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Abstract

Sparse Gaussian Elimination on High Performance Computers

by

Xiaoye S. Li
Doctor of Philosophy in Computer Science

University of California at Berkeley

James W. Demmel, Chair

This dissertation presents new techniques for solving large sparse unsymmetric
linear systems on high performance computers, using Gaussian elimination with partial
pivoting. The e�ciencies of the new algorithms are demonstrated for matrices from various
�elds and for a variety of high performance machines.

In the �rst part we discuss optimizations of a sequential algorithm to exploit the
memory hierarchies that exist in most RISC-based superscalar computers. We begin with
the left-looking supernode-column algorithm by Eisenstat, Gilbert and Liu, which includes
Eisenstat and Liu's symmetric structural reduction for fast symbolic factorization. Our
key contribution is to develop both numeric and symbolic schemes to perform supernode-
panel updates to achieve better data reuse in cache and oating-point registers. A further
re�nement, a two-dimensional matrix partitioning scheme, enhances performance for large
matrices or machines with small caches. We conduct extensive performance evaluations on
several recent superscalar architectures, such as the IBM RS/6000-590, MIPS R8000 and
DEC Alpha 21164, and show that our new algorithm is much faster than its predecessors.
The advantage is particularly evident for large problems. In addition, we develop a detailed
model to systematically choose a set of blocking parameters in the algorithm.

The second part focuses on the design, implementation and performance analysis
of a shared memory parallel algorithm based on our new serial algorithm. We parallelize the
computation along the column dimension of the matrix, assigning one block of columns (a
panel) to a processor. The parallel algorithm retains the serial algorithm's ability to reuse
cached data. We develop a dynamic scheduling mechanism to schedule tasks onto available
processors. One merit of this approach is the ability to balance work load automatically.
The algorithm attempts to schedule independent tasks to di�erent processors. When this
is not possible in the later stage of factorization, a pipeline approach is used to coordinate
dependent computations. We demonstrate that the new parallel algorithm is very e�cient
on shared memory machines with modest numbers of processors, such as the SGI Power
Challenge, DEC AlphaServer 8400, and Cray C90/J90. We also develop performance models
to study available concurrency and identify performance bottlenecks.

James W. Demmel
Dissertation Committee Chair
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Chapter 1

Introduction

We investigate new techniques in direct methods for solving large sparse nonsym-
metric linear systems of equations. Such linear systems arise in diverse areas such as sparse
eigenvalue computation, solving discrete �nite-element problems, device and circuit sim-
ulation, linear programming, chemical engineering, and uid dynamics modeling. These
demanding and important applications can immediately bene�t by any improvements in
linear equation solvers.

The motivation for this research is two-fold. First, existing sparse algorithms and
codes are much slower than their dense counterparts, especially on modern RISC worksta-
tions. These machines typically have multiple pipelined functional units, pipelined oating-
point units, and fast but relatively small cache memory to hide the main memory access
latency. These workstations provide a cost-e�ective way to achieve high performance and
are more widely available than traditional supercomputers. The emergence of these novel
architectures has motivated the redesign of linear algebra software for dense matrices, such
as the well-known LAPACK library [7]. The earlier algorithms used in LINPACK and EIS-
PACK are ine�cient because they often spend more time moving data than doing useful
oating-point operations. One of the chief improvements of many new algorithms in LA-
PACK is to use block matrix operations, whose improved data locality permits exploitation
of cache and multiple functional units. Signi�cant performance gains have been observed
over the unblocked algorithms [7]. The analogous algorithmic improvements are much
harder for sparse matrix algorithms, because of their irregular data structures and memory
access patterns. This thesis will address this issue by studying one class of such algorithms,
sparse LU factorization. In essence, our new algorithm identi�es and exploits the dense
blocks (supernodes) that emerge during the sparse LU factorization.

Our second motivation is to exploit parallelism in order to solve the ever larger
linear systems arising in practice. Twenty years ago, the day-to-day linear systems people
wanted to solve usually had only tens or hundreds of unknowns (see Table 1.6.1 in Du� et
al. [36]). In a more recent and widely used Harwell-Boeing collection of sparse matrices [37],
the largest nonsymmetric system has about 5000 unknowns. Today, it is not uncommon to
encounter systems involving 50,000 unknowns, for example, from three-dimensional simula-
tions. Examples of several large matrices will be used in our study (see Table 4.1). Solving
such systems is made possible by faster processors and larger and cheaper main memory.
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However, e�cient algorithms are crucial to take advantage of the new architectures. Fur-
thermore, parallel processing capabilities enlarge the problem domains under consideration.
We will primarily focus on the runtime and storage e�ciency of the new algorithms on large
problems, in particular, the largest ones that can �t in the main memory.

In parallel processing, computational power can be multiplied by connecting tens
or hundreds of o�-the-shelf processors. Memory access locality is even more important for
high performance and scalability than on a sequential machine. For example, on a bus-
connected system, frequent access to globally shared memory by di�erent processors will
saturate the shared bus. On a distributed memory machine, processors communicate to
each other by explicitly sending messages. Accessing non-local data by receiving a message
is often orders of magnitude more costly than accessing local memory. It is vital to design
our algorithms to be aware of the non-uniform memory access times inherent in all machines.
We will show that the concept of locality plays a central role in designing and implementing
e�cient algorithms on modern high performance architectures.

The remainder of the dissertation is organized as follows. Chapter 2 briey re-
views the existing factorization techniques used to solve general sparse unsymmetric linear
systems of equations. It discusses and compares primary algorithms used, which are called
left-looking, right-looking and multifrontal. It also identi�es potential for improvements.
Chapter 3 introduces the fundamental concepts used in sparse column methods, including
the column elimination tree and unsymmetric supernodes. Column methods are the main
focus of this thesis. In Chapter 4 we study various techniques to improve an existing sequen-
tial algorithm, and quantify the performance gains on a variety of machines. In Chapter 5
we develop a parallel algorithm for shared memory machines, and demonstrate its e�ciency
on a set of parallel computers. We also develop a theoretical model to predict maximum
speedup attainable by the algorithm. Finally, Chapter 6 summarizes the results from this re-
search and discusses the future extensions of this work. Our main contributions are (1) new
techniques to enhance the performance of an existing sequential algorithm for hierarchical
memory machines; (2) a new parallel algorithm and its performance analysis and modeling
for shared memory machines; and (3) portable software for a variety of high-performance
computers.
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Chapter 2

Sparse Solvers Using Direct

Factorizations

In this chapter, we give a brief overview of the algorithms and software that use
direct factorization, or Gaussian elimination, to solve a large sparse linear system of equa-
tions Ax = b. In a direct method, the matrix A is �rst decomposed into the product of
lower triangular matrix L and upper triangular matrix U (or LT if A is symmetric positive
de�nite). Then the two triangular systems Ly = b and Ux = y are solved to obtain the
solution x. In this solution process, the LU factorization usually dominates the execution
time. Over the years a great deal of research e�ort has been devoted to �nding e�cient
ways to perform this factorization. Although many di�erent algorithms exist, the generic
Gaussian elimination algorithm can be written as the following three nested loops:

for do

for do
for do

aij  aij � (aik � akj)=akk ; (2.1)

end for;
end for;

end for;

The loop indices have variable names i, j, and k, but they will have di�erent ranges. Six
possible permutations of i, j and k are possible in the three nested loops. Dongarra et al. [29]
studied the performance impact of each permutation for dense LU factorization algorithms
on vector pipeline machines. Although the generic algorithm is very simple, signi�cant
complications in its actual implementation arise from sparsity, the need for numerical piv-
oting and diverse computer architectures. In the update in Equation (2.1), an aij that was
originally zero will become nonzero if both aik and akj are nonzero. This new nonzero entry
is called �ll. The �lls incur more oating-point arithmetic and more storage. Also in Equa-
tion (2.1), if the pivot akk at step k is too small, the updated entry may become large in
magnitude. The large element will cause instability when it is added to other smaller entries
of A. It is therefore crucial to �nd a good elimination ordering, corresponding to permuting
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the rows and/or columns of the original A into �A = PAQ, so that when factorizing �A the
number of �lls introduced is minimal and the element growth is small. Besides preserving
sparsity and maintaining numerical stability, the e�ciency of an algorithm also depends
very much on how the i-j-k loops are organized around Equation (2.1), and on the data
structures used to manipulate sparsity.

