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Abstract

We present new O(n3) algorithms to compute very accurate SVDs of Cauchy matrices, Van-
dermonde matrices, and related \unit-displacement-rank" matrices. These algorithms compute
all the singular values with guaranteed relative accuracy, independent of their dynamic range.
In contrast, previous O(n3) algorithms can potentially lose all relative accuracy in the tiniest
singular values.
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1 Introduction

The singular value decomposition (SVD) of a real matrix G is the factorization G = U�V T where
U and V are orthogonal matrices and � is nonnegative and diagonal. If G is m-by-n, with m � n

(otherwise transpose G), then U is m-by-n, � = diag(�1; :::; �n) with �1 � � � � � �n � 0, and V
is n-by-n. We call the columns ui of U = [u1; :::; un] the left singular vectors, the columns vi of
V = [v1; :::; vn] the right singular vectors, and the �i the singular values.

Our goal is to compute the SVD (i.e. the ui, vi and �i) to high relative accuracy, and with cost
O(n3), i.e. roughly the same cost as prior, less accurate dense matrix algorithms. By high relative
accuracy we mean the following:

� The error j�i� �̂ij in the computed singular value �̂i is bounded by O(")�i, where " is machine
precision, i.e. the relative error is small.

� The angle �(ui; ûi) between the true left singular vector ui and the computed vector ûi is
bounded by O(")=relgapi, where relgapi = minj 6=i j�j � �ij=�i is the relative gap between �i
and the nearest other singular value. An analogous statement holds for the computed right
singular vectors v̂i.
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and NSF Infrastructure Grant Nos. CDA-8722788 and CDA-9401156.
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In contrast, conventional numerical algorithms (QR iteration, divide and conquer, bisection and
inverse iteration, traditional Jacobi, ...) only compute the SVD with high absolute accuracy. This
means that the error in the singular value is only bounded by O(")�1 instead of O(")�i. Thus
the largest singular values are computed with high relative accuracy, but the tinest singular values
(those near or less than "�1) may have no relative accuracy at all. Similarly, the error in the
computed singular vectors can also be �1=�i times as large.

In an earlier paper [8] we showed that if we were given a rank-revealing decomposition (RRD)
G = XDY T , i.e. a decomposition where D is diagonal and X and Y are well-conditioned (but
otherwise arbitrary), then we could compute the SVD of G to high relative accuracy from X , D
and Y in O(n3) time. For this to work, the computed X̂, D̂ and Ŷ must be su�ciently accurate:

� Each entry of D̂ is known to high relative accuracy: jDii � D̂iij = O(")jDiij.
� X̂ and Ŷ have small norm errors, i.e. kX � X̂k = O(")kXk and kY � Ŷ k = O(")kY k.
To summarize, our high accuracy SVD algorithm consists of two steps:

1. Compute the RRD G = XDY T su�ciently accurately.

2. Compute the SVD of XDY T using the algorithm from [8] (see also section 2 below).

In [8] a variety of matrix classes were described that permitted the RRD G = XDY T to
be computed su�ciently accurately. In particular we considered the RRD provided by Gaussian
elimination with complete pivoting (GECP): X and Y are both unit triangular matrices with o�-
diagonals bounded by one in magnitude. However, the usual implementation of GECP will often
not compute X , D and Y as accurately as required; a new way to compute the triangular factors
is needed.

In particular, suppose C is a Cauchy matrix: Cij = 1=(xi + yj), where the xi and yj are given

oating point numbers. There is a well-known formula for the determinant of C:

det(C) =

Q
1�i<j�n(xj � xi)(yj � yi)Q

1�i;j�n(xi + yj)
: (1)

Every factor xj � xi, yj � yi, or xi + yj is computable to high relative accuracy, as well as their
products and quotients, in 
oating point arithmetic. Thus det(C) is computable to high relative
accuracy. Since every submatrix of a Cauchy matrix is Cauchy, every minor of C can be computed
to high relative accuracy. The same is true of the Cauchy-like matrix G = D1CD2, where D1 and
D2 are diagonal. Finally, since every entry of every Schur complement of G is the quotient of minors
of G (or just a minor), all the intermediate and �nal results of GECP on G can be computed to high
relative accuracy using equation (1). In other words, we can compute the triangular factors of G,
and thus its SVD, to high relative accuracy, where G is de�ned by the xi, yj , and diagonal entries
of D1 and D2. This does not mean that small relative changes in these parameters cause small
relative changes in the singular values. Indeed, the 1-by-1 example with x1 = 1 and y1 = �1 + "

shows that this is not true. It does mean that our algorithm is forward stable, and simply gets an
accurate answer for the 
oating point values of the parameters stored in the machine.

Unfortunately, using equation (1) in the most straightforward way to implement GECP would
cost O(n5) operations. The �rst main result in this paper is an algorithm that reduces the cost from
O(n5) to 4

3n
3. This was inspired by work in predictive pivoting for low displacement rank matrices
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[4, 14, 3, 26, 17] but can also be derived straightforwardly from equation (1), which is the approach
we take here. Among other examples, we compute the SVD of a 100-by-100 Hilbert matrix. The
computed singular values range over 150 orders of magnitude, and agree to 15 decimal digits with
the singular values computed using a conventional algorithm with 200-decimal digit arithmetic; the
singular vectors agree to 14 or more digits. This result is presented in section 4.

