
On the Conditioning of the Nonsymmetric

Eigenproblem:

Theory and Software

Z. Bai, J. Demmel and A. McKenney∗

Courant Institute
251 Mercer Str.

New York, NY 10012

December 9 1981

Abstract

This report reviews the theory and practical estimation of condi-
tion numbers for the nonsymmetric eigenvalue problem. The report
provides a manual for using LAPACK subroutines STRSNA and STRSEN

to estimate condition numbers for individual eigenvalues and eigenvec-
tors, multiple (or clustered) eigenvalues, and invariant subspaces.

∗The authors acknowledge the financial support of NSF, grant ASC-8715728. The
first author acknowledges DARPA, grant F49620-87-C0065. The second author is also a
Presidential Young Investigator.

1

Contents

1 Introduction 3

2 Spectral Projectors and the Separation of Two Matrices 8

3 An Upper Bound on ‖E‖F for Global Error Bounds 9

4 Conditioning of Eigenvalues 10
4.1 Conditioning of Simple Eigenvalues 10
4.2 Conditioning of Clustered Eigenvalues 11
4.3 Stability . 12

5 Conditioning of Right Eigenvectors and Right Invariant Sub-
spaces 12
5.1 Angles Between Subspaces . 13
5.2 Conditioning of Right Eigenvectors and Right Invariant Sub-

spaces . 14
5.3 (Block)diagonalizing a Matrix with a Similarity 14

6 Summary: Perturbation Table 16

7 STRSNA – Estimating the Condition of Individual Eigenpairs 17
7.1 Usage . 17
7.2 Example . 21
7.3 Outline of the Algorithm . 22

8 STRSEN Estimating the Condition of a Cluster of Eigenvalues 25
8.1 Usage . 25
8.2 Example . 27
8.3 Outline of the Algorithm . 29

A Solution of the Sylvester Equation 31

B Swapping Diagonal Blocks 33

C List of LAPACK Routines for the Nonsymmetric Eigenprob-
lem 35

2

1 Introduction

We review the theory of condition numbers for the nonsymmetric eigenprob-
lem, and describe algorithms for estimating them. We provide a manual for
the LAPACK subroutines STRSNA and STRSEN, which compute these condi-
tion numbers for matrices in Schur canonical form. We assume the reader
is familiar with the basic theory of the nonsymmetric eigenproblem: eigen-
values, right and left eigenvectors, multiple eigenvalues and right and left
invariant subspaces.

The condition number of a problem measures the sensitivity of the solu-
tion to small changes in the input. We call the problem ill-conditioned if its
condition number is large, and ill-posed if its condition number is infinite.
We may use condition numbers to bound errors in computed solutions of
numerical problems.

We illustrate this with a simple example. It is well known that the condi-
tion number for solving a system of linear equations is k(A) ≡ ‖A‖ · ‖A−1‖,
where ‖ · ‖ is any matrix operator norm (we will be more specific about
norms later). Suppose that linear system Ax = b is solved via Gaussian
elimination with partial pivoting, or some other stable scheme. Let x̄ be the
computed solution. Then one may bound the error by:

‖x̄− x‖
‖x̄‖

= O(macheps) · k(A)

where macheps is the machine precision. The size of the constant implicit
in the O(·) notation depends on the size of the matrix, pivot growth, etc.

Condition numbers may be expensive to compute exactly. For exam-
ple, computing k(A) for even the simplest matrix norms is three times as
expensive as solving Ax = b in the first place. Therefore, one usually uses
an inexpensive estimate in place of the exact k(A). For example, a method
for estimating k(A) is included in LINPACK, which costs just O(n2) extra
beyond the O(n3) cost of solving Ax = b. The price one pays for using an
estimate is occasional (but hopefully rare) misestimates of k(A). Years of
experience with the LINPACK estimator attest to its reliability, although
examples do exist where it can underestimate k(A) badly.

The codes we discuss for the nonsymmetric eigenproblem will also use
such condition estimators. Here, the savings will be even greater than for
linear equation solving: an O(n3) estimator using O(n) workspace in place
of an O(n6) exact solution using O(n4) workspace in some cases.

Our condition estimators will compute two quantities, the reciprocal of a
condition number for an eigenvalue (or cluster of eigenvalues), and the recip-

3

rocal of a condition number for an eigenvector (or invariant subspace). We
compute reciprocals of condition numbers to avoid overflow; an infinite or
overflowed condition number is indicated by a zero reciprocal. By combining
these two values in simple algebraic formulas, a great deal of detailed infor-
mation about the eigenproblem can be obtained. This report will describe
both these basic condition numbers and these formulas.

Our condition numbers will measure the changes in the eigenvalues, right
eigenvectors, means of clusters of eigenvalues, and right invariant subspaces
of a matrix A when a perturbation E is added to it; our bounds will be
functions (usually multiples) of ‖E‖. This may be used to estimate the
error in solutions computed by LAPACK routines because they are backward
stable, i.e. they compute the exact eigendecomposition of a matrix A + E
where A is the input matrix, and ‖E‖ = O(macheps)‖A‖. We measure
changes in eigenvectors and invariant subspaces by their change in angle;
we discuss the angle between subspaces in more detail in section 5. Our
condition numbers yield both asymptotic bounds, which are accurate only
when the norm ‖E‖ is small, and global bounds, which work for all ‖E‖ up
to a certain upper bound, whose size depends on the problem and may be
large or small. We show how to obtain these upper bounds on ‖E‖ as well.

We illustrate the reason for providing such a variety of bounds with an
example. Let Aη be 11 by 11 of the following form:

Aη =


0 1 0

. . .
. . .

...
. . . 1

...
η 0 0

.5


Here, blank entries are also zero. Thus, Aη is a block diagonal matrix with
a 10 by 10 block at the upper left and a 1 by 1 block at the lower right.
When η = 0, the upper left block is a 10 by 10 Jordan block with a single
multiple eigenvalue at 0 and a single right eigenvector v = [1, 0, . . . , 0]T .
Such a matrix is called defective. For small nonzero η the eigenvalues become
distinct numbers all with absolute value η.1, and eigenvectors which have
rotated away from v by about η.1 radians. When η = 10−10, η.1 = .1,
a much larger change. In this case we call the eigenvalue at 0 and its
associated eigenvector ill-posed, because their sensitivity is not proportional
to the norm of the perturbation η, but a root of η.

The practical solution to this problem is to consider this matrix as having
a cluster of 10 eigenvalues near zero with a single invariant subspace which

4

is spanned by all their eigenvectors, as well as a single eigenvalue near .5
with its eigenvector. The mean of this cluster of 10 eigenvalues will be
much less sensitive to small perturbations than the individual eigenvalues
(in fact it will be independent of η in this example). For small enough ‖E‖,
our asymptotic error bounds will show that the mean of the cluster of 10
eigenvalues near 0 of A0 + E is bounded by ‖E‖ (see Bound 4 below); i.e.
the mean is very well-conditioned. Similarly, the eigenvalue near .5 can
also only change by ‖E‖ for small enough ‖E‖ (Bound 2). The invariant
subspaces will also be much less sensitive than the individual eigenvectors.
In this example, the right invariant subspace belonging to the cluster of
10 eigenvalues near 0 is spanned by the first 10 columns of the 11 by 11
identity matrix independent of η; more generally our bounds will say that
for small ‖E‖ the right invariant subspace can rotate by at most 2731‖E‖
radians (Bound 6). The eigenvector belonging to the eigenvalue .5 is equally
insensitive in this example.

This illustrates our asymptotic error bounds, valid for sufficiently small
‖E‖. In contrast, our global bounds give bounds valid for all ‖E‖ up to
an upper bound which we also estimate. The matrix Aη illustrates the
source of these upper bounds on ‖E‖. Suppose we make η = 2−10 ≈ .001;
then one of the eigenvalues originally at 0 now equals .5, the same as the
eigenvalue in the lower right corner. Thus, we can no longer say that this
matrix has a cluster of eigenvalues near 0 and one near .5, and so we can no
longer talk about the sensitivity of the mean of the cluster. We can also no
longer identify a unique eigenvector associated with an eigenvalue near .5;
the eigenvectors have become ill-posed. Indeed, with additional arbitrarily
small perturbations the two eigenvectors for the eigenvalues at .5 can be
made to rotate arbitrarily within a two dimensional subspace, or one of
them can even disappear. Thus, only if we bound ‖E‖ to be some value less
than 2−10 can we hope to have error bounds. For this example, the upper
bound computed by our software will be approximately 2 · 10−4 (Bound 1).
For ‖E‖ < 2 · 10−4, our upper bound on the change in the mean of the
eigenvalue cluster will be 2‖E‖ (Bound 5), and our bound on how much the
right invariant subspace can rotate will be arctan(2731‖E‖/(1− 5462‖E‖))
radians (Bound 7), both close to the asymptotic bounds.