The problem of solving sparse symmetric positive de�nite systems has been studied
extensively and now is fairly well understood. For such a system, the pivots can be chosen
down the diagonal in any order without losing numerical stability. Therefore, the solution
process can be divided into four distinct phases:

1. Finding a good ordering P so that the lower triangular Cholesky factor L of PAPT =
LLT su�ers little �ll;

2. Symbolic factorization to determine the nonzero structure of L;

3. Numeric factorization to compute L;

4. Solution of Ly = b and LTx = y.

In the �rst phase, although it is computationally expensive (NP-hard) to �nd
an optimal P in terms of minimizing �lls, many heuristics have been used successfully in
practice, such as variants of minimum degree orderings [3, 10, 38, 52] and various dissection
orderings based on graph partitioning [15, 58, 92] or hybrid approaches [13, 18, 76].

Two important data structures have been introduced in e�cient implementations
of the Cholesky factorization. One is the elimination tree and another is the supernode. The
elimination tree [100] is de�ned for the Cholesky factor L. Each node in the tree corresponds
to one row/column of the matrix. The edges in the tree can be succinctly represented by
the following parent[�] vector:

parent[j] = min f i > j j lij 6= 0 g :

In graph-theoretic terms, the elimination tree is simply the transitive reduction [2] of the
directed graph G(LT ),1 see Liu [83]. It is the minimal subgraph of G that preserves paths
and provides the smallest possible description of column dependencies in the Cholesky
factor. Liu [83] discusses the use of elimination trees in various aspects of sparse algorithms,
including reordering, symbolic and numeric factorizations, and parallel elimination.

The supernode structure has long been recognized and employed in enhancing the
e�ciency of both the minimum degree ordering [40, 48] and the symbolic factorization [102].
A supernode is a set of contiguous columns in the Cholesky factor L that share essentially the
same sparsity structure. More recently, supernodes have also been introduced in numeric
factorization and triangular solution, in order to make better use of vector registers or
cache memory. Indeed, supernodal [12] and multifrontal [41] elimination allow the use of
dense vector operations for nearly all of the oating-point computation, thus reducing the
symbolic overhead in numeric factorization to a smaller fraction. Overall, the Megaop

1The directed graph of a square matrix has n vertices corresponding to n rows/columns. An edge from
i to j indicates a nonzero in row i and column j of the matrix.
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rates of modern sparse Cholesky codes are comparable to those of dense solvers [87, 95] for
some classes of problems, such as those with a great deal of �ll.

The triangular solution in phase 4 is also dictated by the elimination structure,
where the forward substitution (Ly = b) proceeds from the leaves toward the root of the
tree and the back substitution (LTx = y) proceeds from the root toward the leaves. Since
triangular solution requires many fewer oating-point operations than the factorization, the
time it takes constitutes a small fraction of the total time, typically under 5% in a sequential
algorithm.

For general unsymmetric systems, where pivoting is required to stabilize the un-
derlying algorithm, progress has been less satisfactory than with Cholesky factorization. A
major distinction from symmetric positive de�nite systems is that the nonzero structure of
the factored matrices cannot be determined in advance of the numeric factorization. So both
symbolic and numeric factorizations must interleave. In addition, some algorithms include
a column pivoting strategy to preserve sparsity during the elimination process, mixing the
ordering, symbolic and numeric phases altogether.

Gilbert and Liu [68] introduced elimination dags (directed acyclic graphs), or edags
for short, to study the structure changes during unsymmetric LU factorization. The edags
are transitive reductions of the graphs G(LT) and G(U). Since L and U usually have
di�erent structures, the edags for L and U are often distinct. Furthermore, one node
may have more than one parent in the edag, in contrast to the tree structure. The dags
characterize the triangular factors L and U in the same way that the elimination tree
characterizes the Cholesky factor. They are the minimal subgraphs of G(LT ) and G(U) that
preserve paths and also provide the smallest possible description of the column dependencies
during unsymmetric elimination.

Recent research on unsymmetric systems has concentrated on two basic approaches:
submatrix-based (also called right-looking) methods and column-based (also called left-
looking) methods.2 Submatrix methods use k in the outer loop for Equation (2.1). They
typically use a combination of some form of Markowitz ordering [86] and numerical thresh-
old pivoting [36] to choose the pivot element from the uneliminated submatrix. To illustrate
this, let us assume that the �rst k� 1 stages of Gaussian elimination have been completed.
We may partition A in the blocked form

A =

 
AKK A

K ~K
A ~KK

A ~K ~K

!
;

where K = (1 : k � 1), ~K = (k : n), and AKK is nonsingular.3 Then the factored form of
A can be written as

A =

 
LKK 0
L ~KK

I

! 
I 0
0 R ~K ~K

! 
UKK U

K ~K
0 I

!
:

2Row methods are exactly analogous to column methods, and codes of both sorts exist. We will use
column terminology in this thesis; those who prefer rows may interchange the terms throughout.

3We use Matlab notation for integer ranges and submatrices: r: s or (r: s) is the range of integers (r; r+
1; : : : ; s). If I and J are sets of integers, then A(I;J) is the submatrix of A with rows whose indices are from
I and with columns whose indices are from J . A(:; J) abbreviates A(1 : n; J). nnz(A) denotes the number
of nonzeros in A.
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The reduced submatrix R ~K ~K = A ~K ~K � A ~KK
A�1KKAK ~K is known as the Schur complement

of AKK [71]. For R ~K ~K , let ri denote the number of entries in row i, and let cj denote the
number of entries in column j. The Markowitz count associated with entry (i; j) is de�ned
as (ri� 1)(cj� 1). Now, at stage k of the elimination, the pivot aij is selected from R ~K ~K to
minimize the Markowitz count among those candidates satisfying the following numerical
threshold criterion

jaij j � � max
l�k
jalj j ; (2.2)

where � 2 (0; 1] is a threshold parameter. Although the use of threshold parameter � per-
mits more element growth than classical partial pivoting, it gives the Markowitz ordering
more exibility in selecting pivots to control �ll. Based on this idea, some variations on the
criteria for selecting pivots have been proposed to balance numerical stability and preser-
vation of sparsity. The reader may consult Chapter 7 of Du� et al. [36] for a thorough
treatment of this subject.

Multifrontal approaches [6, 21, 32] are essentially variations of the submatrix meth-
ods. At each stage of the elimination, the update operations for the Schur complement are
not applied directly to the target columns of the trailing submatrix. Instead, they are ac-
cumulated as a sequence of partial update matrices, which are passed through each level
of the elimination tree (or elimination dag in the unsymmetric case) until �nally they are
incorporated into the destination columns. Multifrontal methods have proven to be more
e�cient than the pure right-looking methods for several reasons. These include the ability
to use dense matrix operations on the frontal matrices, reduced indirect addressing, and
localization of memory references. However, multifrontal methods require more working
storage to store the frontal matrices than a pure right-looking algorithm. They also require
more data movement between the working storage and the target storage for the L and U
factors. Furthermore, working storage management is particularly hard in a parallel formu-
lation, because the stack-based organization used for e�ciency in the sequential algorithm
severely limits the degree of parallelism. More sophisticated parallel schemes were used by
Amestoy and Du� [6, 35], which came with nontrivial runtime overhead.

