
Testing Software for LAPACK90

Jack Dongarra� Wojciech Owczarzy Jerzy Wa�sniewskiy

Plamen Yalamovz

September 22, 1998

Abstract

LAPACK90 and ScaLAPACK are libraries of high-performance linear algebra subroutines.
While LAPACK is developed for scalar, superscalar, and shared memory machines, ScaLA-
PACK is designed for distributed memory machines. Usually, users are not familiar with
details in these subroutines. Therefore, in this paper we describe a possible way to develop
testing software for all subroutines in both libraries. For simplicity, we consider only the
subroutines for the solution of linear systems. The test subroutines for other linear algebra
problems can be developed in a similar way. The test programs are written in FORTRAN90,
and we use LAPACK90, which interfaces FORTRAN90 with LAPACK.

1 Introduction

The high performance packages LAPACK [0] and ScaLAPACK [0] are powerful tools for solving
linear algebra problems. New standards of FORTRAN have been de�ned; FORTRAN90 and
HPF (High Performance FORTRAN). Interface libraries between FORTRAN90 and LAPACK
(LAPACK90), and between HPF and ScaLAPACK, have been developed. In this paper, we brie
y
introduce these packages and then propose a way to test all the subroutines in them. All of the test
programs will be put together as a subdirectory with the next release of the LAPACK90 library.

1.1 FORTRAN 90

FORTRAN has always been the principal language used in the �elds of scienti�c, numerical, and
engineering computing. A series of revisions to the standard de�ning successive versions of the
language has progressively enhanced its power and kept it competitive with several generations of
rivals. The present FORTRAN standard is 90/95. A summary of the new features follows:

�Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA and
Mathematical Sciences Section, Oak Ridge National Laboratory, P.O.Box 2008, Bldg. 6012, Oak Ridge, TN 37831-
6367, USA; e-mail: dongarra@cs.utk.edu

yThe Danish Computing Centre for Research and Education (UNI�C), Technical University of Denmark, Build-
ing 304, DK-2800 Lyngby, Denmark, e-mail: uniwow@uni-c.dk, or e-mail: jerzy.wasniewski@uni-c.dk

zCenter of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria, e-mail:
yalamov@ami.ru.acad.bg. This author was supported in part by Grant I-702/97 from the National Scienti�c Re-
search Fund of the Bulgarian Ministry of Education and Science.

1

� Array operations.

� Pointers.

� Improved facilities for numerical computations including a set of numerical inquiry functions.

� Parameterization of the intrinsic types, to permit processors to support short integers, very
large character sets, more than two precisions for real and complex, and packed logicals.

� User-de�ned derived data types composed of arbitrary data structures and operations upon
those structures.

� Facilities for de�ning collections called \modules", useful for global data de�nitions and for
procedure libraries. These support a safe method of encapsulating derived data types.

� Requirements on a compiler to detect the use of constructs that do not conform to the syntax
of the language or are obsolete.

� A new source form, more appropriate to use at a terminal.

� New control constructs such as the SELECT CASE construct and a new form of the DO.

� The ability to write internal procedures and recursive procedures, and to call procedures with
optional and keyword arguments.

� Dynamic storage (automatic arrays, allocatable arrays, and pointers).

� Improvements to the input-output facilities, including handling partial records and a stan-
dardized NAMELIST facility.

� Many new intrinsic procedures.

Together, the new features contained in FORTRAN 90/95 ensure that the FORTRAN language
will continue to be used successfully for a long time to come. The fact that it contains the whole of
FORTRAN 77 as a subset means that conversion to FORTRAN 90/95 is as simple as conversion
to another FORTRAN 77 processor. For more information on FORTRAN 90/95 see [0].

1.2 LAPACK

LAPACK is a library of FORTRAN 77 subroutines for solving the most commonly occurring
problems in numerical linear algebra. It has been designed for e�ciency on a wide range of modern,
high-performance computers. The name LAPACK is an acronym for Linear Algebra PACKage.

LAPACK provides routines for solving systems of simultaneous linear equations, least-squares
solutions of linear systems of equations, eigenvalue problems, and singular value problems. The
associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-
vided, as are related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In
all areas, similar functionality is provided for real and complex matrices, in both single and double
precision.

