors introduced by Jacobi are of the form k�Ak2 =
O(") in the next section, Propositions 2.13 and 2.5 will show that Jacobi (modulo the
assumption on maxm �(Am)=�(A0)) computes all the eigenvalues with optimal accuracy,
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provided that only the diagonal entries of H have small relative errors. The same optimality
property is true of bisection.

Now we consider eigenvectors. Here our results are necessarily weaker, as the following
example shows. Suppose H is diagonal with distinct eigenvalues. Then small relative
perturbations to the matrix entries leave H diagonal and its eigenvalue matrix (the identity
matrix) unchanged. Therefore, the only way we can hope to attain the bounds of Theorem
2.7 is to use perturbations �A which are possibly dense, even if H is not. Furthermore, a
block diagonal example like the �rst one in this section shows that the attainable eigenvector
perturbations will not necessarily grow with �(A). Thus, the best we can prove is

Proposition 2.14 Let H = DAD, �i, vi, �H, �A and � be as in Proposition 2.5. Let v0i
be the unit eigenvectors of H + �H. Then one can choose �A, k�Ak2 � � � �min(A), so
that

kvi � v0ik2 �
�

�max(A)relgap�i
+O(�2)

Proof. Consider expression (2.8) for vi � v0i (there �A is written �E). By using a
Householder transformation, one can prove there exists a symmetric �A such that yTk �Ayi =
kykk2kyik2k�Ak2 for arbitrary yk and yi. Since �k = yTk Ayk � kykk2�max(A), we can �nd
�A to make yTk �Ayi � (�i�k)1=2k�Ak2=�max(A). Choosing k so that �k is closest to �i
completes the proof.

2.3 Singular Value Decomposition

The results on singular values and singular vectors are analogous to the results for eigen-
values and eigenvectors in the �rst subsection. Just as we derived perturbation bounds for
eigenvalues from a more general result for generalized eigenvalues of pencils, we will start
with a perturbation bound for generalized singular values and then specialize to standard
singular values.

Let G1 and G2 be matrices with the same number of columns, G2 of full column rank,
and otherwise both arbitrary. We de�ne the i-th generalized singular value �i(G1; G2) of the
pair (G1; G2) as the square root of the i-th eigenvalue of the de�nite pencil GT

1G1��GT
2G2

[9]. If we let G2 be the identity, �i(G1; G2) is the same as the standard singular value �i(G1)
of G1.

Lemma 2.15 Let G1 and G2 be matrices with the same number of columns, G2 of full

column rank, and otherwise both arbitrary. Let �Gj be a perturbation of Gj such that

k�Gjxk2 � �jkGjxk2

for all x and some �j < 1. Let �i be the i-th generalized singular value of (G1; G2) and �0i
be the i-th generalized singular value of (G1 + �G1; G2 + �G2). Then either �i = �0i = 0 or

1� �1

1 + �2
� �0i

�i
� 1 + �1

1� �2
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Proof. From the Courant-Fischer minimax theorem [14] we have

�i = min
Si

max
x2Si

kG1xk2
kG2xk2

where the minimum is over all i-dimensional subspaces Si. The rest of the proof is analogous
to that of Lemma 2.1.

Lemma 2.16 Let G1 and G2 be as in Lemma 2.15. Let Gj = Bj�j where �j has full rank

and is otherwise arbitrary. Let �Gj = �Bj�j be a perturbation of Gj such that k�Bjxk2 �
�jkBjxk2 for all x and some �j < 1. Let �i and �

0
i be the i-th generalized singular values of

(G1; G2) and (G1 + �G1; G2 + �G2), respectively. Then either �i = �0i = 0 or

1� �1

1 + �2
� �0i

�i
� 1 + �1

1� �2

The proof is analogous the proof of Lemma 2.2.

Theorem 2.17 Let G = BD be a general full rank matrix, and D chosen diagonal so that

the columns of B have unit two-norm (i.e. Dii equals the two-norm of the i-th column of

G). Let �G = �BD be a perturbation of G such that k�Bk2 � � < �min(B). Let �i and �0i
be the i-th singular values of G and G+ �G, respectively. Then

j�i � �0ij
�i

� �

�min(B)
� �(B) � � (2:18)

where �(B) = �max(B)=�min(B) � n1=2=�min(B), and n is the number of columns of G. In

particular, if j�Gij=Gijj � �=n, then k�Bk2 � � and the bound (2.18) applies.

The proof is analogous to that of Theorem 2.3.
Just as the bounds of Theorem 2.3 were not attainable by all eigenvalues, neither are

the bounds of Theorem 2.17 attainable for all singular values. Analogous to Proposition
2.5, we may derive tighter bounds for individual singular values.

Proposition 2.19 Let G = BD be as in Theorem 2.17, with singular values �i, right unit

singular vectors vi and left unit singular vectors ui. Let G+ �G = (B+ �B)D have singular

values �0i, where k�Bk2 � � � �min(B). Then the bound

j�i � �0ij
�i

� �kDvik2
�i

+O(�2) (2:20)

is attainable by the perturbation �B = �ui(Dvi)T =kDvik2.

Proof. Bound (2.20) is derived from the standard �rst order perturbation theory which
says �i(G+ �G) = �i(G) + uTi �Gvi +O(k�Gk22), and substituting juTi �Gvij = juTi �BDvij �
kDvik2k�Bk2. This last inequality is clearly attained by the choice of �B in the statement
of the proposition.
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Now we consider the singular vectors. For simplicity we assume G is square. We use the

fact that if G = U�V T is the singular value decomposition of G, then 2�1=2 �
"
V V

U �U

#

is the eigenvector matrix of the symmetric matrix

"
0 GT

G 0

#
[9]. Therefore we can use

perturbation theory for eigenvectors of symmetric matrices to do perturbation theory for
singular vectors of general matrices.

We also need to de�ne the gaps for the singular vector problem. The absolute gap for

singular values is

absgap�i � min
k 6=i

j�i � �k j
kGk2

i.e. essentially the same as the absolute gap for eigenvalues. However the relative gap for

singular values

relgap�i � min
k 6=i

j�i � �kj
�i + �k

is somewhat di�erent from the relative gap for eigenvalues.
The standard perturbation theorem for singular vectors is essentially the same as for

eigenvectors. Let G have right (or left) unit singular vectors vi, and let G+ �G have right
(or left) unit singular vectors v0i. Let � = k�Gk2=kGk2. Then

kvi � v0ik2 �
�

absgap�i
+O(�2)

We improve this as follows:

Theorem 2.21 Let G = BD be as in Theorem 2.17. De�ne G(�) = (B + �E)D where E

is any matrix with unit two-norm. Let �i(�) be the i-th singular value of G(�), and assume

�i(0) is simple so that the corresponding right unit singular vector vi(�) and left unit singular
vector ui(�) are well de�ned for su�ciently small �. Then

max(kvi(�)�vi(0)k2; kui(�)�ui(0)k2) �
(n� :5)1=2�

�min(B) � relgap�i
+O(�2) � (n� :5)1=2�(B)�

relgap�i
+O(�2)

Proof. Let vk(0) be abbreviated by vk and uk(0) by uk. De�ne

Ĝ =

"
0 GT

G 0

#
; Ê =

"
0 ET

E 0

#
; D̂ =

"
D 0
0 I

#
; B̂ =

"
0 BT

B 0

#
; x�i =

1p
2

"
vi
�ui

#

so that Ĝ = D̂B̂D̂. Ĝ has eigenvalues ��i corresponding to eigenvectors x�i . Let x
�
i (�) be

the eigenvectors of "
0 D(BT + �ET )

(B + �E)D 0

#
= D̂(B̂ + �Ê)D̂

Then from [9] we have

x�i (�) = x�i + �
X

�k 6=�i

x� T
i D̂ÊD̂x�k
��i � �k

� x�k +O(�2) (2:22)
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Now we compute

jx� T
i D̂ÊD̂x�k j =

juTi EDvk + vTi DETuk j
2

� kDvkk2 + kDvik2
2

We also have

�i = x+ T
i Ĝx+i = uTi BDvi = kBDvik2 � �min(B) � kDvik2

so

jx� T
i D̂ÊD̂x�k j �

�i + �k

2 � �min(B)

Taking norms in (2.22) yields the result.

Corollary 2.23 Let G = BD be as in Theorem 2.17. Suppose � � k�Bk2=�min(B) satis�es

�

1� �
< relgap�i

Let vi and ui be the unit right and left singular vectors of G, respectively, and let v0i and u0i
be the unit right and left singular vectors of G0 = (B + �B)D, respectively. Then

max(kvi � v0ik2; kui � u0ik2) �
(n� :5)1=2�

(1� �)((1� �)relgap�i � �)

Proof. The proof is analogous to the proof of Corollary 2.9.
There are analogs to Propositions 2.10 through 2.12 of the last section, gotten by con-

sidering H = GTG:

Proposition 2.24 Let G = BD be as in Theorem 2.17. Let �1 � � � � � �n be the singular

values of G and d1 � � � � � dn the diagonal entries of D in increasing order. Then

�min(B) �
�i

di
� �max(B)

Proposition 2.25 Let G = BD be as in Theorem 2.17 with singular values �1 � � � � � �n.

Let vi be the i-th right singular vector of G, normalized so that its i-th component vi(i) = 1.
Then

jvi(j)j � ��vi(j) � (�(B))3 �min(�i
�j
;
�j

�i
)

We also have

jvi(j)j � (�(B))3 �min(di
dj
;
dj

di
)

Proposition 2.26 Let G(�) and vi(�) be as in Theorem 2.21, and ��vi(j) as in Proposition

2.25. Then

jvi(�)(j)� vi(0)(j)j �
2(n� 1)1=2

�2min(B) � relgap�i
� � � ��vi(j) +O(�2)

There are analogs to all the results in this section for matrices G = DB scaled from the
left instead of the right. Thus, one can choose to scale either the rows or the columns of
G to have unit two-norms, whichever one minimizes the condition number. It is natural to
ask if one can do better by considering two sided diagonal scaling D1GD2; to date we have
been unable to formulate a reasonable perturbation theory. To see why, note that if G is
triangular it can be made as close to the identity matrix as desired by two sided scaling,
even though its singular values can be quite sensitive.
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2.4 Optimality of the Bounds for the Singular Value Decomposition

The results in this section are analogous to but necessarily weaker than the results of
subsection 2.2. In particular, it is no longer the case that the perturbation bounds for the
singular values can be attained by small relative perturbations in the matrix entries.

First consider the restriction k�Bk2 < �min(B). Just as in the symmetric positive
de�nite case, this is necessary so that B+ �B remains nonsingular. When B + �B becomes
singular, at least one singular value will necessarily lose all relative accuracy. The same
kind of block diagonal example as in subsection 2.2 also shows that only one singular value
may have its sensitivity depend on �(B), and it might be anywhere in the spectrum (except
the very largest singular value).

In order to prove an analogue of Proposition 2.13, we must permit perturbations �B of B
which are small in norm but may make large relative changes in tiny entries of B (a similar
perturbation was needed to prove that the bound in Proposition 2.19 was attainable):

Proposition 2.27 Let G = BD with D diagonal and the columns of B having unit norm.

Then there exists a �B with k�Bk2 = � < �min(B) such that for G + �G = (B + �B)D we

have for at least one i

�i(G+ �G)

�i(G)
� (1 +

�

�min(B)
)1=n � 1 +

�

n�min(B)

If we restrict �B so that j�Bij=Bij j � �, then such a perturbation �B may not exist.

Proof. The proof is very similar to that of Proposition 2.13. Let X be a rank one
matrix of minimal 2-norm such that B + X is singular, and let �B = ��X . Then as in
Proposition 2.13 we discover that

Y
i

�i(G+ �G)

�i(G)
= 1 +

�

�min(B)

and so at least one term �i(G+ �G)=�i(G) exceeds (1 + �=�min(B))1=n. To see that small
componentwise relative perturbations are not su�cient, consider the matrix

G = B =

"
1 1
�� �

#

with � � 1. The condition number of B is approximately 1=�, and relative perturbations
of size � in its entries cannot change its singular values by more than a factor of about
(1� �)2.

As in Proposition 2.14, our lower bound on the attainable perturbations in the singular
vectors requires a dense �B and does not grow with �(B).

Proposition 2.28 Let G = BD, �i, ui, vi, �G = �BD and � be as in Proposition 2.19.

Let u0i and v0i be the unit left and right singular vectors of G+ �G, respectively. Then one

can choose �B, k�Bk2 � � � �min(B), so that

max(kui � u0ik2; kvi � v0ik2) �
�

23=2�max(B)relgap�i
+ O(�2)
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Proof. Consider expression (2.22) for the perturbation (ui � u0i; vi � v0i) (there �B is
written �E). Choose k so j�i��k j is minimized. Let �B = �ui(Dvk)

T =kDvkk2 if �k > �i and
�B = �uk(Dvi)

T=kDvik2 otherwise. The rest of the proof is a straightforward computation.
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3 Two-sided Jacobi

In this section we prove that two-sided Jacobi in 
oating point arithmetic applied to a
positive de�nite symmetric matrix computes the eigenvalues and eigenvectors with the error
bounds of section 2.

In this introduction we present the algorithm and our model of 
oating point arithmetic.
In subsection 3.1, we derive error bounds for the computed eigenvalues. In subsection 3.2,
we derive error bounds for the computed eigenvectors.