Recent submatrix codes include MA48 [33], Amestoy and Du�'s symmetric pat-
tern multifrontal code MUPS [5], and Davis and Du�'s unsymmetric multifrontal code
UMFPACK [21, 23].

Column methods, by contrast, take j as the outer loop for Equation (2.1) and typ-
ically use classical partial pivoting. The pivot is chosen from the current column according
to numerical considerations alone; the columns may be preordered before factorization to
preserve sparsity. Figure 2.1 sketches a generic left-looking column LU factorization. No-
tice that the bulk of the numeric computation occurs in column-column updates (\col-col
update" on line 5), or, to use BLAS terminology [30], in sparse AXPYs.

Column methods have the advantage that preordering the columns for sparsity is
completely separate from the factorization, just as in the symmetric positive de�nite case.
However, symbolic factorization cannot be separated from numeric factorization, because
the nonzero structures of the factors depend on the numerical pivoting choices. Thus,
column codes must do some symbolic factorization at each stage; typically this amounts
to predicting the structure of each column of the factors immediately before computing
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1. for column j = 1 to n do
2. f = A(: ; j);
3. Symbolic factorization: determine which columns of L will update f ;
4. for each updating column r < j in topological order do
5. Col-col update: f = f � f(r) �L(: ; r);
6. end for;
7. Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;
8. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);
9. Scale: L(j:n; j) = L(j:n; j)=L(j; j);
10. end for;

Figure 2.1: Left-looking LU factorization with column-column updates.

it (line 3 in Figure 2.1). Pivot search is con�ned within one column, which can be done
inexpensively. One disadvantage of the column methods is that, unlike Markowitz ordering,
they do not reorder the columns dynamically, so the �lls may be greater.

An early example of such a code is Sherman'sNSPIV [103] (which is actually a row
code). Gilbert and Peierls [64] showed how to use depth-�rst search and topological ordering
to obtain the structure of each factor column. This gives a column code that runs in total
time proportional to the number of oating-point operations, unlike earlier partial pivoting
codes. We shall refer to their code as GP in our performance study in Chapter 4. Eisenstat
and Liu [44] designed a pruning technique to reduce the amount of structural information
required for the symbolic factorization, which we will describe further in Section 4.3. The
result was that the time and space for symbolic factorization were typically reduced to a
small fraction of the entire factorization. This improved GP code is referred to as GP-Mod.
GP and GP-Mod are used in Matlab 1992 and 1996, respectively.

In view of the success of supernodal techniques for symmetric matrices, it is natural
to consider the use of supernodes to enhance the performance of unsymmetric solvers. One
di�culty is that, unlike the symmetric case, supernodal structure cannot be determined in
advance but rather emerges depending on pivoting choices during the factorization. Eisen-
stat, Gilbert and Liu [45] discussed how to detect supernodes dynamically. In Chapter 4
we will review their approach and quantify the performance gains.

There have been debates about whether submatrix methods are preferable to col-
umn methods, or vice versa. Their memory reference patterns are markedly di�erent.
Heath, Ng and Peyton [75] gave a thorough survey of many distinctions between left-looking
and right-looking sparse Cholesky factorization algorithms. On uniprocessor machines for
in-memory problems, Ng and Peyton [89] and Rothberg [99] conducted extensive experi-
ments with sparse Cholesky factorization, and concluded that the supernodal left-looking
algorithm is somewhat better than the multifrontal approach both in runtime and work-
ing storage requirement. Gupta and Kumar [72] developed a two-dimensional multifrontal
Cholesky algorithm on 1024 nodes of the Cray T3D, and achieved up to 20 Gops factor-
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ization rate for one problem. Rothberg [97] developed a two-dimensional block oriented
right-looking Cholesky algorithm, and achieved up to 1.7 Gops factorization rate on 128
nodes of the Intel Paragon. Rothberg and Schreiber [98] further improved its performance
by better block mapping, and achieved up to 3.2 Gops factorization rate on 196 nodes of
the Intel Paragon.

No comprehensive comparisons have yet been made for the unsymmetric LU fac-
torization algorithms. In this case it is even harder to make fair comparisons because, in
addition to the considerations above, the trade-o� between numerical stability and sparsity
plays an important role and depends very much on the input matrices. Although detailed
comparisons are valuable to identify the \best" algorithm (or the best combination), they
are beyond the scope of this thesis, and will remain as part of our future work. See Chapter 6
for a list of available sparse codes. The goal of this thesis is to make the column algorithm as
fast as possible on a variety of high performance architectures and for a variety of problems.
From now on, we will focus exclusively on the left-looking column methods.
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Chapter 3

Fundamentals of Sparse Column

Methods

In this chapter, we present several important data structures and tools used
throughout this thesis. We do not intend to review all the basics of sparse matrix com-
putations, such as matrix representation, nonzero manipulation, and graph-theoretic ter-
minology. For that purpose, George and Liu [51] and Du� et al. [36] serve as excellent
sources. We hereby con�ne ourselves only to the most relevant concepts. In Section 3.1,
we elaborate on the roles of row interchanges (partial pivoting) and column interchanges to
maintain numerical stability and to preserve sparsity. Section 3.2 introduces unsymmetric
supernodes, which are essential in order to use higher level BLAS [27, 28]. Section 3.3
gives the de�nition and properties of the column elimination tree, which is an important
tool to assist in the sparse LU factorization, particularly in a parallel setting. Both unsym-
metric supernodes and the column elimination tree are generalizations of their symmetric
counterparts.

3.1 Row and column permutations

To solve a linear system

Ax = b ; (3.1)

we �rst use Gaussian elimination to transform A into a lower triangular matrix L and an
upper triangular matrix U . In this section, we examine the possible row and/or column
permutations associated with a sparse Gaussian elimination algorithm. In e�ect, we perform
the following decomposition

PAQT = LU ; (3.2)

where P and Q are permutation matrices that reorder the rows and columns of A, respec-
tively. In general, P and Q are di�erent. With the factorization (3.2) at hand, the solution
of Equation (3.1) is then the same as the solution x of the transformed system

PAQTQx = Pb : (3.3)
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Equation (3.3) is solved by a forward substitution Ly = Pb for y, a back-substitution Uz = y

for z, and �nally a permutation x = QTz for x. In the next two subsections, we will study
the purpose of applying P and Q.

3.1.1 Partial pivoting

It is well known that for the special class of problems where A is symmetric and
positive de�nite, pivots can be chosen down the diagonal in order [71, Chapter 5]. The
factorization thus obtained can be written as A = LLT , which is known as Cholesky de-
composition.

For general unsymmetric A, however, it is possible to encounter arbitrarily small
pivots on the diagonal. If we still pivot on the diagonal, large element growth may occur,
yielding an unstable algorithm. This problem can be alleviated by pivoting on the element
with largest magnitude in each column, interchanging rows when needed. This process is
called partial pivoting. The e�cacy of partial pivoting (as opposed to the more costly com-
plete pivoting) to maintain numerical stability is well studied in a large body of literature;
for example, see [71, Chapter 4].