The second result is a similar high accuracy RRD for Vandermonde matrices. It is based on the
observation that if V is Vandermonde, so that Vij = xj�1i , and Fij = exp(2

p�1�(i�1)(j�1)=n)=pn
is the discrete Fourier transform matrix, then V F is (essentially) Cauchy-like, and the parameters
determining the Cauchy-like structure can be computed to su�cient accuracy to use the previous
algorithm. The observation that V F is Cauchy-like was also exploited in the displacement rank
literature, but we again derive it from �rst principles. This result is presented in section 5.

We observe more generally that ifG is de�ned by the Sylvester equation (also called displacement
equation)

XG+ GY = d1d
T
2 (2)

where

� X and Y are diagonalizable matrices with accurately known eigendecompositions, and

� d1 and d2 are column vectors

then G can be accurately transformed into a Cauchy-like matrix, and the above techniques applied.
(If X and Y are normal matrices, this process is slightly simpler than if they are not.) This result
is presented in section 6.

A matrix satisfying equation (2) is said to have displacement rank equal to 1, because the right
hand side has rank 1. It is natural to ask about the possibility of computing accurate SVDs of
matrices with higher displacement rank. For example, Toeplitz matrices have displacement rank
2. We do not currently see any way to extend our results to higher displacement rank than 1. In
section 6 we arge that no high accuracy SVD for Toeplitz matrices can exist, in the sense that they
exist for Cauchy and Vandermonde matrices, and describe conditions under which such algorithms
can exist.

In section 7 we decribe a simple estimator for the relative error in the SVD we compute, in the
case where the input data is uncertain.

Finally, section 2 also presents an improvement on the algorithm from [8] for the SVD ofXDY T .
The improvement eliminates a factor from the error bound in [8] and reduces it to the minimum
possible: O("(�(X) + �(Y )).

2 Computing an Accurate SVD of G = XDY T

For completeness, we restate the algorithm from [8] (see also [10]) for computing a high accuracy
SVD of the RRD G = XDY T :

Algorithm 1. Compute a high accuracy SVD of G = XDY T .

(1) Perform QR factorization with pivoting on XD to get XD = QRP , where P is a permutation.
Thus G = QRPY T .

(2) Multiply to get W = RPY T . This must be conventional matrix multiplication,
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e.g. Strassen's method [18] may not be used. Thus G = QW .
(3) Compute the SVD of W = �U�V T using one-sided Jacobi [9]. Thus G = Q �U�V T .
(4) Multiply U = Q �U . Thus G = U�V T is the desired SVD.

The statement of Theorem 3.1 from [8] which describes the accuracy of this algorithm is as
follows:
Theorem 3.1 from [8]. Let D0 be a diagonal matrix, chosen so that R0 = D0�1R is as well
conditioned as possible. We can always choose D0 so that �(R0) is bounded by O(2n), and it
is usually much smaller. Then in 
oating point arithmetic with machine precision ", the above
algorithm computes the SVD of G with relative accuracy � = O("�(R0) �max(�(X); �(Y ))).

In theory [10, 25, 9, 24, 11] the Jacobi rotations during the one-sided Jacobi in step (3) must
be applied to the right side of W to guarantee the bounds. But in practice, applying them from
the left is signi�cantly faster, and has never been found to be signi�cantly less accurate (see the
comments on speed in section 4.1 below).

The factor �(R0) in the error bound depends on how well the pivoting during the QR decomposi-
tion of XD \reveals the rank" of XD. The bound O(2n) comes from the standard column-pivoting
algorithm [15] and choosing D0

ii = Rii, but better alternatives are available [30, 1, 5, 6, 16, 20, 28].
For example, M. Gu has a pivoting scheme that reduces O(2n) to O(n1+(1=4) log2 n), analogous to
the pivot growth bound for GECP. See also [27].

We can eliminate the factor �(R0) by using the following more expensive algorithm:

Algorithm 2. Compute a high accuracy SVD of G = XDY T .

(1) Multiply W1 = DY T . Thus G = XW1.
(2) Compute the SVD of W1 = U1�1V

T
1 using one-sided Jacobi. Thus G = XU1�1V

T
1 .

(3) Multiply W2 = XU1�1. Thus G = W2V
T
1 .

(4) Compute the SVD of W2 = U�V T
2 using one-sided Jacobi. Thus G = U�V T

2 V
T
1 .

(5) Multiply V = V1V2. Thus the SVD of G is G = U�V T

However, Algorithm 2 is likely to be twice as expensive as Algorithm 1 because it does two
Jacobi SVDs instead of one. Since R0 is unlikely to be large, we cannot recommend Algorithm 2
for general use.