Let H0 = D0A0D0 be the initial matrix, and Hm = DmAmDm where Hm is obtained
from Hm�1 by applying a single Jacobi rotation. Here Dm is diagonal and Am has unit
diagonal as before. All the error bounds in this section contain the factor maxm �(Am),
whereas the perturbation bounds of section 2 are proportional to �(A0). Therefore, our
claim that Jacobi solves the eigenproblem as accurately as predicted in section 2 depends
on the ratio maxm �(Am)=�(A0) being modest in size. Note that convergence of Hm to
diagonal form is equivalent to the convergence of Am to the identity, or �(Am) to 1. Thus
we expect �(Am) to be less than �(A0) eventually.

We have overwhelming numerical evidence that maxm �(Am)=�(A0) is modest in size; in
section 7, the largest value this ratio attained in random testing was 1.82. Our theoretical
understanding of why this ratio is so small is somewhat weaker; we present our theoretical
bounds on this ratio in section 6.

The essential di�erence between our algorithm and standard two-sided Jacobi is the
stopping criterion: according to Theorem 2.3, we must setHij to zero only ifHij=(HiiHjj)1=2

is small, not just if Hij=maxkl jHklj is small. This stopping criterion has been suggested
before [20, 5, 3, 19], but without our explanation of its bene�ts. Otherwise, our algorithm is
a simpli�cation of the standard one introduced by Rutishauser [14]. We have chosen a simple
version of the algorithm, omitting enhancements like delayed updates of the diagonals and
fast rotations, to make the error analysis clearer (an error analysis of these enhancements
is future work).

Algorithm 3.1 Two-sided Jacobi for the symmetric positive de�nite eigenproblem. tol is a

user de�ned stopping criterion. The matrix V whose columns are the computed eigenvectors

initially contains the identity.

repeat

for all pairs i < j

/* compute the Jacobi rotation which diagonalizes

"
Hii Hij

Hji Hjj

#
�
"
a c

c b

#
/*

� = (b� a)=(2c)

t = sign(�)=(j�j+
p
1 + �2)

cs = 1=
p
1 + t2

sn = cs � t
/* update the 2 by 2 submatrix */

Hii = a � c � t
Hjj = b+ c � t
Hij = Hji = 0
/* update the rest of rows and columns i and j */
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for k = 1 to n except i and j

tmp = Hik

Hik = cs � tmp � sn �Hjk

Hjk = sn � tmp+ cs �Hjk

Hki = Hik

Hkj = Hjk

endfor

/* update the eigenvector matrix V */

for k = 1 to n

tmp = Vki
Vki = cs � tmp� sn � Vkj
Vkj = sn � tmp+ cs � Vkj

endfor

endfor

until convergence (all jHij j=(HiiHjj)1=2 � tol )

Our model of arithmetic is a variation on the standard one: the 
oating point result
fl(�) of the operation (�) is given by

fl(a� b) = a(1 + "1)� b(1 + "2)

fl(a� b) = (a� b)(1 + "3) (3.1)

fl(a=b) = (a=b)(1+ "4)

fl(
p
a) =

p
a(1 + "5)

where j"ij � ", and "� 1 is the machine precision. This is somewhat more general than the
usual model which uses fl(a�b) = (a�b)(1+"1) and includes machines like the Cray which
do not have a guard digit. This does not greatly complicate the error analysis, but it is
possible that the computed rotation angle may be o� by a factor of 2, whereas with a guard
digit the rotation angle is always highly accurate. This may adversely a�ect convergence,
but as we will see it does not a�ect the one-step error analysis.

Numerically subscripted "'s denote independent quantities bounded in magnitude by ".
As usual, we make approximations like (1+ i"1)(1+ j"2) = 1+ (i+ j)"3 and (1+ i"1)=(1+
j"2) = 1 + (i+ j)"3.

3.1 Error Bounds for Eigenvalues Computed by Two-sided Jacobi

The next theorem and its corollary justify our accuracy claims for eigenvalues computed by
two-sided Jacobi.

Theorem 3.2 Let Hm be the sequence of matrices generated by Algorithm 3.1 in �nite

precision arithmetic with precision "; that is Hm+1 is obtained from Hm by applying a

single Jacobi rotation. Then the following diagram

H 0
m

Hm Hm+1

?
+�Hm

-
oating
Jacobi

�
�
���exact
Jacobi
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commutes in the following sense: The top arrow indicates that Hm+1 is obtained from Hm

by applying one Jacobi rotation in 
oating point arithmetic. The diagonal arrow indicates

that Hm+1 is obtained from H 0
m by applying one Jacobi rotation in exact arithmetic; thus

Hm+1 amd H 0
m are exactly similar. The vertical arrow indicates that H 0

m = Hm + �Hm.

�Hm is bounded as follows. Write �Hm = Dm�AmDm. Then

k�Amk2 � (182(2n� 4)1=2 + 104)" (3:3)

In other words, if k�Amk2 < �min(Am), one step of Jacobi satis�es the assumptions needed

for the error bounds of section 2.

Corollary 3.4 Assume Algorithm 3.1 converges, and that HM is the �nal matrix whose

diagonal entries we take as the eigenvalues. Write Hm = DmAmDm with Dm diagonal and

Am with ones on the diagonal for 0 � m � M . Let �j be the j-th eigenvalue of H0 and �0j
be the j-th diagonal entry of HM . Then to �rst order in " the following error bound holds:

j�j � �0j j
�j

� (" �M � (182(2n� 4)1=2 + 104) + n � tol) � max
0�m�M

�(Am) (3:5)

Remark. In numerical experiments presented in section 7, there was no evidence that the
actual error bounded in (3.5) grew with increasing n or M .

Proof of Corollary 3.4. Bound (3.5) follows by substituting the bound (3.3) and
the stopping criterion into Theorem 2.3.
Remark. A similar bound can be obtained based on the error bound in Proposition 2.5.

Proof of Theorem 3.2. The proof of the commuting diagram is a tedious compu-
tation. Write the 2 by 2 submatrix of Hmm being reduced as"

a c

c b

#
�
"

d2i zdidj
zdidj d2j

#

where we assume without loss of generality that a � b and c > 0. By positive de�niteness
0 < z � �z � (�(Am) � 1)=(�(Am) + 1) < 1. Let a0 and b0 be the new values of Hii and
Hjj computed by the algorithm, respectively. Let x � dj=di � 1. We consider two cases,
x � �x � (

p
5� 1)=2 � :62, and x > �x.

First consider x � �x. Systematic application of formulas (3.1) shows that

� = fl((b� a)=(2 � c))
= (1 + "4)(((1 + "1)b� (1 + "2)a)=((1+ "3)2c))

=
(1 + "4)(1 + "2)

1 + "3

 
~b� a

2c

!

where ~b � (1 + "1)b=(1 + "2) � (1 + "b)b, j"bj � 2". Thus � = (1 + "�)(~b� a)=(2c) where
j"� j � 3".

Let t(c) denote the true value of t (i.e. without rounding error) as a function of a, ~b and
c. Using (3.1) again one can show t = (1 + "t)t(c) where j"tj � 7".
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Next

b0 = fl(b+ ct) = (1 + "5)b+ (1 + "6)(1 + "7)ct

=
(1 + "2)(1 + "5)

1 + "1
(~b+

(1 + "1)(1 + "6)(1 + "7)(1 + "t)

(1 + "2)(1 + "5)
ct(c))

� (1 + "b0)(~b+ (1 + "ct(c))ct(c)) (3.6)

where j"ct(c)j � 12" and j"b0 j � 3". Since jt(c)j is an increasing function of c, we can write
(1 + "ct(c))ct(c) = (1 + "c)c � t((1 + "c)c), for some "c where j"cj � j"ct(c)j � 12".

Now we can de�ne ~c � (1 + "c)c, and ~�, ~t, ~cs and ~sn as the true values of the untilded
quantities computed without rounding error starting from a, ~b and ~c. ~cs and ~sn will de-

�ne the exact Jacobi rotation Jm �
"

~cs ~sn
� ~sn ~cs

#
which transforms H 0

m to Hm+1 in the

commutative diagram in the statement of the theorem: JTmH
0
mJm = Hm+1.

Now we begin constructing �Hm. �Hm will be nonzero only in rows and columns i and
j. First we compute its entries outside the 2 by 2 (i; j) submatrix. Using (3.1) one can
show cs = (1 + "cs) ~cs and sn = (1 + "sn) ~sn where j"csj � 22" and j"snj � 30". Now let H 0

ik

and H 0
jk denote the updated quantities computed by the algorithm. Then

H 0
ik = fl(cs �Hik � sn �Hjk)

= (1 + "10)(1 + "8)csHik � (1 + "9)(1 + "11)snHjk

= (1 + "10)(1 + "8)(1 + "cs) ~csHik � (1 + "9)(1 + "11)(1 + "sn) ~snHjk

� ~csHik � ~snHjk + �(H 0
ik) (3.7)

Similarly

H 0
jk = fl(sn �Hik + cs �Hjk)

= (1 + "14)(1 + "12)(1 + "sn) ~snHik + (1 + "13)(1 + "15)(1 + "cs) ~csHjk

� ~snHik + ~csHjk + �(H 0
jk) (3.8)

Now x = dj=di implies

�� =
b� a

2~c
=

d2j � d2i

2~zdidj
=

x2 � 1

2~zx

where ~z � z(1 + "c). Then x � �x implies

j~tj = 1

1�x2

2~zx
+

�
1 +

�
1�x2

2~zx

�2�1=2 �
~zx

1� �x2

Also j ~snj � j~tj, so this last expression is an upper bound on j ~snj as well. Substituting this
bound on ~sn, ~cs � 1, jHikj � didk�z and jHjkj � djdk�z into (3.7) and (3.8) yields

j�(H 0
ik)j � 56"didk�z

j�(H 0
jk)j � 56"djdk�z=(1� �x2)
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Thus "
H 0
ik

H 0
jk

#
= JTm �

"
Hik

Hjk

#
+

"
�(Hik)
�(Hjk)

#

= JTm �
 "

Hik

Hjk

#
+ Jm �

"
�(Hik)
�(Hjk)

#!

� JTm �
 "

Hik

Hjk

#
+

"
�Hik

�Hjk

#!

where

j�Hikj � 112"didk�z=(1� �x2)

j�Hjkj � 112"djdk�z=(1� �x2)

Now we construct the 2 by 2 submatrix � of �Hm at the intersection of rows and columns
i and j. We will construct it of three components � = �1 + �2 + �3.

Consider the formula a0 = fl(a � c � t) for the i; i entry of Hm+1. Applying (3.1)
systematically, we see

a0 = (1 + "18)a� (1 + "17)(1 + "16)ct

= (1 + "18)a� (1 + "17)(1 + "16)(1 + "t)ct(c)

= (1 + "18)a�
(1 + "17)(1 + "16)(1 + "t)~ct(~c)

1 + "ct(c)

� (1 + "18)a� (1 + "0ct(c))~ct(~c)

where j"0ct(c)j � 21". Since a > 0 and ~ct(~c) < 0, we get

a0 =

 
1 +

"18a� "0ct(c)~ct(~c)

a � ~ct(~c)

!
(a� ~ct(~c)) � (1 + "a0)(a� ~ct(~c))

where j"a0 j � 21".
Now let

�1 =

"
0 "cc

"cc "bb

#
=

"
0 ~c� c

~c� c ~b� b

#

From earlier discussion we see

JTm

 "
a c

c b

#
+�1

!
Jm =

"
a� ~ct(~c) 0

0 ~b+ ~ct(~c)

#

Next let

�2 = "a0

 "
a c

c b

#
+�1

!
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Thus

JTm

 "
a c

c b

#
+ �1 + �2

!
Jm = (1+"a0)

"
a� ~ct(~c) 0

0 ~b+ ~ct(~c)

#
=

"
a0 0
0 b0((1 + "a0)=(1 + "b))

#

Finally, let

�3 = Jm

"
0 0
0 b0(1� ((1 + "a0)=(1 + "b))

#
JTm �

"
~sn2"b00b ~cs ~sn"b00b
~cs ~sn"b00b ~cs2"b00b

#

where j"b00 j � j"a0 j+ j"bj � 24". Then

JTm

 "
a c

c b

#
+�1 +�2 +�3

!
Jm =

"
a0 0
0 b0

#

as desired. This completes the construction of �Hm. We may bound

k�Amk2 �
 
112(2n� 4)1=2�z

1� �x2
+ 104

!
" (3:9)

Now we consider the second case, when x > �x. The only thing that changes in the
previous analysis is our analysis of �Hik and �Hjk, since ~sn is no longer small. Instead we
substitute the bounds j ~snj � 1, j ~csj � 1, jHikj � didk�z � djdk�z=�x and jHjkj � djdk�z into
(3.7) and (3.8) to get

j�(H 0
ik)j � 56"didk�z

j�(H 0
jk)j � 56"didk�z

whence

j�Hikj � 112"didk�z

j�Hjkj � 112"djdk�z=�x

and

k�Amk2 �
 
112(2n� 4)1=2�z

�x
+ 104

!
" (3:10)

Finally, we note our choice of �x makes the upper bounds in (3.9) and (3.10) both equal,
with 1=(1� �x2) = 1=�x < 1:62, proving the theorem.
Remark. The quantity 182(2n�4)1=2 in the theoremmay be multiplied by maxm;i6=j jAm;ij j <
1. Thus if the Am are strongly diagonally dominant, the part of the error term which de-
pends on n is suppressed.