When partial pivoting is incorporated, Gaussian elimination can be written as

Mn�1Pn�1Mn�2Pn�2 : : :M1P1A = U ; (3.4)

where Pk is an elementary permutation matrix representing the row interchange at step k,
Mk corresponds to the k-th Gauss transformation. It is easy to see that we can rewrite Equa-
tion (3.4) as

PA = LU ; (3.5)

where P = Pn�1 : : :P1, L = P (P1L1 : : :Pn�1Ln�1), and Lk =M�1
k is a unit lower triangular

matrix with its kth column containing the multipliers at step k.
It is fairly straightforward to implement a dense partial pivoting code. For a sparse

matrix, however, o�-diagonal pivoting is tremendously di�culty to implement mainly due
to the following reason. The nonzero patterns in L and U depend on the row interchanges
and cannot be predetermined precisely based solely on the structure of A. This can be best
illustrated by the following example given by Gilbert [66]. Let the structure of A be0

B@ 1
� 2
� 3

1
CA :

Depending on the relative magnitudes of the nonzero entries, pivoting could cause the
structure of U to be any of the four outcomes:0

B@ 1
2
3

1
CA ;

0
B@ 1 �

2 �
3

1
CA ;

0
B@ 1 �

2
3

1
CA ;

0
B@ 1 �

2 �
3

1
CA :
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In consequence, the symbolic nonzero structure prediction cannot be treated as
a separate process completely decoupled from numerical factorization, as is normally done
in the sparse Cholesky factorization. For an e�cient sparse partial pivoting code, we must
design both e�cient numerical kernels and fast symbolic algorithms. These dual goals carry
over to parallel algorithms as well.

3.1.2 Ordering for sparsity

Arranging the equations and variables in an appropriate order so that L and U
su�er low �ll is an important issue, because low �ll implies fewer oating-point operations
and low storage requirement.

A canonical example is a symmetric arrow matrix shown below0
BBB@
1 � � �
� 2
� 3
� 4

1
CCCA =)

0
BBB@
1 �

2 �
3 �

� � � 4

1
CCCA ;

where the original order on the left results in full L and U but the new order on the right
preserves all zeros, provided the diagonal entries are numerically acceptable.

In the symmetric positive de�nite case, an ordering algorithm works only on the
graph of A and a sequence of elimination graphs [51] thereafter. It does not need to know
the numerical values of A. In the unsymmetric case, however, the elimination graph at
each step changes with the numerical pivot selection, as we saw in the previous section.
The question arises whether it is still possible to choose a �ll-reducing ordering before the
factorization begins. The answer is partially positive. The essence of our approach is based
on a result proved by George and Ng [56]. Let Lc denote the symbolic Cholesky factor of
the normal equations matrix ATA, in the absence of coincidental numerical cancellation.1

They showed that, if L is stored as P1L1 : : :Pn�1Ln�1, the structure of L is contained in
the structure of Lc, and the structure of U is contained in the structure of LTc . This is true
regardless of the numerical partial pivoting (row permutation P in Equation (3.5)). It is
thus desirable to choose an ordering Q such that the Cholesky factor of QATAQT su�ers
little �ll. Once a good Q is obtained, it is then applied to the columns of A before LU
factorization. One would expect that factoring the reordered matrix AQT tends to produce
less �ll in both L and U compared to factoring the original A.

In principle, any ordering heuristic used in the symmetric case can be applied to
ATA to arrive at Q. The column minimum degree algorithm used in Matlab [62] is the
�rst e�cient implementation of the minimum degree algorithm on ATA without explicitly
forming the nonzero structure of ATA. In recent work of Davis et al. [24], better minimum
degree algorithms for ATA are under investigation that will improve both �ll and runtime.

To summarize, in our column factorization methods, the row permutation P is
used to maintain numerical stability and is obtained in the course of elimination. The

1Throughout the thesis, when we refer to the structure of a matrix, such as L and U , we always ignore
numerical cancellation. This applies to both reordering phase and the symbolic algorithms to be discussed
in Section 4.3.
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column permutation Q is used to control sparsity and is computed and applied prior to the
factorization. With these two permutations, the actual factorization performed is what we
see in Equation (3.2) in the beginning of this section.

3.2 Unsymmetric supernodes

The idea of a supernode is to group together columns with the same nonzero struc-
ture, so they can be treated as a dense matrix for storage and computation. Supernodes
were originally used for sparse Cholesky factorization; the �rst published results are by
Ashcraft, Grimes, Lewis, Peyton, and Simon [12]. In the factorization A = LLT , a super-
node is a range (r: s) of columns of L with the same nonzero structure below the diagonal;
that is, L(r: s; r: s) is full lower triangular and every row of L(s+ 1:n; r: s) is either full or
zero. (In Cholesky, supernodes need not consist of contiguous columns, but we will consider
only contiguous supernodes.)

Ng and Peyton [87] analyzed the e�ect of supernodes in Cholesky factorization on
modern uniprocessor machines with memory hierarchies and vector or superscalar hardware.
We use Figure 3.1 to illustrate all the bene�ts from supernodes. All the updates from
columns of the supernode (r1 : s1) can be summed into a packed dense vector before one
single sparse update is performed. This reduces indirect addressing, and allows the inner
loops to be unrolled. In e�ect, a sequence of column-column updates is replaced by a
supernode-column update (loops 5{9). This so-called \sup-col update" can be implemented
using a call to a standard dense BLAS-2 matrix-vector multiplication kernel [27]. This
idea can be further extended to supernode-supernode updates (\sup-sup update", loops 2{
12), which can be implemented using a BLAS-3 dense matrix-matrix kernel [28]. Sup-sup
update can reduce memory tra�c by an order of magnitude, because a supernode in the
cache can participate in multiple column updates. Ng and Peyton reported that a sparse
Cholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 times as fast as
a col-col algorithm. Indeed, supernodes have become a standard tool in sparse Cholesky
factorization [12, 87, 95, 105].

To sum up, supernodes as the source of updates (line 4) help because:

1. The inner loop (line 6) over rows i has no indirect addressing. (Sparse BLAS-1 is
replaced by dense BLAS-1.)

2. The outer loop (line 5) over columns k in the supernode can be unrolled to save
memory references. (BLAS-1 is replaced by BLAS-2.)

Supernodes as the destination of updates (line 1) help because:

3. Elements of the source supernode can be reused in multiple columns j of the destina-
tion supernode to reduce cache misses. (BLAS-2 is replaced by BLAS-3.)

Supernodes in sparse Cholesky can be determined during symbolic factorization,
before the numeric factorization begins. However, in sparse LU , the nonzero structure
cannot be predicted before numeric factorization, so we must identify supernodes on the
y. Furthermore, since the factors L and U are no longer transposes of each other, we must
generalize the de�nition of a supernode.
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1. for each destination supernode (r2 : s2) do
2. for j = r2 to s2 do

3. f = A(j : n; j);
4. for each source supernode (r1 : s1) < (r2 : s2) with L(j; r1 : s1) 6= 0 do
5. for k = r1 to s1 do

6. for i = j to n with L(i; k) 6= 0 do
7. f = f � L(i; k) �L(j; k);
8. end for;
9. end for;
10. end for;
11. L(j : n; j) = f ;
12. end for;
13. Inner factorization for L(r2 : n; r2 : s2);
14. end for;

2 s2

r 2

s2

r

L

r s11

Figure 3.1: Left-looking Cholesky factorization with supernode-supernode updates.
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T1 T2

Dense

T3 T4

Figure 3.2: Four possible types of unsymmetric supernodes.

3.2.1 De�nition of a supernode

Eisenstat, Gilbert and Liu [45] considered several possible ways to generalize the
symmetric de�nition of supernodes to unsymmetric factorization. Here, we present all their
characterizations and choose the most appropriate one to use. We de�ne F = L+U � I to
be the �lled matrix containing both L and U , where PAQT = LU . Figure 3.2 is a schematic
of de�nitions T1 through T4.

T1. Same row and column structures: A supernode is a range (r: s) of columns of L and
rows of U , such that the diagonal block F (r: s; r: s) is full, and outside that block
all the columns of L in the range have the same structure and all the rows of U in
the range have the same structure. T1 supernodes make it possible to do sup-sup
updates, realizing the same three bene�ts enjoyed by Cholesky.

T2. Same column structure in L: A supernode is a range (r: s) of columns of L with
the triangular diagonal block full and the same structure below the diagonal block.
T2 supernodes allow sup-col updates, realizing the �rst two bene�ts.

