
LAPACK Working Note 137
Installation Guide and Design of the HPF 1.1 interface to

ScaLAPACK, SLHPF 1

L.S. Blackford, J.J. Dongarra
C. A. Papadopoulos, and R. C. Whaley

Department of Computer Science
University of Tennessee

Knoxville, Tennessee 37996-1301

REVISED: RELEASE VERSION 1.1, Sept 1, 1998

Abstract

This working note describes release version 1.1 of the HPF 1.1 compliant interface to ScaLA-
PACK, SLHPF. Along with a description of the interface, installation instructions, a simple
example program, and a testing suite are included. ScaLAPACK is a library of high-
performance linear algebra routines for distributed-memory parallel machines or clusters
of workstations supporting MPI or PVM. SLHPF allows the user to call the ScaLAPACK
library from within an HPF program.

1This work was supported by the National Science Foundation Grant No. ASC-9005933; by the De-
fense Advanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army
Research O�ce; by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-
AC05-84OR21400; and by the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615; and by the DoD High Performance Computing Modernization Program ASC
Major Shared Resource Center through Programming Environment and Training (PET) under Contract
Number DAHC-94-96-C-0005, Nichols Research Corporation, subcontract no. NRC CR-96-0011.

1

Contents

1 Introduction . 3
2 Revisions Since the First Public Release . 3
3 File Format . 3
4 Overview of Library Contents . 4

4.1 SLHPF Routines . 5
4.2 SLHPF Test Routines . 5

5 Installing SLHPF on a Unix System . 5
5.1 Untar the File . 6
5.2 Edit the �le SLhpf make.inc . 6
5.3 If you are using MPI under PGHPF 6
5.4 Compiling SLHPF . 7

6 Run the SLHPF Test Programs . 7
6.1 A Simple Example Program . 7
6.2 Testers . 9
6.3 Send the Results to Tennessee . 10

7 Required HPF features . 10
8 Further details of the interface . 11

8.1 Layer 1 . 11
8.2 Layer 2 . 12
8.3 Layer 3 . 12

9 Explanation of needed HPF features . 13
9.1 !HPF$ INHERIT . 13
9.2 HPF DISTRIBUTION and HPF ALIGNMENT 13
9.3 !HPF$ PROCESSORS PROC(P,Q) and

!HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROC 14
9.4 !HPF$ ALIGN WITH . 14
9.5 Labeling the processes for process grid setup 14

10 Implementation details . 14
10.1 Layer 1 . 15
10.2 Layer 2 . 15
10.3 Layer 3 . 17

11 Extrinsics . 17

A Calling sequences 20

Bibliography . 22

2

1 Introduction

SLHPF is an interface layer that allows the user to call ScaLAPACK from an HPF 1.1
program. ScaLAPACK, written in Fortran 77 and C, is a library of high-performance linear
algebra routines for distributed-memory message-passing MIMD computers and networks
of workstations supporting PVM or MPI. It is a scalable distributed memory version of LA-
PACK. ScaLAPACK contains routines for solving systems of linear equations, least squares
problems, singular value decomposition, and eigenvalue problems. ScaLAPACK's approach
to achieving high e�ciency is based on the use of a standard set of Basic Linear Algebra
Subprograms (BLAS), which can be optimized for each computational environment. By
con�ning most of the computational work to the BLAS, the subroutines should be trans-
portable and e�cient across a wide range of computers. For communication, ScaLAPACK
uses the Basic Linear Algebra Communication Subprograms (BLACS) from which a parallel
implementation of the BLAS, (PBLAS) are implemented.

The parallel language HPF supports CYCLIC(k) distributions of matrices, and thus
is a natural platform from which to call ScaLAPACK. The SLHPF interface is designed to
make this approach both easy to use and portable, thus allowing the e�ciency and reliability
of ScaLAPACK to be realized. HPF compilers are relatively young and the language is large
and complex, making it di�cult for compiler writers to implement all of the features of the
HPF 1.1 standard. In view of this we have chosen a minimum subset of HPF compiler
directives necessary to implement the interface and to make the interface as portable as
possible. This working note describes how to install and test this release of SLHPF.

2 Revisions Since the First Public Release

Since its �rst public release SLHPF version 0.2Beta, many of the problems and di�-
culties with compiler limitations have been addressed. SLHPF release version 1.1 has been
rewritten to comply with version 1.1 of the HPF standard. It will not work with a 1.0
compliant HPF compiler. Some of the limitations from the 0.2Beta release that have been
addressed are: Redistribution is now supported. Driver routines which accept arguments
which may be 2D or 1D arrays (eg. the right hand side vector (or series of vectors) X) now
will accept 1D or 2D arrays. A few code segments are still required to write around known
compiler bugs; however, include �les are still used instead of module �les as in the original
release. This is because we have had problems with compiler bugs using module �les in the
past and we wanted as few potential problems with new compilers as possible. We have also
increased the functionality by providing an HPF interface to the ScaLAPACK symmetric
eigenproblem driver SYEV.