Commutative diagrams like the one in the theorem, where performing one step of the
algorithm in 
oating point arithmetic is equivalent to making small relative errors in the
matrix and then performing the algorithm exactly, occur elsewhere in numerical analysis.
For example, such a diagram describes an entire sweep of the zero-shift bidiagonal QR
algorithm [7], and is the key to the high accuracy achieved by that algorithm. Also, if one
modi�es one line in the traditional zero-shift symmetric tridiagonal QR algorithm so it is
performed in higher precision, such a diagram describes an entire sweep of that algorithm as
well [13]. Unfortunately, this ability to have a high accuracy sweep does not often translate
into overall accuracy, because in tridiagonal QR �(Am) frequently grows greatly for that
algorithm before converging to 1.
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3.2 Error Bounds for Eigenvectors Computed by Two-sided Jacobi

The next two theorems justify our accuracy claims for eigenvectors computed by two-sided
Jacobi.

Theorem 3.11 Let V = [v1; : : : ; vn] be the matrix of unit eigenvectors computed by Algo-

rithm 3.1 in �nite precision arithmetic with precision ". Let U = [u1; : : : ; un] be the true

eigenvector matrix. Let �� � maxm �(Am) be the largest �(Am) of any iterate. Then the

error in the computed eigenvectors is bounded in norm by

kvi � uik2 �
(n� 1)1=2(n � tol +M � (182(2n� 4)1=2+ 104)")��

relgap�i
+ 46M" (3:12)

Remark In numerical experiments presented in section 7, there was no evidence that the
actual error bounded in (3.12) grew with increasing n or M .

Proof. Let H0; : : : ; HM be the sequence of matrices generated by the Jacobi algorithm,
where HM satis�es the stopping criterion. Let Jm be the exact Jacobi rotation which
transforms H 0

m to Hm+1 in the commuting diagram of Theorem 3.2: JTmH
0
mJm = Hm+1.

We will use the approximation that relgap�i is the same for all Hm, even though it
changes slightly. This contributes an O("2) term to the overall bound (which we ignore),
but could be accounted for using the bounds of Theorem 3.2.

Initially, we will compute error bounds for the columns of J0 � � �JM�1, ignoring any
rounding errors occurring in computing their product. Then we will incorporate these
rounding errors.

We will prove by induction that the i-th column vmi of Vm � Jm � � �JM�1 is a good
approximation to the true i-th eigenvector umi of Hm. In particular, we will show that to
�rst order in "

kui � v0ik2 �
(n� 1)1=2(n � tol +M � (182(2n� 4)1=2 + 104)")��

relgap�i

The basis of the induction is as follows. VM = I is the eigenvector matrix for HM , which
is considered diagonal since it satis�es the stopping criterion. Thus the norm error in vMi

follows from plugging the stopping criterion into Theorem 2.7:

kuMi � vMik2 �
(n� 1)1=2 � n � tol � ��

relgap�i

For the induction step we assume that

kum+1;i � vm+1;ik2 �
(n� 1)1=2(n � tol + (M �m� 1) � (182(2n� 4)1=2 + 104)")��

relgap�i

and try to extend to m. Consider the commuting diagram of Theorem 3.2. Accordingly,
the errors in Vm = JmVm+1 considered as eigenvectors of H 0

m are just the errors in Vm+1

premultiplied by Jm. This does not increase them in 2-norm, since Jm is orthogonal. Now we
change H 0

m to Hm. This increases the norm error in vmi by an amount bounded by plugging
the bound for k�Amk2 into Theorem 2.7: (n� 1)1=2��(182(2n� 4)1=2+104)"=relgap�i. This
proves the induction step.
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Finally, consider the errors from accumulating the product of slightly wrong values of
Jm in 
oating point arithmetic. From the proof of Theorem 3.2, we see the relative errors
in the entries of Jm are at most 30", and from the usual error analysis of a product of 2
by 2 rotations, we get 32

p
2M" < 46M" for the norm error in the product of M rotations.

This completes the proof of bound (3.12).
Now we consider the errors in the individual components of the computed eigenvectors

jui(j)� vi(j)j. From Proposition 2.12 we see that we can hope to bound this quantity by
O(")���vi(j)=min(relgap�i; 2

�1=2), where

�vi(j) � ��3=2min(

 
�i

�j

!1=2�
�j

�i

�1=2
) (3:13)

is a modi�ed upper bound for the eigenvector component vi(j) as in Proposition 2.11.
In other words, we may have high relative accuracy even in the tiny components of the
computed eigenvectors; this is the case in the example in the introduction and at the end
of subsection 2.1. Our proof of this fact will not be as satisfactory as the previous result,
because it will contain a \pivot growth" factor which probably grows at most linearly in M

but for which we can only prove an exponential bound. In numerical experiments presented
in section 7, there was no evidence that this factor grew with increasing n or M .

We will use �vi(j) as de�ned in (3.13) for each Hm, even though the values of �i and �j
vary slightly from step to step. This error will contribute an O("2) term to the overall bound
(we are ignoring such terms) but could be incorporated using the bounds of Corollary 3.4.

Theorem 3.14 Let V , U , and �� be as in Theorem 3.11, and �vi(j) be as in (3.13). Then

we can bound the error in the individual eigencomponents by

jui(j)� vi(j)j � p(M;n) � (tol + ") � �� � �vi(j)
min(relgap�i; 2

�1=2)
(3:15)

Here p(M;n) is a \pivot growth" factor which probably grows at most linearly in M and in

n3=2 although all we can prove is an exponential bound.

Proof. The proof is similar to that of Theorem 3.11. One di�erence is that we use
Proposition 2.12 instead of Theorem 2.7 to bound the errors in the eigenvectors. Another
di�erence, which introduces the growth factor p(M), is that we need to use the scaling of
the entries of Jm to see how small eigenvector components have small errors; not being able
to use the orthogonality of Jm introduces p(M).

As in the proof of Theorem 3.11, let Vm = Jm � � �JM�1, where J
T
mH

0
mJm = Hm+1. Set

VM = I . The proof has three parts. In the �rst part we will show the i-th column of V0 is
a good approximation to the eigenvectors of H0 in the sense of the theorem. In the second
part we will show that the (i; j) entry of J0 � � �Jm is bounded by a modest multiple of �vi(j).
In the third part we will show the rounding errors committed in computing J0 � � �Jm in

oating point are small compared to �vi(j).

For the �rst part of the proof we will use induction to prove that the i-th column vmi

of Vm is a good approximation to the true i-th eigenvector umi of Hm. This will show

jui(j)� v0i(j)j � �0
(tol + ") � �� � �vi(j)
min(relgap�i; 2

�1=2)
(3:16)
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where �0 is a constant (part of the \pivot growth" factor) we need to estimate. The base
of the induction follows from plugging the stopping criterion into the bound of Proposition
2.12, yielding

juMi(j)� vMi(j)j �
(2n� 2)1=2 � n � tol � �� � �vi(j)

min(relgap�i; 2
�1=2)

� �M
(tol + ") � �� � �vi(j)
min(relgap�i; 2

�1=2)

where �M � n(2n� 2)1=2. The induction step will assume that

jum+1;i(j)� vm+1;i(j)j � �m+1

(tol+ ") � �� � �vi(j)
min(relgap�i; 2

�1=2)

which we will try to extend to m. Consider the commuting diagram of Theorem 3.2.
Accordingly, the errors in the columns of Vm = JmVm+1 considered as eigenvectors of H 0

m

are just the errors in Vm+1 premultiplied by Jm; let emi denote this error for the i-th
column of Vm. Suppose Jm rotates in rows and columns k and l; then emi is identical to
um+1;i�vm+1;i except for emi(k) and emi(l). We may assume without loss of generality that
k < l and dk � dl (d

2
k and d2l are the diagonal entries of Hm). As in the proof of Theorem

3.2, there are two cases, when x � dl=dk � �x � (
p
5� 1)=2, and x > �x.

In the �rst case, x � �x, we know as in the proof of Theorem 3.2 that ~sn, the sine in the
rotation Jm, is bounded in magnitude by x=(1 � �x2). Write j ~snj � cm(�l=�k)

1=2 instead,

where cm is a modest constant. We can do this because dr � �
1=2
r from Proposition 2.10.

This lets us bound

"
jemi(k)j
jemi(l)j

#
=

�����Jm
"
um+1;i(k)� vm+1;i(k)
um+1;i(l)� vm+1;i(l)

#�����
�

"
jum+1;i(k)� vm+1;i(k)j+ j ~sn(um+1;i(l)� vm+1;i(l))j
j ~sn(um+1;i(k)� vm+1;i(k))j+ jum+1;i(l)� vm+1;i(l)j

#

� �m+1(tol+ ")��5=2

min(relgap�i; 2
�1=2)

�
2
64 min(

�
�i

�k

�1=2
;
�
�k

�i

�1=2
) + cm

�
�l

�k

�1=2
min(

�
�i

�l

�1=2
;
�
�l

�i

�1=2
)

cm

�
�l

�k

�1=2
min(

�
�i

�k

�1=2
;
�
�k

�i

�1=2
) + min(

�
�i

�l

�1=2
;
�
�l

�i

�1=2
)

3
75

� �m+1(tol+ ")��5=2

min(relgap�i; 2
�1=2)

�

2
64 (1 + cm)min(

�
�i

�k

�1=2
;
�
�k

�i

�1=2
)

(1 + cm)min(
�
�i

�l

�1=2
;
�
�l

�i

�1=2
)

3
75

= (1 + cm)
�m+1(tol + ")��

min(relgap�i; 2
�1=2)

�
"
�vi(k)
�vi(l)

#
(3.17)

Now consider case 2, x > �x. Now �k and �l are reasonably close together. Thus, we
may bound j ~snj simply by 1 in the derivation (3.17). This leads to the same bound with
a possibly di�erent cm; we take the �nal cm as the maximum of these two values. This
bounds the error in the columns of Vm considered as eigenvectors of H 0

m.
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Now we change H 0
m to Hm. This increases the bound for jumi(j) � vmi(j)j by an

amount bounded by plugging the bound for k�Amk2 from Theorem 3.2 into Proposition
2.12: (2n� 2)1=2(182(2n� 4)1=2 + 104) � " � �� � �vi(j)=min(relgap�i; 2�1=2). This completes
the induction with

jumi(j) � vmi(j)j

� ((1 + cm)�m+1 + (2n� 2)1=2(182(2n� 4)1=2 + 104)) � (tol + ") � �� � �vi(j)
min(relgap�i; 2

�1=2)

� �m �
(tol + ") � �� � �vi(j)

min(relgap�i; 2
�1=2)

(3.18)

Here

�m = (1 + cm)�m+1 + (2n� 2)1=2(182(2n� 4)1=2+ 104) ; �M = n(2n� 2)1=2 (3:19)

satis�es an exponential error bound, but it is clear from the derivation that linear growth
is far more likely than exponential growth. This completes the �rst part of the proof.

In the second part of the proof we will show that the (i; j) entry of ~Vm � J0 � � �Jm is
bounded by a modest multiple of �vi(j). To do this we will prove by induction that

j~vmi(j)j � �m�vi(j) (3:20)

where ~Vm = [~vm1; : : : ; ~vmn] and �m is a constant (part of the \pivot growth" factor) we need
to estimate. The base of the induction is for m = �1, i.e. the null product, which we set
equal to the identity matrix. This clearly satis�es (3.20) with ��1 = 1. Now we assume
(3.20) is true for m� 1 and try to extend it to m. Suppose Jm rotates in rows and columns
k and l. Postmultiplying ~Vm�1 by Jm only changes it in columns k and l. Assume as before
that k < l and x = dl=dk � 1. There are two cases as before, x � �x and x > �x.

First consider the case x � �x. We may bound the (j; k) and (j; l) entries of ~Vm as
follows:

j[~vm;j(k); ~vm;j(l)]j = j[~vm�1;j(k); ~vm�1;j(l)] �
"

~cs ~sn
� ~sn ~cs

#
j

� �m�1��
3=2[min(

�
�j

�k

�1=2
;

 
�k

�j

!1=2

);min(

�
�j

�l

�1=2
;

 
�l

�j

!1=2

)] �
2
64 1 cm

�
�l

�k

�1=2
cm

�
�l

�k

�1=2
1

3
75

� �m�1��
3=2(1 + cm)[min(

�
�j

�k

�1=2
;

 
�k

�j

!1=2

);min(

�
�j

�l

�1=2
;

 
�l

�j

!1=2

)]

= �m�1(1 + cm)[�vk(j); �vl(j)]

� �m[�vk(j); �vl(j)] (3.21)

In the second case, x > �x, we get a similar bound. Here �k � �l, and we can simply bound
j ~snj � 1. This yields a slightly di�erent cm; for the �nal cm we again take the maximum of
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the two. This ends the second part of the proof with

�m = (1 + cm)�m�1 ; ��1 = 1 (3:22)

Even though this only yields an exponential upper bound for �M , it is clear from the
derivation that linear growth is far more likely than exponential growth.

In the third and �nal part of the proof we show the rounding errors in the (i; j) entry
of the computed approximation to ~Vm�1 is bounded by O(")�vi(j). Let ~Jm be the actual
rotation which only approximates Jm. From the proof of Theorem 3.2, we have cs =

~cs(1+"cs) with j"csj � 22" and sn = ~sn(1+"sn) with j"snj � 30". Let ~~Vm = fl( ~~Vm�1 � ~Jm)
be the actually computed eigenvector matrix after the m-th Jacobi rotation. The �nal

computed eigenvector matrix is V = ~~VM�1. We will use induction to prove

j~~vm;i(j)� ~vm;i(j)j � �m"�vi(j) (3:23)

where ~~Vm = [~~vm1; : : : ; ~~vmn] and �m is a constant (part of the \pivot growth" factor) we

need to estimate. The basis is again for m = �1 when ~~V �1 = ~V�1 = I and ��1 = 0. Now
we assume (3.23) is true for m � 1 and try to extend it to m. As before, we assume Jm
rotates in rows and columns k and l with k < l and x = dk=dl � 1. Write ~emi � ~~vmi � ~vmi.