In this example, it is easy to identify the clusters by inspection of A0.
This is not always the case in practice, when the user is confronted with a
matrix whose eigenvalues form a cloud rather than well separated clusters.
Unfortunately, there is as yet no reliable, automated procedure for clustering
eigenvalues; see [8, 9, 28] for discussion. Our software merely provides the
tools for evaluating a particular clustering. A good cluster will have a much

5

less sensitive mean and invariant subspace than any subcluster, and must be
made part of a much larger (or trivial) cluster before it becomes significantly
less sensitive. The 10 zero eigenvalues of A0 satisfy this criterion.

There is a very large literature on perturbation theory for the eigen-
problem. See [3, 8, 9, 11, 15, 16, 22, 24, 25, 27, 28] for various theoretical
bounds. Chan, Feldman and Parlett[6] provided a Fortran routine to com-
pute the condition number of simple eigenvalue in conjunction with EIS-
PACK routines ORTHES and HQR, but it does not provide any information
about conditioning for eigenvectors and subspaces. Ruhe[20] suggested us-
ing the Golub-Reinsch SVD algorithm to calculate the condition number for
eigenvectors, but this requires O(n3) flops per eigenvalue-eigenvector pair,
which is too expensive. Van Loan[26] developed an efficient algorithm for
estimating condition numbers of all eigenvalue-eigenvector pairs of a Hes-
senberg matrix. It only costs O(n2) flops per eigenpair, assuming that the
eigenvalues are known.

We have developed new algorithms, which assume the matrix has been
reduced to Schur canonical form (real or complex). Reduction to Schur
canonical form is done by LAPACK subroutines SGEHRD and SHSEQR in the
real case, and CGEHRD and CHSEQR in the complex case. Since this reduction
is done via orthogonal (or unitary) similarities, the condition numbers are
identical to those of the original matrix. As we will see, starting with the
matrix in Schur form simplifies many of the algorithms and lets us use
existing condition estimation software for (quasi)triangular matrices [14, 18,
19].

The rest of this report is organized as follows. Section 2 discusses spectral
projectors and the separation of matrices, quantities on which later bounds
are based. Section 3 discusses the upper bound on ‖E‖F for our global error
bounds. Section 4 discusses asymptotic and global bounds for eigenvalues
and means of clusters of eigenvalues. In section 5, we first define the angle be-
tween two subspaces, the quantity bounded by our error bounds. Second, we
present asymptotic and global perturbation bounds for both right eigenvec-
tors and right invariant subspaces. Third, we discuss (block)diagonalizing a
matrix by a similarity. The results in sections 2 through 5 are stated without
proof; references to proofs in the literature are given. A tabular summary of
all bounds is given in section 6. Sections 7 and 8 describe the usage of the
LAPACK routines STRSNA and STRSEN for estimating the desired condition
numbers (actually their reciprocals). STRSNA computes the reciprocal condi-
tion numbers of user-specified eigenvalues and/or eigenvectors of the input
matrix. STRSEN computes the reciprocal condition numbers of the mean
and/or invariant subspace of a single user-specified cluster of eigenvalues.

6

Two examples are provided to show how to use these codes. Outlines of the
algorithms are also given.

The first two appendices describe details of the solution of the Sylvester
matrix equation and swapping diagonal blocks of a quasitriangular matrix.
The third appendix lists the names and basic functions of LAPACK routines
needed for the nonsymmetric eigenvalue problem.

We end with some notation we will need later. Capital letters are used
to denote matrices, the corresponding lowercase letter with the subscript
ij referring to the (i, j) component (e.g., aij is the (i, j) component of A).
A submatrix of a matrix A is written as Aij . Vectors are also denoted by
lowercase letters and will be clearly indicated in the text. Lowercase Greek
letters will denote scalars.
‖x‖1, ‖x‖2 and ‖x‖∞ denote the one-norm, the Euclidean norm, and the

infinity-norm, respectively, of the n-vector x:

‖x‖1 =
n∑
i=1

|xi|, ‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

, ‖x‖∞ = max
1≤i≤n

|xi|.

‖T‖1, ‖T‖2, ‖T‖∞, ‖T‖F denote the matrix norms:

‖T‖1 = max
j

∑
i

|tij |, ‖T‖2 = sup
x 6=0

‖Tx‖2
‖x‖2

,

‖T‖∞ = max
i

∑
j

|tij |, ‖T‖F =

 n∑
i,j=1

|tij |2
1/2

.

Note that ‖ ‖2 and ‖ ‖F are invariant with respect to unitary transforma-
tion.

We will throughout let ε2 denote ‖E‖2, and εF denote ‖E‖F , the norms
of our perturbation matrix.

The condition number of T is κ(T) = ‖T‖2‖T−1‖2. A subspace spanned
by the columns of matrix A is denoted as R(A) (the range of matrix A).
λ(A) denotes the set of all eigenvalues of matrix A. A ⊗ B denotes the
Kronecker product of two matrices: A⊗B = (aijB).

The Schur matrix (or Schur form) of a real matrix is an orthogonally
similar upper quasi-triangular matrix whose 2 by 2 diagonal blocks (if any
exist) are of the form (

α β
γ α

)

7

Such a block has complex conjugate eigenvalues α ± µ where µ2 = −βγ.
The Schur form of a complex matrix is a unitarily similar upper triangular
matrix.

2 Spectral Projectors and the Separation of Two
Matrices

To explain the bounds in later sections, we need to introduce two quantities,
the spectral projector P [22, 15], and the separation of two matrices A and
B, sep(A,B) [22].

Suppose our cluster contains m ≥ 1 eigenvalues, counting multiplicities.
Assume the n by n matrix A is in Schur canonical form

A =

[
A11 A12

0 A22

]
(1)

where the eigenvalues of the m by m matrix A11 are exactly those in which
we are interested. In practice, if the eigenvalues on the diagonal of A are in
the wrong order, they are sorted to put the desired ones in the upper left
corner as shown by using the subroutine STREXC in Appendix B.

We define the spectral projector, or simply projector P belonging to the
eigenvalues of A11 as

P =

[
Im R
0 0

]
(2)

where R satisfies the system of linear equations

A11R−RA22 = A12 (3)

Equation (3) is called a Sylvester equation. Given the Schur canonical form
(1), we solve the Sylvester (3) for R using subroutine STRSYL in Appendix
A.

P has several important properties. First, the space spanned by its
columns is the same as the right invariant subspace of A belonging to A11.
Second, the space spanned by its rows is the same as the left invariant
subspace of A belonging to A11. Thus, P describes the spaces spanned
by both the left and right eigenvectors belonging to A11. Third, its norm
‖P‖2 = (1 + ‖R‖22)1/2 plays an important role in our error bounds, as we
will see.

In practice, we do not use ‖P‖2 for m > 1 since this is expensive to
compute, but rather the cheaper overestimate

‖P‖′ ≡ (1 + ‖R‖2F)1/2 (4)

8

The separation sep(A11, A22) of the matrices A11 and A22 is defined
as the smallest singular value of the linear map in (3) which takes X to
A11X −XA22, i.e.

sep(A11, A22) = min
X 6=0

‖A11X −XA22‖F
‖X‖F

(5)

This formulation lets us estimate sep using the condition estimator SLACON

[14, 18, 19], which estimates the norm of a linear operator ‖T‖1 given the
ability to compute Tx and T T y quickly for arbitrary x and y. In our case,
multiplying an arbitrary vector by T means solving the Sylvester equation
(3) with an arbitrary right hand side, and multiplying by T T means solv-
ing the same equation with A11 replaced by AT11 and A22 replaced by AT22.
Solving either equation costs at most O(n3) operations, or as few as O(n2)
if m� n.

Another formulation which in principle permits an exact evaluation of
sep(A11, A22) is

sep(A11, A22) = σmin(In−m ⊗A11 −AT22 ⊗ Im) (6)

where σmin is the smallest singular value. This method is generally imprac-
tical, however, because the matrix whose smallest singular value we need
is m(n − m) dimensional, which can be as large as n2/4. Thus we would
require as much as O(n4) extra workspace and O(n6) operations, much more
than the estimation method of the last paragraph.

sep(A11, A22) measures the “separation” of the spectrum of A11 and A22

in the following sense. It is zero if and only if A11 and A22 have a common
eigenvalue, and small if there is a small perturbation of either one that makes
them have a common eigenvalue. If A11 and A22 are both normal matrices,
then sep(A11, A22) is just the minimum distance between an eigenvalue of
A11 and an eigenvalue of A22.