2

The original goal of the LAPACK project was to make the widely used EISPACK and LIN-
PACK libraries run e�ciently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are ine�cient because their memory access patterns disregard the multi-
layered memory hierarchies of the machines, thereby spending too much time moving data instead
of doing useful
oating-point operations. LAPACK addresses this problem by reorganizing the
algorithms to use block matrix operations, such as matrix multiplication, in the innermost loops.
These block operations can be optimized for each architecture to account for the memory hierar-
chy, and so provide a transportable way to achieve high e�ciency on diverse modern machines.
LAPACK requires that highly optimized block matrix operations are already implemented on each
machine.

LAPACK routines are written so that as much as possible of the computation is performed by
calls to the Basic Linear Algebra Subprograms [0] (BLAS). While LINPACK and EISPACK are
based on the vector operation kernels of the Level 1 BLAS, LAPACK is designed at the outset to
exploit the Level 3 BLAS { a set of speci�cations for FORTRAN subprograms that does various
types of matrix multiplication and the solution of triangular systems with multiple right-hand
sides. Because of the coarse granularity of the Level 3 BLAS operations, their use promotes high
e�ciency on many high-performance computers, particularly if specially coded implementations
are provided by the manufacturer.

Highly e�cient, machine-speci�c implementations of the BLAS are available for many modern,
high-performance computers. The BLAS enable LAPACK routines to achieve high performance
with transportable software. It is not expected to perform as well as a specially tuned implementa-
tion on most high-performance computers. On some machines it may give much worse performance.
But it allows users to run LAPACK software on machines that do not o�er any other implemen-
tation of the BLAS. A model FORTRAN implementation of the BLAS is available from netlib [0]
in the BLAS library.

For more information on LAPACK and references on BLAS, LINPACK and EISPACK see [0, 0].

1.3 LAPACK for FORTRAN 90

All LAPACK driver subroutines (including expert drivers) and some LAPACK computationals
have both generic LAPACK90 interfaces and generic LAPACK77 interfaces. The remaining com-
putationals have only generic LAPACK77 interfaces. In both types of interfaces, no distinction is
made between single and double precision or between real and complex data types. The use of the
LAPACK90 (LAPACK77) interface requires the user to specify the F90 LAPACK (F77 LAPACK)
module.

For example, the GESV driver subroutine, which solves a general system of linear equations,
can be called in the following ways:

� CALL LA GESV(A, B, IPIV=ipiv, INFO=info)
or

� CALL LA GESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

The module F90 LAPACK is needed in the �rst case in which the LAPACK90 interface package
is called. The module F77 LAPACK is needed in the second case in which the LAPACK77 package
is directly called.

3

The implementation of the LAPACK90 can be summarized as follows:

� Driver Routines for Linear Equations.

� Expert Driver Routines for Linear Equations.

� Driver Routines for Linear Least Squares Problems.

� Driver Routines for generalized Linear Least Squares Problems.

� Driver Routines for Standard Eigenvalue and Singular Value Problems.

� Divide and Conquer Driver Routines for Standard Eigenvalue Problems.

� Expert Driver Routines for Standard Eigenvalue Problems.

� Driver Routines for Generalized Eigenvalue and Singular Value Problems.

� Some Computational Routines for Linear Equations and Eigenproblems.

The LAPACK90 library is successively updated and is available from netlib (see [0, 0]).

1.4 ScaLAPACK

ScaLAPACK is a library of high-performance linear algebra routines for distributed memory
message-passing MIMD (Multiple Instruction Multiple Data) computers and networks of worksta-
tions supporting PVM [0] (Parallel Virtual Machine) and/or MPI [0] (Message Passing Interface).
ScaLAPACK is a continuation of the LAPACK project (see section). Both libraries (LAPACK
and ScaLAPACK) contain routines for solving systems of linear equations, least squares problems,
and eigenvalue problems. The goals of both projects are e�ciency (to run as fast as possible), scal-
ability (as the problem size and number of processors grow), reliability (including error bounds),
portability (across all important parallel machines),
exibility (so users can construct new routines
from well-designed parts), and ease of use (by making the interface to LAPACK and ScaLAPACK
look as similar as possible). Many of these goals, particularly portability, are aided by the de-
velopment and promotion of standards, especially for low-level communication and computation
routines. ScaLAPACK has been successful in attaining these goals, limiting most machine de-
pendencies to two standard libraries called the BLAS (Basic Linear Algebra Subprograms) and
BLACS [0] (Basic Linear Algebra Communication Subprograms). LAPACK runs on any machine
where the BLAS [0] are available, and ScaLAPACK runs on any machine where both the BLAS
and the BLACS are available.