T3. Same column structure in L, full diagonal block in U : A supernode is a range (r: s)
of columns of L and U , such that the diagonal block F (r: s; r: s) is full, and below
the diagonal block the columns of L have the same structure. T3 supernodes allow
sup-col updates, like T2. In addition, if the storage for a supernode is organized as for
a two-dimensional array (for BLAS-2 or BLAS-3 calls), T3 supernodes do not waste
any space in the diagonal block of U .

T4. Same column structure in L and U : A supernode is a range (r: s) of columns of
L and U where all columns of F (:; r : s) have identical structure. (Since the diagonal
is nonzero, the diagonal block must be full.) T4 supernodes allow sup-col updates,
and also simplify storage of L and U .

T5. Supernodes of ATA: A supernode is a range (r: s) of columns of L corresponding to a
Cholesky supernode of the symmetric matrix ATA. T5 supernodes are motivated by
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T1 T2 T3 T4

median 0.236 0.345 0.326 0.006
mean 0.284 0.365 0.342 0.052

Table 3.1: Fraction of nonzeros not in �rst column of supernode.

George and Ng's observation [59] that (with suitable representations) the structures
of L and U in the unsymmetric factorization PA = LU are contained in the structure
of the Cholesky factor of ATA. In unsymmetric LU , these supernodes themselves are
sparse, so we would waste time and space operating on them. Thus we do not consider
them further.

Supernodes are only useful if they actually occur in practice. The occurrence of
symmetric supernodes is related to the clique structure of the chordal graph of the Cholesky
factor, which arises because of �ll during the factorization. Unsymmetric supernodes seem
harder to characterize, but they also are related to dense submatrices arising from �ll. Eisen-
stat et al. [45] measured the supernodes according to each de�nition for 126 unsymmetric
matrices from the Harwell-Boeing sparse matrix test collection [31] under various column
orderings. Table 3.1 tabulates the results from their measurements. It shows, for each
de�nition, the fraction of nonzeros of L that are not in the �rst column of a supernode; this
measures how much row index storage is saved by using supernodes. Corresponding values
for symmetric supernodes for the symmetric Harwell-Boeing structural analysis problems
usually range from about 0.5 to 0.9. Larger numbers are better, indicating larger super-
nodes. We reject T4 supernodes as being too rare to make up for the simplicity of their
storage scheme. T1 supernodes allow BLAS-3 updates, but as we will see in Section 4.2 we
can get most of their cache advantage with the more common T2 or T3 supernodes by using
sup-panel updates. Thus we conclude that either T2 or T3 is the best choice. Our code
uses T2, which gives slightly larger superndoes than T3 at a small extra cost in storage,
because we store the triangular matrix in full array, with the upper diagonal entries padded
with the elements from U .

Figure 3.3 shows a sample matrix, and the nonzero structure of its factors with no
pivoting. Using de�nition T2, this matrix has four supernodes: f1; 2g, f3g, f4; 5; 6g, and
f7; 8; 9; 10g. For example, in columns 4, 5, and 6 the diagonal blocks of L and U are full,
and the columns of L all have nonzeros in rows 8 and 9. By de�nition T3, the matrix has
�ve supernodes: f1; 2g, f3g, f4; 5; 6g, f7g, and f8; 9; 10g. Column 7 fails to join f8; 9; 10g
as a T3 supernode because u78 is zero.

3.2.2 Storage of supernodes

A standard way to organize storage for a sparse matrix is as a one-dimensional
array of nonzero values in column major order, plus integer arrays giving row numbers and
column starting positions. This is called compressed column storage, and is also the storage
scheme used in the Harwell-Boeing collection. Figure 3.4 illustrates the storage for the �rst
three columns of the sample matrix A in Figure 3.3.
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Figure 3.3: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.

a a a a a  a a a a    a11   

1     5     7     11     15     16     20     24     26     31

21 61 81 12 22 13 33 83 10,3a a a a a  a a a a    a11   21 61 81 12 22 13 33 83 10,3

1     2     6     8 1     2 1     3     8     10

Values

Row
Subscripts

Column
Pointers

Figure 3.4: Compressed column storage for a sample sparse matrix.
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Figure 3.5: Supernodal structure (by de�nition T2) of the factors of the sample matrix.

We use this layout for both L and U , but with a slight modi�cation: we store the
entire square diagonal block of each supernode as part of L, including both the strict lower
triangle of values from L and the upper triangle of values from U . We store this square block
as if it were completely full (it is full in T3 supernodes, but its upper triangle may contain
zeros in T2 supernodes). This allows us to address each supernode as a two-dimensional
array in calls to BLAS routines. In other words, if columns (r: s) form a supernode, then
all the nonzeros in F (r:n; r: s) are stored as a single dense two-dimensional array. This
also lets us save some storage for row indices: only the indices of nonzero rows outside the
diagonal block need be stored, and the structures of all columns within a supernode can be
described by one set of row indices. This is similar to the e�ect of compressed subscripts in
the symmetric case [102].

We represent the part of U outside the supernodal blocks with a compressed col-
umn storage: the values are stored by columns, with a companion integer array the same
size to store row indices; another array of n integers indicates the start of each column.

Figure 3.5 shows the structure of the factors in the example from Figure 3.3, with
sk denoting a nonzero in the k-th supernode and uk denoting a nonzero in the k-th column
of U outside the supernodal block. Figure 3.6 shows the storage layout. (We omit the
indexing vectors that point to the beginning of each supernode and the beginning of each
column of U .)

3.3 Column elimination tree

Since our de�nition requires the columns of a supernode to be contiguous, we
should get larger supernodes if we bring together columns of L with the same nonzero
structure. But the column ordering is �xed, for sparsity, before numeric factorization; what
can we do?

In Cholesky factorization, the so-called fundamental supernodes can be made con-
tiguous by permuting the matrix (symmetrically) according to a postorder on its elimination
tree [11]. This is because each fundamental supernode corresponds to a chain of nodes in
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Figure 3.6: Storage layout for factors of the sample matrix, using T2 supernodes.

the tree, and in a postordering of the tree, the nodes within every subtree of the elimination
tree will be numbered consecutively. This postorder is an example of what Liu calls an
equivalent reordering [80], which does not change the sparsity of the Cholesky factor L, nor
the amount of arithmetic to compute L. (Liu proved that any topological ordering, which
numbers the children nodes before their parent node, is an equivalent reordering of the
given matrix.) The postordered elimination tree can also be used to locate the supernodes
before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analog of the
symmetric elimination tree is the column elimination tree, or column etree for short. The
vertices of this tree are the integers 1 through n, representing the columns of A. The column
etree of A is the (symmetric) elimination tree of ATA provided there is no cancellation in
computing ATA. More speci�cally, if Lc denotes the Cholesky factor of ATA, then the
parent of vertex j is the row index i of the �rst nonzero entry below the diagonal of column
Lc(:; j). The column etree can be computed from A in time almost linear in the number of
nonzeros of A by a variation of an algorithm of Liu [80].

The following theorem says that the column etree represents potential dependen-
cies among columns in LU factorization, and that for strong Hall matrices (that is, they
cannot be permuted to nontrivial block triangular forms), no stronger information is ob-
tainable from the nonzero structure of A. Note that column i updates column j in LU
factorization if and only if uij 6= 0.

Theorem 1 (Column Elimination Tree) [63] Let A be a square, nonsingular, possibly
unsymmetric matrix, and let PA = LU be any factorization of A with pivoting by row
interchanges. Let T be the column elimination tree of A.

1. If vertex i is an ancestor of vertex j in T , then i � j.

2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .
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3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .

4. Suppose in addition that A is strong Hall. If vertex j is the parent of vertex i in T ,
then there is some choice of values for the nonzeros of A that makes uij 6= 0 when the
factorization PA = LU is computed with partial pivoting.