The (j; k) and (j; l) entries of ~~Vm are

[~~vm;j(k) ; ~~vm;j(l)]

= [~~vm�1;j(k) ~cs(1 + "cs)(1 + "1)(1 + "2)� ~~vm�1;j(l) ~sn(1 + "sn)(1 + "3)(1 + "4);

~~vm�1;j(k) ~sn(1 + "sn)(1 + "5)(1 + "6) + ~~vm�1;j(l) ~cs(1 + "cs)(1 + "7)(1 + "8)]

= [~vm�1;j(k) ~cs� ~vm�1;j(l) ~sn; ~vm�1;j(k) ~sn+ ~Vm�1;j(l) ~cs] +

[24"9 ~cs~vm�1;j(k) + 32"10 ~sn~vm�1;j(l); 32"11 ~sn~vm�1;j(k) + 24"12 ~cs~vm�1;j(l)] +

[(1 + 24"9) ~cs~em�1;j(k) + (1 + 32"10) ~sn~em�1;j(l);

(1 + 32"11) ~sn~em�1;j(k) + (1 + 24"12) ~cs~em�1;j(l)]

= [~vm;j(k); ~vm;j(l)] + I1 + I2

so [~em;j(k); ~em;j(l)] = I1 + I2.
As before, there are two cases, x � �x and x > �x. Consider the case x � �x. Using

j ~snj � cm(�l=�k)1=2, j ~csj � 1, and j~vm�1;i(j)j � �m�1�vi(j), we get

jI1j � "�m�1��
3=2[(24 + 32cm)min(

�
�j

�k

�1=2
;

 
�k

�j

!1=2

); (24+ 32cm)min(

�
�j

�l

�1=2
;

 
�l

�j

!1=2

)]

= "�m�1(24 + 32cm)[�vk(j); �vk(l)]

and
jI2j � �m�1(1 + cm)"[�vk(j); �vk(l)]

Taken together, we get

�m = (1 + cm)�m�1 + "�m�1(24 + 32cm) ; ��1 = 0 (3:24)
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In the second case, x > �x, we get a similar bound with a possibly di�erent cm. Again, we
take the maximum of the two. This completes the third part of the proof.

Finally, combining (3.23) and (3.16) we get

jvi(j)� ui(j)j � (�0 + �M�1)
(tol + ") � �� � �vi(j)
min(relgap�i; 2

�1=2)

proving the theorem with p(M;n) = �0 + �M�1.
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4 One-sided Jacobi

In this section we prove that one-sided Jacobi in 
oating point arithmetic applied to a
general matrix computes the singular values and singular vectors with the error bounds of
section 2. Here we present our algorithm; the model of arithmetic was presented in section
3. In subsection 4.1 we derive error bounds for the computed singular values. In subsection
4.2 we derive error bounds for the computed singular vectors. In subsection 4.3, we present
two algorithms for the symmetric positive de�nite eigenproblem H , both of which involve
applying one-sided Jacobi to the Cholesky factor LT (or L) of H . The second of these
algorithms cannot compute eigenvectors quite as accurately as the �rst, but may be much
faster than either the �rst algorithm or two-sided Jacobi.

Let G0 = B0D0 be the initial matrix, and Gm = BmDm, where Gm is obtained from
Gm�1 by applying a single Jacobi rotation. Here Dm is diagonal and Bm has columns of
unit norm. All the error bounds in this section contain the factor maxm �(Bm), whereas
the perturbation bounds in section 2 are proportional to �(B0). Therefore, as in section 3,
our claim that Jacobi computes the SVD as accurately as predicted in section 2 depends
on the ratio maxm �(Bm)=�(B0) being modest. In exact arithmetic, one-sided Jacobi on
G = BD is identical to two-sided Jacobi on H = GTG = DBTBD = DAD, so the question
of the growth of �(Bm) = �(Am)

1=2 is essentially identical to the question of the growth of
�(Am) in the case of two-sided Jacobi.

The essential di�erence between our algorithm and standard one-sided Jacobi is the
stopping criterion: according to Theorem 2.17, we must stop when all Hij=(HiiHjj)1=2 are
small (H = GTG), not just when Hij=maxkl jHklj is small. This stopping criterion has
been suggested before [20, 5, 3], but without our explanation of its bene�ts. Otherwise,
our algorithm is based on the standard one introduced by Rutishauser [14]. We have
chosen a simple version of the algorithm, omitting enhancements like delayed updates of
the diagonals and fast rotations, to make the error analysis clearer (an error analysis of
these enhancements is future work).

Algorithm 4.1 One-sided Jacobi for the singular value problem. tol is a use de�ned stop-

ping criterion. The matrix V whose columns are the computed right singular vectors initially

contains the identity.

repeat

for all pairs i < j

/* compute

"
a c

c b

#
� the (i; j) submatrix of GTG */

a =
Pn

k=1G
2
ki

b =
Pn

k=1G
2
kj

c =
Pn

k=1Gki �Gkj

/* compute the Jacobi rotation which diagonalizes

"
a c

c b

#
*/

� = (b� a)=(2c)

t = sign(�)=(j�j+
p
1 + �2)

cs = 1=
p
1 + t2
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sn = cs � t
/* update columns i and j of G */

for k = 1 to n

tmp = Gki

Gki = cs � tmp � sn �Gkj

Gkj = sn � tmp+ cs �Gkj

endfor

/* update the matrix V of right singular vectors */

for k = 1 to n

tmp = Vki
Vki = cs � tmp� sn � Vkj
Vkj = sn � tmp+ cs � Vkj

endfor

endfor

until convergence (all jcj=
p
ab � tol)

/* the computed singular values are the norms of the columns of the �nal G */

/* the computed left singular vectors are the normalized columns of the �nal G */

4.1 Error Bounds for Singular Values Computed by One-sided Jacobi

The next theorem and its corollary justify our accuracy claims for singular values computed
by one-sided Jacobi.

Theorem 4.1 Let Gm be the sequence of matrices generated by the one-sided Jacobi algo-

rithm in �nite precision arithmetic with precision "; that is Gm+1 is obtained from Gm by

applying a single Jacobi rotation. Then the following diagram

G0
m

Gm Gm+1

?
+�Gm

-
oating
Jacobi

�
�
���exact
rotation

commutes in the following sense: The top arrow indicates that Gm+1 is obtained from Gm

by applying one Jacobi rotation in 
oating point arithmetic. The diagonal arrow indicates

that Gm+1 is obtained from G0
m by applying one plane rotation in exact arithmetic; thus

Gm+1 and G0
m have identical singular values and left singular vectors. The vertical arrow

indicates that G0
m = Gm + �Gm. �Gm is bounded as follows. Write �Gm = �BmDm, where

Dm is diagonal such that Bm in Gm = BmDm has unit columns. Then

k�Bmk2 � 72" (4:2)

In other words, one step of Jacobi satis�es the assumptions needed the error bounds of

section 2.

Corollary 4.3 Assume Algorithm 4.1 converges, and that GM is the �nal matrix which

satis�es the stopping criterion. For 0 � m �M write Gm = BmDm with Dm diagonal and
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Bm with unit columns. Let �j be the j-th singular value of G0 and �0j the j-th computed

singular value. Then to �rst order in " the following error bound holds:

j�j � �0j j
�j

� (72" �M + n2"+ n � tol) � max
0�k�M

�(Bk) + n" (4:4)

Proof of Corollary 4.3. Bound (4.4) follows by substituting the bound (4.2) and
the stopping criterion into Theorem 2.17. The n2" term comes from the fact that c=

p
ab

in the stopping criterion may be underestimated by as much as n". The trailing n" comes
from computing the norms of the columns of the �nal G matrix.
Remark. A similar bound can be obtained based on the error bound in Proposition 2.19.

Proof of Theorem 4.1. The proof of the commuting diagram is a tedious computa-
tion. Let aT , bT and cT be the true values of

P
k G

2
ki,
P

k G
2
kj and

P
k GkiGkj . Then (in

the notation of the proof of Theorem 3.2) write aT = d2i , bT = d2j and cT = zdidj . We
may assume without loss of generality that aT � bT and cT > 0. By positive de�niteness
0 < z � �z � (�2(Bm)� 1)=(�2(Bm) + 1) < 1. Let x � dj=di � 1. We consider two cases,
x � �x � (

p
5� 1)=2 � :62, and x > �x.

First consider x � �x. Systematic application of formulas (3.1) shows that

a = aT (1 + "a) where j"aj � n"

b = bT (1 + "b) where j"bj � n"

c = cT + "c
p
aT bT where j"cj � n"

Let ~cs � (1+ t2)�1=2 and ~sn � t(1+ t2)�1=2. Then from (3.1) again we get sn = (1+"sn) ~sn
and cs = (1 + "cs) ~cs where j"snj � 4" and j"csj � 3". ~cs and ~sn de�ne the plane rotation

Jm =

"
~cs ~sn
� ~sn ~cs

#
which take G0

m to Gm+1: G0
mJm = Gm+1. Also, we can show t �

(1 +O("))x(z + n")=(1� �x2) and so j ~snj � (1 +O("))x(z + n")=(1� �x2).
Let G0

ki and G0
kj be the new values for these entries computed by the algorithm. Using

the bounds j ~csj � 1 and j ~snj � (1 + O("))x(z + n")=(1� �x2), we estimate

G0
ki = fl(cs �Gki � sn �Gkj)

= (1 + "1)(1 + "2)csGki � (1 + "3)(1 + "4)snGkj

= (1 + "1)(1 + "2)(1 + "cs) ~csGki � (1 + "3)(1 + "4)(1 + "sn) ~snGkj

� ~csGki � ~snGkj +Eki (4.5)

and

G0
kj = fl(sn �Gki + cs �Gkj)

= (1 + "5)(1 + "6)snGki + (1 + "7)(1 + "8)csGkj

= (1 + "5)(1 + "6)(1 + "sn) ~snGki + (1 + "7)(1 + "8)(1 + "cs) ~csGkj

� ~snGki + ~csGkj +Ekj (4.6)

where

kE�ik2 � 5"kG�ik2 + 6"kG�jk2 � 11"di

kE�jk2 � 6" ~snkG�ik2 + 5"kG�jk2 � "(
6(z + n")

1� �x2
+ 5)dj
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(here G�i refers to the i-th column of G, etc.). Thus

h
G0
�i G0

�j

i
=

h
G�i G�j

i
�
"

~cs ~sn
� ~sn ~cs

#
+
h
E�i E�j

i

=

 h
G�i G�j

i
+
h
E�i E�j

i
�
"

~cs � ~sn
~sn ~cs

#! "
~cs ~sn
� ~sn ~cs

#

�
�h

G�i G�j

i
+
h
F�i F�j

i� " ~cs ~sn
� ~sn ~cs

#

where

kF�ik2 � kE�ik2 + kE�jk2 � "(
6(z + n")

1� �x2
+ 16)di

kF�jk2 � j ~snj � kE�ik2 + kE�jk2 � "(
17(z + n")

1� �x2
+ 5)dj

Thus

k�Bmk2 �
kF�ik2
di

+
kF�jk2
dj

� "(
23(z + n")

1� �x2
+ 21) (4:7)

Now consider the case x > �x. The analysis di�ers from the previous one only in the fact
that sn is no longer small. Using the bounds j ~snj � 1, j ~csj � 1 in (4.5) and (4.6) yields

kE�ik2 � 5"kG�ik2 + 6"kG�jk2 � 11"di

kE�jk2 � 6"kG�ik2 + 5"kG�jk2 � 11"di

whence

kF�ik2 � kE�ik2 + kE�jk2 � 22"di

kF�jk2 � kE�ik2 + kE�jk2 � 22"dj=�x

and

k�Bmk2 �
kF�ik2
di

+
kF�jk2
dj

� 44"=�x (4:8)

Since �x satis�es 1=(1� �x2) = 1=�x < 1:62, we see from (4.7) and (4.8) that in both cases

k�Bmk2 � 72"

proving the theorem.

4.2 Error Bounds for Singular Vectors Computed by One-sided Jacobi

The next two theorems justify our accuracy claims for singular vectors computed by one-
sided Jacobi.

Theorem 4.9 Let V = [v1; � � � ; vn] be the matrix of unit right singular vectors and U =
[u1; � � � ; un] be the matrix of unit left singular vectors computed by Algorithm 4.1 in �nite

precision arithmetic with precision ". Let VT = [vT1; � � � ; vTn] and UT = [uT1; � � � ; uTn] be
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the matrices of true unit right and left singular vectors, respectively. Let �� � maxm �(Bm)
be the largest �(Bm) of any iterate. Then the error in the computed singular vectors is

bounded in norm by

max(kuT i� uik2; kvT i� vik2) �
(n� :5)1=2 � �� � (72M � "+ n � tol + n2 � ")

relgap�i
+ (9M + n+1)"

(4:10)

Proof. The proof is similar to that of Theorem 3.11. Let G0; : : : ; GM be the sequence
of matrices generated by the Jacobi algorithm, where GM satis�es the stopping criterion.
Let Jm be the exact plane rotation which transformsG0

m toGm+1 in the commuting diagram
of Theorem 4.1: G0

mJm = Gm+1.
We will use the approximation that relgap�i is the same for all Gm, even though it

changes slightly. This contributes an O("2) term (which we ignore), but could be accounted
for using the bounds of Theorem 4.1.

First we consider the left singular vectors. In exact arithmetic, these remain unchanged
throughout the computation since all rotations are applied on the right. Thus, we need
only plug the bounds for the stopping criterion and each k�Bmk2 from Theorem 4.1 into
Theorem 2.21 to get

kuT i � uik2 �
(n� :5)1=2 � �� � (72M � " + n � tol + n2 � ")

relgap�i
+ (n+ 1)"

as claimed (the (n+ 1)" term comes from normalizing the i-th column of GM at the end of
the computation).