3 Assumptions about Floating Point Arithmetic

We use the conventional error model for 
oating point arithmetic:


(a� b) = (a� b)(1 + �) (3)

where � 2 f+;�;�; =g, and j�j � ", where " is machine precision. In particular, we assume that
neither over
ow nor under
ow occur, since both can destroy relative accuracy in the result.

This assumption implies that expressions like the one in equation (1) can be evaluated to high
relative accuracy. Products and quotients of many 
oating point numbers such as in equation (1)
can in principle be quite susceptible to over/under
ow; this was not a problem in any test that we
ran (once we replaced expressions like (

Q
i ai)=(

Q
i bi) with

Q
i(ai=bi)) but could be guarded against

by testing and scaling, or use of IEEE over/under
ow 
ags.
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Furthermore, for our algorithm for Vandermonde matrices we further assume that 
oating point
arithmetic is implemented with a guard digit, so that 
(a � b) is exactly a � b when cancellation
occurs, i.e. when :5 < a=b < 2 in binary arithmetic. Almost all existing machines (except the Cray
T90 and its predecessors and emulators) satisfy these conditions.

When a and b are complex numbers, we assume that equation (3) continues to hold, with � a
tiny complex number bounded by j�j = O(") [18]. This is true for any reasonable implementation
of complex arithmetic. Note that this is weaker than requiring that both real and imaginary parts
be computed to high relative accuracy.

4 Cauchy-like Matrices

We begin with the simple observation that GECP on G can be implemented as follows. We
write this decomposition as G = XDY T , where X and Y are (possibly row permuted) unit lower
triangular matrices. Suppose without loss of generality that the �rst k pivot rows and columns
have been chosen as the leading k rows and columns. Then the k-th Schur complement S(k) =
G22 � G21G

�1
11 G12 satis�es

G =

"
G11 G12

G21 G22

#
=

"
I 0

G21G
�1
11 I

#
�
"
G11 G12

0 S(k)

#

The next pivot row and column is chosen by �nding the largest entry in S(k); assume without loss

of generality that it is in the (1,1) position of S(k). Finally, Dk+1;k+1 = S
(k)
11 , the k + 1-st column

of X below the diagonal is �rst column of S(k) divided by S
(k)
11 , and the k + 1-st row of Y T to the

right of the diagonal is the �rst row of S(k) divided by S
(k)
11 . Therefore, if we can derive a formula

for computing all the entries of S(k) in c operations per entry, we will have an algorithm requiringPn
i=1 ci

2 = c
3n

3 +O(n2) operations to compute the same triangular factorization as GECP.
We use the fact that

S(k)
rs = det(G([1 : k; r]; [1 : k; s]))=det(G(1 : k; 1 : k))

where we use Matlab-notation for submatrices of G = D1CD2. Substituting equation (1) into this
expression and canceling terms, we get that

S(k)
rs = D1;r �D2;s �

Q
1�i�k(xr � xi)(ys � yi)

(xr + ys)
Q

1�i�k(xi + ys)(xr + yi)

= S(k�1)
rs

(xr � xk)(ys � yk)

(xk + ys)(xr + yk)

where S
(0)
rs = D1;rD2;s=(xr + ys) is the original matrix entry. Thus, updating each entry of the

Schur complement from the previous Schur complement costs c = 8 operations, or few as c = 4
operations if all 2n2 possible values of xr � xs, yr � ys, and 1=(xr + ys) are precomputed. This
makes the overall cost of the algorithm range from 8

3n
3 (when done in place, with no extra storage)

to 4
3n

3 (with an extra 2n2 storage). The 8
3n

3 operations include 2
3n

3 divisions, which are very
expensive, whereas the 4

3n
3 operations are all multiplications. To complete the algorithm, each

time the Schur complement is updated, it must be pivoted so that S
(k)
11 is the largest entry; this

requires 1
3n

3 comparisons. Also, after completing the factorization the k-th row and column must
be divided by k-th diagonal entry. The entire algorithm is shown below:
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Algorithm 3. High Accuracy GECP of a Cauchy-like matrix.

for r = 1 : n and s = 1 : n
Grs = D1;rD2;s=(xr + ys)

endfor
for k = 1 : n � 1

Find the largest absolute entry in G(k : n; k : n)
Swap rows and columns of G, and entries of x and y, so that Gkk is largest

for r = k + 1 : n and s = k + 1 : n ... overwrite G(k+ 1 : n; k + 1 : n) by S(k)

Grs = Grs(xr � xk)(ys � yk)=[(xk + ys)(xr + yk)]
endfor

endfor
D = diag(G)
X = tril(G) �D�1 + I ... tril means strict lower triangle
Y = (D�1 � triu(G) + I)T ... triu means strict upper triangle

All operations involve multiplication, division, and sums and di�erences of input data, and so
are accurate to high relative accuracy.

