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Abstract

Let H be a symmetric positive de�nite matrix. Consider solving the linear system Hx =

b using Cholesky, forward and back substitution in the standard way, yielding a com-

puted solution x̂. The usual 
oating point error analysis says that the relative error

kx � x̂k2=kx̂k2 = O(")�(H), where �(H) is the condition number of H . Now write

H = DAD, where D is diagonal and A has unit diagonal; then �(A) � n �min ~D �( ~DH ~D)

and it may be that �(A) � �(H). We show that the scaled error may be bounded by

kD(x � x̂)k2=kDx̂k2 = O(")�(A). This often provides better error bounds than the stan-

dard formula. We show that �(A) is the \right" condition number in several senses. First,

its reciprocal is approximately the smallest componentwise relative perturbation that makes

H singular. Second, it provides a nearly sharp criterion for the successful termination of

Cholesky in 
oating point. Third, the bound on kD(x� x̂)k2 is nearly attainable.

1 Introduction

We consider the 
oating point error analysis of using Cholesky to solve the n by n symmetric

positive de�nite linear system Hx = b. Let x̂ be the solution computed by forward and

back substitution in the usual way. The standard error analysis bounds the error by

kx� x̂k2
kx̂k2

� O(")�(H) (1)

where �(H) = kH�1k2kHk2 is the condition number of H and " is the machine precision.

Now writeH = DAD, whereD = diag (H
1=2
11

; : : : ; H
1=2
nn ) is diagonal and A has unit diag-

onal. It is well known [6] that the condition number �(A) of A is at most n �min ~D �( ~DH ~D),

i.e. it is nearly the best possible diagonal scaling ofH . This leads to the following algorithm

for solving Hx = b:

1. scale H to get A = D�1HD�1,

2. solve the linear system Ax0 = D�1b, and

3. unscale to get x = D�1x0.

This algorithm has the error bound

kD(x̂� x)k2
kDx̂k2

= O(")�(A) (2)
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which may be much better than (1), since �(H) has been replaced by �(A).

In this paper we show that this scaling of H is unnecessary because the standard un-

scaled Cholesky algorithm satis�es bound (2). Therefore, nothing is gained by scaling.

Furthermore, we show the error bound (2) can often be interpreted as meaning that small

components of the solution x̂ are computed with as high relative accuracy as the large

components, independent of D.

This observation was originally made in [8], but stated informally and without proof.

We give further evidence for considering �(A) to be the \natural" condition number for

solving Hx = b. Assume without loss of generality that kHk2 = 1. The condition number

�(H) has the property that its reciprocal is the 2-norm of the smallest perturbation �H

such that H + �H is singular. Here we show that �(A) is approximately the smallest

componentwise relative perturbation of H that makes it singular. Componentwise relative

error is often a better model of uncertainty in H than normwise error, especially when D

causes H to have entries of widely varying magnitudes.

We also give a nearly sharp condition based on �(A) for deciding whether Cholesky

applied to H will succeed in 
oating point arithmetic. Finally, we show that the error

bound (2) is nearly attainable for the appropriate right hand side b.

The rest of this paper is organized as follows. Section 2 discusses our error analysis of

Cholesky. We also show the bounds are as good as bounds based on the Skeel condition

number [1], and that estimating �(A) is as easy as estimating �(H). Section 3 discusses the

componentwise relative distance of H to singularity, uses it to give a nearly sharp criterion

for the successful termination of Cholesky applied to H , and shows that the error bound is

attainable.

2 Error Analysis

In order to derive error bound (2), we state Cholesky's algorithm to establish notation:

Algorithm 2.1 Cholesky decompositionH = LLT for an n by n symmetric positive de�nite

matrix H.

for i = 1 to n

Lii = (Hii �
Pi�1

k=1 L
2

ik)
1=2

for j = i+ 1 to n

Lji = (Hji �
Pi�1

k=1 LjkLik)=Lii

endfor

endfor

Lemma 2.1 Let L be the Cholesky factor of H computed using Algorithm 2.1 in �nite

precision arithmetic with precision ". Then LLT = H +E where

jEij j �
(n+ 1)"

1� (n+ 1)"
� (HiiHjj)

1=2
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Proof. Let subscripted "s denote independent quantities bounded in magnitude by ".

Applying the usual rules for 
oating point arithmetic yields

Lii = (1 + "1)((1 + "2)Hii �
i�1X
k=1

L2

ik(1 + i"k+2))
1=2 (3)

whence
Pi

k=1 L
2

ik = Hii + Eii where jEiij � (i + 1)"
Pi

k=1 L
2

ik . Rearranging, we seePi
k=1 L

2

ik � Hii(1� (i+ 1)")�1 and so jEiij � (i+ 1)"(1� (i+ 1)")�1Hii as claimed.