3 File Format

The software for SLHPF is distributed in the form of a gzipped tar �le (via anonymous
ftp or the World Wide Web) which contains the HPF source for SLHPF, the testing pro-
grams, this working note, and a simple example program. The package may be accessed
via the World Wide Web through the URL address:

3

SLHPF

TESTING SRCINSTALL

Testing Routines

Data Files

Layer2 Layer3

Sample SLhpf_make.inc

HPF local Routines

Routines
HPF Global

F77 Local Routines

ScaLAPACK

BLACS

BLAS

PVM or MPI

README

Data Files

Figure 1: Organization of SLHPF

http://www.netlib.org/scalapack/prototype/index.html

Or, you can retrieve the �le via anonymous ftp at netlib:

ftp ftp.netlib.org

login: anonymous

password: <your email address>

cd scalapack/prototype

binary

get slhpf.tar.gz

quit

The software on the tar �le is organized into a number of essential directories as shown
in Figure 1. Please note that this �gure does not re
ect every �le contained in the SLHPF

directory. Libraries are created in the SLHPF directory and executable �les are created
in TESTING directory. Input �les for the testing programs are also found in the testing
directory, so that testing may be performed in the directory SLHPF/TESTING. A top-level
make�le in the SLHPF directory is provided to perform the entire installation procedure.

4 Overview of Library Contents

Most routines in SLHPF occur in four versions: REAL, DOUBLE PRECISION, COM-
PLEX, and COMPLEX*16. The �rst three versions (REAL, DOUBLE PRECISION, and

4

COMPLEX) are written to interface with standard Fortran 77 and are completely portable;
the COMPLEX*16 version is provided for those Fortran 77 compilers which allow this data
type. For convenience, we often refer to routines by their single precision names; the leading
`S' can be replaced by a `D' for double precision, a `C' for complex, or a `Z' for complex*16.
The module HPF LAPACK provides an interface so that the top level driver routines do not
have an S D C or Z pre�x, but rather have the pre�x LA . There is a separate tester for
each precision of the driver routines.

4.1 SLHPF Routines

There are three classes of SLHPF routines:

� Global HPF routines that are located in the SLHPF/SRC directory that include the
actual interface routines and the HPF module for interfacing with HPF programs.
These routines are all HPF global and will only call HPF global and HPF local
routines. We will refer to these as Layer 1 routines.

� Local HPF routines which are called by the Global routines. These routines are used
by the interface to call Layer 3 and ScaLAPACK's F77 routines. They also perform
some local tasks. We will refer to these as Layer 2 routines.

� Layer 3 routines are F77 routines called by the Layer 2 routines. The ScaLAPACK
library, along with the BLACS, PVM, or MPI are considered to be at this level.

4.2 SLHPF Test Routines

This release contains test programs, located in SLHPF/TESTING, for each of the
interface routines in each data type. These test programs test di�erent types of distributions
to ensure that the interface is installed correctly. The test program executables will have
the form of xproutinename where p is the precision and routinename is the name of the
driver routine such as gesv. For example xsgesv is the single precision tester for gesv. Data
�les for the testers are provided in the same directory. It is assumed that the ScaLAPACK
test suites have already been run successfully. The SLHPF test suite should be run before
using this interface in your own code.

5 Installing SLHPF on a Unix System

Installing and testing release version 1.1 of SLHPF involves the following steps:

1. Uncompress and tar the �le.

2. Edit the �le SLHPF/SLhpf make.inc.

3. If using MPI with PGHPF, set the environment variable HPF MPI and edit the �le
SLHPF/SRC/misc.h.

4. Type make all

5

5.1 Untar the File

If you received a tar �le of SLHPF via the World Wide Web or anonymous ftp, enter
the following command to untar the �le:

gunzip -c �le j tar xvf -

where �le is the name of the gzipped tar �le. This will create a top-level directory called
SLHPF, which requires approximately 10 Mbytes of disk space. The total space requirements
including the object �les and executables is approximately 60 Mbytes for all four data types.

5.2 Edit the �le SLhpf make.inc

Before the libraries can be built, or the testing programs run, you must de�ne all
machine/compiler-speci�c parameters for the architecture and HPF compiler to which you
are installing SLHPF. All machine-speci�c parameters are contained in the SLhpf make.inc

�le. Sample SLhpf make.inc �les for di�erent machines and/or compilers are in the
INSTALL directory. Copy the one closest to your system to the SLHPF directory and re-
name it SLhpf make.inc.