Now we consider the right singular vectors. First we will compute error bounds for the
columns of J0 � � �JM�1 ignoring any rounding errors occurring in computing their product.
Then we will incorporate these rounding errors.

We will prove by induction that the i-th column vmi of Vm � Jm � � �JM�1 is a good
approximation to the true i-th right singular vector vTmi of Gm. In particular, we wll show
that to �rst order in "

kvT i � v0ik2 �
(n� :5)1=2 � �� � (72M � "+ n � tol + n2 � ")

relgap�i

The basis of the induction is as follows. VM = I the the singular vector matrix for GM ,
which is considered to have orthogonal columns since it passes the stopping criterion. Thus
the norm error in vMi follows from plugging the stopping criterion n � tol (increased by n2"

since n � tol may be underestimated by this amount) into Theorem 2.21:

kvTMi � vMik2 �
(n� :5)1=2 � �� � (n � tol + n2 � ")

relgap�i

For the induction step we assume that

kvT;m+1;i � vm+1;ik2 �
(n� :5)1=2 � �� � (72(M �m� 1) � "+ n � tol + n2 � ")

relgap�i
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and try to extend to m. Consider the commuting diagram of Theorem 4.1. Accordingly,
the errors in Vm = JmVm+1 considered as right singular vectors of G0

m are just the errors
in Vm+1 premultiplied by Jm. This does not change their norm, since Jm is orthogonal.
Now we change G0

m to Gm. This increases the norm error in vmi by an amount bounded by
plugging the bound for k�Bmk2 into Theorem 2.21: 72"(n� :5)1=2��=relgap�i. This proves
the induction step.

Finally, consider the errors from accumulating the product of slightly wrong values of
Jm in 
oating point arithmetic. From the proof of Theorem 4.1, we see the relative errors
in the entries of Jm are at most 4", and from the usual error analysis of a product of 2 by
2 rotations, we get 6

p
2M" � 9M" for the norm error in the product of M rotations. This

completes the proof of the theorem.
Now we consider the errors in the individual components of the computed right singular

vectors jvT i(j) � vi(j)j. From Proposition 2.26 we see that we can hope to bound this
quantity by O(")��2��vi(j)=relgap�i, where

��vi(j) � ��3min(
�i

�j
;
�j

�i
) (4:11)

is a modi�ed upper bound for the right singular vector component vi(j) as in Proposition
2.25. In other words, we may have high relative accuracy even in the tiny components
of the computed right singular vectors. Our proof of this fact will not be as satisfactory
as the previous result, because it will contain a \pivot growth" factor which probably
grows at most linearly in M but for which we can only prove an exponential bound. In
numerical experiments presented in section 7, there was no evidence that this factor grew
with increasing n or M .

We will use ��vi(j) as de�ned in (4.11) for each Gm, even though the values of �i and
�j vary slightly from step to step. This error will contribute an O("2) term to the overall
bound (which we ignore) but could be incorporated using the bounds of Corollary 4.3.

Theorem 4.12 Let V , VT and �� be as in Theorem 4.9, and ��vi(j) be as in (4.11). Then

we can bound the error in the individual components of vi by

jvT i(j)� vi(j)j � q(M;n) � (tol+ ") � ��2 � ��vi(j)
relgap�i

(4:13)

Proof. The proof is nearly identical to that of Theorem 3.14; we just outline the
di�erences here. Let Jm be the exact plane rotation whic transforms G0

m to Gm+1 in
the commuting diagram of Theorem 4.1: G0

mJm = Gm+1. Let Vm = Jm � � �JM�1 and
~Vm = J0 � � �Jm. In the �rst part of the proof we show the columns of V0 have small
componentwise errors in the sense of the theorem. In the second part we will show each
(i; j) entry of each ~Vm is bounded by a modest multiple of ��vi(j). In the third part we show
the rounding errors committed in computing ~Vm in 
oating point are componentwise small
compared to ��vi(j).

For the �rst part, the same induction argument as in Theorem 3.14 leads to the bound

jvTmi(j)� vmi(j)j � �0m
(tol+ n") � ��2 � ��vi(j)

relgap�i
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where

�0m = (1 + c0m)�
0
m+1 +

144
p
n� 1

n
; �0M = 2n

p
n� 1

Here c0m is a small constant as in Theorem 3.14. We use Proposition 2.26 and Theorem 4.1
in place of Proposition 2.12 and Theorem 3.2 which were used in Theorem 3.14.

For the second part, let ~Vm = [~vm1; : : : ; ~vmn]. The same induction argument as in
Theorem 3.14 yields

j~vmi(j)j � � 0m��vi(j)

where
� 0m = (1 + c0m)�

0
m�1 ; � 0�1 = 1

For the third part, let ~~V m = fl( ~~Vm�1 � ~Jm) be the actually computed singular vector

matrix after the m-th rotation. Write ~~V m = [~~vm1; : : : ; ~~vmn]. The same induction argument
as in Theorem 3.14 yields

j~~vmi(j)� ~vmi(j)j � �0m"��vi(j)

with
�0m = (1 + c0m)�

0
m�1 + "� 0m�1(5 + 6c0m) ; �0�1 = 0

Altogether, we get

jvT i(j)� vi(j)j � (�00 + �0M�1)
(tol+ n") � ��2 � ��vi(j)

relgap�i

proving the theorem with q(M;n) = �00 + �0M�1.

4.3 Using Cholesky Followed by One-sided Jacobi for the Symmetric Pos-

itive De�nite Eigenproblem

In this subsection we consider two algorithms for the symmetric positive de�nite eigenprob-
lem H , both based on performing Cholesky on H , and using one-sided Jacobi to compute
the SVD of L. The �rst algorithm (Algorithm 4.2) does one-sided Jacobi on LT , returning
its right singular vectors as the eigenvectors ofH and the squares of its singular values as the
eigenvalues of H . The second algorithm (Algorithm 4.4), originally proposed in [20], does
Cholesky with complete pivoting (which is equivalent to diagonal pivoting) and then one-
sided Jacobi on L, returning its left singular vectors as the eigenvectors ofH and the squares
of its singular values as the eigenvalues of H . The second algorithm, which we call acceler-
ated one-sided Jacobi, is less accurate than the �rst because it will not always compute tiny
eigenvector components with the accuracy of Theorem 3.14, although it does compute the
eigenvalues as accurately, and the eigenvectors with the same norm error bound. However,
it can be several times faster than either the �rst algorithm or two-sided Jacobi. In fact,
the larger the range of numbers on the diagonal of D, the faster the second algorithm will
converge. This means that the more the guaranteed accuracy of the algorithm exceeds that
of QR (or any tridiagonalization based algorithm), the faster it converges.

Algorithm 4.2 One-sided Jacobi method for the symmetric positive de�nite eigenproblem

H.
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1. Form the Cholesky factor L of H: H = LLT .

2. Compute the singular values �i and right singular vectors vi of L
T using one-sided

Jacobi.

3. The eigenvalues �i of H are �i = �2s . The eigenvectors of H are vi.

We show this method is as accurate as using two-sided Jacobi directly on H . The proof
involves a new error analysis of Cholesky decomposition, so we begin by restating Cholesky's
algorithm in order to establish notation for our error analysis:

Algorithm 4.3 Cholesky decompositionH = LLT for an n by n symmetric positive de�nite

matrix H.

for i = 1 to n

Lii = (Hii �
Pi�1

k=1 L
2
ik)

1=2

for j = i+ 1 to n

Lji = (Hji �
Pi�1

k=1 LjkLik)=Lii
endfor

endfor

Lemma 4.14 Let L be the Cholesky factor of H computed using Algorithm 4.3 in �nite

precision arithmetic with precision ". Then LLT = H+E where jEijj � (n+5)"(HiiHjj)
1=2.

Proof. Applying rules (3.1) for 
oating point arithmetic yields

Lii = (1 + "1)((1 + "2)Hii �
i�1X
k=1

L2
ik(1 + i"k+2))

1=2

Since
Pi�1

k=1L
2
ik � Hii to within a small relative error, we may write

Hii =
iX

k=1

L2
ik + (i+ 5)"iiHii

as desired. Next we have

Lij = (1 + "1)((1 + "2)Hji �
i�1X
k=1

LjkLik(1 + i"k+2)

since j
Pi�1

k=1 LjkLikj � (HiiHjj)1=2 to within a small relative error by the Cauchy-Schwartz
inequality, we can write

Hji =
iX

k=1

LikLjk + (i+ 4)"ji(HiiHjj)
1=2

proving the result.
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Theorem 4.15 Let L be the Cholesky factor of H = DAD computed in 
oating point

arithmetic using Algorithm 4.3. Let �i and vLi be the exact singular values and right singular

vectors of LT , and �i and vHi be the eigenvalues and eigenvectors of H. Let �vi(j) be as in

Proposition 2.11. Then
j�i � �2i j

�i
� (n2 + 5n) � " � �(A)

kvLi � vHik2 �
(n2 + 5n)(n� 1)1=2 � " � �(A)

relgap�i
+O("2)

jvLi(j)� vHi(j)j �
(n2 + 5n)(2n� 2)1=2 � " � �(A) � �vi(j)

min(relgap�i; 2
�1=2)

+O("2)

Proof. Plug the bound of Lemma 4.14 into Theorem 2.3, Theorem 2.7 and Proposition
2.12.

Theorem 4.15 implies that the errors introduced by Cholesky are as small as those
introduced by two-sided Jacobi. Write H = DAD and LA = D�1L. Since kA� LAL

T
Ak2 �

(n2 + 5n)", �(A) � (�(LA))2 (unless both are very large). Since the columns of LTA have
nearly unit norm, the accuracy of one-sided Jacobi applied to LT is governed by �(LA).
Thus, Cholesky followed by one-sided Jacobi results in a problem whose condition number
�(LA) is approximately the square root of the condition number of the original problem
�(A). Corollary 4.3 and Theorems 4.9 and 4.12 guarantee that the computed eigenvalues
and eigenvectors are accurate. In exact arithmetic one-sided Jacobi on LT is the same as
two-sided Jacobi on DAD = H = LLT = D(LALTA)D, so the question of how much �(LA)
can grow during subsequent Jacobi rotations is essentially identical to the question of the
growth of �(Am) during two-sided Jacobi.

Here is the second algorithm:

Algorithm 4.4 Accelerated one-sided Jacobi method for the symmetric positive de�nite

eigenproblem H.

1. Form the Cholesky factor L of H using complete pivoting. Then there is a permutation

matrix P such that PTHP = LLT .

2. Compute the singular values �i and left singular vectors ui of L using one-sided Jacobi.

3. The eigenvalues �i of H are �i = �2s . The eigenvectors of H are Pui.

Even if we did not do complete pivoting, Theorem 4.15 would guarantee that the squares
of the true singular values of L would be accurate eigenvalues of H , and that the true left
singular vectors of L would be accurate eigenvectors of PTHP . Since we are computing
left singular vectors of L, Theorem 4.12 does not apply, but from Corollary 4.3 we know
the computed eigenvalues are accurate, and from Theorem 4.9 we know the computed
eigenvectors are accurate in a norm sense. Numerical experiments in section 7 below bear
out the fact that tiny eigenvector components may not always be computed as accurately
by Algorithm 4.4 as Algorithm 4.2.

The advantage of complete pivoting is accelerated convergence. This is because the
algorithm is in principle doing two-sided Jacobi on LTL, so writing LTL = H 0 = D0A0D0,
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it is �(A0) which the algorithm must drive to 1, not �(A). The wider the range of numbers
on the diagonal of D, the smaller �(A0) will be. We discuss this in more detail in section 6,
and content ourselves here with a small example. Let

A =

"
1 a

a 1

#
; D = diag (1; d) and H =

"
1 da

da d2

#

where 0 � a < 1, and 0 < d < 1 (any 2 by 2 symmetric positive de�nite H can be scaled
and permuted to be in this form). Here �(A) = (1+a)=(1�a), which can be made as large
as desired by choosing a near 1. The matrix is already ordered for complete pivoting, and
the Cholesky factor is

L =

"
1 0

da d(1� a2)1=2

#

so LTL = H 0 = D0A0D0 where

A0 =

"
1 (1 + d2a2)�1=2

(1 + d2a2)�1=2 1

#

and �(A0) � (3 +
p
(5))=2 � 2:62 independent of H . In section 6 we will prove in general

that �(A0) is bounded independent of H .
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5 Bisection and Inverse Iteration

Here we show bisection and inverse iteration applied to the symmetric positive de�nite
matrixH = DAD can compute the eigenvalues and eigenvectors within the accuracy bounds
section of 2. Let inertia(H) denote the triple (neg; zero; pos) of the number n of negative
eigenvalues of H , the number z of zero eigenvalues of H , and the number p of positive
eigenvalues of H . These results are extensions of Algorithms 3 and 5 in [2].

Algorithm 5.1 Stably computing the inertia of H � xI = DAD � xI.

1. Permute the rows and columns of A� xD�2 (which has the same inertia as H � xI)

and partition it as "
A11 � xD�2

1 A12

A21 A22 � xD�2
2

#

so that if 1� xd�2 is a diagonal entry of A11 � xD�2
1 , then xd�2 � 2n + 1, where n

is the dimension of H.

2. Compute X = A22 � xD�2
2 � A21(A11 � xD�2

1 )�1A12, using Cholesky to compute

(A11 � xD�2
1 )�1A12.