4.1 Numerical Experiments

Our challenge is to test the accuracy of a routine that we claim is more accurate than any other.
We do this in several ways:

1. We can compute the SVD using a conventional algorithm implemented in very high precision
arithmetic, and compare the answers to our new algorithm (implemented in Matlab on a
Sparc 10, running IEEE double precision arithmetic with " = 2�53 � 10�16). We have only
performed this rather expensive test for the the 100-by-100 Hilbert matrix, using Mathemat-
ica [33] with 200-decimal digit software 
oating point, and rounding the �nal answers back
to 16 decimal digits, using the command

N[SingularValues[N[Table[1/(i+j-1),{i,100},{j,100}],200],Tolerance->10^(-200)],16].

The singular values range from about 2:2 down to 5:8 �10�151, as shown in the top of Figure 1.
If we were to plot the pivots from Algorithm 3 (the Di;i) on the same graph, they would be
visually nearly indistinguishable; the ratios Di;i=�i of pivots to singular values all lie in the
range [1/16, 16], and 86% are in [1/4,4]. The relative gaps all exceed :6, so we expect all
singular vectors from both Mathematica and from our new algorithm to be very accurate.
The largest relative di�erence between a singular value from Mathematica and from our new
algorithm was less than than 4�10�15, or about 34". The largest angle between a right singular
vector from Mathematica and from our new algorithm was less than 6:5 � 10�15, or 58". The
largest angle between a left singular vector from Mathematica and from our algorithm was less
than 2:8 � 10�14, or 255". A surface plot of the singular vector (or equivalently eigenvector)
matrix is shown in the bottom of Figure 1, which reveals interesting patterns of \parallel
valleys". This is shown in a di�erent way in Figure 2, which plots dark dots for positive
eigenvector components, and leaves white space for the negative eigenvectors components.
This amounts to a low resolution contour plot of the eigenvector matrix. The top of Figure 2
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shows the results from Mathematica. Although it is somewhat di�cult to see, the number of
sign changes in eigenvector j (the number of transitions from a positive (black) component to
a negative (white) component, or white to black, in column j) is equal to j� 1. For example,
the �rst column is entirely black (no sign changes) and the last column alternates signs (99 sign
changes). Furthermore, the sign changes in eigenvector j interlace those in eigenvector j + 1
(in the sense that the zero crossings of the piecewise linear curve with corners (i; Ui;j) interlace
the zero crossings of the curve with corners (i; Ui;j+1)). These properties are as predicted by
the theory of totally positive (or oscillation) matrices [13, 22], of which the Hilbert matrix is
an example. (Totally nonnegative (positive) matrices are those matrices whose every minor
is nonnegative (positive). Oscillation matrices are totally nonnegative matrices A such that
Ak is totally positive for some positive k.) The bottom of Figure 2 shows the results from
the new algorithm. They agree everywhere except for the components whose magnitudes are
less than 1015, which are shown in red. The magnitudes of the components quickly drop from
1015 to near 10�74 in this part of the eigenvector matrix. The 200-decimal digit computation
with Mathematica computed all these correctly, but the new algorithm has an O(") error in
each component, so the signs of such small components are uncertain.

In contrast, a conventional SVD algorithm in double precision arithmetic (as implemented in
Matlab) loses all signi�cant �gures for the 79 singular values less than ", and most of these
are wrong by many orders of magnitude.

The next 7 tests use only conventional 
oating point.

2. We con�rm that we have computed an accurate SVD in the conventional sense by measuring

Q1 =
kG� U�V T k

"kGk +
kUUT � Ik

"
+
kV V T � Ik

"

and con�rming that it is O(1) or perhaps O(n).

3. We compute the SVD of G using a conventional algorithm, and con�rm that the singular
values agree with the singular values computed by our new algorithm to within �O(")�1. We
measure this as follows:

Q2 = max
i

j�conventional;i(G)� �new;i(G)j
"�conventional;1(G)

:

Note that Q2 should be O(1) to con�rm that our new algorithm computes the largest singular
values (those between �1 and "�1) at least as accurately as a conventional algorithm. We
also con�rm that the singular vectors are at least as accurate as those from conventional
algorithm, by measuring whether Q3 is O(1):

Q3 = max
i

max(�(uconventional;i(G); unew;i(G)); �(vconventional;i(G); vnew;i(G)))

"=
�
min j 6=ij�new;i(G)��new;j(G)j

�new;1(G)

� :

4. We compute each entry of G�1 to high relative accuracy using a well-known formula similar
to (1), and compute the SVD of G�1 using a conventional algorithm. We con�rm that these
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Figure 2: Positive Components of the Singular Vectors of the 100-by-100 Hilbert Matrix. The top
picture shows the results from Mathematica, and the lower picture from the new algorithm. In
the lower picture, entries are colorcoded by magnitude: Entries in the range (1,.01] are black, in
(.01,10�5] are blue, in (10�5,10�10] are green, in (10�10,10�15] are magenta, and in (10�15,0] are
red. The O(10�15) errors can make the red entries have incorrect signs.
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singular values agree with the reciprocals of the eigenvalues computed by our new algorithm
to within �O(")=�n, by measuring

Q4 = max
i

j1=�new;i(G)� �conventional;i(G
�1)j

"=�new;n(G)

to see if it is O(1). This con�rms that the smallest singular values of G (those between �n
and �n=") are computed accurately. We also con�rm that the singular vectors are at least as
accurate as those from the conventional algorithm, by con�rming that the following quantity
is O(1):