STRSNA computes 1/‖P‖2 (which is always ≤ 1, avoiding the possibility
of overflow) and sep for user-selected individual eigenvalues (i.e. A11 is 1 by
1). STRSEN computes 1/‖P‖′ and sep for a single user-specified cluster with
m ≥ 1 eigenvalues.

3 An Upper Bound on ‖E‖F for Global Error Bounds

We discuss the upper bound on ‖E‖F which limits the applicability of our
global bounds in the next two sections. As stated in the introduction, this
upper bound occurs because if ‖E‖F is large enough that the eigenvalue

9

being considered (or one of the eigenvalues in the cluster being considered)
moves and coalesces with another eigenvalue (outside the cluster), then we
can no longer uniquely identify the cluster for which we want bounds. Thus,
in this section we present lower bounds on the smallest ‖E‖F such that
A+E has a multiple eigenvalue (or a multiple eigenvalue involving at least
one eigenvalue within the original cluster and one outside).

Bound 1: [22, Theorem 4.14] Let A, P and sep(A11, A22) be defined as in
(1), (2) and (5). Then as long as

‖E‖F <
sep(A11, A22)

4 · ‖P‖2
(7)

the eigenvalues in the cluster belonging to A11 will remain disjoint from
the eigenvalues outside the cluster. In particular, the global error bounds of
sections 4 and 5 will be guaranteed valid only for E satisfying (7). We may
replace ‖P‖2 by ‖P‖′ as defined in (4) to get a slightly smaller upper bound.

Bound 1 can be quite conservative, greatly underestimating the smallest
perturbation needed to make eigenvalues coalesce. However, it is nearly
exact in some cases (e.g. for 2 by 2 matrices and normal matrices), and a
good estimate in many others; see [8, 9] for discussion.

1/‖P‖′ (or 1/‖P‖2 if m = 1) and sep(A11, A22) are computed by STRSNA

and STRSEN as described in section 2.

4 Conditioning of Eigenvalues

In this section, we review how to measure the sensitivity of both simple
eigenvalues and clusters of eigenvalues.

4.1 Conditioning of Simple Eigenvalues

Let λ be a simple eigenvalue of the n by n matrix A, with unit right eigen-
vector x and unit left eigenvector y. In other words Ax = λx, yTA = λyT ,
and ‖x‖2 = ‖y‖2 = 1. Let P be the spectral projector for λ; one may write
P = (x · yT)/(yT · x). Note that ‖P‖2 = 1/|yTx|, the secant of the angle
between x and y.

Let E be a perturbation of A, and ε2 = ‖E‖2. Let λ′ be the perturbed
eigenvalue of A+ E.

10

Bound 2: [27, p. 68]

|λ′ − λ| ≤ ε2‖P‖2 +O(ε22)

The O(ε22) term indicates this is an asymptotic bound, applicable only
for sufficiently small ε2. This bound is attainable, in the sense that for ε2
sufficiently small, there exists an E such that |λ′ − λ| = ε2‖P‖2 +O(ε22).

There is also a global version of this bound:

Bound 3: [3] Suppose A has all simple eigenvalues λi. Let Pi be the corre-
sponding spectral projectors. Then any eigenvalue λ′ of A + E must lie in
one of the disks

{λ : |λ− λi| ≤ nε2‖Pi‖2}

There is no limit on the size of ε2 in Bound 3. Note that the sizes
of the disks are just n times larger than in Bound 1, where ε2 must be
small. Bound 3 is an stronger version of what is often called the Bauer-Fike
Theorem, although Bauer and Fike proved this stronger version as well.
In the weaker Bauer-Fike Theorem, all of the disks have the same radius,
approximately equal to the largest radius maxi nε2‖Pi‖2 in Bound 3. Note
that Bound 3 is only useful when all the radii nε2‖Pi‖2 are of modest size,
since if one or more disks is so large that it intersects all the other disks,
there is little information about locations of individual eigenvalues; we only
know they lie in the union of all the disks.

The subroutine STRSNA can compute 1/‖P‖2 for a user-specified subset
of the eigenvalues of A.

4.2 Conditioning of Clustered Eigenvalues

It is easiest to think of A in Schur form (1), with the eigenvalues of A11 being
the cluster of interest. We are interested in bounding the perturbation in
the average of the eigenvalues of the cluster, which may be written A11/m,
the trace of A11 divided by m. Let E be a perturbation of A, and ε2 = ‖E‖2.
Let λ̄ = A11/m be the mean of the unperturbed eigenvalues, and λ̄′ be the
mean of the perturbed eigenvalues.

Bound 4: [15, sec. II.2.2]

|λ̄− λ̄′| ≤ ε2‖P‖2 +O(ε22)

11

We may substitute ‖P‖′ of equation (4) for ‖P‖2 to get a slightly weaker
bound.

The O(ε22) indicates this is an asymptotic bound, applicable only for
sufficiently small ε2. This bound is nearly attainable, in the sense that for
ε2 sufficiently small, there exists an E such that |λ̄−λ̄′| ≤ ‖P‖2ε2/m+O(ε22).
When m = 1, it is of course identical to the bound in the previous subsection.

Our global bound on |λ̄−λ̄′| will only be valid for ‖E‖F satisfying Bound
1 of section 2:

Bound 5: [22, page 748] Suppose ‖E‖F satisfies Bound 1. Then

|λ̄− λ̄′| ≤ 2ε2‖P‖2

Thus, the global bound is just twice as large as the asymptotic bound. Again
we may substitute ‖P‖′ of equation (4) for ‖P‖2 to get a slightly weaker
bound.

STRSNA computes 1/‖P‖2 for a user-specified set of individual eigenval-
ues. STRSEN can compute 1/‖P‖′ for a single user-specified cluster of m ≥ 1
eigenvalues.

4.3 Stability

When the eigenvalues of a full matrix A have been found from its computed
Schur form Ā, the computed s̄ will be those appropriate to Ā. These s̄
can differ substantially from the true s. Indeed, when A is defective, Ā
will usually not be, and hence zero s will become nonzero s̄. The reverse
situation could occur though this is much less probable. Since some of the
s̄ may not even be the correct order of magnitude, it might be felt that our
heavy reliance on them is unjustified. Since our algorithms for computing
the Schur form and s(λ) are backward stable, s(λ) is the correct value for a
matrix A + E very close to the original matrix A. This justifies their use.
The same comments apply to the computation and use of sep described in
the next section.

5 Conditioning of Right Eigenvectors and Right
Invariant Subspaces

In this section, we review how to measure the sensitivity of eigenvectors
and invariant subspaces. We begin by defining of the angle between two

12

subspaces, and then use it to describe the conditioning of eigenvectors and
invariant subspaces.

5.1 Angles Between Subspaces

Let θ(x, y) denote the acute angle between two nonzero n-vectors x and y.
We may write cos θ(x, y) = |xT y|/(‖x‖2‖y‖2). We wish to generalize this to
the (maximum) angle between two m > 1 dimensional subspaces, which we
denote X and Y. One way to define this angle is as

θmax(X ,Y) = max
x ∈ X
x 6= 0

min
y ∈ Y
y 6= 0

θ(x, y) (= max
y ∈ Y
y 6= 0

min
x ∈ X
x 6= 0

θ(x, y)) (8)

A more computational definition of θmax(X ,Y) is the following. Suppose
X is spanned by the columns of the n by m orthonormal matrix X, and
similarly Y is spanned by the columns of the n by m orthonormal matrix
Y . Then

θmax(X ,Y) = arccosσmin(Y TX) (9)

Our bounds of the next two sections will bound θmax(X ,X ′) where X is an
unperturbed invariant subspace, and X ′ is a perturbed invariant subspace.

We may also define the minimum angle between X and Y as

θmin(X ,Y) = min
x ∈ X
x 6= 0

min
y ∈ Y
y 6= 0

θ(x, y) (= min
y ∈ Y
y 6= 0

min
x ∈ X
x 6= 0

θ(x, y))

This may be reexpressed computationally as

θmin(X ,Y) = arccosσmax(Y TX)

The norms of the spectral projectors ‖P‖2 introduced in section 2 have
a simple interpretation in terms of angles between subspaces. Let P be
the spectral projector for the eigenvalue cluster with right invariant sub-
space R and left invariant subspace L. Let Rc be the complementary right
invariant subspace (the subspace for the other eigenvalues) and Lc be the
complementary left invariant subspace. Then

‖P‖2 = csc θmin(R,Rc) = csc θmin(L,Lc)
‖P‖2 = sec θmax(R,L) = sec θmax(Rc,Lc)

In other words, as ‖P‖2 grows and the cluster becomes more ill-conditioned,
the minimum angle between complementary right (or complementary left)
subspaces shrinks. Also, the maximum angle between corresponding left
and rigth invariant subspaces grows.