3. Compute inertia(X) = (neg; zero; pos) using a stable pivoting scheme such as in [4].

4. The inertia of H � xI is (neg + dim(A11); zero; pos).

We need to partition A � xD�2 as above in order to make the proof convenient but it
may not be necessary algorithmically.

The proof of correctness requires the following

Lemma 5.1 Let H = D0A0D0 be positive de�nite, and let Hx = b be solved by Cholesky

to get an approximate solution x̂. We do not assume A0 has a unit diagonal. Let " be the

machine precision, and assume no over
ow nor under
ow occurs. Then to �rst order in ",

kx� x̂k2 � O("kA0k2 � kA0�1k22 � kD0�1k22 � kbk2)

Proof. We begin by de�ning some convenient notation. Let ~H be de�ned by ~Hij =
(HiiHjj)1=2. Let jEj denote the matrix of absolute values of entries of E, and let inequalities
like X � Y between matrices be interpreted componentwise. Then Lemma 4.14 of the last
section says that if L is the computed Cholesky factor of H , then LLT = H + E where
jEj � (n+ 5)" ~H. Note also by Cauchy-Schwartz that jLj � jLT j � ~H.

We begin by proving thatD0(A0+F )D0x̂ = b where kFk2 = O(")kA0k2. In solving Ly = b

with forward substitution, we actually get (L+ �L1)ŷ = b, where j�L1;ij j � n"jLij j [22]. In
solving LTx = ŷ we actually get (L+ �L2)

T x̂ = ŷ where j�L2;ijj � n"jLij j. Altogether

(H +E + �L1L
T + L�LT2 + �L1�L

T
2 )x̂ � D0(A0 + F )D0x̂ = b
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where

kFk2 = kD0�1(E + �L1L
T + L�LT2 + �L1�L

T
2 )D

0�1k2
� kD0�1ED0�1k2 + kD0�1j�L1j � jLT jD0�1k2 + kD0�1jLj � j�LT2 jD0�1k2 + kD0�1j�L1j � j�LT2 jD0�1k2
� (n+ 5)"kD0�1 ~HD0�1k2 + n"kD0�1 ~HD0�1k2 + n"kD0�1 ~HD0�1k2 + n2"2kD0�1 ~HD0�1k2
� (3n2 + 5n+ n3")"kA0k2

Thus

kx� x̂k2 = kD0�1A0�1F (A0 + F )�1D0�1bk2 � kD0�1k22 � kFk2 � kA0�1k22 � kbk2
� O(�)kD0�1k22 � kA0k2 � kA0�1k22 � kbk2

to �rst order in ".

Theorem 5.2 Let " be the machine precision in which Algorithm 5.1 is carried out, where

we assume neither over
ow nor under
ow occur. Then Algorithm 5.1 computes the exact

inertia of D(A + �A)D � xI, where k�Ak2 = O("). Thus, Algorithm 5.1 can be used in

a bisection algorithm to �nd all the eigenvalues of H to the accuracy of Theorem 2.3 or

Proposition 2.5.

Proof. X is de�ned so that"
A11 � xD�2

1 A12

A21 A22 � xD�2
2

#

=

"
I 0

A21(A11 � xD�2
1 )�1 I

#
�
"
A11 � xD�2

1 0
0 X

#
�
"
I (A11 � xD�2

1 )�1A12

0 I

#

so that the inertia of H � xI equals

inertia(A� xD�2) = inertia(X) + inertia(A11 � xD�2
1 ) = inertia(X) + (dim(A11); 0; 0)

by Sylvester's Theorem and the fact that A11 � xD�2
1 is negative de�nite. The algorithm

in [4] will compute the exact inertia of X + �X , where k�Xk2 = O(")kXk2. Thus if
we show kXk2 = O(1) and that X can be computed with error O("), we will be done.
By construction the diagonal entries of A11 � xD�2

1 are less than or equal to �2n, and
the o�diagonal entries of all of A � xD�2 are bounded by 1 in absolute value. Write
�(A11 � xD�2

1 ) = H1 = D1A1D1 where A1ii = 1. Then kA1k2 � 3=2, kA�1
1 k2 � 2 and

kD�1
1 k22 � 1=(2n). By Lemma 5.1 the error in computing (A11 � xD�2

1 )�1A12 is bounded
by O("). Also, by construction kA12k2 = kA21k2 � n, k(A11 � xD�2

1 )�1k2 � 1=n and
kA22 � xD�2

2 k2 � 3n+ 1, so kXk2 � 3n+ 1 + n2=n = 4n+ 1 = O(1) as desired.

Algorithm 5.2 Inverse iteration for computing the eigenvector x of a symmetric positive

de�nite matrix H = DAD corresponding to eigenvalue z. tol is a user-speci�ed stopping

criterion.

1. We assume the eigenvalue z has been computed accurately, for example using Algo-

rithm 5.1.
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2. Choose a starting vector y0; set i = 0.

3. Compute the symmetric inde�nite factorization LDLT of P (A� zD�2)PT [4], where

P is the same permutation as in Algorithm 5.1, step 1.

4. Repeat

i = i+ 1

Solve (A� zD�2)~yi = yi�1 for ~yi using the LDLT factorization of step 3.

r = 1=k~yik2
yi = r � ~yi

until (r � tol))

5. x = D�1yi

Theorem 5.3 Suppose Algorithm 5.2 terminates with x as the computed eigenvector of

H = DAD. Then there is a diagonal matrix D̂ with D̂ii = 1+O(tol) and a matrix �A with

k�Ak2 = O(tol), such that D̂x is the exact eigenvector of D(A+ �A)D. Thus, the error in

x is bounded by Theorem 2.7, Corollary 2.9 and Proposition 2.12.

The proof is identical to the proof of Theorem 11 in [2].
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6 Upper Bounds for maxm �(Am)=�(A0)

As stated in sections 3 and 4, our claims about the accuracy to which Jacobi can solve the
eigenproblem depend on the ratio maxm �(Am)=�(A0) being modest. Here H0 = D0A0D0

is the initial matrix, and Hm = DmAmDm is the sequence produced by Jacobi (Hm+1

is obtained from Hm by applying a single Jacobi rotation, Dm is diagonal and Am has
ones on the diagonal). The reason is that the error bounds for Jacobi are proportional to
maxm �(Am), and the error bounds of section 2 are proportional to �(A0).

In this section we present several results explaining why maxm �(Am)=�(A0) should
not be expected to grow very much. Recall that convergence of Hm to diagonal form is
equivalent to the convergence of Am to the identity matrix, or of �(Am) to 1. Thus we
expect �(Am) < �(A0) eventually. The best situation would be monotonic convergence,
but this is unfortunately not always the case.

We have not been able to completely explain the extremely good numerical results
of section 7, that maxm �(Am)=�(A0) never exceeded 1.82, and averaged 1.20 in random
experiments. (Wang [21] has found a sequence Hn of matrices of dimension n where this
ratio grows slowly with n, reaching 8 for n = 50. Changing the sweep strategy eliminated
this growth.) A complete theoretical explanation of this remains an open question.

We will only speak in terms of two-sided Jacobi in this section. This is no loss of
generality because in exact arithmetic one-sided Jacobi on G is equivalent to two-sided
Jacobi on GTG.

Our �rst result will show that �(Am)=�(A0) cannot be too large if Am is obtained
from A0 by a sequence of Jacobi rotations in pairwise disjoint rows and columns. The
second result give a cheaply computable guaranteed upper bound on maxm �(Am)=�(A0)
in terms of the Hadamard measure of A0. This bound is generally quite pessimistic unless
the dimension of A is modest and �(A0) is small, at most a few hundred. The third and
fourth results will be for accelerated one-sided Jacobi (Algorithm 4.4). The third result
shows that the wider the range of numbers on the diagonal of H , the smaller �(A1) for that
algorithm. This in turn makes it converge faster. In other words, the more the guaranteed
accuracy of the algorithm exceeds that of QR (or any tridiagonalization based algorithm),
the faster it converges. The fourth rather surprising result that �(A1) is bounded by a
constant depending only on the dimension n, not on A0. These last two results lead us to
recommend accelerated one-sided Jacobi as the algorithm of choice (unless it is important
to get small eigenvector components to high accuracy; see the discussion in subsection 4.3).

Proposition 6.1 Let H0 be n by n. Let Hm be obtained from H0 by applying m Jacobi

rotations in pairwise nonoverlapping rows and columns (this means m � n=2). Write

Hm = DmAmDm as before. Then

�(Am)

�(A0)
� 1 + max1�k�m jA0;2k�1;2kj

1�max1�k�m jA0;2k�1;2kj
� min(�(A0); 2n) (6:2)

Also
�(Ai+1)

�(Ai)
� min(�(A0); 8) (6:3)
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Furthermore, the spectrum of Am is independent of D0, even though the entries of Am

depend on D0. More precisely, the spectrum of Am coincides with the spectrum of the pencil

A0��A0
0, where A

0
0 coincides with A0 on every rotated element and is the identity otherwise.

Proof. We begin by deriving a matrix pencil depending only on A0 whose eigenvalues
are the same as Am. This will prove that the eigenvalues of Am depend only on A0. We
assume without loss of generality that them Jacobi rotations are in rows and columns (1,2),
(3,4), : : :, (2m � 1; 2m). This lets us write JTH0J = Hm where J is block diagonal with
the 2 by 2 Jacobi rotations (and possibly ones) on its diagonal. Rewrite this as

Am = (D�1
m JTD0)A0(D0JD

�1
m ) � ZTA0Z

where Z has the same block diagonal structure as J . Let A0
0 be a block diagonal matrix

with the same block structure as Z and J , where A0
0 is identical to A0 within its 2 by 2

blocks, and has ones on its diagonal when J does. Since Hm;12 = Hm;34 = � � � = 0, also
Am;12 = Am;23 = � � � = 0. Thus Am has 2 by 2 identity matrices on its diagonal matching the
block structure of Z, J and A0

0. Thus Am = ZTA0Z implies Z�TZ�1 = A0
0. Therefore the

eigenvalues of Am = ZTA0Z are identical to those of the pencil A0��Z�TZ�1 = A0��A0
0.

Now we apply the minimax theorem to bound �min(Am) below by

�min(Am) = min
x6=0

xTA0x

xTA0
0x
�

minkxk=1 x
TA0x

maxkxk=1 xTA
0
0x

=
�min(A0)

1 + max1�k�m jA0;2k�1;2kj
(6:4)

We may bound 1 +max1�k�m jA0;2k�1;2kj from above by both �max(A0) and 2, yielding

�min(Am) �
�min(A0)

min(2; �max(A0))
(6:5)

Now we bound �max(Am) from above. First by the minimax theorem we may write

�max(Am) = max
x6=0

xTA0x

xTA0
0x
�

maxkxk=1 x
TA0x

minkxk=1 xTA
0
0x

� �max(A0)

1�max1�k�m jA0;2k�1;2kj

which when combined with (6.5) yields

�(Am) � (�(A0))
2

proving half of (6.2). For the other half note that 1 � �max(Ai) � n for all i, so that
�max(Am)=�max(A0) � n. Now combine this with (6.5).

Now we show �max(Ai+1) � 4�max(Ai), which when combined with (6.5) yields (6.3). It
su�ces to show �max(A1) � 4�max(A0). Write

A0 =

"
A11 A12

A21 A22

#

where A11 is 2 by 2. Then by the minimax theorem there exists a conformally partitioned
unit vector xT = [xT1 ; x

T
2 ] where

�max(A1) =
xT1A11x1 + 2xT1A12x2 + xT2A22x2

xT1A11x1 + xT2 x2
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Write xT1 x1 = � (0 � � � 1), xT2 x2 = 1 � �, xT1A11x1 = �1� and xT2A22x2 = �2(1� �), so
that

�max(A1) =
�1� + 2xT1A12x2 + �2(1� �)

�1� + 1� �

� 2
�1� + �2(1� �)

�1� + 1� �

The maximum of this last expression over all 0 � � � 1 is

2 + 2�2 � 2 + 2�max(A22) � 4�max(A0)

Our second bound is based on the Hadamard measure of a symmetric positive de�nite
matrix H :

H(H) � det(H)Q
iHii

Proposition 6.6 The Hadamard measure H(H) has the following properties:

1. H(H) � 1 and H(H) = 1 if and only if H is diagonal.

2. H(H) = H( ~DH ~D) for any nonsingular diagonal ~D.

3. Let H = DAD with D diagonal and A with unit diagonal. Then

�min(A) �
H(H)

e
=

det(A)

e

where e = exp(1).

4. Let H 0 be obtained from H by applying a Jacobi rotation (in exact arithmetic) in rows

and columns i and j. Then

H(H 0) =
H(H)

1� A2
ij

� H(H)

5. LetH0; : : : ; Hm; : : : be a sequence of symmetric positive de�nite matrices obtained from

Jacobi's method in exact arithmetic. Let Hm = DmAmDm with Dm diagonal and Am

with unit diagonal. Then

max
m

�(Am) �
n � e

det(A0)
=

n � e
H(H0)

Proof.

1. Write the Cholesky decomposition H = LLT . Then

H11 � � �Hnn =
nY
i=1

(
iX

k=1

L2
ik) �

nY
i=1

L2
ii = det(H)
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2. det( ~D2) factors out of the numerator and denominator of H( ~DH ~D).
3. From (2.) H(H) = H(A) = det(A), so it su�ces to show �min(A) � det(A)=e. Let
0 < �1 � � � � � �n be the eigenvalues of A. Since �1 = det(A)=

Qn
i=2 �i, we need to showQn

i=2 �i � e. Now
Pn

i=2 �i � tr(A) = n. Since ab � (a+ x)(b� x) for all a � b � x � 0, we
see

Qn
i=2 �i is greatest when all �i = n=(n� 1), in which case

Qn
i=2 �i = ((n� 1)=n)n�1 � e.