The �rst line of this SLHPF make.inc �le is:

TOPdir = $(HOME)/SLHPF

and may need to be modi�ed to wherever you have put your SLHPF directory. Sec-
ond, you will need to modify the PLAT de�nition to specify the architecture to which you
are installing SLHPF. Next, you will need to modify SLdir, Bdir, Mpdir, Mplib, BLAS,
SYSlib, to indicate where the ScaLAPACK, BLACS, Message Passing (MPI or PVM or
other message passing library) and BLAS libraries are located. The de�nition of setup
allows you to specify whether you are running PVM, MPI, or any other message pass-
ing layer. You may need to modify SYSlib for speci�c system libraries that also need to
be included. For example, Solaris requires you to link in the -lsocket and -lnsl libraries
when using MPI or PVM. The CONVERT FROM and CONVERT TO allows you to con-
vert from/to when changing what extrinsic declaration is used for Layer 3 routines. This
depends on your HPF compiler. For example Portland Group HPF (PGHPF) requires
f77 local for Layer 3 while Digital Equipment requires hpf local. Finally you will need
to set your compiler and
ags for each layer as well as the archiver
ags. These can be
set with FL1, FL1FLAGS, FL2, FL2FLAGS, FL3, FL3FLAGS, L1LOADER, L1LOADFLAGS, ARCH,
ARCHFLAGS, and RANLIB. For more details on the SLhpf make.inc �le please see the README
�le in the SLHPF/INSTALL directory, and the errata.SLHPF �le on netlib (URL address:
http://www.netlib.org/scalapack/prototype/errata.SLHPF).

5.3 If you are using MPI under PGHPF

If you are using MPI under PGHPF you need to set the environment variable HPF MPI to
point to your MPI library, for example

6

setenv HPF MPI /usr/local/MPI/mpich/lib/solaris/ch p4/libmpi.a

You will also need to modify SLHPF/SRC/misc.h to change EXITVAL=0 to EXITVAL=1 if
your compiler is using the same message passing layer as the BLACS you are running.
Make sure that you have set setup to MPI in your SLhpf make.inc �le.

5.4 Compiling SLHPF

To compile the library and testing �les:

cd SLHPF

make all

Or just compile the library by:

cd SLHPF

make lib

The removal of object �les can be accomplished by the following:

cd SLHPF

make clean

For further installation details, please see the README �le in the SLHPF/INSTALL direc-
tory.

6 Run the SLHPF Test Programs

6.1 A Simple Example Program

Included in the SLHPF/TESTING directory is the simple example program xsimple.
This is the �rst program you should try to run. If this runs correctly, then you can
proceed to running the entire SLHPF test suite and then use SLHPF in your own HPF
1.1 programs. Another feature of the simple example program code is that its source,
SLHPF/TESTING/xsgesv.f, is very simple and easy to read. It will serve as a good guide of
how to call an SLHPF routine by using the SLHPF module HPF LAPACK. In this particular
code we are calling a dgesv solver and comparing the results with the actual matrix that
is obtained from matmul. The other testers are designed to test the interface to make sure
that the implementation of SLHPF is correctly installed and are more di�cult to read.

7

program simplegesv

!

! -- Layer 1 ScaLAPACK HPF wrapper routine, (version 1.1) --

! September 1, 1998

! Written by R. Clint Whaley, University of Tennessee, Knoxville

!

use HPF_LAPACK

integer, parameter :: N=500, NRHS=20, NB=64, NBRHS=64, P=1, Q=4

integer, parameter :: DP=kind(0.0D0)

integer :: IPIV(N)

real(DP) :: A(N, N), X(N, NRHS), B(N, NRHS)

!HPF$ PROCESSORS PROC(P,Q)

!HPF$ DISTRIBUTE A(cyclic(NB), cyclic(NB)) ONTO PROC

!HPF$ DISTRIBUTE (cyclic(NB), cyclic(NBRHS)) ONTO PROC :: B, X

!

! Randomly generate the coefficient matrix A and the solution

! matrix X. Set the right hand side matrix B such that B = A * X.

!

call random_number(A)

call random_number(X)

B = matmul(A, X)

!

! Solve the linear system; the computed solution overwrites B

!

call la_gesv(A, B, IPIV)

!

! As a simple test, print the largest difference (in absolute value)

! between the computed solution (B) and the generated solution (X).

!

print*,'MAX(ABS(X~ - X)) = ',maxval(abs(B - X))

!

! Shutdown the ScaLAPACK system, I'm done

!

call SLhpf_exit()

stop

end

To run xsimple using MPI run your program as though you were running any other
MPI executable on your system. For example if you were using mpich you would use the
following in the SLHPF/TESTING directory:

8

% mpirun xsimple -procs 4

To run xsimple using PVM you would run your program as though you were running any
other HPF executable on your system. Note: you need to start up PVM before running
your executable. For example with Portland Group HPF you would use the following in
the SLHPF/TESTING directory:

% xsimple -pghpf -np 4

The output should look something like the following:

% xsimple -pghpf -np 4

MAX(ABS(X~ - X)) = 2.5913715617775779E-012

FORTRAN STOP

If the di�erence is around 1.0E-8 or less then your program is working correctly and has
passed the test within a double precision tolerance.