13

5.2 Conditioning of Right Eigenvectors and Right Invariant
Subspaces

We assume A is in Schur canonical form (1), with the eigenvalues of A11

being the cluster whose right invariant subspace R we are interested in. Let
E be a perturbation of A, and εF = ‖E‖F . Let R′ be the perturbed right
invariant subspace of A+ E.

Bound 6: [8, Lemma 7.8]

θmax(R,R′) ≤ 2εF
sep(A11, A22)

+O(ε2F)

The O(ε2F) indicates that this is an asymptotic bound, applicable only
for sufficiently small εF . It is nearly attainable for sufficiently small εF .

Bound 7: [8, Lemma 7.8] Suppose ‖E‖F satisfies Bound 1. Then

θmax(R,R′) ≤ arctan

(
2εF

sep(A11, A22)− 4‖P‖2εF

)
‖P‖2 may be replaced by ‖P‖′ of equation (4) to obtain a slightly weaker
bound.

Bounds 6 and 7 imply that sep is the reciprocal of the condition num-
ber for eigenvectors and invariant subspaces. Routines STRSNA and STRSEN

compute sep for individual eigenvectors and a given invariant subspace, re-
spectively.

5.3 (Block)diagonalizing a Matrix with a Similarity

Occasionally one wishes to find a matrix V which diagonalizes A: V −1AV =
Λ, where Λ is a diagonal matrix with the eigenvalues on the diagonal. This
may be useful for computing functions of matrices. For example, to ex-
ponentiate a matrix one may use the identity exp(A) = V exp(Λ)V −1 =
V diag(eλ1 , . . . , eλn)V −1. The accuracy of such an algorithm depends on the
condition number κ(V) of V . The columns of V must be eigenvectors of
A, but their norms are arbitrary; we would like to choose these norms to
minimize κ(V). The next bound gives a nearly optimal choice of the norms
of the columns of V , and bounds the resulting κ(V).

14

Bound 8: [7] Suppose A has distinct eigenvalues λi with corresponding right
eigenvectors vi, where we assume ‖vi‖2 = 1, and projectors Pi. Let V =
[v1, . . . , vn] be the matrix of these eigenvectors. Let V ′ = [α1v1, . . . , αnvn] be
another matrix where the αi are arbitrary nonzero scalars. Then

max
i
‖Pi‖2 ≤ κ(V ′)

Also
max
i
‖Pi‖2 ≤ κ(V) ≤ n ·max

i
‖Pi‖2

In other words choosing the columns of V to have norm 1 nearly minimizes
κ(V) over all matrices whose columns are eigenvectors.

A variation on diagonalization is block-diagonalization, where we ask
only that V −1AV = B be block diagonal, where the diagonal blocks Bii of
B have specified eigenvalues (which are all disjoint subsets of the eigenvalues
of A). Suppose Bii is located in rows and columns j through k of B. Then
columns j through k of V must span the right invariant subspace of A
corresponding to the eigenvalues of B. Let Vi denote these columns of V .
Just as we could choose the norm of each column of V when we wanted to
diagonalize A, here we have the freedom to choose Vi to be any basis of the
right invariant subspace we like. Again, we would like to choose the basis
which minimizes κ(V). The next bound says how to do this.

Bound 9: [7] Let the set λ(A) of eigenvalues of A be written as a dis-
joint union ∪bi=1Si of b sets of eigenvalues Si. Let ni be the number of
eigenvalues in Si, counting multiplicities. Let Pi be the projector corre-
sponding to Si, and Ri the corresponding right invariant subspace. Let Vi be
any matrix whose ni columns form an orthonormal basis of Ri, and write
V = [V1, . . . , Vb]. Then V −1AV = B is block diagonal where diagonal block
Bii has eigenvalues Si. Let V ′i be an arbitrary matrix whose ni columns
form a basis of Ri, and write V ′ = [V ′1 , . . . , V

′
b]. V ′−1AV ′ = B′ is also block

diagonal where diagonal block B′ii has eigenvalues Si. Then

max
i
‖Pi‖2 ≤ κ(V ′)

Also
max
i
‖Pi‖2 ≤ κ(V) ≤ b ·max

i
‖Pi‖2

In other words choosing the columns of Vi which span Ri to be orthonormal
nearly minimizes κ(V) over all block-diagonalizing similarities which reduce
A to diagonal blocks with the same eigenvalues in each block.

15

6 Summary: Perturbation Table

For convenience, the bounds presented in the preceding sections are sum-
marized in the following table. The notation is as follows. We assume the
matrix A is in Schur canonical form (1). P denotes the spectral projector as-
sociated with with eigenvalue(s) of A11 defined in (2). sep will be shorthand
for sep(A11, A22), defined in (5). λ will denote the unperturbed eigenvalue
if A11 is 1 by 1, and if A11 is larger λ̄ will denote the unperturbed mean
of its eigenvalues. λ′ and λ̄′ will denote the perturbed values of λ and λ̄,
respectively, for A+E. R denotes the unperturbed right invariant subspace
corresponding to A11, and R′ denotes its perturbed counterpart of A + E.
θ will denote θmax(R,R′), the angular perturbation of the right invariant
subspace as defined in (8) or (9). ε2 will denote ‖E‖2 and εF will denote
‖E‖F , norms of the perturbation E. In the table, each asymptotic bound
has a +O(ε2) term which is not written. Superscripts in parentheses on each
bound indicate which Bound in the body of text they are. The superscript
† indicates that the bound applies only if εF < sep/(4‖P‖2) (Bound 1).

Asymptotic Bounds Global Bounds

Simple eigenvalue |λ− λ′| ≤ ε2‖P‖2(2) |λ− λ′| ≤ nε2‖P‖2(3)

Eigenvalue Cluster |λ̄− λ̄′| ≤ ε2‖P‖2(4) |λ̄− λ̄′| ≤ 2ε2‖P‖2†(5)

Invariant subspace θ ≤ 2εF
sep

(6)
θ ≤ arctan

(
2εF

sep−4‖P‖2εF

)†(7)

In addition, Bound 8 says that the nearly best conditioned matrix V such
that V −1AV is diagonal has as its columns the eigenvectors of A all with
norm equal to 1. The condition number κ(V) of this V satisfies maxi ‖Pi‖2 ≤
κ(V) ≥ n ·maxi ‖Pi‖2, where Pi is the projector corresponding to eigenvalue
λi.

Bound 9 describes a nearly best conditioned matrix V such that V −1AV =
B is block diagonal, such that the b diagonal blocks of B have specified eigen-
values. This nearly best V may be written V = [V1, . . . Vb] where Vi is any

16

orthonormal basis of the right invariant subspace of A corresponding to the
eigenvalues in the i-th diagonal block of B. The condition number κ(V) of
V satisfies maxi ‖Pi‖2 ≤ κ(V) ≤ b · maxi ‖Pi‖2, where Pi is the projector
corresponding to eigenvalues of the i-th diagonal block of B.

In summary, we see that all the condition numbers for the nonsymmetric
eigenproblem depend on the quantities ‖P‖2 and sep. The use LAPACK
subroutines STRSNA and STRSEN to estimate these quantities is discussed in
the following sections.

7 STRSNA – Estimating the Condition of Individual
Eigenpairs

In this section, we show how to use LAPACK subroutine STRSNA for esti-
mating condition numbers of selected eigenvalues and eigenvectors. We also
describe the algorithms used. The variable SEP corresponds to the sep of the
preceding sections, and the variable S corresponds to 1/‖P‖2. We return
1/‖P‖2 instead of ‖P‖2 since 1/‖P‖2 is between zero and one, thus avoiding
overflow problems for very ill-conditioned eigenvalues.

7.1 Usage

Single precision.

CALL STRSNA(SELECT,N,T,LDT,RE,LDRE,LE,LDLE,S,SEP,

$ MM,M,WORK,LDWORK,X,V,B,ISGN,INFO)

*

* .. Scalar Arguments ..

INTEGER N,LDT,LDRE,LDLE,MM,M,LDWORK,INFO

*

* .. Array Arguments ..

LOGICAL SELECT(*)

INTEGER ISGN(*)

REAL S(*), SEP(*)

REAL T(LDT,*), RE(LDRE,*), LE(LDLE,*)

REAL WORK(LDWORK,*), X(*), V(*), B(*)

*

* Arguments

* =========

*

* SELECT - LOGICAL array if DIMENSION (N).