The library is currently written in FORTRAN 77 (with the exception of a few symmetric
eigenproblem auxiliary routines written in C to exploit IEEE arithmetic) in a Single Program
Multiple Data (SPMD) style using explicit message passing for interprocessor communication. The
name ScaLAPACK is an acronym for Scalable Linear Algebra PACKage, or Scalable LAPACK

For more information on ScaLAPACK and references on BLAS, BLACS, PBLAS, PVM and
MPI see [0, 0, 0, 0, 0, 0].

4

1.5 ScaLAPACK for HPF

Work on the HPF interface for ScaLAPACK has been started by a number of groups, such as the
University of Tennessee and the Danish Computing Center for Research and Education (UNI�C)
(see [0, 0]). The plan is to develop an HPF interface for several of the more heavily used ScaLA-
PACK subroutines and test programs.

2 Testing routines for LAPACK90

We will present the testing routine for SGESV (solution of linear systems with general dense
matrices). The rest of the testing routines are similar, and we give one more (for banded matrices)
in the Appendix.

The naming convention for the testing routines is as follows. We add the letters MG (Matrix
Generator) at the end of the corresponding subroutine name. For example, the testing routine for
SGESV is called SGESVMG.

Now let us present the details for SGESVMG. The code starts with statements for the variables.

PROGRAM LA_SGESV_MG_EXAMPLE

!

! -- LAPACK90 Testing Routine (VERSION 1.0) --

! Danish Computing Center (UNI-C), Denmark

! University of Rousse, Bulgaria

! University of Tennessee, USA

! Aug 5, 1998

!

! .. "Use Statements" ..

USE LA_PRECISION, ONLY: WP => SP

USE F90_LAPACK, ONLY: LA_GESV, LA_LAGGE, LA_GETRF

! .. "Implicit Statement" ..

IMPLICIT NONE

! .. "Parameters" ..

INTEGER, PARAMETER :: NSTART = 50, NINCR = 20, NSTOP = 100, &

NRHS = 50, NIN = 5, NOUT = 6, NTESTS = 4, &

NETESTS = 9

REAL(WP), PARAMETER :: THRESH_FAC = 100.0

! THRESH IS EQUAL TO THE PRODUCT OF THRESH_FAC AND EPS

! (THE MACHINE EPSILON)

REAL(WP) :: THRESH

! .. "Local Scalars" ..

INTEGER :: FETESTS, FMATR, FTESTS, INFO, ISEED(4), ISTAT, J, N, NMATR

REAL(WP) :: EPS, RATIO, RCOND

! .. "Local Arrays" ..

INTEGER, ALLOCATABLE :: IPIV(:)

REAL(WP), ALLOCATABLE :: A(:,:), AA(:,:), B(:,:), BB(:,:), DUMMY(:,:)

REAL(WP), ALLOCATABLE :: D(:)

5

Here we explain the most important of the parameters. We do tests with di�erent sizes of the
matrix. The size grows from NSTART to NSTOP with a step NINCR. For each size, we repeat
all the tests in a DO-loop. In some tests, we solve the problem with multiple right-hand sides.
The corresponding number is given in NRHS. Finally, we introduce a threshold for the accuracy.
The variable THRESH FAC is a factor by which the machine precision is multiplied, so that
the product is a threshold for the componentwise backward error. As we will see later, if the
componentwise backward error is above this threshold we produce an error message. Since this
example program (SGESV) is in single precision (machine precision � 10�7), we give the value of
100 to THRESH FAC. Thus, backward errors larger than � 10�5 will be reported to the user as a
possible danger. Gaussian elimination with partial pivoting (which is implemented in SGESV) is
quite stable in practice, so we would rarely expect larger than the threshold errors.