6.2 Testers

There are test programs for each of the interface routines in each data type in the
TESTING directory. There is an input �le for each of the testing programs. These testers
are designed to check that the HPF data distribution is working correctly, and assume that
ScaLAPACK, BLAS, and BLACS have already been tested and are working correctly. The
tests have real, complex, double, and double complex routines unless otherwise indicated.
The following is a list of the testers for the REAL version.

xsgels

xsgemm

xsgesv

xsimple (simple example program)

xsposv

xssyev (real and double precision only)

xstrsm

For the other precisions the leading `xs' �le names must be changed to `xc', `xd', or `xz'. If
you encountered failures in this phase of the testing process, please refer to Section 6.3. For
information on the data �les and how to modify them please see the SLHPF/INSTALL/README
�le for a detailed description.

9

6.3 Send the Results to Tennessee

Congratulations! You have now �nished installing, and testing SLHPF. If you en-
countered failures in any phase of the testing, please consult the README �le in the
SLHPF/INSTALL directory and our errata.SLHPF �le on netlib (URL address:
http:www.netlib.org/scalapack/prototype/errata.SLHPF).This �le contains machine-
dependent installation clues which hopefully will alleviate your di�culties or at least let you
know that other users have had similar di�culties on that machine. If there is not an entry
for your machine or the suggestions do not �x your problem, please feel free to contact the
authors at

scalapack@cs.utk.edu.

Tell us the type of machine on which the tests were run, the version of the operating system,
the compiler and compiler options that were used, and details of the ScaLAPACK, BLACS,
and BLAS libraries that you used. You should also include a copy of the output �le in
which the failure occurs. We encourage you to make the SLHPF library available to your
users and provide us with feedback from their experiences. This release of SLHPF is not
guaranteed to be compatible with any previous test release.

7 Required HPF features

The approach we are using requires the following HPF features:

1. !HPF$ INHERIT

Used to ensure no unneeded matrix redistribution occurs across subroutine calls

2. HPF DISTRIBUTION (from HPF LIBRARY)
Used to determine the distribution of the matrix's ultimate align target

3. HPF ALIGNMENT (from HPF LIBRARY)
Used to determine how the distribution of the ultimate align target a�ects the actual

matrix distribution

4. !HPF$ PROCESSORS PROC(P,Q),
where P and Q are dummy arguments to a routine
When we have determined that redistribution must occur, this command is used to

ensure that all matrices passed to the routine are distributed over the same process

grid

5. !HPF$ ALIGN X(:) WITH A(:,*)

This command is used to ensure vectors without proper distributions are aligned cor-

rectly to their corresponding arrays that are already correctly distributed, or in some

cases used as !HPF$ ALIGN X(*) WITH A(*,*) to replicate a vector across all proces-

sors

6. !HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROC

MB and NB parameters to routine, PROC from above

10

When we have determined that a redistribution must occur, this allows us to express

the kind of distributions ScaLAPACK will accept

7. HPF LOCAL LIBRARY

Used for labeling the processes in a system independent way, allowing for a system

independent process grid setup

8. A way to go from HPF to a language such as Fortran77. We will need the following
extrinsics:

� HPF LOCAL

Gives us access to HPF LOCAL LIBRARY

� F77 LOCAL, F90 LOCAL, or HPF2.0's HPF LOCAL

Declares our Fortran77 library, so it can take assumed size arrays

8 Further details of the interface

Our wrapper library is divided into three distinct layers. Layer 1 is the global HPF
layer, consisting solely of strict HPF code. It never makes calls to Layer 3; all such calls are
routed through Layer 2. Layer 3 is the Fortran77 message passing layer, containing strict
Fortran77 code (or C code made to be callable from Fortran77). This layer contains all the
Fortran77 routines used, including the ScaLAPACK library, as well as some tool routines
for the SLHPF wrapper library.

Layer 2 is the transition layer, existing in order to facilitate the transition from the
global HPF layer to the local Fortran77 message passing layer. This layer is HPF LOCAL

code.

8.1 Layer 1

Layer 1 represents the user-callable wrapper functions, and their HPF tools. This layer
is responsible for accepting the user's arguments, ensuring they are in a format which
ScaLAPACK supports, and calling the appropriate Layer 2 wrapper to the ScaLAPACK
routine. They should also be written in such a way as to minimize data movement.

To implement this, all wrapper routines have two paths to making a ScaLAPACK call.
The �rst is a direct call to the appropriate Layer 2 routine, with all operands having
the INHERIT attribute. This path requires no data movement, and if the compiler is
sophisticated, should avoid copying the matrices as well.

The following things must be true for this optimal path to be followed:

� All matrix operands can be expressed as some legal form of CYCLIC(K) distribution
(this includes all BLOCK distributions).

� All matrix operands are distributed across the same process grid (or, in some degen-
erate cases, some subset of the same process grid).

� The process grid over which the matrix operands are distributed over is one or two
dimensional.