Q5 = max
i

max(�(uconventional;i(G�1); vnew;i(G)); �(vconventional;i(G�1); unew;i(G)))

"=

�
min j 6=ij��1

new;i
(G)���1

new;j
(G)j

��1

new;n(G)

� :

5. We use the fact that G�1 is Cauchy-like to compute its SVD using our new algorithm, and
con�rm that it agrees (after reciprocating the singular values) with the SVD computed from
G. This is measured by

Q6 = max
i

j�new;i(G)� ��1new;i(G
�1)j

"�new;i(G)
:

We also con�rm that the singular vectors agree to within the error bound determined by the
relative gap, via

Q7 = max
i

max(�(unew;i(G
�1); vnew;i(G)); �(vnew;i(G

�1); unew;i(G)))

"=

�
min j 6=ij��1

new;i(G)��
�1

new;j(G)j

��1

new;i
(G)

� :

Here are our test cases:

1. 10 Hilbert matrices of dimensions 10, 20, 30, ... , 100 (xi = i, yi = i� 1, D1;i = D2;i = 1).

2. 10 Hilbert matrices of dimensions 10, 20, ... , 100, with strong diagonal scaling (xi = i,
yi = i � 1, D1;i = 1020u, D2;i = 1020u, where u is a random number uniformly distributed
from 0 to 1).

3. 10 random Cauchy matrices of dimensions 10, 20, ... , 100 (xi = u, yi = �u, D1;i = D2;i = 1,
where u is a random number uniformly distributed from 0 to 1).

4. 10 random Cauchy matrices of dimensions 10, 20, ... , 100 (xi = 1010u, yi = �1010u, D1;i =
D2;i = 1, where u is a random number uniformly distributed from 0 to 1).

5. 10 random Cauchy matrices of dimensions 10, 20, ... , 100 with strong diagonal scaling
(xi = 1010u, yi = �1010u, D1;i = 1010u, D2;i = 1010u, where u is a random number uniformly
distributed from 0 to 1).

The results were as follows (given as the maximum values over all 50 test cases). As can be
seen, the results were about as accurate as expected.
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maxQ1 maxQ2 maxQ3 maxQ4 maxQ5 maxQ6 maxQ7

2752 21 30 21 101 98 137

In addition, we measured some other quantities of numerical interest. The condition numbers
of the matrices tested ranged from about 108 to 10182, a very wide range. The relative gaps all
exceeded 10�3, meaning that all singular vectors were computed with small norm errors, about
103". The condition numbers of the triangular factors X and Y , which limit the accuracy of
Algorithm 1, never exceeded 379. Indeed, in tens of thousands of other examples run using a direct
search technique [19] in an attempt to maximize � = max(maxij jX�1jij;maxij jY �1jij), � never
exceeded 7, for n � 20. Another factor that limits the accuracy of Algorithm 1, the condition
number of R0 in the statement of Theorem 3.1, never exceeded 5. The number of Jacobi sweeps
required for convergence in Algorithm 1 depends very much on how we do one-sided Jacobi. The
matrix W to which we apply one-sided Jacobi consists of a well-conditioned matrix premultiplied
by a diagonal matrix with widely varying entries, so that the rows of W vary widely in norm. If
we apply Jacobi rotations to W from the left (the algorithm analyzed in [9]), then convergence is
rapid, with never more than 8 Jacobi sweeps required, and an average of 4.6 sweeps (including one
just to con�rm convergence, which does not apply any rotations). If we apply Jacobi rotations to
W from the right, which has a more satisfying theoretical analysis [10, 25, 24], then convergence is
much slower, with the number of sweeps being 50 for modest sized examples, and growing rapidly
with n. The above results were run with Jacobi rotations applied on the left.

4.2 The Symmetric Positive De�nite Case

Signi�cant simpli�cations are possible in this case, although the overall algorithm is still O(n3). If
G is symmetric and positive de�nite, the largest pivot is always on the diagonal. Thus, only the
diagonal entries of the S(k) need to be computed to determine the pivot order. This leads to the
following algorithm:

Algorithm 4. High Accuracy SVD of a Symmetric Positive-De�nite Cauchy-like matrix
G.

1. Compute only the diagonals of each S(k), and use this to determine the pivot order. This
costs just O(n2).

2. Reorder the data determining G in the correct order, and compute the reordered G's LDU
factorization using Algorithm 2.5 of [3]. This costs O(n2), and is forward stable for the same
reasons as Algorithm 3.

3. Rewrite LDU = L̂L̂T , the Cholesky factorization. This also costs O(n2).

4. Apply one-sided Jacobi to L̂ to compute its SVD. The left singular vectors of L are the
eigenvectors of G. This costs O(n3).