Just as a postorder on the symmetric elimination tree brings together symmetric
supernodes, we expect a postorder on the column etree to bring together unsymmetric
supernodes. Thus, before we factor the matrix, we compute its column etree and permute
the matrix columns according to a postorder on the tree. The following theorem, due to
Gilbert [67], shows that this does not change the factorization in any essential way.

Theorem 2 Let A be a matrix with column etree T . Let � be a permutation such that
whenever �(i) is an ancestor of �(j) in T , we have i � j. Let P be the permutation matrix
such that � = P � (1:n)T . Let �A = PAPT .

1. �A = A(�; �).

2. The column etree �T of �A is isomorphic to T ; in particular, relabeling each node i of
�T as �(i) yields T .

3. Suppose in addition that �A has an LU factorization without pivoting, �A = �L �U . Then
PT �LP and PT �UP are respectively unit lower triangular and upper triangular, so
A = (PT �LP )(PT �UP ) is also an LU factorization.

Remark: Liu [80] attributes to F. Peters a result similar to part (3) for the symmetric
positive de�nite case, concerning the Cholesky factor and the (usual, symmetric) elimination
tree. For completeness, we give the proof by Gilbert as follows.

Proof: Part (1) is immediate from the de�nition of P . Part (2) follows from Corollary 6.2
in Liu [80], with the symmetric structure of the column intersection graph of our matrix A
taking the place of Liu's symmetric matrix A. (Liu exhibits the isomorphism explicitly in
the proof of his Theorem 6.1.)

Now we prove part (3). We have a�(i)�(j) = �aij for all i and j. Write L = PT �LP

and U = PT �UP , so that l�(i)�(j) = �lij and u�(i)�(j) = �uij . Then A = LU ; we need only
show that L and U are triangular.

Consider a nonzero u�(i)�(j) of U . In the triangular factorization �A = �L �U , ele-
ment �uij is equal to u�(i)�(j) and is therefore nonzero. By part (3) of Theorem 1, then, j is
an ancestor of i in �T . By the isomorphism between �T and T , this implies that �(j) is an
ancestor of �(i) in T . Then it follows from part (1) of Theorem 1 that �(j) � �(i). Thus
every nonzero of U is on or above the diagonal, so U is upper triangular. A similar argument
shows that every nonzero of L is on or below the diagonal, so L is lower triangular. The
diagonal elements of L are a permutation of those of �L, so they are all equal to 1. 2

Since the triangular factors of A are just permutations of the triangular factors of
PAPT , they have the same number of nonzeros. (nnz(L) = nnz(�L) and nnz(U) = nnz( �U).)
Indeed, they require the same arithmetic to compute; the only possible di�erence is the order
of updates. If addition for updates is commutative and associative, this implies that with
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partial pivoting (i; j) is a legal pivot in �A i� (�(i); �(j)) is a legal pivot in A. In oating-
point arithmetic, the di�erent order of updates could conceivably change the pivot sequence.
Thus we have the following corollary.

Corollary 1 Let � be a postorder on the column elimination tree of A, let P1 be any
permutation matrix, and let P2 be the permutation matrix with � = P2 �(1:n)T . If P1APT

2 =
LU is an LU factorization, then so is (PT

2 P1)A = (PT
2 LP2)(P

T
2 UP2). In exact arithmetic,

the former is an LU factorization with partial pivoting of APT
2 if and only if the latter is

an LU factorization with partial pivoting of A.

This corollary says that an LU code can permute the columns of its input matrix
by postorder on the column etree, and then fold the column permutation into the row
permutation on output. Thus our code has the option of returning either four matrices P1,
P2, L, and U (with P1APT

2 = LU), or just the three matrices PT
2 P1, P

T
2 LP2, and P

T
2 UP2,

which are a row permutation and two triangular matrices. The advantage of returning all
four matrices is that the columns of each supernode are contiguous in L, which permits the
use of a BLAS-2 supernodal triangular solve for the forward-substitution phase of a linear
system solver. The supernodes are not contiguous in PT

2 LP2.
We note that in the symmetric positive de�nite case, the elimination tree has

long been employed as a major task scheduling model to design parallel sparse Cholesky
factorization. At a large-grained level, \parallel pivots" can be chosen from the disjoint
subtrees and eliminated simultaneously by di�erent processors. At a �ne-grained level,
more than one processor cooperates to eliminate one pivot; this is necessary at later stages
of the elimination. In the unsymmetric case, the column etree can play a similar role.
However, there exist some subtle di�erences between the two computational models, which
we will illustrate in Chapter 5 when we study parallel LU factorization.

3.4 Arti�cial supernodes

We have explored various ways of allowing sparsity in a supernode. We experi-
mented with both T2 and T3 supernodes, and found that T2 supernodes (those with only
nested column structures in L) are slightly larger than T3 supernodes and give slightly
better performance. Our code uses T2 at a small extra cost in storage.

We observe that, for most matrices, the average size of a supernode is only about 2
to 3 columns (though a few supernodes are much larger). A large percentage of supernodes
consist of only a single column, many of which are leaves of the column etree. Therefore we
have devised a scheme to merge groups of columns at the fringe of the etree into arti�cial
supernodes regardless of their row structures. A parameter r controls the granularity of
the merge. Our merge rule is: node i is merged with its parent node j when the subtree
rooted at j has at most r nodes. This may introduce some logical zeros. In practice, the
best values of r are generally between 4 and 8, and yield improvements in running time of
5% to 15%. For such values of r, the extra storage needed to store the logical zeros is very
small for all our test matrices.

Arti�cial supernodes are a special case of relaxed supernodes, which were used in
the context of multifrontal methods for symmetric systems [11, 40]. Ashcraft and Grimes
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allow a small number of zeros in the structure of any supernode, thus relaxing the condition
that the columns must have strictly nested structures. It would be possible to use this
idea in the unsymmetric code as well, though we have not experimented with it. Relaxed
supernodes could be constructed either on the y (by relaxing the nonzero count condition
described in Section 4.3.3), or by preprocessing the column etree to identify small subtrees
that we would merge into supernodes.



22

Chapter 4

Supernode-Panel Sparse

Factorization with Partial

Pivoting

In this chapter, we show how to modify the column-column algorithm to use
supernode-column updates and supernode-panel updates. Sections 4.1 and 4.2 describe the
organization of the numerical kernels in the supernodal algorithms. Section 4.3 describes
the symbolic factorization that determines which supernodes update which columns and
produce �lls in the factored matrices, identi�es the boundaries between supernodes, and also
performs the symmetric structure reduction. Following the description of the algorithms,
we present performance results obtained on several high performance machines, including
IBM RS6000-590, MIPS R8000, and DEC Alpha 21164. Our test matrices were collected
from diverse application �elds with varied characteristics. We also analyze at great length
the performance of the new algorithm.

4.1 Supernode-column updates

Eisenstat et al. [45] �rst introduced the supernode-column algorithm, as formulated
in Figure 4.1. We refer to this code as SupCol. The only di�erence from the column-column
algorithm (Figure 2.1) is that all the updates to a column from a single supernode are done
together. Consider a supernode (r: s) that updates column j. The coe�cients of the updates
are the values from a segment of column j of U , namely U(r: s; j). The nonzero structure
of such a segment is particularly simple: all the nonzeros are contiguous, and follow all the
zeros (as proved in Corollary 2, to appear in Section 4.3.1). Thus, if k (r � k � s) is the
index of the �rst nonzero row in U(r: s; j), the updates to column j from supernode (r: s)
come from columns k through s. Since the supernode is stored as a dense matrix, these
updates can be performed by a dense lower triangular solve (with the matrix L(k: s; k: s))
and a dense matrix-vector multiplication (with the matrix L(s + 1:n; k: s)). As described
in Section 4.3, the symbolic phase determines the value of k, that is, the position of the
�rst nonzero in the segment U(r: s; j).