11

� Certain routine-dependent alignment restrictions between matrix operands are met.

If any of the above assertions are not true, we cannot use the most optimal path to
calling ScaLAPACK, and must instead force a redistribution of the data to a form which
ScaLAPACK can support. In this case, we call a Layer 2 wrapper to the ScaLAPACK
routine, which contains explicit distribution instructions to guarantee all of the above as-
sertions hold true. The REDIST
ag in the SLHPF/SRC/misc.h �le can be set to TRUE to
issue a warning whenever this second option is used, allowing the user to monitor if he will
be taking a performance loss on his current data distribution.

8.2 Layer 2

This layer is responsible for the transition from a global HPF code to a local mes-
sage passing library. This obviously involves the use of the EXTRINSIC features of HPF.
In our wrappers, this layer is EXTRINSIC(HPF LOCAL) code. This allows us to use the
HPF LOCAL LIBRARY routines necessary for process grid formation. This intermediate
level is also responsible for translating HPF's global assumed shape arrays to Fortran77's
local assumed size arrays. See section 11 for further discussion of this issue.

In general, this layer contains two routines for every ScaLAPACK routine. One accepts
INHERITed matrix operands for maximal performance, and the other accepts matrices
which have been explicitly distributed. This layer also contains wrappers around some
miscellaneous ScaLAPACK routines which need to be called from Layer 1, such as those
responsible for initializing the process grid.

8.3 Layer 3

As mentioned before, this layer consists primarily of the ScaLAPACK library. How-
ever, there are several tool routines as well. These routines perform such functions as
setting up the ScaLAPACK process grid, etc. Layer 3 is written in strict Fortran77, so
the most natural extrinsic is F77 LOCAL or HPF LOCAL when supported as in the HPF 2.0
standard. Since Fortran77 is a proper subset of Fortran90, this layer may also be declared
EXTRINSIC(F90 LOCAL) if F77 LOCAL or HPF LOCAL do not exist. NOTE: The declaration

of Layer 3 routines may change depending on the compiler and the extrinsics supported. See

the SLHPF/INSTALL/README's section which covers converting Layer 3 to a new extrinsic

for details of how to change the extrinsic to match your compiler.

In the HPF 1.1 standard, HPF LOCAL routines are constrained to accepting only
assumed shape arrays as arguments. Since Fortran77 requires assumed size, we are un-
able to declare these routines HPF LOCAL under this de�nition. HPF 2.0 indicates that
HPF LOCAL routines which are not called from global HPF directly (true for all of layer 3)
can accept assumed size arrays. Therefore, on compilers supporting HPF 2.0's de�nition of
HPF LOCAL, we can declare layer 3 routines to be EXTRINSIC(HPF LOCAL). An example
of this is the DEC f90 compiler, which does not support F90 LOCAL or F77 LOCAL, but
does support HPF LOCAL routines accepting assumed size arrays. On this platform, all
layer 3 routines are declared as EXTRINSIC(HPF LOCAL).

12

9 Explanation of needed HPF features

This section explains in more detail how and why we used certain features of HPF.

9.1 !HPF$ INHERIT

In order for the SLHPF library to be general purpose, it should accept any kind of legal
input. Further, if it is to be used, it must show better performance than the user can easily
obtain by writing the code himself. In light of this, we use the !HPF INHERIT directive as
often as possible to avoid unnecessary redistribution of data. Redistribuition has two major
drawbacks: memory usage, and performance degradation.

If a matrix must be redistributed before an operation, then obviously a new matrix must
be allocated to store the redistributed matrix. Since matrices usually represent most of a
linear algebra program's memory requirements and users often move to parallel computing
because the problem is too big to �t in serial memory, this cost can quickly become bur-
densome. This a�ect is magni�ed when we consider routines which take multiple matrices,
such as matrix multiplication (which takes a total of 3 matrices). If all of these matrices
are redistributed, we must have su�cient memory for 6 N2 arrays. This then reduces the
maximal size of the problem we can solve, which tends to keep the O(N2) communication
term signi�cant.

Redistribution also leads to performance degradation because the cost of communica-
tion is much greater than the cost of computation. This is true even on dedicated parallel
machines; on clusters of workstations there may be orders of magnitude di�erence in com-
putation and communication speeds. It is therefore obvious that there must be much more
computation than there is data movement to justify a redistribution cost. If we are re-
quired to perform a redistribution when envoking library calls, we see that routines which
have operation counts of the same order of magnitude as their data (e.g., the level 1 and
2 BLAS), will be prohibitively expensive. However, there is a large set of linear algebra
routines which have O(N3) operations, while having only O(N2) data. With these routines,
one may hope to be better able to tolerate the redistribution costs, since the computation
time should dominate.

It is obviously true that we will need the size of our computation to be fairly large if we
are going to have our O(N3) computation dominate our O(N2) communication time, bearing
in mind the relative costs of these commodities. This is where the fact that redistribution
consumes more memory also becomes a factor. Su�ce it to say, that for many operations,
the cost of the redistribution will be much greater than the cost of the operation itself.