Algorithm 2.5 in [3] and Algorithm 3 above are quite similar, but Algorithm 2.5 takes advantage
of a �xed pivot order to compute the �nal entries of L column by column, and �nal entries of U
row by row, rather than computing all the S(k). To see how, note that all the following factors of
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entries of S(k) can be computed and then combined in O(n2) time:

Y
1�i�k

(xr � xi) for all 1 � k < r � n

Y
1�i�k

(ys � yi) for all 1 � k < s � n

xr + ys for all 1 � r; s � nY
1�i�k

(xi + ys) for all 1 � k < s � n

Y
1�i�k

(xr + yi) for all 1 � k < r � n

Algorithm 2.5 uses only O(n) extra storage, rather than O(n2).
It is possible to recognize symmetric positive de�nite generalized Cauchy matrices quite easily:

Suppose D1 = D2 and xi = yi for all i, so that G is symmetric. (This last condition can be
weakened slightly, since replacing each xi by xi � c and each yi by yi + c leaves G unchanged. But
this must be done without rounding error to guarantee accuracy. This is possible for the Hilbert
matrix, with c = :5.) Then G is positive de�nite if and only if all xi > 0, as can be seen from
equation (1) applied to all leading principal submatrices. Furthermore, G's rows and columns can
be symmetrically permuted (so xi < xi+1) and multiplied by �1 (if any D1;i < 0) to make G totally
positive. We note that this order is in general not the same as the order determined by pivoting
during the algorithm.

A similar approach was also applied to the Hilbert matrix in [25], but using a formula for the
Cholesky factor of the Hilbert matrix without pivoting. When n = 100, the corresponding L has
a condition number in excess of 1020, so relative accuracy is not guaranteed. Complete pivoting is
essential.

5 Vandermonde matrices

Let V be an n-by-n Vandermonde matrix, so that Vij = xj�1i . Let F be the n-by-n discrete Fourier
transform matrix, so that Fij = !(i�1)(j�1)=

p
n, where ! = exp(2�

p�1=n) is a primitive n-th root
of unity. Assume for now that no xi is equal to one of the roots of unity in F ; we eliminate this
assumption later. Then it is easy to see that V F is Cauchy-like by computing

(V F )ij =
1p
n

n�1X
k=0

xki !
(j�1)k

=
1p
n

1� (xi!
j�1)n

1� xi!j�1

=
1� xnip
n!j�1

1

!1�j � xi
:

Thus, provided we can compute all ofD1;i = 1�xni , D2;j = !1�j=
p
n, !1�j�xi and !1�j�!1�k

to high relative accuracy, we can use Algorithm 3 to compute the triangular factorization of V F
to high relative accuracy, and then the SVD V F = U�V T to high relative accuracy. We compute
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the �nal SVD via V = U�(FV )T ; multiplying FV increases the angular error in the right singular
vectors by only O(").

Now consider that case when some xi is a root of unity appearing in F . Since xi is a (real or
complex) 
oating point number, i.e. rational, the only possible roots of unity that xi can equal are
�1 and �p�1. In this case, the i-th row of V F will contain all zeros except for one entry equal
to
p
n; thus V F is not Cauchy-like. Here is how to incorporate such rows into the GECP process.

Since all entries but one are zero, the row will not participate in any operations until
p
n is itself

selected as the pivot. This simply results in eliminating all other entries in its column, without
updating any other nonzero entries. The remaining matrix is Cauchy-like (with possibly other rows
with a single nonzero), so the elimination can proceed as before.

Now we consider how to compute !1�j�!1�k to high relative accuracy. Given a table of powers
of !, we can simply compute !1�j � !1�k in the obvious way. Since j!1�j � !1�k j � 2 sin(�=n)
the di�erence cannot be too small (unless n is truly enormous), so it is computed with relative
accuracy O(n�). One can do better by using formulas like cos(�)� cos(�) = 2 sin(�+�2 ) sin(���2 ).

Next we discuss how to compute xni � 1 and !1�j �xi to high relative accuracy. We distinguish
between the cases of xi real and xi complex, and deal with the easier real case �rst. First consider
xni � 1 when xi is real. When xni � 0, we just compute xni � 1 straightforwardly, since there is no
cancellation. When xni > 0, we can either use the formula (jxij � 1)

Pn�1
j=0 jxijj for an O(n) cost,

or use a repeated-squaring-like algorithm for O(logn) cost [21], or use expm1(n � loge(xi)) for O(1)
cost, provided that good implementations of expm1(z) � ez � 1 and loge(z) are available [31, 32].
Next consider !1�j �xi. Assume that we have a table of values of !1�j which are accurate to high
relative accuracy in the sense of equation (3) (with a tiny complex �); Assume further that the real
values of !1�j (+1 or �1) are exact in the table; the complex values can be computed using any
reasonable implementations of sine and cosine. Then !1�j � xi can be computed straightforwardly
to high relative accuracy for the following reason: If !1�j is real, then it is exact, and the di�erence
is computed to high relative accuracy. If !1�j is complex, its imaginary part is at least sin(2�=n),
so !1�j � xi cannot be any smaller in magnitude, so the di�erence is again small in the sense of a
tiny complex � in equation (3).