Next we give values to some counters and messages explaining the routine:

! .. "Executable Statements" ..

FTESTS = 0; FETESTS = 0; NMATR = 0; FMATR = 0

WRITE(NOUT,*)

WRITE (NOUT,*) 'SGESV Test Example Program Results.'

WRITE(NOUT,*) 'LA_GESV LAPACK subroutine solves a dense general'

WRITE(NOUT,*) 'linear system of equations, Ax = b.'

EPS = EPSILON(1.0_WP)

THRESH = THRESH_FAC * EPS

WRITE(NOUT,'(1X, A, E12.5)') 'Threshold value for the backward error &

= ',THRESH

WRITE(NOUT,'(1X, A, E12.5)') 'The machine eps = ', EPS

We start a DO-loop making tests for di�erent sizes of the matrices. Memory is allocated for all
arrays, and a message is produced if the memory is not enough:

!

DO N = NSTART, NSTOP, NINCR

NMATR = NMATR + 1

!

ALLOCATE (A(N,N), AA(N,N), B(N,NRHS), BB(N,NRHS), IPIV(N), D(N), &

STAT=ISTAT)

IF(ISTAT /= 0)THEN

WRITE(NOUT,*) 'Program can not allocate more memory, STA = ', ISTAT

STOP

END IF

A random matrix and a random block of right-hand sides are generated in AA and BB. The
reciprocal of a condition number of the matrix is then estimated, and the linear system is solved:

! GENERATE A MATRIX

CALL LA_LAGGE(AA)

! GENERATE RHS

6

CALL LA_LAGGE(BB)

! CALCULATE THE CONDITION NUMBER OF THE MATRIX AA

A = AA

CALL LA_GETRF(A, RCOND=RCOND)

! CALL THE SOLVER

A=AA; B=BB

CALL LA_GESV(A, B, IPIV, INFO)

After that we compute the componentwise backward error of the solution by a call to CWBE. We
discuss this subroutine at the end. The backward error is stored in RATIO.

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B, BB, RATIO)

We produce an error message if INFO is not zero (the termination of GESV is not normal), or the
backward error is too large (which means that the solution is not accurate enough). We report the
value of INFO (which shows the type of error in GESV) and the values of RCOND and RATIO
(which show the conditioning and the backward error for the linear system) so that the user can
make a conclusion.

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 1 -- ''CALL LA_GESV(A, B, IPIV, INFO)'',', &

'Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', &

N, ' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

This was the �rst type of test presented in detail. Next we repeat the same test but for a linear
system with one right-hand side only:

!

A=AA; B=BB

CALL LA_GESV(A, B(:,1), IPIV, INFO)

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)

7

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 2 -- ''CALL LA_GESV(A, B(:,1), IPIV, INFO)'', &

Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', &

N, ' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

A new random matrix is then generated, and the last two tests are done for the newly obtained
linear system (the right hand sides remain the same):

!

ISEED(1)=4000; ISEED(2)=50; ISEED(3)=1997; ISEED(4)=11

CALL LA_LAGGE(AA, ISEED=ISEED)

CALL LA_GETRF(AA, RCOND=RCOND)

A=AA; B=BB

CALL LA_GESV(A, B)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B, BB, RATIO)

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 3 -- ''CALL LA_GESV(A, B)'', Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

8

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

!

A=AA; B=BB

CALL LA_GESV(A, B(:,1))

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 4 -- ''CALL LA_GESV(A, B(:,1))'', Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS:', RATIO

END IF

Finally, we close the DO-loop (which changes the matrix size) and produce a report for all the
tests up to this point:

!

DEALLOCATE (A, AA, B, BB, IPIV, D, STAT=ISTAT)

!

END DO

!

WRITE(NOUT,*)

WRITE(NOUT,*)'--'

WRITE(NOUT,*)

WRITE(NOUT,'(I4, A, I2, A, I4, A)') NMATR, ' matrices were tested', &

' with ', NTESTS, ' tests. NRHS was ', NRHS, ' and one.'

WRITE(NOUT,'(I4, A)') NMATR*NTESTS - FTESTS, ' tests passed.'

WRITE(NOUT,'(I4, A)') FTESTS, ' tests failed.'