Using INHERIT, we can ensure that no unnecessary redistribution occurs, both when
the user passes the matrix to us, and when we pass it internally. In cases when the matrix
operands are correctly distributed, the INHERIT command assures no data movement will
occur. In the case when we must redistribute, INHERIT ensures that no data movement is
required as we pass the matrices through our intermediate routines.

9.2 HPF DISTRIBUTION and HPF ALIGNMENT

HPF DISTRIBUTION is used to �nd the rank and shape of the process arrangement over
which a matrix is distributed. A process arrangement is acceptable if it is one or two

13

dimensional. These arrangements correspond to a PxQ process grid, where P and Q are
returned in the process shape.

HPF DISTRIBUTION also returns the distribution information of the ultimate align-target
of the matrix. In our terms we discover whether the distribution corresponds to a legal
CYCLIC(k) mapping. Please note that BLOCK and even COLLAPSED dimensions may be ex-
pressed as CYCLIC(k) distributions. Also, this distribution information does not necessarily
describe the distribution of the matrix we are concerned with: it describes the distribution
of the ultimate align-target of the matrix. To determine how the information returned by
HPF DISTRIBUTION a�ects the matrix, we must call HPF ALIGNMENT.

In the example routines, our use of HPF DISTRIBUTION and HPF ALIGNMENT is con�ned
to the routine SLhpf dmatinf.

9.3 !HPF$ PROCESSORS PROC(P,Q) and

!HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROC

When we have determined that the matrix operands need to be redistributed, we must
call an explicit interface which guarantees a particular distribution that ScaLAPACK can
handle. We use these two statements for this purpose.

ScaLAPACK requires that all matrix operands be distributed over the same process
grid. Our use of PROCESSORS and the ONTO clause of DISTRIBUTE guarantee this. To see an
example of our usage of this feature, examine the interface section of SLhpf dgesv.

9.4 !HPF$ ALIGN WITH

The !HPF$ ALIGN WITH is used in the wrappers in two di�erent ways. First of all we use
!HPF$ ALIGN X(*) WITH A(*,*) to replicate the vector X amongst all of the processors
used by A. The second way we use this is to align a particular vector to a matrix that
already has the correct distribution; this is only necessary if the vector is not already
correctly distributed. !HPF$ ALIGN WITH allows us to correctly correlate the distributions
of vectors with their corresponding matrices.

9.5 Labeling the processes for process grid setup

As mentioned before, ScaLAPACK has its own message passing layer, the BLACS. The
BLACS take as input the process IDs that de�ne a particular process grid upon which the
ScaLAPACK computation is to take place.

Therefore, in order to get ScaLAPACK started, we will need to �nd the process grid
over which the matrix has been distributed. To do this, we need to �nd in what process's
memory particular blocks of the matrix reside. Routines from HPF LOCAL LIBRARY are
used to establish this mapping.

10 Implementation details

This section provides a quick overview of the main routines used in the wrappers. Fig-
ure 2 shows a simpli�ed version of the internal calls that occur when a user calls LA GESV

14

with double precision arguments. This schematic
ow chart establishes the hierarchy of the
individual routines and complements their descriptions in the following subsections.

10.1 Layer 1

SLhpf dgesv HPF interface to p2gesv.

SLhpf ddescset3 Determines if the matrices can be represented by a simple
cyclic(k) format. If they can, �lls in descriptor (including
formation of context), and returns INFO = 0. Otherwise,
the context is not formed, and INFO is returned as nonzero.

SLhpf dmatinf Fills in the descriptor entries M , N , MB , NB .

SLhpf dgridinf Fills in a gridmap describing the process grid over which
the matrix is distributed.

10.2 Layer 2

SLhpf dget procmap Determines the gridmap of the process grid over which the
matrix is distributed. The HPF LOCAL LIBRARY rou-
tine ABSTRACT TO PHYSICAL gives the gridmapping
in terms of HPF IDs. The HPF LOCAL LIBRARY rou-
tine GLOBAL TO LOCAL gives the process coordinates
having the �rst block of the matrix. These IDs are trans-
lated into the process IDs used by the BLACS through a
mapping established by SLhpf get hpf2sys map.

SLhpf compare grids Establishes whether or not two grids are conformant. Two
grids are conformant if they are equivalent or one is an
equivalent subset of the other. Two grids are equivalent if
they have the same number of rows and columns (i.e. they
are both r � c grids, and entry (i; j) in grid A is the same
process as entry ((RSRC+ i) mod r); ((CSRC+ j) mod c),
where RSRC and CSRC are constants whose value is 0 �
RSRC < r and 0 � CSRC < c.

If a grid is an equivalent subset of another grid, its dimen-
sions are less, its matrix is not overdecomposed, and the
above entry relationship holds.