The advantages of using supernode-column updates are similar to those in the
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1. for column j = 1 to n do
2. f = A(: ; j);
3. Symbolic factorization: determine which supernodes of L will update f ;
4. Determine whether j belongs to the same supernode as j � 1;
5. for each updating supernode (r: s) < j in topological order do
6. Apply supernode-column update to column j:
7. f(r: s) = L(r: s; r: s)�1 � f(r: s); /* Now f(r: s) = U(r: s; j) */
8. f(s+ 1:n) = f(s + 1:n)� L(s+ 1:n; r: s) � f(r: s);
9. end for;
10. Pivot: interchange f(j) and f(m), where jf(m)j = max jf(j:n)j;
11. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);
12. Scale: L(j:n; j) = L(j:n; j)=L(j; j);
13. Prune symbolic structure based on column j;
14. end for;

j:n J

L

L

J J

UJ J
r

s

j

k

r s j

Figure 4.1: LU factorization with supernode-column updates. J = 1: j � 1.
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symmetric case [87]. E�cient BLAS-2 matrix-vector kernels can be used for the triangular
solve and matrix-vector multiply. Furthermore, all the updates from the supernodal columns
can be collected in a temporary packed vector before doing a single scatter into a full-length
working array of size n, called SPA (for sparse accumulator [62]). This reduces the amount
of indirect addressing. The use of the SPA allows random access to the entries of the active
column. The scatter operations are buried in lines 7 and 8 in Figure 4.1.

4.2 Supernode-panel updates

We can improve the supernode-column algorithm further on machines with a mem-
ory hierarchy by changing the data access pattern. The data we are accessing in the inner
loop (lines 5{9 in Figure 4.1) includes the destination column j and all the updating super-
nodes (r: s) to the left of column j. Column j is accessed many times, while each supernode
(r: s) is used only once. In practice, the number of nonzero elements in column j is much
less than that in the updating supernodes. Therefore, the access pattern given by this loop
provides little opportunity to reuse cached supernodes. In particular, the same supernode
(r: s) may be needed to update both columns j and j + 1. But when we factor the (j + 1)-
st column (in the next iteration of the outer loop), we will have to fetch supernode (r: s)
again from memory, instead of from cache (unless the supernodes are small compared to
the cache).

To exploit memory locality, we factor several columns (say w of them) at a time in
the outer loop, so that one updating supernode (r: s) can be used to update as many of the
w columns as possible. We refer to these w consecutive columns as a panel, to di�erentiate
them from a supernode; the row structures of these columns may not be correlated in any
fashion, and the boundaries between panels may be di�erent from those between super-
nodes. The new method requires rewriting the doubly nested loop as the triple loop shown
in Figure 4.2. This is analogous to loop tiling techniques used in optimizing compilers to
improve cache behavior for two-dimensional arrays with regular stride. It is also somewhat
analogous to the supernode-supernode updates that Ng and Peyton [87], and Rothberg and
Gupta [95] have used in symmetric Cholesky factorization.

The structure of each supernode-column update is the same as in the supernode-
column algorithm. For each supernode (r: s) to the left of column j, if ukj 6= 0 for some
r � k � s, then uij 6= 0 for all k � i � s. Therefore, the nonzero structure of the panel of U
consists of dense column segments that are row-wise separated by supernodal boundaries,
as in Figure 4.2. Thus, it is su�cient for the symbolic factorization algorithm to record only
the �rst nonzero position of each column segment. As detailed in Section 4.3.4, symbolic
factorization is applied to all the columns in a panel at once, before the numeric-factorization
loop over all the updating supernodes.

In a dense factorization, the entire supernode-panel update in lines 3{7 of Fig-
ure 4.2 would be implemented as two BLAS-3 calls: a dense triangular solve with w
right-hand sides, followed by a dense matrix-matrix multiply. In the sparse case, this is
not possible, because the di�erent supernode-column updates begin at di�erent positions k
within the supernode, and the submatrix U(r: s; j: j+w� 1) is not dense. Thus the sparse
supernode-panel algorithm still calls the level-2 BLAS. However, we get similar cache ben-
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1. for column j = 1 to n step w do

2. Symbolic factor: determine which supernodes will update
any of F (: ; j: j+ w � 1);

3. for each updating supernode (r: s) < j in topological order do
4. for column jj = j to j + w � 1 do
5. Apply supernode-column update to column jj;
6. end for;
7. end for;
8. Inner factorization:

Apply the sup-col algorithm on columns and supernode within the panel;
9. end for;

k
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j j+w-1

sr
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s
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L

J J

J J

j:n J
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Figure 4.2: The supernode-panel algorithm, with column-wise blocking. J = 1: j � 1.
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e�ts to the level-3 BLAS, at the cost of doing the loop reorganization ourselves. Thus we
call the kernel of this algorithm a \BLAS-212" method.

In the doubly nested loop 3{7, the ideal circumstance is that all w columns in
the panel require updates from supernode (r: s). Then this supernode will be used w times
before it is forced out of the cache. There is a trade-o� between insu�cient reuse (if w is too
small) and cache thrashing (if w is too large). For this scheme to work e�ciently, we need
to reduce two kinds of cache misses. One is due to cache capacity; that is, we must keep w
small enough that all the data accessed in this doubly nested loop �t in cache. Another is
due to cache conict between the source supernode and the destination panel, even though
the cache is in principle large enough to hold both. This has to do with the memory layout
of the two data structures and the cache block-placement policy. One possibility to avoid
this cache conict is to copy the source supernode and the destination panel into bu�ers to
perform the update.

4.2.1 Outer and inner factorization

At the end of the supernode-panel update (line 7), columns j through j + w � 1
of L and U have received all their updates from columns to the left of j. We call this
the outer factorization. What remains is to apply updates that come from columns within
the panel. This amounts to forming the LU factorization of the panel itself (in columns
(j: j + w � 1), and rows (j:n)). This inner factorization is performed by the supernode-
column algorithm, almost exactly as shown in Figure 4.1. The inner factorization includes
a columnwise symbolic factorization just as in the supernode-column algorithm. The inner
factorization also includes the supernode identi�cation, partial pivoting, and symmetric
structure reduction for the entire algorithm.

4.2.2 Reducing cache misses by row-wise blocking

Our �rst experiments with the supernode-panel algorithm showed speedups of
around 20{30% for some medium-sized problems. However, the improvement for large
matrices was often only a few percent. We now study the reasons and remedies for this.

To implement loops 3{7 in Figure 4.2, we �rst expand the nonzeros of the panel
columns of A into an n by w full working array, that is, the SPA. An n by 1 full array stores
the results of the BLAS operations, and the updates are scattered into the SPA. At the end
of panel factorization, the data in the SPA are copied into storage for L and U . Although
increasing the panel size w gives more opportunity for data reuse, it also increases the size
of the active data set that must �t into cache. The supernode-panel update loop accesses
the following data (which we call the working set):

� the nonzeros in the updating supernode L(r:n; r: s).

� the n by w SPA structure, and an n by 1 full array.

By instrumenting the code, we found that the working sets of large matrices are much larger
than the cache size. Hence, cache thrashing limits performance.

We experimented with a scheme suggested by Rothberg [96], in which the SPA has
only as many rows as the number of nonzero rows in the panel (as predicted by symbolic
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1. for j = 1 to n step w do
2. � � �

3. for each updating supernode (r: s) < j in topological order do
4. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);
5. for each row block B in L(s+ 1:n; r: s) do
6. for jj = j to j + w � 1 do
7. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);
8. end for;
9. end for;
10. end for;
11. � � �

12 end for;

Figure 4.3: The supernode-panel algorithm, with 2-D blocking.

factorization), and an extra indirection array of size n is used to address the SPA. Unfor-
tunately, the cost incurred by double indirection is signi�cant, and this scheme was not as
e�ective as the two-dimensional blocking method we now describe.