The second part of the test focuses on the tests for the arguments of SGESV. Pointing to the
DUMMY array, which is not allocated in the memory, tests the �rst argument. In this case, INFO
should be negative:

9

! TESTS FOR THE ARGUMENT ERROR FAULTS

N = 100

ALLOCATE (A(N,N), AA(N,N), B(N,NRHS), BB(N,NRHS), IPIV(N), D(N))

!

A=AA; B=BB

CALL LA_GESV(DUMMY, B, INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(DUMMY, B, INFO=INFO)'' failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

!

A=AA; B=BB

CALL LA_GESV(DUMMY, B(:,1), INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(DUMMY, B(:,1), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

The arrays A and B are then "cut" in di�erent ways. In this case, INFO should also be negative:

!

A=AA; B=BB

CALL LA_GESV(A(:,1:N-1), B, INFO=INFO)

IF(INFO /= -1)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A(:,1:N-1), B, INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -1'

END IF

!

A=AA; B=BB

10

CALL LA_GESV(A(:,1:N-1), B(:,1), INFO=INFO)

IF(INFO /= -1)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A(:,1:N-1), B(:,1), ', &

` INFO=INFO)'' failed,'

WRITE(NOUT,*) 'INFO returned should be -1'

END IF

!

A=AA; B=BB

CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)

IF(INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -2'

END IF

!

A=AA; B=BB

CALL LA_GESV(A, B(1:N-1,1), INFO=INFO)

IF(INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,1), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -2'

END IF

!

A=AA; B=BB

CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)

IF(INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

11

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -2'

END IF

The same type of test is applied to IPIV:

!

A=AA; B=BB

CALL LA_GESV(A, B, IPIV(1:N-1), INFO)

IF(INFO /= -3)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B, IPIV(1:N-1), INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -3'

END IF

!

A=AA; B=BB

CALL LA_GESV(A, B(:,1), IPIV(1:N-1), INFO)

IF(INFO /= -3)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B, IPIV(1:N-1), INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -3'

END IF

At the end, we provide a report for all the tests:

!

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,'(I2, A)') NETESTS, ' error exits tests were ran'

WRITE(NOUT,'(I4, A)') NETESTS - FETESTS, ' tests passed.'

WRITE(NOUT,'(I4, A)') FETESTS, ' tests failed.'

!

CONTAINS

12

The subroutine CWBE, which is called inside the test program, is given as follows:

SUBROUTINE CWBE(AA, X, B, RATIO)

USE LA_PRECISION, ONLY: WP => SP

IMPLICIT NONE

REAL(WP), INTENT(IN) :: AA(:,:), X(:,:), B(:,:)

REAL(WP), INTENT(OUT) :: RATIO

INTEGER :: J

INTRINSIC SIZE

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

RATIO = 0.0_WP

DO J = 1, SIZE(B,2)

RATIO = MAX(RATIO, MAXVAL((ABS(B(:,J) - MATMUL(AA,X(:,J)))) / &

(ABS(X(:,J)) + MATMUL(ABS(AA),ABS(X(:,J))))))

END DO

END SUBROUTINE

To compute the componentwise backward error, we use the expression (see [0])

!c = max
i

jrij

(jAjjx̂j+ jbj)i
;

where r = b�Ax̂ is the residual, and x̂ is the computed solution. This is the case of one right-hand
side. When we have multiple right-hand sides, we take the maximum of all the componentwise
backward errors.

The output of the test program appears as follows:

SGESV Test Example Program Results.

LA_GESV LAPACK subroutine solves a dense general

linear system of equations, Ax = b.

Threshold value for the backward error = 0.11921E-04

The machine eps = 0.11921E-06

--

3 matrices were tested with 4 tests. NRHS was 50 and one.

12 tests passed.

0 tests failed.

--

9 error exits tests were ran

9 tests passed.

0 tests failed.