SLhpf get context Once a gridmap shared by all operand matrices has been
�lled in, this routine calls the appropriate BLACS routines
to form a context corresponding to the required grid. This
routine caches the last context formed. If the new grid is
conformant with that of the cached context, the old context

15

!HPF$ INHERIT

GLOBAL HPF

LAYER 1

Assumed Shape
Arrays

LAYER 2

HPF_LOCAL

Assumed Shape
Arrays

LAYER 3

F77_LOCAL

Assumed Size
Arrays

SLhpf_dgesv

SLhpf_dgesv2 SLhpf_dgesv1

YESNO

Is
distribution

(sub)array of
form CYCLIC(K)

!HPF$
INHERIT

SLhpf_dmatinf SLhpf_dgridinf

SLhpf_dget_procmap

SLhpf_compare_grids SLhpf_get_context

pdgesv

SLhpf_pvmblacs_setup

CALL LA_GESV(A, B)

!HPF$ INHERIT

!HPF$ DISTRIBUTE
(cyclic(MB), cyclic(NB))
ONTO PROC

SLhpf_ddescset3

SLhpf_get_hpf2sys_map

Figure 2: Call hierarchy

16

is reused. Otherwise, the old context is freed, and the new
one is cached for the next call.

SLhpf dgesv1 Intermediary interface to pdgesv. This wrapper INHERITs
all matrices, so no redistribution will be done.

SLhpf dgesv2 Intermediary interface to pdgesv. This wrapper is called
when a redistribution is required. After redistribution has
taken place, this routine calls SLhpf dget procmap to �nd
the new grid and calls the BLACS directly to form the con-
text.

10.3 Layer 3

SLhpf get hpf2sys map At the cost of communication of order 2 log p (where p

is the number of processes in the HPF application), this
routine establishes a mapping between HPF process IDs
and those used by the BLACS. Note that this mapping does
not change, so this routine is called only once, and thus
the communication cost can be amortized over all calls to
the wrapper library. If the PVMBLACS are being used, it
calls SLhpf pvmblacs setup in order to dynamically form
a PVM machine from the HPF-launched processes.

SLhpf pvmblacs setup Called only when using PVMBLACS. Dynamically forms a
PVM machine from HPF-launched processes. Called only
once for each execution.

SLhpf mpiblacs setup Stub routine.

pdgesv ScaLAPACK routine for solving a general system of linear
equations.

11 Extrinsics

As mentioned previously, our codes are written in Fortran77 and C written to be callable
from Fortran77. We therefore need a way to go from the HPF code, which contains global
descriptions of the matrix, to a local Fortran77 message passing view of the matrix. Obvi-
ously, since this represents a change in language, we must make use of HPF's EXTRINSIC
declaration.

At �rst glance, the obvious extrinsic is F77 LOCAL. After all, this is what our routines are.
However this overlooks an important area of interfacing HPF routines and local Fortran77.

17

SUBROUTINE F90_TO_F77(A)

REAL, INTENT(INOUT) :: A(:,:)

INTEGER :: M, N, LDA

INTERFACE

SUBROUTINE F77ROUT(M, N, A, LDA)

INTEGER, INTENT(IN) :: M, N, LDA

REAL, INTENT(INOUT) :: A(LDA,*)

END SUBROUTINE F77ROUT

END INTERFACE

M = SIZE(A, 1)

N = SIZE(A, 2)

LDA = M

CALL F77ROUT(M, N, A, LDA)

RETURN

END

Figure 3: A F90 routine passing a 2D array to a F77 routine

The problem involves the translation of a HPF/F90 assumed shape array to a Fortran77
assumed size array.

Fortran77 arrays are local arrays of assumed size. An assumed size array is basically
just a memory address, where all dimensions of the matrix save the last are speci�ed so
that the compiler can do the proper indexing. This, then, is the problem that faces us when
going from HPF's global view of the matrix to Fortran77: �nding out the extent of the local
2D array's �rst dimension so that we may do our index arithmetic. We refer to this extent
as the local leading dimension (LLD for short) of the matrix.

This problem may be overcome in F90 by specifying an explicit interface. This approach
is illustrated in �gure 3. Obviously, if the compiler has not already stored the indicated
(sub)array in an array whose �rst dimension is equal to the SIZE of the array, it will need
to allocate space and copy the array.

Note that in distributed memory terms, the leading dimension (LDA in the above ex-
ample) is an inherently local quantity: it indicates the memory stride between elements
in a row. Thus the F90 approach cannot be directly utilized in HPF, since the interface
described by HPF is global.

This oversight means that only 1D arrays may be standardly passed from HPF to
external languages such as C or Fortran77 (this is obviously true because it is impossible to
determine how the compiler has locally laid out the matrix, and thus it will be impossible
to do indexing on such arrays). This means that codes wishing to pass arrays with greater

18

than 1 dimension will have to be compiler speci�c (actually, compiler version speci�c).
Compilers supporting EXTRINSIC(F90 LOCAL) should not have this problem. There, the

user may pass the HPF matrix to a F90 LOCAL routine which takes the matrix as assumed
shape. The F90 LOCAL routine may then use the code in �gure 3 to pass the local array to
the Fortran77 code.