17

* On entry, SELECT specifies the eigenpair whose

* condition numbers are to be estimated. The condition

* number corresponding to the J-th eigenpair is specified

* by setting SELECT(J) to .TRUE..

* Not modified.

*

* N - INTEGER

* On entry, N specifies the order of the matrix T. N must

* be at least zero.

* Not modified.

*

* T - REAL array of DIMENSION (LDT,N).

* On entry, T contains an upper quasi-triangular matrix in

* Schur canonical form. This means that the diagonal entries

* of 2 by 2 diagonal blocks must be equal.

* Not modified.

*

* LDT - INTEGER

* On entry, LDT specifies the first dimension of T as

* declared in the calling (sub)program. LDT must be at

* least max(1, N).

* Not modified.

*

* RE - REAL array of DIMENSION (LDRE,MM).

* On entry, RE contains the real and imaginary parts of the

* selected right eigenvectors computed by STREVC or SHSEIN.

* If the next selected eigenvalue is real, the next column

* of RE contains its eigenvector. If the next selected

* eigenvalue is complex, the next two columns of RE contain

* the real and imaginary parts of its eigenvector.

* Not modified.

*

* LDRE - INTEGER

* On entry, LDRE specifies the leading dimension of RE as

* declared in the calling (sub)program. LDRE must be at

* least max(1, N).

* Not modified.

*

* LE - REAL array of DIMENSION (LDLE,MM).

* On entry, LE contains the real and imaginary parts of the

18

* selected left eigenvectors computed by STREVC or SHSEIN.

* If the next selected eigenvalue is real, the next column

* of RE contains its eigenvector. If the next selected

* eigenvalue is complex, the next two columns of LE contain

* the real and imaginary parts of its eigenvector.

* Not modified.

*

* LDLE - INTEGER

* On entry, LDLE specifies the leading dimension of LE as

* declared in the calling (sub)program. LDLE must be at

* least max(1, N).

* Not modified.

*

* S - REAL array of DIMENSION(MM).

* On exit, S contains the reciprocals of the condition

* numbers of the selected eigenvalues. If the Jth and

* (J+1)st eigenpairs are complex conjugate, then both

* S(J) and S(J+1) will be set (and equal).

*

* SEP - REAL array of DIMENSION(MM).

* On exit, SEP contains the estimated reciprocals of the

* condition numbers of the selected right eigenvectors.

* If the Jth and (J+1)st eigenpairs are complex conjugate,

* then both SEP(J) and SEP(J+1) will be set (and equal).

*

* MM - INTEGER

* On entry, MM should be set to an upper bound for the

* length of arrays S(*) and SEP(*) required to store the

* reciprocal condition numbers to be estimated. Note that

* for a complex conjugate eigenpair, we need two locations

* for S and SEP. This means S(J), SEP(J), RE(J), and LE(J)

* correspond to the same eigenvalue for all J.

* Not modified.

*

* M - INTEGER

* On exit, M is the size of arrays S(*) and SEP(*) actually

* used to store condition numbers.

*

* WORK - REAL array of DIMENSION(LDWORK,N)

* Workspace.

19

*

* LDWORK - INTEGER

* On entry, LDWORK specifies the leading dimension of WORK

* as declared in the calling (sub)program. LDWORK must be

* at least max(1, N).

* Not modified.

*

* X - REAL array of DIMENSION(2*(N-1)).

* Workspace.

*

* V - REAL array of DIMENSION(2*(N-1)).

* Workspace.

*

* B - REAL array of DIMENSION(N)

* Workspace.

*

* ISGN - INTEGER array of DIMENSION(2*(N-1))

* Workspace.

*

* INFO - INTEGER

* On exit, INFO is set to

* 0 for normal return,

* -K input argument number K is illegal.

* N+1 the assigned length of S and SEP too small.

*

Double precision. The calling sequence of the double precision rou-
tine DTRSNA is the same as that of the corresponding single precision “S”
subroutine except that all the real variables are double precision.

Complex. The calling sequence of the single precision complex is es-
sentially the same as STRSNA, except that the T, RE, WORK, X, V arrays
are complex, and the integer array ISGN is real.

Double precision complex. The calling sequence of the double pre-
cision complex routine ZTRSNA is the same as that of the corresponding
single precision “C” subroutine except that all the real variables are double
precision and all the complex variables are double precision complex.

20

7.2 Example

The following program segment illustrates the use of the single precision sub-
routine to estimate selected reciprocal condition numbers of the eigenvalues
and eigenvectors of a general matrix. The program first reduces a general
matrix to upper Hessenberg form by SGEHRD, and then computes the Schur
decomposition by the multishift QR iteration (SHSEQR). After that the user
should input the logical array SELECT to specify the eigenpairs whose condi-
tion numbers will be estimated, and STREVC is called to compute the selected
right and left eigenvectors and compactly store them in array RE and LE.
Finally STRSNA is called to return the desired reciprocal condition numbers.

PROGRAM TEST

INTEGER ISGN(100)

LOGICAL SELECT(50)

REAL A(50,50), WR(50), WI(50), RE(50,50), LE(50,50)

REAL S(50), SEP(50), RWORK(50)

REAL B(50), X(100), V(100), WORK(50,150), U(50,150)

INTEGER N, LDA, LDRE, LDLE, LDWORK, M, I, J, MAXN, INFO

INTEGER NBLCK1, NSHIFT, NBLCK2

REAL DUMMY

PARAMETER (LDA = 50, LDRE = 50, LDLE = 50, LDU = 50)

PARAMETER (LDWORK = 50, MAXN = 150)

*

* Input data:

* N: the order of matrix A.

* A: N by N array to store the input matrix.

* NBLCK1: the blocksize used in Hessenberg reduction.

* NSHIFT: the number of shifts used in multishift QR algorithm.

* NBLCK2: the blocksize used in bulge chasing in QR iteration.

*

READ(*,*) N

DO 10 I = 1,N

READ(*,*) (A(I,J),J = 1,N)

10 CONTINUE

READ(*,*) NBLCK1

READ(*,*) NSHIFT

READ(*,*) NBLCK2

*

* Compute Schur decomposition.

*

21

CALL XENVIR(’BLOCK’,NBLCK1)

CALL SGEHRD(’H’, N, A, LDA, DUMMY, DUMMY, WR, WORK, LDWORK,

$ MAXN, INFO)

CALL XENVIR(’SHIFT’, NSHIFT)

CALL XENVIR(’BLOCK’, NBLCK2)

CALL SHSEQR(’S’, N, A, LDA, DUMMY, DUMMY, WR, WI, U, LDU,

$ MAXN, WORK, LDWORK, MAXN, INFO)

DO 20 I = 1, N

WRITE(*,*) WR(I),WI(I)

20 CONTINUE

*

* Input logical array SELECT to specify the eigenpairs whose

* condition numbers will be estimated.

*

DO 30 I = 1,N

READ(*,*) SELECT(I)

30 CONTINUE

*

* Compute the selected eigenvectors

*

CALL STREVC(’B’, SELECT, N, A, LDA, RE, LDRE, LE, LDLE,

$ N, M, RWORK, INFO)

*

* Estimate the selected condition numbers of eigenpairs

*

CALL STRSNA(SELECT, N, A, LDA, RE, LDRE, LE, LDLE, S, SEP,

$ N, M, WORK, LDWORK, X, V, B, ISGN, INFO)

*

* Print output

*

DO 40 I = 1,M

WRITE(*,*) S(I),SEP(I)

40 CONTINUE

STOP

END

7.3 Outline of the Algorithm

The STRSNA routine is designed to estimate the reciprocals of condition num-
bers of the selected eigenvalue-eigenvector pairs of a Schur canonical matrix

22

T .
Logical arrary SELECT specifies the condition numbers to be estimated.

The arrays RE and LE are used in STREVC to compactly store the selected
right and left eigenvectors respectively. Then RE and LE are used in STRSNA

to compute the reciprocal condition number for individual eigenvalues:

s(λ) =
|rHl|
‖r‖2 ‖l‖2

where r and l are the right and left eigenvectors of T corresponding to the
eigenvalue λ. Note that for complex eigenvalues, the next two columns of
RE (LE) store the real and imaginary parts of the right (left) eigenvectors,
respectively. We see that computing the reciprocals of condition number of
an eigenvalue costs O(n) operations.

Variable S(*) contains the reciprocals of condition numbers of the se-
lected eigenvalues.