13

3 A testing routine for ScaLAPACK

The testing routines for ScaLAPACK are designed in the same way, so we do not present them
here. If HPF is used, the tests must be updated with the following HPF directives:

!HPF$ PROCESSORS PP(NPP,NUMBER_OF_PROCESSORS())

!HPF$ DISTRIBUTE (CYCLIC(MB),CYCLIC(NB)) ONTO:: AA, BB, A, B

!HPF$ ALIGN IPIV(I) WITH A(I,*)

where PP is the name of the processors, MB and NB are the block sizes, and AA, BB, A, B and
PIV are arrays used in the program.

Our test programs can also be used directly with ScaLAPACK. The data communication can
be done using BLACS [0], as in this case.

The test programs can also be used for testing the computer speed. Of course, the machine
dependent timing routine must update them.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov and D. C. Sorensen. LAPACK Users' Guide
Release 2.0. SIAM, Philadelphia, 1995.

[2] L.S. Blackford, J. Choi, A. Ceary, E. D'Azevedo, J. Demmel, I. Dhilon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users'
Guide. SIAM, Philadelphia, 1997.

[3] L.S. Blackford, J.J. Dongarra, J. Du Croz, S. Hammarling, and J. Wa�sniewski. LAPACK90 -
FORTRAN90 version of LAPACK. On web:
http://www.netlib.org/lapack90/ (1997)

[4] L.S Blackford, J.J. Dongarra, J. Du Croz, S. Hammarling, and J. Wa�sniewski. LAPACK
Working Note 117, A Proposal for a FORTRAN 90 Interface for LAPACK. Report UNIC-96-
10, UNI�C, Lyngby, Denmark, 1995. Report ut-cs-96-341, University of Tennessee, Computer
Science Department, Knoxville, July, 1995.

[5] BLACS (Basic Linear Algebra Communication Subprograms). See at netlib
http://www.cs.utk.edu/~rwhaley/Blacs.html

[6] BLAS (Basic Linear Algebra Subprograms). See at netlib
http://www.netlib.org/blas/index.html

[7] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical Software Repos-
itory. D-Lib Magazine, Sep, 1995, Accessible at http://www.dlib.org/

[8] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and, R. C. Wha-
ley. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. Univer-
sity of Tennessee at Knoxville, Technical Report, CS-95-292, May 1995. Accessible at
http://www.netlib.org/lapack/lawns/index.html (lapack/lawns/lawn100.ps).

14

[9] J. Dongarra and J. Wasniewski, High Performance Linear Algebra Package LAPACK90, Re-
port UNIC-98-01, February 1998.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam PVM: A Users'
Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.

[11] C.H. Koelbel, D.B. Lovemann, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel. The High
Performance FORTRAN Handbook. The MIT Press Cambridge, Massachusetts, London,
England, 1994.

[12] P.A.R. Lorenzo, A. M�uller, Y. Murakami, and B.J.N. Wylie. High Performance FORTRAN
Interfacing to ScaLAPACK. In J. Wa�sniewski, J. Dongarra, K. Madsen, and D. Olesen (Eds.),
Applied Parallel Computing, Industrial Computation and Optimization, Third International
Workshop, PARA'96, Lyngby, Denmark, August 1996, Proceedings, Lecture Notes in Com-
puter Science No. 1184, Springer-Verlag, 1996, pp. 457-466

[13] M. Metcalf and J. Reid. FORTRAN 90 Explained. Oxford, New York, Tokyo, Oxford Uni-
versity Press, 1990.

[14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete
Reference. The MIT Press Cambridge, Massachusetts, 1996.

[15] R.C. Whaley. HPF Interface to ScaLAPACK.
On web: http://www.netlib.org/scalapack/prototype/ (1997).

A SGBSVMG

PROGRAM LA_SGBSV_MG_EXAMPLE

!

! -- LAPACK90 Testing Routine (VERSION 1.0) --

! Danish Computing Center (UNI-C), Denmark

! University of Rousse, Bulgaria

! University of Tennessee, USA

! Aug 5, 1998

!

! .. "Use Statements" ..

USE LA_PRECISION, ONLY: WP => SP

USE F90_LAPACK, ONLY: LA_GBSV, LA_LAGGE, LA_GETRF

! .. "Implicit Statement" ..

IMPLICIT NONE

! .. "Parameters" ..