4. From Proposition 6.1 we have

H(H 0) = det(AA0�1) = det(A)=(1�A2
ij) = H(H)=(1�A2

ij)

where A0 = I except for A0
ij = A0

ji = Aij .
5. This is directly implied by (3.) and (4.).

Thus, Part 5 of this proposition gives us a guaranteed upper bound on maxm �(Am) at
a cost of about n3=6 
ops, compared to 2n3 
ops per Jacobi sweep (4n3 if accumulating
eigenvectors). If we use the algorithm in subsection 4.3, where we must do Cholesky anyway,
this upper bound comes nearly for free.

Basically, this upper bound is only useful as long as �(A0) is quite small and A0 has low
dimension; otherwise it is much too large to be useful.

Our third and fourth bounds are for accelerated one-sided Jacobi (Algorithm 4.4). Recall
that this algorithm begins by doing Cholesky with complete pivoting onH0 to get PH0P

T =
LLT , where P is a permutation matrix. Then it does one-sided Jacobi on L, which is
equivalent (in exact arithmetic) to two-sided Jacobi on LTL. Therefore, Algorithm 4.4
essentially starts with LTL = H1 = D1A1D1. As mentioned in [20] the transition from
H0 to H1 is, in fact, one step of the symmetric LR algorithm which usually has some non-
trivial diagonalizing e�ect (the pivoting cares for the proper ordering). This e�ect will be
more pronounced with growing �(H0). Quite analogous e�ects are present if a Jacobi-SVD
algorithm is preceded by the QR decomposition with column pivoting [10].

Our third result, which we state rather informally, is that the larger the range of numbers
on the diagonal D2 of H , the smaller is �(A1) (this e�ect was also observed in [20]). We
argue as follows. Let L = DLA be the factor obtained from complete pivoting. Here, LA
has rows of unit norm. Since Algorithm 4.4 does one-sided Jacobi on L, its performance
depends on the condition number of DLAD

0, where D0 is chosen diagonal to make the
columns of DLAD

0 unit vectors. From van der Sluis's theorem [16] we know the condition
number of DLAD

0 can be at most n times DLAD
�1, so it su�ces to examine �(DLAD

�1).
The e�ect of complete pivoting is essentially to reorder D so that Dii � Di+1;i+1, and to
keep LA;ii as large as possible. Now (DLAD

�1)ii = LA;ii is unchanged, and the subdiagonal
entry (DLAD

�1)ij = LA;ijDiiD
�1
jj is multiplied by the factor DiiD

�1
jj which is between 0

and 1. The more Djj exceeds Dii, the smaller this factor, and the more nearly diagonal
DLAD

�1 becomes. Since complete pivoting tries to keep the diagonal of LA large, this
improves the condition number.

Our fourth result shows that surprisingly maxm�1 �(Am) is bounded independent of H0:

Proposition 6.7 Let PH0P
T = LLT be the Cholesky decomposition of the n by n matrix

H0 obtained with complete pivoting. Let H1 = LTL = D1A1D1. Let Hm = DmAmDm,

m > 1, be obtained from two-sided Jacobi applied to H1. Then

1. H(H1) � H(H0).
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2. H(H1) � 1=n!. This bound is attainable.

3. maxm�1 �(Am) � e � n=H(H1) � e � n � n!

Proof.

1. Since det(H1) = det(H0), it su�ces to show
Q
iH0;ii �

Q
iH1;ii. Assume without

loss of generality that P = I . Then H0;ii =
Pi

k=1 L
2
ik and H1;ii =

Pn
k=i L

2
ki. Complete

pivoting is equivalent to the fact that L2
ii �

Pj
k=i L

2
jk for all j > i. We wish to proveQn

i=1

Pi
k=1 L

2
ik �

Qn
i=1

Pn
k=i L

2
ki. We systematically use the fact that ab � (a + x)(b � x)

for a � b � x � 0. We illustrate the general procedure in the case of n = 3:

(L2
11)(L

2
21 + L2

22)(L
2
31 + L2

32 + L2
33) � (L2

11 + L2
21)(L

2
22)(L

2
31+ L2

32 + L2
33)

� (L2
11 + L2

21 + L2
31)(L

2
22)(L

2
32+ L2

33)

� (L2
11 + L2

21 + L2
31)(L

2
22 + L2

32)(L
2
33)

2. We have

H(H1) =
det(L)2Qn
i=1(L

TL)ii
=

Qn
i=1L

2
iiQn

i=1(
Pn

k=i L
2
ki)

=
nY
i=1

L2
iiPn

k=i L
2
ki

�
nY
i=1

1

i
=

1

n!

To see that this bound is attainable, let H = LLT where Lii = �(i�1)=2 and Lij = (1 �
�)1=2�(i�1)=2. Now let � > 0 become small.
3. The result follows from part 2 and Proposition 6.6, part 5.

The example in part 2 of the Proposition for which the Hadamard bound is attainable
unfortunately has the property that the resulting upper bound in part 3 is a gross overesti-
mate. While the upper bound grows as e �n �n!, �(A1) only grows like n

3=2. However, �(A0)
grows like ��n=2, which can be arbitrarily larger than the bound in part 3. The choice
� = :5 provides an example where the upper bound in part 3 can arbitrarily exceed both
�(A0) and maxm�1 �(Am) for large n.

Nonetheless, in numerical experiments the upper bound e �n=H(H1) on maxm�1 �(Am)
never exceeded 40. We also always observed that �(A1) � �(A0) in all cases, although we
have not been able to prove it in general.

Recently Slapni�car [15] has improved the e � n � n! bound to O(4n) and shown that this
improved bound is attainable; see also related results in [11].
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7 Numerical Experiments

In this section we present the results of numerical experiments. Brie
y, we tested every
error bound of every algorithm presented in this paper, and veri�ed that they held in all
examples. In fact, the performance is better than we were able to explain theoretically,
both because we could observe little or no growth in actual errors for increasing dimension,
and because of the surprisingly small values attained by maxm �(Am)=�(A0) (see section
6).

These tests were performed using FORTRAN on a SUN 4/260. The arithmetic was
IEEE standard double precision [1], with a machine precision of " = 2�53 � 10�16 and
over/under
ow threshold 10�308.

There were essentially four algorithms tested: two-sided Jacobi (Algorithm 3.1), one-
sided Jacobi (Algorithms 4.2 and 4.1), accelerated one-sided Jacobi (Algorithms 4.4 and
4.1), and bisection/inverse iteration (Algorithms 5.1 and 5.2). All were used with the
stopping criterion tol = 10�14.

Since we claim these algorithms are more accurate than any other, we tested their
accuracy as follows. We considered only symmetric positive de�nite eigenproblems, and
solved every one using every algorithm. The di�erent answers were compared to see if
they agreed to the predicted accuracy (which they did). They were also compared to
the EISPACK routines tred2/tql2 [17], which implement tridiagonalization followed by QR
iteration. Small eigenvalues computed by EISPACK were often negative, indicating total
loss of relative accuracy.

For example, the matrix

H =

2
64 1040 1019 1019

1019 1020 109

1019 109 1

3
75

has all its eigenvalues computed to high relative accuracy by Jacobi, whereas QR computes
at least one negative or zero eigenvalue, no matter how the rows and columns are ordered.
This shows that QR cannot be made to deliver high relative accuracy on appropriately
graded matrices, as suggested in [17].

The rest of this section is organized as follows: Subsection 7.1 discusses test matrix
generation. Subsection 7.2 discusses the accuracy of the computed eigenvalues. Subsection
7.3 discusses the accuracy of the computed eigenvectors. Subsection 7.4 discusses the the
growth of maxm �(Am)=�(A0). Subsection 7.5 discusses convergence rates; here the speed
advantage of accelerated one-sided Jacobi will be apparent.

7.1 Test Matrix Generation

We generated several categories of random test matrices according to three parameters:
the dimension n, �A, and �D . First we describe the algorithm used to generate a random
matrix from these parameters, and then the sets of parameters used.

We tested matrices of dimension n = 4, 8, 16 and 50. Since testing involved solving an
n by n eigenproblem after each Jacobi rotation (to evaluate �(Am)) and there are O(n2)
Jacobi rotations required for convergence, testing costs O(n5) operations per matrix.
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Given �A, we generated a random symmetric positive de�nite matrix with unit diagonal
and approximate condition number �A as follows. We began by generating a diagonal matrix
T with diagonal entries in a geometric series from 1 down to 1=�A. Then we generated an
orthogonal matrix U uniformly distributed with respect to Haar measure [18], and formed
UTUT . Finally, we computed another diagonal matrix K so that A0 = KUTUTK had
unit diagonal. This last transformation can decrease the condition number of UTUT , but
usually not by much. For 4 by 4 matrices, it decreased it by as much as a factor of 500,
for 8 by 8 matrices by a factor of 20, for 16 by 16 matrices by a factor of 5 and for 50 by
50 matrices by a factor of 1.5. (This decreasing variability is at least partly due to the fact
that we ran fewer tests on the larger matrices.) For a more complete discussion of the test
matrix generation software, see [8].

Given �D, we generated a random diagonal matrix D0 with diagonal entries whose
logarithms were uniformly distributed between 0 and log �D. This means the diagonal
entries themselves were distributed from 1 to �D. The uniform distribution of the logarithm
essentially means every decade is equally likely, and so generates matrices D0 with entries
of widely varying magnitudes.

The resulting random matrix was then H0 = D0A0D0.
We generated random matrices with 5 possible di�erent values of �A: 10, 10

2, 104, 108

and 1012, 6 possible di�erent values of �D : 105, 1010, 1020, 1030, 1050 and 10100, and 4
di�erent dimensions n = 4, 8, 16 and 50. This makes a total of 5 � 6 � 4 = 120 di�erent
classes of matrices. In each class of dimension n = 4 matrices, we generated 100 random
matrices, in each class of n = 8, we generated 50 random matrices, in each class of n = 16,
we generated 10 random matrices, and in each class of n = 50, we generated one random
matrix. This makes a total of 4830 di�erent test matrices.

The matrices had in some cases eigenvalues ranging over 200 orders of magnitude (when
�D = 10100). The relative gaps relgap� ranged from .028 to 2 � 1042.

7.2 Accuracy of the Computed Eigenvalues

There are two accuracy bounds for eigenvalues from section 2 which we tested. The �rst
one is based on Theorem 2.3 (or Theorem 2.17 together with Theorem 4.15), which says
that if �0i and �00i are approximations of �i computed by two of our algorithms, then

Q1 �
j�0i � �00i j
�(A0)�0i

should be O(tol), where tol = 10�14 is our stopping criterion. For two-sided Jacobi and
one-sided Jacobi, Q1 never exceeded 2 � 10�15. For two-sided Jacobi and accelerated one-
sided Jacobi, Q1 also never exceeded 2 � 10�15. Every matrix had an eigenvalue for which
Q1 exceeded 4 � 10�18, showing that the bound of Theorem 2.3 is attainable, as predicted
by Proposition 2.13.

In the case of bisection, we did not run a bisection algorithm to convergence for each
eigenvalue, but rather took the eigenvalues �0i computed by two-sided Jacobi, made intervals
[(1 � tol � �(A0))�

0
i; (1 + tol � �(A0))�

0
i] from each one, and used bisection to verify that

each interval contained one eigenvalue (overlapping intervals were merged and the counting
modi�ed in the obvious way). All intervals successfully passed this test.
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The second accuracy bound is from Proposition 2.5 (or Proposition 2.19 together with
Theorem 4.15) which predicts that

Q2 �
j�0i � �00i j
kD0vik22

should be O(tol). Here vi is the unit eigenvector computed by two-sided Jacobi. For two-
sided Jacobi and one-sided Jacobi, Q2 never exceeded 2 � 10�14. For two-sided Jacobi and
accelerated one-sided Jacobi, Q2 never exceeded 9 � 10�15. Every matrix had an eigenvalue
for which Q2 exceeded 5 � 10�16, showing that the bound of Proposition 2.5 is attainable,
as it predicts.

In the case of bisection, we again made intervals [�0i � tol � kD0vik22; �0i + tol � kD0vik22]
from each eigenvalue �0i and veri�ed that each interval contained the proper number of
eigenvalues.

Finally, we veri�ed a slightly weakened version of Proposition 2.10, that

�min(A0)� tol � �0i
hi
� �max(A0) + tol

for the eigenvalues �0i computed by two-sided Jacobi. Here hi is the i-th smallest diagonal
entry of H0. Adding and subtracting tol to the upper and lower bounds takes into account
the errors in computing �0i.

7.3 Accuracy of the Computed Eigenvectors

There is one bound on the magnitude of the components of the eigenvectors, and two
accuracy bounds, one for the norm error and one for the componentwise error.

We begin with a few details about our implementation of inverse iteration. We used the
eigenvalues computed by two-sided Jacobi, and the vector of all ones as a starting vector.
Convergence always occurred after just one iteration.

The componentwise bound on the magnitude of the eigenvectors is based on Proposition
2.11, which says that the components of the normalized eigenvector vi should be bounded
by

jvi(j)j � �vi(j) � (�(A0))
3=2 �min(

 
�i

�j

!1=2

;

�
�j

�i

�1=2
)

This was veri�ed for the eigenvectors computed by all four algorithms. We note that since
this bound is proportional to �(A0)3=2, it becomes weaker as �(A0) becomes larger, and
indeed becomes vacuous for matrices with �(A0) large and eigenvalues in a narrow range.