EXTRINSIC(HPF_LOCAL) &

SUBROUTINE HPFLOC_TO_F77(A)

REAL, INTENT(INOUT) :: A(:,:)

INTEGER :: M, N, LDA

INTERFACE

EXTRINSIC(F77_LOCAL) &

SUBROUTINE F77ROUT(M, N, A, LDA)

INTEGER, INTENT(IN) :: M, N, LDA

REAL, INTENT(INOUT) :: A(LDA,*)

END SUBROUTINE F77ROUT

END INTERFACE

M = SIZE(A, 1)

N = SIZE(A, 2)

LDA = M

CALL F77ROUT(M, N, A, LDA)

RETURN

END

Figure 4: A HPF LOCAL routine passing a 2D array to a F77 routine

A similar solution may be used if a language supports both HPF LOCAL and F77 LOCAL.
HPF LOCAL routines are mandated to accept only assumed shape arrays, so this extrinsic
alone cannot solve the problem. However, in conjunction with F77 LOCAL, we can adopt the
solution much like the one above. This solution is shown in �gure 4. Note: if the compiler
supports HPF LOCAL as in the HPF 2.0 standard, then one can use HPF LOCAL in place of
F77 LOCAL.

Acknowledgments

We acknowledge with gratitude the support which we have received from the following
organizations, and the help of individual members of their sta�: Portland Group; Digital
Equipment Corporation.

19

Appendix A

Calling sequences

Users wishing to call ScaLAPACK routines need to USE the module HPF LAPACK. The
�le SLHPF/TESTING/simple gesv.f shows a simple call to LA GESV. The calling sequences
for the supplied routines are (default values for optional parameters are enclosed in []):

SUBROUTINE LA_GESV(A, B, IPIV, INFO)

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, B

INTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:), INFO

SUBROUTINE LA_POSV(A, B, UPLO, INFO)

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, B

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: UPLO[='Upper']

INTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:)

SUBROUTINE LA_GELS(A, B, TRANS, INFO)

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, B

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: TRANS[='NoTranspose']

INTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:)

SUBROUTINE LA_SYEV(A, W, Z, UPLO, INFO)

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A

<TYPE>, INTENT(OUT), DIMENSION(:) :: W

<TYPE>, OPTIONAL, INTENT(OUT), DIMENSION(:,:) :: Z

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: UPLO[='Upper']

INTEGER, OPTIONAL, INTENT(OUT) :: INFO

SUBROUTINE LA_GEMM(A, B, C, TRANSA, TRANSB, ALPHA, BETA)

<TYPE>, INTENT(IN), DIMENSION(:,:) :: A, B

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: C

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: TRANSA[='NoTranspose'],

TRANSB[='NoTranspose']

<TYPE>, OPTIONAL, INTENT(IN) :: ALPHA[=1.0], BETA[=0.0]

20

SUBROUTINE LA_TRSM(A, B, SIDE, UPLO, TRANSA, DIAG, ALPHA)

<TYPE>, INTENT(IN), DIMENSION(:,:) :: A

<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: B

CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: SIDE[='Left'],

UPLO[='Upper'],

TRANSA[=NoTranspose'],

DIAG[='NonUnit']

<TYPE>, OPTIONAL, INTENT(IN) :: ALPHA[=1.0]

For more details, see the module �le, SLHPF/SRC/HPF LAPACK mod.f.

21

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,
Second Edition, SIAM, Philadelphia, PA, 1995.

[2] L.S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J.Demmel, I. Dhillon, J.Dongarra,
S. Hammarling, G.Henry, A.Petitet, K. Stanley, D. Walker, R.C. Whaley ScaLAPACK

Users' Guide, SIAM, Philadelphia, PA, 1997.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel

Virtual Machine. A Users' Guide and Turtorial for Networked Parallel Computing, MIT
Press, Cambridge, MA 1994.

[4] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra, MPI: The

Complete Reference, MIT Press, Cambridge, MA 1996.

[5] C. Koebel, D. Loveman, R. Schreiber, G.Steele, M. Zosel, The High Performance Fortran
Handbook, MIT Press, Cambridge, MA 1994.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic Linear
Algebra Subprograms," ACM Trans. Math. Soft., 16, 1:1-17, March 1990.

[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic Linear
Algebra Subprograms: Model Implementation and Test Programs," ACM Trans. Math.

Soft., 16, 1:18-28, March 1990.

[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran
Basic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.

[9] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of Fortran
Basic Linear Algebra Subprograms: Model Implementation and Test Programs," ACM
Trans. Math. Soft., 14, 1:18-32, March 1988.

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear Algebra
Subprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September
1979.

22