INTEGER, PARAMETER :: NSTART = 50, NINCR = 20, NSTOP = 100, &

NRHS = 50, NIN = 5, NOUT = 6, NTESTS = 6, &

NETESTS = 8

REAL(WP), PARAMETER :: THRESH_FAC = 100.0

! THRESH IS EQUAL TO THE PRODUCT OF THRESH_FAC AND EPS

15

! (THE MACHINE EPSILON)

REAL(WP) :: THRESH

! .. "Local Scalars" ..

INTEGER :: FETESTS, FMATR, FTESTS, INFO, ISTAT, J, N, NMATR, KL, KU

REAL(WP) :: EPS, RATIO, RCOND

! .. "Local Arrays" ..

REAL(WP), ALLOCATABLE :: AB(:,:), AAB(:,:), A(:,:), AA(:,:)

REAL(WP), ALLOCATABLE :: B(:,:), BB(:,:), DUMMY(:,:)

INTEGER, ALLOCATABLE :: IPIV(:)

! .. "Executable Statements" ..

FTESTS = 0; FETESTS = 0; NMATR = 0; FMATR = 0

WRITE(NOUT,*)

WRITE (NOUT,*) 'SGBSV Test Example Program Results.'

WRITE(NOUT,*) 'LA_GBSV LAPACK subroutine solves a system of linear'

WRITE(NOUT,*) 'equations Ax = b, where A is banded. '

EPS = EPSILON(1.0_WP)

THRESH = THRESH_FAC * EPS

WRITE(NOUT,'(1X, A, E12.5)') 'Threshold value for the backward', &

' error = ',THRESH

WRITE(NOUT,'(1X, A, E12.5)') 'The machine eps = ', EPS

!

DO N = NSTART, NSTOP, NINCR

NMATR = NMATR + 1

!

ALLOCATE(A(N,N), AA(N,N), AB(N,N), AAB(N,N), &

B(N,NRHS), BB(N,NRHS), STAT=ISTAT)

IF(ISTAT /= 0)THEN

WRITE(NOUT,*) 'Program can not allocate more memory, STAT = ', ISTAT

STOP

END IF

KL = (N-1)/2 ; KU = N-2*KL - 1

! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU

! SUPERDIAGONALS

! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS

! RETURNED IN RCOND

CALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)

!

! CALL THE SOLVER

AB=AAB; B=BB

CALL LA_GBSV(AB, B, KL, INFO=INFO)

16

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B, BB, RATIO)

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 1 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 2 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &

Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

KL = (N-1)/4; KU = N-2*KL - 1

17

! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU

! SUPERDIAGONALS

! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS

! RETURNED IN RCOND

CALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)

! CALL THE SOLVER

AB=AAB; B=BB

CALL LA_GBSV(AB, B, KL, INFO=INFO)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B, BB, RATIO)

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 3 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 4 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &

Failed.'

18

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

KL = 0 ; KU = N-2*KL - 1

! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU

! SUPERDIAGONALS

! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS

! RETURNED IN RCOND

CALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)

! CALL THE SOLVER

AB=AAB; B=BB

CALL LA_GBSV(AB, B, KL, INFO=INFO)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

CALL CWBE(AA, B, BB, RATIO)

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIO

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 5 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

19

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)

IF(INFO /= 0 .OR. RATIO > THRESH)THEN

FTESTS = FTESTS + 1

FMATR = FMATR + 1

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,*) 'Test 6 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &

Failed.'

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &

' with ', NRHS, ' rhs.'

WRITE(NOUT,*)

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) ' RCOND = ', RCOND

WRITE(NOUT,*)

WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIO

END IF

DEALLOCATE(A, AA, AB, AAB, B, BB, STAT=ISTAT)

END DO

!

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,'(I4, A, I2, A, I4, A)') NMATR, ' matrices were tested', &

' with ', NTESTS, ' tests. NRHS was ', NRHS, ' and one.'

WRITE(NOUT,'(I4, A)') NMATR*NTESTS - FTESTS, ' tests passed.'

WRITE(NOUT,'(I4, A)') FTESTS, ' tests failed.'

!

! TESTS FOR THE ARGUMENT ERROR FAULTS

N = 100

ALLOCATE (AB(N/2,N), AAB(N/2,N), B(N,NRHS), BB(N,NRHS), IPIV(N))

!