The norm error bounds are based on Theorem 2.7 (or Theorem 2.21 together with
Theorem 4.15), which predicts that if v0i and v00i are approximations of the unit eigenvector
vi computed by two of our algorithms, then

Q3 �
kv0i � v00i k2

(�(A0)=relgap�i) + 1

should be O(tol). (We add the 1 in the denominator because a single roundo� error in
the largest entry can cause a norm error of "; see Theorem 3.11 or Theorem 4.9.) For
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two-sided Jacobi and one-sided Jacobi, Q3 never exceeded 3 � 10�16. For two-sided Jacobi
and accelerated one-sided Jacobi, Q3 also never exceeded 2 � 10�14. For two-sided Jacobi
and inverse iteration, Q3 never exceeded 8 � 10�14. Every matrix had an eigenvector for
which Q3 exceeded 10�18 for every pair of algorithms compared, showing that the bound
of Theorem 2.7 is nearly attainable, as predicted by Proposition 2.14.

The second accuracy bound is based on Proposition 2.12 (or Proposition 2.26 and The-
orem 4.15), which predicts

Q4 �
jv0i(j)� v00i (j)jmin(relgap�i; 2�1=2)

�(A0) � �vi(j)

should be O(tol). For two-sided Jacobi and one-sided Jacobi, Q4 never exceeded 3 � 10�17.
For two-sided Jacobi and inverse iteration, Q4 never exceeded 3�10�15. For two-sided Jacobi
and accelerated one-sided Jacobi, Q4 was as large as .02, which is consistent with the fact
that accelerated one-sided Jacobi computes the eigenvectors as left singular vectors of L,
for which we only have a normwise error bound (Theorem 4.9). For the other algorithm
Q4 was only 10�30 for matrices with �(A0) = 1012; this re
ects the factor �(A0)5=2 in the
denominator of Q4, a weakness of Proposition 2.11. In other words, the componentwise
error bounds are generally only interesting for small to medium �(A0).

7.4 Growth of maxm �(Am)=�(A0)

In computing
Q5 � max

m
�(Am)=�(A0)

we note that a single computation requiring M Jacobi rotations supplied us not just with
one value of Q5 but rather M � 1: Since every Ai can be thought of as starting a new
eigenvalue computation, we may also measure maxm�i �(Am)=�(Ai) for all i < M . Thus,
all told, our 4830 di�erent matrices represent over 900000 data points of Q5.

The largest value of Q5 encountered was 1.82. This was for an 8 by 8 matrix with
�(A0) = 1:4 � 1012, and eigenvalues ranging over 133 orders of magnitude. 141 Jacobi
rotations (a little over 5 sweeps) were required for convergence, plus 28 more steps (one
more sweep) where no work is done to recognize convergence. In Figure 1, a plot is shown
of �(Ai) � 1 versus i. We plot �(Ai) � 1 instead of �(Ai) in order to see the quadratic
convergence of �(Ai) to 1. The graph appears nearly monotonic, except for a slight rise
near i = 20. This is seen more clearly in Figure 2, which plots maxm�i �(Am)=�(Ai) versus
i. Here the maximal nonmonotonicity of the curve near i = 20 is apparent.

Recently Wang [21] found a family of examples where Q5 was as large as 8 for matrices
up to dimension 50. These matrices have 1 on the diagonal and 1 � � on the o�diagonal,
where � is small. However, by using a di�erent pivoting strategy than cyclic-by-rows, namely
the parallel pivoting discussed in Proposition 6.1, this growth could be eliminated.

Now we consider the Hadamard based upper bound on Q5 from Proposition 6.6:

Q5 � Q6 �
e � n

H(H0) � �(A0)

Table 1 gives the maximum values of this upper bound for di�erent values of dimension
n and �A � �(A0). Recall that the true value of Q5 never exceeds 1.82. As Proposition
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Figure 1: �(Ai)� 1 versus i

Figure 2: maxm�i �(Am)=�(Ai) versus i
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Table 1: Hadamard upper bound Q6 on maxm �(Am)=�(A0)

n �A

10 102 104 108 1012

4 5.8 13 590 6:3 � 106 6:1 � 1010
8 21 410 1:1 � 107 9:1 � 1017 1
16 200 2:7 � 105 1:8 � 1015 1 1
50 6:4 � 105 8:0 � 1016 1 1 1

6.6 suggests, this upper bound should not depend on D0 and indeed the values observed
depended very little on D0.

As can be seen, the Hadamard based bound is of little use except for very small matrices
of modest �(A0). 1 means the value over
owed.

Now we consider accelerated one-sided Jacobi. Let us recall the notation of section 6:
Let PH0P

T = LLT be Cholesky with complete pivoting, and let LTL = H1 = D1A1D1.
As suggested in that section, we expect both �(A1) to be smaller than �(A0), and the
Hadamard based upper bound

Q5 � Q7 � max(1;
e � n

H(H1) � �(A0)
)

on Q5 to be much smaller than the one for two-sided Jacobi.
First of all �(A1)=�(A0) never exceeded

6
10
. In fact, �(A1) never exceeded 40 for any

matrix. This is quite remarkable. This means that all essential rounding errors occurred
during the initial Cholesky decomposition. Finally, the Hadamard upper bound Q7 on Q5

never exceeded 29. (Recently, Wang [21] has found an example where �(A1)=�(A0) slightly
exceeded 1; in his example �(A0) was close to 1.)

7.5 Convergence Rates

We begin with a few details of how we counted the number of Jacobi rotations required for
convergence. In all three algorithms (two-sided Jacobi, one-sided Jacobi and accelerated
one-sided Jacobi), we stopped when the last n(n�1)=2 stopping tests jHij j � (HiiHjj)

�1=2 �
tol succeeded; this means every o�diagonal entry of H satis�es the stopping criterion. In
the case of two-sided Jacobi, this means the last n(n�1)=2 Jacobi rotations involved almost
no work. For the two one-sided Jacobis, however, evaluating the stopping criterion costs 3
inner products, so the last n(n � 1)=2 rotation involve a signi�cant amount of work, even
if no rotations are performed. This must be kept in mind when comparing the number of
rotations for two-sided and one-sided Jacobi.

We used the same standard cyclic pivot sequence for all the algorithms: (1,2), (1,3), ...,
(1,n), (2,3), ..., (2,n), (3,4), ..., (n� 1; n).

We begin by comparing two-sided Jacobi and one-sided Jacobi. In exact arithmetic,
these two algorithms are identical. In practice, they usually took the same number of steps,
although one-sided Jacobi did vary from 20% faster to 50% slower than two-sided Jacobi
on some examples. From now on we will only compare two-sided Jacobi to accelerated
one-sided Jacobi.
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Table 2: Average Number of Sweeps for Two-sided Jacobi (TsJ)
and Accelerated One-sided Jacobi (AOsJ)

�A �D Dimension n

4 8 16 50
TsJ AOsJ TsJ AOsJ TsJ AOsJ TsJ AOsJ

10 105 3.7 3.0 4.9 3.7 5.7 4.4 6.4 5.0
1010 3.5 2.5 4.6 3.3 5.6 4.1 6.4 5.0
1020 3.1 2.2 4.5 2.8 5.5 3.6 6.0 4.0
1030 3.0 2.1 4.6 2.5 5.5 3.4 6.3 4.0
1050 2.8 1.9 4.4 2.3 5.5 3.1 5.8 4.0
10100 2.7 1.7 4.5 2.0 5.6 2.6 5.8 3.0

102 105 3.8 3.0 5.2 3.8 6.4 4.5 7.5 6.0
1010 3.5 2.5 5.1 3.3 6.2 4.1 7.4 5.0
1020 3.2 2.2 4.9 2.9 6.2 3.9 7.1 4.0
1030 3.0 2.0 4.8 2.6 5.8 3.3 6.8 4.1
1050 2.9 1.9 4.8 2.2 6.1 3.0 6.5 4.0
10100 2.8 1.6 4.7 2.0 6.0 2.7 6.8 3.4

104 105 4.0 2.9 5.8 3.6 7.5 4.5 9.2 6.0
1010 3.7 2.5 5.6 3.3 7.2 4.1 9.3 5.0
1020 3.2 2.2 5.3 2.9 7.2 3.7 8.5 4.9
1030 3.1 2.1 5.2 2.6 6.8 3.1 8.2 4.0
1050 2.9 1.9 5.2 2.4 6.6 3.0 8.5 4.6
10100 2.7 1.7 4.9 2.2 6.9 2.4 8.0 3.9

108 105 3.9 2.7 6.4 3.5 9.7 4.1 13.5 6.0
1010 3.6 2.3 6.3 3.2 9.4 3.8 12.4 5.0
1020 3.3 2.1 5.7 2.8 8.9 3.5 11.7 4.7
1030 3.1 2.1 5.5 2.6 8.6 3.4 12.0 4.0
1050 2.9 1.9 5.3 2.3 8.5 3.1 11.6 4.0
10100 2.9 1.7 5.1 2.0 8.7 2.6 11.6 4.0

1012 105 3.8 2.5 6.8 3.1 10.6 4.0 16.5 6.0
1010 3.6 2.2 6.4 3.0 10.3 3.9 15.6 5.0
1020 3.4 2.1 6.0 2.7 9.8 3.5 15.3 5.0
1030 3.1 2.0 5.8 2.5 10.2 3.3 15.2 4.0
1050 2.9 1.9 5.6 2.3 9.3 3.2 13.7 3.9
10100 2.8 1.6 5.2 2.0 8.7 2.7 15.2 3.0
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The most interesting phenomenon was the speed up experienced by accelerated one-
sided Jacobi with respect to two-sided Jacobi. In Table 2 we present the raw data on the
number of sweeps required for convergence.

There are a number of interesting trends exhibited in this table. First, AOsJ (accelerated
one-sided Jacobi) never takes more than 6 sweeps to converge for any matrix, whereas TsJ
(two-sided Jacobi) takes up to 16.5. In fact AOsJ is almost always faster than TsJ (in
one example it took 5% longer), and can be up to 5 times faster (3.0 sweeps vs. 15.2
sweeps for �A = 1012, �D = 10100 and n = 50). Second, the number of sweeps increases
with increasing �A for TsJ, but not for AOsJ. Third, the number of sweeps increases with
increasing dimension for both TsJ and AOsJ, but much more modestly for AOsJ (from
2-3 up to 6) than for TsJ (from 3-4 up to 15). Thus, the running time for AOsJ is much
less dependent on the problem size or sensitivity (as measured by �A) than TsJ. Fourth,
the number of sweeps decreases as �D increases, both for TsJ and AOsJ, but much more
markedly for AOsJ (up to a factor of 2) than for TsJ (usually just 1 sweep).
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8 Conclusions

In this paper we have developed new perturbation theory for the eigenvalues and eigenvec-
tors of symmetric positive de�nite matrices, as well as for eigenvalues of symmetric positive
de�nite pencils. This theory assumes the perturbations are scaled analogous to the way
the matrix is scaled, letting us derive much tighter bounds than in the classical theory. In
particular, we get relative error bounds for the eigenvalues and individual components of
the eigenvectors, which are (nearly) attainable. The bound for symmetric positive de�nite
pencils may be applied to matrices arising in �nite element modeling.

Second, we have shown both through formal error analysis and numerical experiment
that Jacobi's method (with a proper stopping criterion) computes the eigenvalues and eigen-
vectors with these error bounds. We also show that bisection and inverse iteration (applied
to the original matrix) attain these bounds. In contrast, methods based on tridiagonal-
ization (such as QR, divide and conquer, traditional bisection, etc.) fail to attain these
bounds. In particular QR can fail to attain these bounds whether or not preceded by
tridiagonalization.

We have similar perturbation theorems for the singular value decomposition of a general
matrix and the generalized singular values of a pair of matrices, and similar error analyses
and numerical experiments for one-sided Jacobi applied to this problem. We may also use
one-sided Jacobi to solve the symmetric positive de�nite eigenproblem.

We have discussed an accelerated version of Jacobi for the symmetric positive de�-
nite eigenproblem, which has the property that the more its accuracy exceeds that of QR
(or other conventional algorithms), the faster it converges. However, it cannot compute
tiny components of eigenvectors as accurately as the other versions of Jacobi, although it
computes the eigenvectors with the same norm error bounds. Unless getting the tiny eigen-
vector components is important, we recommend this accelerated version of Jacobi for the
symmetric positive de�nite eigenproblem.

The quantity maxm �(Am)=�(A0) was seen to be central in the analysis of Jacobi's accu-
racy. Numerical experiments show it to be much smaller in practice than we can explain. For
the accelerated version of Jacobi we provide an inexpensive estimator of maxm �(Am)=�(A0)
which works very well in practice. Explaining the excellent behavior of maxm �(Am)=�(A0)
is an important open problem.

The error analyses of Jacobi dealt only with the simplest implementations. It would be
worthwhile to extend these analyses to cover various enhancements introduced by Veseli�c,
Hari, Rutishauser and others. These include delayed updates of the diagonal entries and
an alternate formula for updating the o�diagonal entries [14, 20], as well as block Jacobi
methods.

In future work we plan to extend these results to the symmetric positive de�nite gener-
alized eigenproblem, as well as inde�nite matrices. Any extension requires an appropriate
perturbation theory; therefore we do not expect to be able to extend the result to all inde�-
nite matrices, since there is no guaranteed way to compute the zero eigenvalues of a singular
matrix to \high relative accuracy" without computing them exactly, a feat requiring high
precision arithmetic. A class of inde�nite matrices for which a suitable perturbation theory
exists are the scaled diagonally dominant matrices [2]. The perturbation theory also already
exists (at least for eigenvalues) for the symmetric positive de�nite generalized eigenproblem.
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