Next we have

Lji = (1 + "1)((1 + "2)Hji �
i�1X
k=1

LjkLik(1 + i"k+2))=Lii (4)

whence
Pi

k=1 LjkLik = Hji+Eji where jEjij � (i+1)"
Pi

k=1 jLjkLik j. By Cauchy-Schwartz
iX

k=1

jLjkLikj � (
X
k

L2

jk �
X
k

L2

ik)
1=2 � (HiiHjj)

1=2

1� (j + 1)"

yielding the desired result.

To simplify notation, de�ne ~H by ~Hij = (HiiHjj)
1=2. Note thatD�1 ~HD�1 is the matrix

of all ones. Let jEj denote the matrix of absolute values of entries of E: jEjij = jEijj. Let
inequalities like X � Y between matrices X and Y be interpreted componentwise. Then

Lemma 1 may be restated as LLT = H + E where jEj � (n+ 1)"(1� (n + 1)")�1 ~H. Also

jLj � jLT j � (1� (n+ 1)")�1 ~H .

Theorem 2.1 Let H = DAD be symmetric positive de�nite, D diagonal, and A have unit

diagonal. Let xT = H�1b. Let �H be a perturbation satisfying j�Hij j � �(HiiHjj)
1=2 (�H

represents initial errors in H). Consider solving the system (H + �H)x = b by Cholesky

followed by forward and back substitution. Let x̂ be the computed solution. Then the scaled

error D(x̂� xT ) satis�es

kD(x̂� xT )k2
kDx̂k2

�
 
n� +

(3n2 + n+ n3")"

1� (n+ 1)"

!
�(A)

Proof. Abbreviate (1�(n+1)")�1 by �. In computing the Cholesky decomposition of

H + �H we get H = LLT �E� �H , where E is bounded by Lemma 2.1. In solving Ly = b

with forward substitution, we actually get (L + �L1)ŷ = b, where j�L1;ijj � n"jLij j [7]. In
solving LTx = ŷ we actually get (L+ �L2)

T x̂ = ŷ where j�L2;ijj � n"jLij j. Altogether

(H + �H + E + �L1L
T + L�LT

2
+ �L1�L

T
2
)x̂ � (H + F )x̂ = b

Now write this as

D�1(H + F )D�1Dx̂ = (A+D�1FD�1)Dx̂ = D�1b

The usual techniques show that

kD(x̂� xT )k2
kDx̂k2

� �(A) � kD
�1FD�1k2
kAk2

3



so it su�ces to estimate

kD�1FD�1k2 � kD�1�HD�1k2 + kD�1ED�1k2 + kD�1j�L1j � jLT jD�1k2
+kD�1jLj � j�LT

2
jD�1k2 + kD�1j�L1j � j�LT

2
jD�1k2

� �kD�1 ~HD�1k2 + �(n+ 1)"kD�1 ~HD�1k2 + �n"kD�1 ~HD�1k2
+�n"kD�1 ~HD�1k2 + �n2"2kD�1 ~HD�1k2

� n� + �(n2 + n)"+ �n2"+ �n2"+ �n3"2

This proves the result.

Now we interpret this error bound. Suppose �(A) is moderate and D has diagonal

entries of widely varying magnitudes. Then we claim the solution components x = H�1b =

D�1A�1D�1b will often be scaled like D�1; this is because A's moderate conditioning will

usually mean the components of A�1D�1b will be comparable in size. In other words, the

components of Dx and Dx̂ will be moderate in size. Thus, Theorem 2.1 says we will get

the entries of Dx to moderate absolute accuracy, and hence the tiny as well as the large

components of x to moderate relative accuracy.

We illustrate this reasoning with the following somewhat extreme example. Let H =

DAD where

A =

2
6664

1 �:11 :24 �:34
�:11 1 :07 :30

:24 :07 1 :65

�:34 :30 :65 1

3
7775 ; b =

2
6664

42

�26
24

34

3
7775

and D = diag (1; 105; 10�10; 1015). Here �(H) � 1050 but �(A) � 2:0. Then the computed

solution from Cholesky (with " � 2:2 � 10�16) is

x̂ =

2
6664
�3:886390563036245 � 1011
9:923477775911641 � 105
7:473020816898015 � 1021
�6:476540655693383 � 10�4

3
7775

and the bound of Theorem (2.1) is










2
6664
�:3641849059026662� c1x1
:09299067506030982� c2x2
:7002799484168281� c3x3
�:6069020369959377� c4x4

3
7775










2

� 68" � 1:5 � 10�14

where ci = 9:370774758627102 � 10�13Dii. This implies each solution component is correct

to almost 14 decimal digits, even though the traditional condition number �(H) � 1050.