AB=AAB; B=BB

CALL LA_GBSV(DUMMY, B, INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(DUMMY, B, INFO=INFO)'' failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

20

!

AB=AAB; B=BB

CALL LA_GBSV(DUMMY, B(:,1), INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(DUMMY, B(:,1), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB(:,1:N-1), B, INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB(:,1:N-1), B,', &

' INFO=INFO)'' failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB(:,1:N-1), B(:,1), INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB(:,1:N-1), B(:,1),', &

' INFO=INFO)'' failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -2'

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B(1:N-1,:), INFO=INFO)

IF(INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

21

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB, B(1:N-1,:), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -2'

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B(1:N-1,1), INFO=INFO)

IF(INFO /= -2)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB, B(1:N-1,1), INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -2'

END IF

!

AB=AAB; B=BB

CALL LA_GBSV(AB, B, (N-1)/2 + 1, INFO=INFO)

IF(INFO /= -1 .AND. INFO /= -3)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(A, B, (N-1)/2 + 1, INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be either -1 or -3'

END IF

AB=AAB; B=BB

CALL LA_GBSV(AB, B, IPIV=IPIV(1:N-1), INFO=INFO)

IF(INFO /= -4)THEN

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

FETESTS = FETESTS +1

WRITE(NOUT,*) 'INFO = ', INFO

WRITE(NOUT,*) 'Test ''CALL LA_GBSV(A, B, IPIV=IPIV, INFO=INFO)'' &

failed,'

WRITE(NOUT,*) 'INFO returned should be -4'

22

END IF

!

WRITE(NOUT,*)

WRITE(NOUT,*)'---'

WRITE(NOUT,*)

WRITE(NOUT,'(I2, A)') NETESTS, ' error exits tests were ran'

WRITE(NOUT,'(I4, A)') NETESTS - FETESTS, ' tests passed.'

WRITE(NOUT,'(I4, A)') FETESTS, ' tests failed.'

!

CONTAINS

SUBROUTINE GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)

USE LA_PRECISION, ONLY: WP => SP

USE F90_LAPACK, ONLY: LA_LAGGE, LA_GETRF

REAL(WP), INTENT(OUT) :: AA(:,:), AB(:,:), BB(:,:), RCOND

INTEGER, INTENT(IN) :: KL, KU

INTEGER :: I, J, N, NRHS

! .. "Implicit Statement" ..

IMPLICIT NONE

INTRINSIC MIN, MAX, SUM

N = SIZE(A,1)

NRHS = SIZE(B,2)

!

! GENERATE A MATRIX

CALL LA_LAGGE(AA, KL, KU)

DO I = 1, N

IF (AA(I,I) == 0) THEN

AA(I,I) = I

END IF

END DO

!

! GENERATE RHS

CALL LA_LAGGE(BB)

!

! CALCULATE THE RECIPROCAL OF THE CONDITION NUMBER OF MATRIX AA

A = AA

CALL LA_GETRF(A, RCOND=RCOND)

!

! STORE IT AS BAND MATRIX AS NEED BY LA_SGBSV

DO J=1, N

DO I=MAX(1, J-KU), MIN(N,J+KL)

AAB(KL+KU+1+I-J:KL+KU+1+I-J, J) = AA(I,J)

END DO

23

END DO

END SUBROUTINE

SUBROUTINE CWBE(AA, X, B, RATIO)

USE LA_PRECISION, ONLY: WP => SP

IMPLICIT NONE

REAL(WP), INTENT(IN) :: AA(:,:), X(:,:), B(:,:)

REAL(WP), INTENT(OUT) :: RATIO

INTEGER :: J

INTRINSIC SIZE

! COMPUTE THE COMPONENTWISE BACKWARD ERROR

RATIO = 0.0_WP

DO J = 1, SIZE(B,2)

RATIO = MAX(RATIO, MAXVAL((ABS(B(:,J) - MATMUL(AA,X(:,J)))) / &

(ABS(X(:,J)) + MATMUL(ABS(AA),ABS(X(:,J))))))

END DO

END SUBROUTINE

END PROGRAM LA_SGBSV_MG_EXAMPLE

24