When xi is complex, the situation is more complicated. We assume that we have a table of
powers of !, represented as follows: for each !k we store w1;k = round(!k) (the real and imaginary
components being rounded to the nearest 
oating point numbers; a slightly larger error can be
tolerated too) and w2;k = round(!k �w1;k) (rounding here may be less careful; a few units of error
in the last place is tolerable). Later we will return to the computation of this table.

Using this table, we compute !k � xi as dk;i = round(round(w1;k � xi) + w2;k), i.e. with two

oating point operations. We claim that dk;i is accurate to high relative accuracy in both real and
imaginary components independently. To see this, there are 3 cases:

1. If xi = w1;k exactly, then round(w1;k � xi) = 0. Then dk;i = w2;k is correct to as many digits
as w2;k.

2. If :5 < w1;k=xi < 2 but xi 6= w1;k, then cancellation occurs in round(w1;k � xi). Because
we assume arithmetic has a guard digit, this nonzero di�erence is exact, and at least about
twice as large in magnitude as w2;k (we use the fact that w1;k = round(!k) is (nearly) the
nearest 
oating point number to !k). This means that there is no signi�cant cancellation in
round(round(w1;k� xi) +w2;k) = round((w1;k� xi) +w2;k), so it is computed to high relative
accuracy.
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3. If w1;k=xi � :5 or 2 � w1;k=xi, then round(w1;k � xi) is accurate to high relative accuracy,
and since it is at least half as large in magnitude as w1;k, adding w2;k does not change it
signi�cantly.

To compute xni � 1 accurately, we can evaluate it as
Qn�1

i=0 (xi � !i), evaluating each di�erence
as described above.

Now we return to the computation of the table of values of w1;k and w2;k. The obvious algorithm
is to compute w = round to double(!k) to double precision, let w1;k = round to single(w), and
w2;k = round to single(w�w1;k). The trouble is that w2;k may be much smaller than "w, so that it
may have few or no signi�cant digits when computed this way, whereas we rely on it being accurate
to single precision. For example, cos(2 � 99 � �=3565)� :9848162531852694. Rounding this to single
yields the real part of w1;99 � :9848162531852722, and subtracting to get the real part of w2;99

yields � �2:776 � 10�15, which only has 5 signi�cant bits. In other words, high precision arithmetic
may be needed to compute the table. But since we can empirically con�rm that the above example
is the worst case up to n = 10000, we can assert that triple precision is enough up to n = 10000,
for input data in IEEE single precision. On the other hand, the table only needs to be computed
once and for all for each n, so its cost should not be considered part of the algorithm.

The following observation [2] indicates why we expect triple precision to be enough except
perhaps in rare cases. By the theory of continued fractions [23, Thm. 19], a rational approximation
p=q � <!k (the real part of !k) can only satisfy jp=q � !kj < 1=(2q2) if p=q is a convergent
of <!k, i.e. a truncation of the in�nite continued fraction expansion of <!k (the same is true
for the imaginary part). So unless the 
oating point approximation <w1;k happens to equal this
convergent, which seems unlikely, we will have

j<w2;kj � j<w1;k �<!kj � 1=(2q2) :

Since <w1;k = p=q is a 
oating point number, q = 2e where e � j log2<!k j+b, where b is the number
of bits in the 
oating point fraction, and p � 2b, since the 
oating point fraction is normalized.

The nontrivial values of <!k satisfy j<!kj >� 2�=n, so

j<w2;kj
j<!kj

>� 1

(2q2)
� q
p
=

1

2pq

>� 2�2b(�=n) :

This says that computing !k to triple precision means that <w2;k will be determined with relative
error at most (n=�)2�b, i.e. nearly single precision.

It is an open problem to avoid the need for this high precision table entirely.

6 Unit Displacement Rank Matrices

The most general situation for which the above high accuracy SVD technique works is described
as follows. Assume that G satis�es the Sylvester equation (or displacement equation [4, 14, 3, 26])

XG+ GY = d1d
T
2

where X and Y are diagonal matrices with diagonal entries xi and yj respectively, and d1 and d2
are column vectors. Then it is immediate to see that G is Cauchy-like with Gij = d1id2j=(xi+ yj).
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Now suppose that X and Y are normal matrices with eigendecompositions X = UXDXU
T
X and

Y = UYDY U
T
Y . Then we can premultiply the above equation by UT

X and postmultiply it by UY to
transform it to

DX(U
T
XGUY ) + (UT

XGUY )DY = (UT
Xd1)(U

T
Y d2)

T

or
DXG

0 +G0DY = d01d
0T
2

so that G0 is Cauchy-like. Thus, if this transform can be performed accurately enough, then we
can compute the SVD of G0 = U�V T , and backtransform using UX and UY to get the SVD of
G = (UXU)�(UY V )

T .
For example, Vandermonde matrices satisfy the displacement equation with X diagonal and Y

a circular shift. The eigenvector matrix of Y is the discrete Fourier transform matrix F , and its
eigenvalues are roots of unity. The entries of d1 are x

n
i � 1. This is the transformation used in the

previous section.
One can imagine other possibilities besides X and Y diagonal or circular shifts, but it is impor-

tant that d01 = UT
Xd1 and d02 = UT

Y d2 be computable to high relative accuracy (alternatively, one
could say that d01 and d

0
2 are the parameters of G that determine its SVD to high relative accuracy).