We note that the Skeel condition number k jA�1j � jAj k1 of A cannot di�er from

�(A) by more than a factor of n. Thus, even though Cholesky does not guarantee small

componentwise backward error without single precision iterative re�nement [1], the error

bounds are essentially the same with or without single precision iterative re�nement.

Finally, given the Cholesky factors of H , we show that it is just as easy to estimate

�(A) as �(H). In order to use the Hager estimator [3, 5, 4] to estimate kA�1k1 (which

overestimates kA�1k2 by at most a factor of
p
n), one needs to be able to multiply an
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arbitrary vector byA�1. But since A�1 = D�1L�TL�1D�1, this can be done by multiplying

by D�1, doing forward and back substitution with L (multiplying by H�1), and again

multiplying by D�1.

3 Optimality of the Bound

It is common in numerical analysis that the reciprocal of the condition number estimates

the smallest perturbation of the problem that make it singular [2]. For linear equation

solving the relationship is exact: Assume without loss of generality that kHk2 = 1. Then

�(H) = kH�1k2 is exactly the reciprocal of the 2-norm of the smallest �H such thatH+�H

is singular.

Here we show that �(A) has a similar property if we measure the distance to singularity

in terms of the largest componentwise relative perturbation ofH . De�ne the componentwise

relative distance between H and H 0 as

reldist(H;H 0) � max
ij

jHij �H 0

ij j
jHijj

We seek a singular H 0 which (nearly) minimizes reldist(H;H 0).

Theorem 3.1 Let H be symmetric positive de�nite, and write H = DAD where D is

diagonal and A has unit diagonal. Let H 0 be singular. Then

reldist(H;H 0) � 1

n � �(A) (5)

Now let H 0 = H � �min(A) �D2. Then H 0 is singular and

reldist(H;H 0) � n

�(A)
(6)

Thus, to within a factor of n, �(A) is the reciprocal of the smallest componentwise relative

change in H that makes it singular.

Proof. Since reldist is independent of D, we may assume D = I and H = A. Then

A positive de�nite with unit diagonal means jAij j � 1 and kAk2 � n. Suppose �H = �A

has the property that A+ �A is singular. Then

max
ij

j�Aij j
jAij j

� max
ij

j�Aij j �
k�Ak2
n

� �min(A)

n
=

�min(A)

�max(A)

�max(A)

n
� 1

n � �(A)

proving (5). The choice H 0 = H � �min(A) �D2 means �A = ��minI , and so

max
ij

j�Aij j
jAij j

= �min(A) = �max(A) �
�min(A)

�max(A)
� n

�(A)

proving (6).

We interpret this theorem as follows. In matrices like the example in section 2, tiny

components may be known as accurately as large components; this may be because of
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the unit in which they are measured, for example. Thus, it is inappropriate to measure

the uncertainty in the matrix with a norm like the 2-norm, since this permits equal size

perturbations in each entry; a measure like reldist is more appropriate. And, from Theorem

2.1, we see that that the componentwise relative distance to singularity bears the proper

(reciprocal) relationship to the condition number.

In addition, we can make the following rather sharp statement about when Cholesky

succeeds or fails when applied to H :

Theorem 3.2 Let H = DAD as before, let " be machine precision, and let � = (1� (n �
1)")�1 � 1. Then if �min(A) > " ��(n2+n), Cholesky applied to H is guaranteed to succeed

(compute a real nonsingular L); we assume no under
ow occurs. If �min(A) � ", then there

exist rounding errors which will cause Cholesky to fail. Finally, If �min(A) < �"��(n2+5n),

then Cholesky is guaranteed to fail (H and A are not positive de�nite).

Proof. If Cholesky fails, then by Lemma 2.1 we must have H + E inde�nite or

A+D�1ED�1 inde�nite, or �min(A) � kD�1ED�1k2 � �(n2+n)" so the converse inequality

means Cholesky must succeed. Similarly, if Cholesky succeeds, A + D�1ED�1 must be

de�nite so 0 < �min(A)+kD�1ED�1k2 � �min(A)+�(n2+n)". Now suppose �min(A) � ".

Choose the rounding errors "i in equations (3) so that "2 = �" and the other "i = 0. Choose

all the rounding errors in equation (4) to be zero. Then L would be the exact Cholesky

factor of H � "D2, which by Theorem 3.1 is not positive de�nite.

Finally, we note that the bound of Theorem 2.1 is optimal in the following sense. For

any H there is a b and a diagonal perturbation �H for which the bound on kD(x̂� xT )k2
is nearly attainable. We simply choose �Hii = �Hii and b so that DxT is parallel to the

eigenvector of the smallest eigenvalue of A. In particular, this �H makes only small relative

changes in the entries of H .
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