For estimating the reciprocals of condition numbers of the associated
right eigenvectors, STRSNA first calls subroutine STREXC to swap the diagonal
blocks of matrix T by orthogonal transformation to the form:

QTQT =

(
T11 T12
0 T22

)
where the n1 by n1 matrix T11 is 1 by 1 or 2 by 2 depending on whether the
eigenvalue is real or complex. If T11 is a 1 by 1 block λ, we have

sep(λ) = min
‖x‖2=1

‖(λI − T22)x‖2

If T11 is a 2 by 2 block, then we use a unitary rotation to triangularize the
2 by 2 block to get (

λ t12
0 T̃22

)
whence

sep(λ) = min
‖x‖2=1

‖(λ− T̃22)x‖2.

In both cases sep can be estimated by estimating the one-norm of

K−1 = (T ′ − λ)−1

because of the relationship

1√
n− 1

‖K−1‖1 ≤
1

sep(λ)
= ‖K−1‖2 ≤

√
n− 1‖K−1‖1

23

Estimating the one-norm of ‖K−1‖1 can been done by calling SLACON via a
reverse communication interface. This means one must provide the solution
vectors x and y of the quasi-triangular systems:

Kx = z, KTy = z

where z is determined by SLACON. This is the function of the subroutine
SLAQTR. Note that K is a complex matrix if λ is a complex eigenvalue, but
it is of the form

K = C + iD

where the real part C is a real upper quasi-triangular matrix, and the imag-
inary part is

D =


x x . . . x

x
. . .

x

 .

Hence we can easily solve the complex systems

(C + iD)(p+ iq) = (e+ if), (C + iD)H(g + ih) = (e+ if)

in real arithmetic, and use 2(n−1) length vectors x =

(
p
q

)
and y =

(
g
h

)
as the input vectors of SLACON. We also use the fact that for any complex
matrix C + iD,

1√
2
‖
(
C −D
D C

)
‖1 ≤ ‖C + iD‖1 ≤ ‖

(
C −D
D C

)
‖1.

The cost of the algorithm depends on the location of the selected eigenvalues
along the diagonal of the input matrix. Swapping adjacent diagonal blocks
costs O(n), so moving an eigenvalue at diagonal position k to the upper
left costs O(kn) operations. Since it requires about O(n2) to solve a quasi-
triangular system, estimating the condition number of an eigenvector costs
O(n2) operations once the eigenvalue is in the upper left corner. Therefore
the total cost is O(n2) per eigenvector condition number.

The variable SEP(*) contains the estimated reciprocal condition numbers
of the selected eigenvectors.

24

8 STRSEN Estimating the Condition of a Cluster of
Eigenvalues

In this section, we first show the usage of LAPACK subroutine STRSEN

for estimating the reciprocal condition number of a specified multiple (or
clustered) eigenvalue and its corresponding invariant subspace, and then
outline the algorithm.

8.1 Usage

Single precision

CALL STRSEN(SELECT,N,T,LDT,S,SEP,WORK,LDWORK,NWORK,

$ X,V,ISGN,INFO)

*

* .. Scalar Arguments ..

INTEGER N, LDT, LDWORK, NWORK, INFO

REAL S, SEP

*

* .. Array Arguments ..

LOGICAL SELECT(*)

INTEGER ISGN(*)

REAL T(LDT,*), WORK(LDWORK,*), X(*), V(*)

*

* Arguments

* =========

*

* SELECT - LOGICAL array if DIMENSION (N)

* On entry, SELECT specifies the 1 by 1 or 2 by 2 diagonal

* blocks in the eigenvalue cluster. For 2 by 2 blocks,

* the first index of SELECT must be set to .TRUE. if the

* block to be collected. Complex conjugate eigenvalues will

* either both be inside the cluster, or both outside.

* On exit, SELECT may have been altered. If the elements of

* SELECT corresponding to a 2 by 2 block were each initially

* set to .TRUE., the program resets the second one to .FALSE..

*

* N - INTEGER

* On entry, N specifies the order of the matrix T. N must be

* at least zero.

25

* Not modified.

*

* T - REAL array of DIMENSION(LDT,N)

* On entry, T contains an upper quasi-triangular matrix in

* Schur canonical form. This means that the diagonal entries

* of 2 by 2 diagonal blocks must be equal.

* Not modified.

*

* LDT - INTEGER

* On entry, LDT specifies the first dimension of T as

* declared in the calling (sub)program. LDT must be at

* least max(1, N).

* Not modified.

*

* S - REAL

* On exit, S is a lower bound on the reciprocal of the

* condition number for the selected cluster of eigenvalues.

* S cannot underestimate the true reciprocal condition

* number by more than a factor of sqrt(N).

*

* SEP - REAL

* On exit, SEP is the estimated reciprocal of the condition

* number of the corresponding invariant subspace.

*

* WORK - REAL array of DIMENSION(LDWORK, N2)

* Workspace, where N2 is the number of eigenvalues in the

* cluster, counting multiplicities.

*

* LDWORK - INTEGER

* On entry, LDWORK specifies the first dimension of WORK as

* declared in the calling (sub)program. LDWORK must be at

* least max(1, N-N2).

* Not modified.

*

* NWORK - INTEGER

* On entry, NWORK specifies the largest possible columns of

* working array U. NWORK should be larger than N2.

* Not modified.

*

* X - REAL array of DIMENSION(N1*N2)

26

* Workspace

*

* V - REAL array of DIMENSION(N1*N2)

* Workspace

*

* ISGN - INTEGER array of DIMENSION(N1*N2)

* Workspace

*

* INFO - INTEGER

* On exit, INFO is set to

* 0 normal return.

* -K input parameter number K is illegal.

* N+1 there are not enough columns for working

* array WORK.

*

Double precision. The calling sequence of the double precision rou-
tine DTRSEN is the same as that of the corresponding single precision “S”
subroutine except that all the real variables are double precision.

Complex. The calling sequence of the single precision complex routine
is essentially the same as STRSNA, except that the T, RE, WORK, X, V arrays
are complex. Integer array ISGN is not needed.

Double precision complex. The calling sequence of the double preci-
sion complex routine ZTRSEN is the same as that of the corresponding single
precision complex “C” subroutine except that all the real variables are double
precision and all the complex variables are double precision complex.

8.2 Example

The following program segment illustrates the use of the single precision sub-
routine to estimate the reciprocal condition numbers of a specified cluster
of eigenvalues and its corresponding invariant subspace for a general ma-
trix. The program first reduces a general matrix to upper Hessenberg form
by SGEHRD, and then computes the Schur decomposition by the multishift
QR algorithm (SHSEQR). After that the user should input the logical array
SELECT to specify the eigenvalues in the cluster. Then STRSEN is called to
estimate the reciprocal condition numbers.

PROGRAM TEST

INTEGER ISGN(50)

27

REAL A(50,50), WR(50), WI(50)

REAL X(100), V(100), U(50,150), WORK(50,150)

LOGICAL SELECT(50)

INTEGER N, LDA, LDWORK, M, I, J, MAXN, INFO

INTEGER NBLCK1, NSHIFT, NBLCK2

REAL S, SEP, DUMMY

PARAMETER (LDA = 50, LDU = 50, LDWORK = 50, MAXN = 150)

*

* Input data:

* N: the order of matrix A.

* A: N by N array to store the input matrix.

* NBLCK1: the blocksize used in Hessenberg reduction.

* NSHIFT: the number of shifts used in the multishift QR algorithm.

* NBLCK2: the blocksize used in bulge chasing in QR iteration.

*

READ(*,*) N

DO 10 I = 1,N

READ(*,*) (A(I,J),J = 1,N)

10 CONTINUE

READ(*,*) NBLCK1

READ(*,*) NSHIFT

READ(*,*) NBLCK2

*

* Compute Schur decomposition.

*

CALL XENVIR(’BLOCK’, NBLCK1)

CALL SGEHRD(’H’, N, A, LDA, DUM, DUM, WR, WORK, LDWORK,

$ MAXN, INFO)

CALL XENVIR(’SHIFT’, NSHIFT)

CALL XENVIR(’BLOCK’, NBLCK2)

CALL SHSEQR(’S’, N, A, LDA, DUM, DUM, WR, WI, U, LDU,

$ MAXN, WORK, LDWORK, MAXN, INFO)

DO 20 I = 1, N

WRITE(*,*) WR(I),WI(I)

20 CONTINUE

*

* Input the SELECT to specify the eigenvalues to be collected

* together, then the condition numbers of the corresponding

* invariant subspace will be estimated.

*

28

DO 30 I = 1,N

READ(*,*) SELECT(I)

30 CONTINUE

*

CALL STRSEN(SELECT, N, A, LDA, S, SEP, WORK, LDWORK,

$ ISGN, X, V, INFO)

*

* Print output

*

WRITE(*,*) S,SEP

STOP

END

8.3 Outline of the Algorithm

STRSEN routine estimates the reciprocal condition numbers of specified mul-
tiple (or clustered) eigenvalues and their corresponding invariant subspace
for a real Schur canonical matrix T .