Now consider the case of X and Y diagonalizable, but not necessarily normal, so that X =
UXDXU

�1
X and Y = UYDY U

�1
Y . Then given the SVD G0 = U�V T , G = (UXU)�(U

�T
Y V )T is

not the SVD of G, because UX and UY are not unitary. Instead, we simply convert the RRD
G0 = XDY T obtained by Algorithm 3 into the RRD G = (UXX)D(U�T

Y Y )T , and then apply
Algorithm 1 [12].

What about matrices satisfying displacement equations with higher than rank-1 matrices on the
right hand side? For example, Toeplitz matrices satisfy such an equation with rank 2. We argue
that no high relative accuracy algorithm like ours can exist for Toeplitz matrices, and we believe
it is unlikely that they exist for higher displacement rank in general.

It is tricky to argue impossibility results in 
oating point arithmetic, because one can simulate
arbitrary precision 
oating point using just standard 
oating point, without \bit-�ddling" [29].
Still, we may argue informally as follows. Consider just a 2-by-2 Toeplitz matrix:

T =

"
a b
c a

#

If we could compute the singular values of T to high relative accuracy, then by multiplying them
we could compute the determinant of T to high relative accuracy (actually just its absolute value,
but that is enough for this argument). In other words, we would have a 
oating point algorithm
for evaluating a2 � b � c to high relative accuracy, without any tricks like splitting a, b or c into
half-precision parts and combining them separately. But since a2�b �c does not factor into products
and quotients of factors we can compute to high relative accuracy (like xi � xj for Cauchy and
Vandermonde matrices) { indeed, it does not factor at all { we believe that there is no forward
stable SVD algorithm for Toeplitz matrices.

To illustrate the di�culties in formalizing this argument, consider a matrix of the form Gij =
d1id2j=(xiwj+yjzi). This is Cauchy-like, since we can also write Gij = (d1i)=zi)(d2j=wj)=((xi=zi)+
(yj=wj)). The sums and di�erences that we would need to compute to high relative accuracy in the
algorithm of section 4 look like (xi=zi) + (yj=wj) = (xiwj + yjzi)=(wjzi). These can be evaluated
to high relative accuracy using double precision, or in single precision using the techniques in [29].
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More generally, if everyminor ofG factors into products and quotients of 1 or 2 term polynomials
of degree at most d in the original parameters (d = 1 for the Cauchy-like matrices in section 4, d = 1
for acyclic matrices [8, 7], and d = 2 for the matrix in the last paragraph), then a high accuracy
SVD algorithm requiring at most d-tuple precision (for the LU factorization) exists. Whether an
acceptably fast algorithm (O(n3) or better) exists to compute the LU factorization this way is a
di�erent question that depends on other structure of the matrix, like sparsity pattern or having
low displacement rank.

7 Estimating the Error when the Input is Uncertain

So far we have considered only exact inputs, and shown that we compute the SVD to high relative
accuracy, as de�ned in the introduction. When the parameters xi, yi, D1i and D2i de�ning a
Cauchy-like matrix are themselves uncertain, then we may easily compute a relative error bound
on the SVD using Theorem 2.1 from [8]:
Theorem 2.1. from [8]. Let G = XDY T be an RRD with SVD G = U�V T , and let Ĝ = X̂D̂Ŷ T

with SVD Ĝ = Û �̂V̂ T , where X̂, D̂ and Ŷ are de�ned as follows:

X̂ = X + �X where
k�Xk
kXk � �

D̂ = D + �D where �D is diagonal and
j�Diij
jDiij � �

Ŷ = Y + �Y where
k�Y k
kY k � �

where 0 � � < 1. Let � = �(2+�)max(�(X); �(Y )) and �0 = 2�+�2, where �(Z) = �max(Z)=�min(Z)
is the condition number of Z. Then the di�erence between the singular values of G and Ĝ is bounded
as follows

j�i � �̂ij
�i

� �0 : (4)

Furthermore, the angle � between ui and ûi (or between vi and v̂i) is bounded by

sin � � p
2

�
1 + �0

1� �0
� �0

min(relgapi; 2)� �0
+ �

�
(5)

provided that min(relgapi; 2) � �0.
It is easy to see that relative errors of size � in the D1i and D2i can increase the relative errors in

the singular values by at most �, and the errors in the singular vectors by at most about � divided
by the relative gap. Given uncertainty bounds xi � �xi and yi � �yi, we can also easily bound the
maximum relative error in any factor like xi + yj (namely " + (j�xij + j�yj j)=jxi + yj j) appearing
in the algorithm in section 4. The maximum such factor-wise relative error can be used as an
estimate of � in Theorem 2.1 above (this ignores factors depending on the dimension n, which are
often pessimistic anyway).

From this point of view the Hilbert matrix is very well-conditioned, since small relative changes
in the values of xi = i and yi = i� 1 cause only small relative changes in the SVD.
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