Logical array SELECT specifies the 1 by 1 (for real eigenvalues) or 2 by 2
(for complex conjugate eigenvalues) diagonal blocks that are to be collected
together to form the desired cluster. Note that for 2 by 2 diagonal blocks,
the first index of SELECT must be set to .TRUE. if the block to be collected.
For real matrices, complex conjugate eigenpairs will both be selected if one
is selected.

STRSEN first calls subroutine STREX2 to collect the selected diagonal
blocks by orthogonal transformation to the top-left corner of T such that

QTQT =

(
T11 T12
0 T22

)
where the selected blocks have been collected in n1 by n1 matrix T11. Then
STRSEN computes the projector P on the invariant subspace associated with
T11. It is known that

P =

(
I −R
0 0

)
,

where R is the solution of the Sylvester equation

T11R−RT22 = T12.

This is done by subroutine STRSYL . The program tests to avoid overflow if
‖R‖ is very large, returning zero as the reciprocal condition number.

29

The return value S of STRSEN is the lower bound (1 + ‖R‖2F)−1/2 on the
reciprocal of ‖P‖2. It cannot underestimate ‖P‖−12 by more than a factor
of n1/2.

Finally, STRSEN estimates the separation of T11 and T22. We know that
this can be estimated by the one-norm of

K−1 = (In2 ⊗ T11 − T22 ⊗ In1)−1, n = n1 + n2

because of the relationship

1
√
n1n2

‖K−1‖1 ≤
1

sep(T11, T22)
= ‖K−1‖2 ≤

√
n1n2‖K−1‖1.

This is done by calling SLACON via a reverse communication interface, pro-
viding the solution vectors x and y of the equations:

Kx = z, KTy = z

where z is determined by SLACON. This means we must solve the Sylvester
equations:

T11X −XT22 = Z TT
11Y − Y TT

22 = Z

This is again is done by the subroutine STRSYL.
The return value SEP of STRSEN is the estimated (upper bound) of

sep(T11, T22).
Swapping adjacent diagonal blocks on the diagonal of the input matrix

costs O(n), so swapping n1 selected eigenvalues to the top left corner costs
at most O(n1n

2) (and as little as nothing if they are already at the top left
corner). Once the desired eigenvalues are at the top left, solving either above
Sylvester equation costs O(n21n2 + n1n

2
2) operations. Therefore the condi-

tion number estimation of a cluster of eigenvalues and their corresponding
invariant subspace costs at most O(n3) operations, or as few as O(n2) if
n1 � n2.

30

A Solution of the Sylvester Equation

Considerable attention in the literature has been paid to solving the Sylvester
equation. Among proposed solutions, Bartels and Stewart’s method[2], and
Golub, Nash and Van Loan’s method[12] are direct matrix factorization
methods. In this appendix, we discuss the method originally presented by
Bartels and Stewart, and the associated routine STRSYL.

The Sylvester matrix equation is of the form

op(A)X −Xop(B) = sC (10)

where A , B and C are real m×m, n× n and m× n matrices respectively.
op(A) = A or AT is a transpose option. s is a scaling factor (≤ 1) which is
so chosen so that X can be computed without overflow. We will also sup-
pose that A and B are in upper quasi-triangular form, otherwise we should
compute the Schur decomposition of A and B (by SGEHRD and SHSEQR),

UTAU = R, V TBV = S (11)

where R and S are upper quasi-triangular, and U and V are orthogonal.
The reductions (A.11) lead to the system (A.10).

It is well known that (A.10) has a unique solution if and only if there
are no common eigenvalues of A and B.

Let p be the number of 1 by 1 and 2 by 2 blocks along the diagonal of A,
and let q be the number of the 1 by 1 and 2 by 2 blocks along the diagonal of
B. Partition the A, B, X and C conformally. If op(A) = A and op(B) = B
then the ijth block Xij satisfies

AiiXij −XijBjj = s1(Cij − C
′
ij) (12)

where

C
′
ij =

p∑
k=i+1

AikXkj −
j−1∑
l=1

XilBlj

Note that since Aii and Bjj are each 1 by 1 or 2 by 2, the solution of (3)
can be obtained by solving a linear system of order at most four. That
can be solved easily. Once calculated, the solution Xij can be stored in the
locations occupied by Cij , which is no longer needed. The solution matrix
X can be successively solved column by column starting from bottom-left
corner of X, i.e., in order Xp1, Xp−1,1, . . . , X11, Xp2, . . . , X1q.

31

For solving equation (A.12), we note that if Aii and/or Bjj are balanced
2 by 2 blocks, i.e., they are of the form(

α β
γ α

)
then α± µ are the eigenvalues where βγ = −µ2. Equation (A.12) can then
be expressed as a 2 by 2 linear system

(H − w)Y = s1F

Here H is an na by na real matrix (na = 1, 2), w is real or complex, Y
and F are na by 1 matrices which are real if w is real and complex if w is
complex, and s1 is a local scaling factor (≤ 1) which is so chosen that Y
can be computed without overflow (see SLALN2 and SLASY2). In particular,
if Aii and Bjj have the same eigenvalues, s1 is set to 0.

Similarly, if op(A) = AT and op(B) = B, the ijth block Xij of the
solution X can be successively solved column by column starting from top-
left corner of X, i.e., in order X11, X21, . . . , Xp1, X12, . . . , Xpq.

If op(A) = A and op(B) = BT, the ijth block Xij of the solution X can
be successively solved column by column starting from bottom-right corner
of X, i.e., in order Xpq, Xp−1,q, . . . , X1q, Xp,q−1, . . . , X11.

If op(A) = AT and op(B) = BT, the ijth block Xij of the solution X
can be successively solved column by column starting from top-right corner
of X, i.e., in order X1q, X2q, . . . , Xpq, X1,q−1, . . . , Xp1.

Using the above different substitution orderings enables one to work on
the input matrices directly rather than to transpose the input matrices.

The overall number of flops for the above substitution solution is

2.5(m2n+mn2)

where we have assumed that A and B are already in Schur form.
The program may be used to iteratively refine of the computed solution

X1 of (A.10): let the residual matrix R1 = C −AX1 +X1B be computed in
double precision and rerounded to single precision. Use the same program
to solve the system AX2 −X2B = R1. Then X1 + X2 will in general be a
more accurate approximation. This process may be iterated. This iteration
is analogous to the iterative refinement of approximate solutions of linear
system as described by Wilkinson[27, p. 255]. (This is not done in STRSEN

and STRSNA.)

32

B Swapping Diagonal Blocks

The crux of swapping a selected block of a real Schur form to a specified po-
sition along the diagonal (subroutine STREXC), or collecting selected blocks
together (subroutine STREX2) is the swapping of adjacent blocks by an or-
thogonal similarity transformation (subroutine SLAEXC). Stewart[23] devel-
oped an adjacent block swapping algorithm using one or two QR steps with
a pre-determined shift to force the ordering of the eigenvalues of the new
blocks. More recently, Ng and Parlett[17] present a more straightforward al-
gorithm for the same task. The presentation in this appendix is based on Ng
and Parlett’s work. We discuss in more detail the treatment of pathological
cases.

Consider a submatrix of the form(
T11 T12
0 T22

)
where T11 is a p by p matrix, and T22 is a q by q matrix, p, q = 1 or 2,
and assume that T11 and T22 have no eigenvalue in common. Moreover, we
assume that if either is a 2 by 2 matrix, it has been standardized (i.e., it
has identical diagonal entries.) Now, we want to find an orthogonal matrix
Q which swaps T11 and T22, i.e.,

Q

(
T11 T12
0 T22

)
QT =

(
T̃22 T̃12
0 T̃11

)
where T̃ii is similar to Tii, i = 1, 2.

Since T11 and T22 have no eigenvalue in common, it follows that there
exists a unique p× q matrix X such that

T11X −XT22 = T12.

Hence (
T11 T12
0 T22

)
=

(
Ip −X
0 Iq

)(
T11 0
0 T22

)(
Ip X
0 Iq

)
=

(
−X Ip
Iq 0

)(
T22 0
0 T11

)(
0 Iq
Ip X

)
We see that it is easy to find an orthogonal (p+ q)× (p+ q) matrix Q such
that

Q

(
−X
Iq

)
=

(
M2

0

)
(13)

33

with some invertible q × q M2, e.g., using Householder matrices to do the
QR decomposition.

Let Q premultiply and postmultiply the original matrix, yielding

Q

(
T11 T12

T22

)
QT = Q

(
−X Ip
Iq 0

)(
T22 0
0 T11

)(
0 Iq
Ip X

)
QT

=

(
M2 W
0 M1

)(
T22 0
0 T11

)(
M2 W
0 M1

)−1
=

(
M2 W
0 M1

)(
T22 0
0 T11

)(
M−12 −M−12 WM−11

0 M−11

)
=

(
M2T22M

−1
2 T

′
12

M1T11M
−1
1

)
.

T11 and T22 have been swapped.
The above considerations are summed up in the following steps.

1. Solve T11X − XT22 = sT12. s is a scale factor introduced to avoid
overflow.

2. Check if the magnitude of ‖X‖ exceeds the square root of the overflow
threshold. In this case T11 and T22 are too close to swap, so we exit.

3. Use a Householder matrix Q to do the QR decomposition of (X I)T

and update T by Q: QTQT,

4. Accumulate the orthogonal transformations if desired.

5. To preserve the standard Schur form, make the diagonal elements equal
in each 2 by 2 block using orthogonal transformations.

6. Accumulate the orthogonal transformations if desired.

Several comments should be made. First, the solution of the matrix
equation T11X − XT22 = sT12 has been discussed in detail in Appendix
A, the routine SLASY2. Second, there is no danger in working with X of
large norm provided that ‖X‖2 does not overflow. Moreover if ‖X‖2 does
overflow then the blocks should not be swapped because a tiny perturbation
will cause T11 and T22 to have at least one common eigenvalue[9]. Hence in
step 2, we check the norm of X, and if X satisfies

s ·max(‖T11‖ , ‖T22‖)
‖X‖+ s

< ε,

where ε is the machine precision, then the two blocks are regarded as too
close to swap.

34

C List of LAPACK Routines for the Nonsymmetric
Eigenproblem

LAPACK main routines for the nonsymmetric eigenproblem:

SGEBAL Balance an input general matrix and isolate eigenvalues whenever
possible.

SGEBAK Form the eigenvectors for a general matrix by back transforming
those of the corresponding balanced matrix determined by SGEBAL.

SGEHRD Reduce a general matrix to an upper Hessenberg matrix.

SHSEQR Compute the eigenvalues of an upper Hessenberg matrix by the
multishift QR algorithm, and return the Schur form, accumulating
the orthogonal matrix if desired.

STREVC Compute selected right and/or left eigenvectors of a Schur matrix.

SHSEIN Compute selected right and/or left eigenvectors of a Hessenberg
matrix by inverse iteration.

SORGC3 Overwrite a matrix containing Householder vectors stored in the
strictly lower part by the orthogonal matrix they represent.

STRSNA Estimate selected reciprocal condition numbers of individual eigen-
pairs of Schur matrix.

STRSEN Estimate selected reciprocal condition numbers of a multiple (or
cluster of) eigenvalues and their corresponding invariant subspace of
a Schur matrix.

STRSYL Solve the Sylvester equation with coefficient matrices in Schur form.

STREXC Swap a selected diagonal 1 by 1 or 2 by 2 block of a Schur matrix
to a specified position.

STREX2 Collect several selected diagonal 1 by 1 or 2 by 2 blocks of a Schur
matrix to the top-left or bottom right corner.

LAPACK auxiliary routines for the nonsymmetric eigenproblem:

SLAHRD Chase a k by k bulge of an upper Hessenberg matrix one block down
from a specified column number.

35

SLAHQR BLAS 1 based QR routine to compute the eigenvalues of an up-
per Hessenberg matrix, and return the Schur form, accumulating the
orthogonal matrix if desired.

SLATRS Mixed subroutine of BLAS 1 and BLAS 2 to solve triangular equa-
tions while avoiding overflow.

SLAQTR Solving real or complex quasi-triangular systems where the real part
is quasi-triangular, and the imaginary part is of a special form.

SLALN2 Solve a 2 by 2 linear equation.

SLAE2 Compute the eigenvalues of a 2 by 2 nonsymmetric matrix.

SLAEXC Swap adjacent diagonal 1 by 1 or 2 by 2 blocks of a Schur matrix.

SLASY2 Solve the Sylvester equation with coefficient matrices up to 2 by 2.

SLAEQU Equalize the diagonal elements of a 2 by 2 block with an orthogonal
similarity.

Other LAPACK routines, auxiliary routines, functions called by
eigensystem subroutines (except Level 1, 2 or 3 BLAS routines).

XERBLA, LSAME, R1MACH, ENVIR

SLACON, SLACPY, SLAZRO, SLARFG, SLARF, SLANHS, SLAPY2, SLAPY3

36

References

[1] Z. Bai and J. Demmel, On a block implementation of Hessenberg mul-
tishift QR iteration, LAPACK working notes # 8. 1989

[2] R. S. Bartels and G. W. Stewart, Solution of the matrix equation AX+
XB = C, Comm. ACM 15:820-826(1972).

[3] F. Bauer and C. Fike, Norms and Exclusion Theorems, Num. Math. 2,
pp. 137–141 (1960)

[4] A. Bjorck and G. H. Golub, Numerical Methods for computing angles
between linear subspaces, Math.Comp. 27:579-594(1973).

[5] R. Byers, A LINPACK-style condition estimator for the equation AX−
XBT = C, IERR TRANS. Automat. Control AC-29: 926-928(1984).

[6] S. P. Chan, R. Feldman and B. N. Parlett, A program for computing
the condition numbers of matrix eigenvalues without computing eigen-
vectors ACM TOMS, 3: 186-203(1977).

[7] J. W. Demmel, The condition number of equivalence transformations
that block diagonalize matrix pencils, SIAM J. Num. Anal. 20, no. 3,
June 1983, pp 599–610

[8] J. W. Demmel, Computing stable eigendecomposition of matrices, Lin.
Alg. and Appl. 79:163-193(1986).

[9] J. W. Demmel, On condition numbers and the distance to the nearest
ill-posed problem, Numer. Math. 51: 251-289(1987).

[10] J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK
user’s guide, SIAM, Philadelphia, 1979.

[11] G. Golub and J. W. Wilkinson, Ill-conditioned eigensystem and com-
putation of the Jordan canonical form, SIAM Rev. 18: 578-619, 1976.

[12] G. Golub, S. Nash and C. Van Loan, A Hessenberg- Schur Method for
the Problem AX + XB = C, IEEE Trans. Automat. Control AC-24:
909-913(1979).

[13] G. Golub and C. Van Loan, Matrix Computations (2nd Edition) , Johns
Hopkins U.P. Baltimore, 1988

37

[14] W. W. Hager, Condition estimates, SIAM J.Sci.Stat. Comput. 5: 311-
316(1984).

[15] T. Kato, Perturbation theory of linear operators, Springer-Verlag,
Berlin, 1966

[16] W. Kahan, Conserving confluence curbs ill-condition, Computer Sci-
ence Dept. Report, University of California, Berkeley 1972.

[17] K. C. Ng and B. N. Parlett, Programs to swap diagonal blocks (1988)

[18] N. J. Higham, A survey of condition number estimation for triangular
matrices, SIAM Rev. 29: 575-596(1987).

[19] N. J. Higham, FORTRAN codes for estimating the one-norm of a real
or complex matrix, with applications to condition estimation, ACM
TOMS, 14: 381-396(1988).

[20] A. Ruhe, An algorithm for numerical determination of the structure of
a general matrix, BIT 10: 196-216, 1970.

[21] B. T. Smith, J. M. Boyle, Y. Ikebe, V. C. Klema and C. B. Moler, Ma-
trix Eigensystem Routines: EISPACK Guide, 2nd ed. Springer-Verlag,
New York, 1970.

[22] G. W. Stewart, Error and perturbation bounds for subspaces associated
with certain eigenvalue problems, SIAM Rev. 15: 727-764(1973).

[23] G. W. Stewart, Algorithm 506 HQR3 and EXCHANG: Fortran subrou-
tine for calculating and ordering the eigenvalues of a real upper Hes-
senberg matrix [F2], ACM TOMS 2:275-280(1976).

[24] J. Sun, Tha analysis of the matrix perturbation (in chinese), Academic
Press, Beijing, 1987.

[25] J. M. Varah, On the separation of two matrices, SIAM J.Numer.Anal.
16:216-222(1979).

[26] C. Van Loan, On Estimating the condition of Eigenvalues and Eigen-
vectors, Lin. Alg. and Appl. 88/89: 715-732(1987).

[27] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford U.P. Oxford,
1965

[28] J. H. Wilkinson, Sensitivity of Eigenvalues, Utilitas Math. 25:5-
76(1984).

38