We implemented a row-wise blocking scheme on top of the column-wise blocking in
the supernode-panel update, see Figure 4.3. The 2-D blocking adds another level of looping
between the two loops in lines 3 and 4 of Figure 4.2. This partitions the supernodes (and
the SPA structure) into block rows. Then each block row of the updating supernode is used
for up to w partial matrix-vector multiplies, which are pushed all the way through into the
SPA before the next block row of the supernode is accessed. The active data set accessed
in the inner loops is thus much smaller than in the 1-D scheme. The key performance gains
come from loops 5{9, where each row block is reused as much as possible before the next row
block is brought into the cache. The innermost loop is still a dense-matrix vector multiply,
performed by a BLAS-2 kernel.

4.2.3 Combining 1-D and 2-D blocking

The 2-D blocking works well when the rectangular supernodal matrix L(r:n; r: s)
is large in both dimensions. If all of L(r:n; r: s) can �t into cache, then the row-wise blocking
gives no bene�t, but still incurs overhead for setting up loop variables, skipping the empty
loop body, and so on. This overhead can be nearly 10% for some of the sparser problems in
our test suite. Thus we have devised a hybrid update algorithm that uses either the 1-D or
2-D partitioning scheme, depending on the size of each updating supernode. The decision
is made at run-time, as shown in Figure 4.4. Note that Figure 4.4 is identical to Figure 4.3,
if line 5 in Figure 4.3 is implemented appropriately. The overhead is limited to the test at
line 4 of Figure 4.4. It turns out that this hybrid scheme works better than either 1-D or
2-D codes for many problems. Therefore, this is the algorithm we use in the ultimate code,
which we call it SuperLU. In Section 4.6.3 we will discuss in more detail what we mean by
\large" in the test on line 4.
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1. for j = 1 to n step w do
2. � � �

3. for each updating supernode (r: s) < j in topological order do
4. if supernode (r: s) is large then /* use 2-D blocking */
5. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);
6. for each row block B in L(s+ 1:n; r: s) do
7. for jj = j to j + w � 1 do
8. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);
9. end for;
10. end for;
11. else /* use 1-D blocking */
12. for jj = j to j + w � 1 do
13. Apply triangular solve to A(r: s; jj) using L(r: s; r: s);
14. Multiply L(s+ 1:n; r: s) � U(r: s; jj), and scatter into SPA(: ; jj);
15. end for;
16. end if;
17. end for;
18. � � �
19. end for;

Figure 4.4: The supernode-panel algorithm, with both 1-D and 2-D blocking.
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4.3 Symbolic factorization

Symbolic factorization is the process that determines the nonzero structure of the
triangular factors L and U from the nonzero structure of the matrix A. This in turn
determines which columns of L update each column j of the factors (namely, those columns
r for which urj 6= 0), and also which columns of L can be combined into supernodes.

Without numeric pivoting, e.g., in Cholesky factorization or for diagonally dom-
inant matrices, the complete symbolic factorization can be performed before any numeric
factorization. Partial pivoting, however, requires that the numeric and symbolic factor-
izations be interleaved. The supernode-column algorithm performs symbolic factorization
for each column just before it is computed, as described in Section 4.3.1. The supernode-
panel algorithm performs symbolic factorization for an entire panel at once, as described in
Section 4.3.4.

4.3.1 Column depth-�rst search

From the numeric factorization algorithm, it is clear that the structure of column
F (: ; j) (F = L + U � I) depends on the structure of column A(: ; j) of the original matrix
and on the structure of L(: ; J), where J = 1: j � 1. Indeed, F (: ; j) has the same structure
as the solution vector for the following triangular system [64]:

@
@
@
@
@
@
@
@
@
@

L(: ; J) I

F (: ; j) = A(: ; j)

A straightforward way to compute the structure of F (: ; j) from the structures of L(: ; J)
and A(: ; j) is to simulate the numerical computation. A less expensive way is to use the
following characterization in terms of paths in the directed graph of L(: ; J).

For any matrix M , the notation i
M
! j means that there is an edge from i to j in

the directed graph of M , that is, mij 6= 0. Edges in the directed graph of M are directed

from rows to columns. The notation i
M
=) j means that there is a directed path from i

to j in the directed graph of M . Such a path may have length zero; that is, i
M
=) i holds if

mii 6= 0.

Theorem 3 [60] fij is nonzero (equivalently, i
F
! j) if and only if i

L(:;J)
=) k

A
! j for some

k � i.

This result implies that the symbolic factorization of column j can be obtained
as follows. Consider the nonzeros in A(: ; j) as a subset of the vertices of the directed
graph G = G(L(: ; J)T), which is the reverse of the directed graph of L(: ; J). The nonzero
positions of F (: ; j) are then given by the vertices reachable by paths from this set in G.
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We use the graph of LT here because of the convention that edges are directed from rows
to columns. Since L is actually stored by columns, our data structure gives precisely the
adjacency information for G. Therefore, we can determine the structure of column j of L
and U by traversing G from the set of starting nodes given by the structure of A(: ; j).

The traversal of G determines the structure of U(: ; j), which in turn determines the
columns of L that will participate in updates to column j in the numerical factorization.
These updates must be applied in an order consistent with a topological ordering of G.
We use depth-�rst search to perform the traversal, which makes it possible to generate
a topological order (speci�cally, reverse postorder) on the nonzeros of U(: ; j) as they are
located [64].

Another consequence of the path theorem is the following corollary. It says that
if we divide each column of U into segments, one per supernode, then within each segment
the column of U just consists of a consecutive sequence of nonzeros. Thus we need only
keep track of the position of the �rst nonzero in each segment.

Corollary 2 Let (r: s) be a supernode (of either type T2 or T3) in the factorization PA =
LU . Suppose ukj is nonzero for some j with r � k � s. Then uij 6= 0 for all i with
k � i � s.

Proof: Let k � i � s. Since ukj 6= 0, we have k
L(:;J)
=) m

A
�! j for some m � k

by Theorem 3. Now lik is in the diagonal block of the supernode, and hence is nonzero.

Thus i
L(:;J)
�! k, so i

L(:;J)
=) m

A
�! j, whence uij is nonzero by Theorem 3. 2

4.3.2 Pruning the symbolic structure

To speed up the depth-�rst search traversals, Eisenstat and Liu [43, 44] and Gilbert
and Liu [61] have explored the idea of using a reduced graph in place of G = G(L(: ; J)T).

Any graph H can be substituted for G, provided that i
H
=) j if and only if i

G
=) j. The

traversals are more e�cient if H has fewer edges; but any gain in e�ciency must be traded
o� against the cost of computing H .

An extreme choice ofH is the elimination dag [61], which is the transitive reduction
of G, or the minimal subgraph of G that preserves paths. However, the elimination dag is
expensive to compute. The symmetric reduction [43] is a subgraph that has (in general)
fewer edges than G but more edges than the elimination dag, and that is much less expensive
than the latter to compute. The symmetric reduction takes advantage of symmetry in the
structure of the �lled matrix F ; if F is completely symmetric, it is just the symmetric
elimination tree. The symmetric reduction of G(L(: ; J)T) is obtained by removing all
nonzero lrs for which ltsust 6= 0 for some t < min(r; j). Eisenstat and Liu [44] give an
e�cient method to compute the symmetric reduction during symbolic factorization, and
demonstrate experimentally that it signi�cantly reduces the total factorization time when
used in an algorithm that does column-column updates.

Our supernodal code uses symmetric reduction to speed up its symbolic factoriza-
tion. Take the sample matrix used in Figure 3.3, Figure 4.5 illustrates symmetric reduction
in the presence of supernodes. We use S to represent the supernodal structure of L(: ; J)T ,
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and R to represent the symmetric reduction of S. It is this R that we use in our code. Note
that the edges of the graph of R are directed from columns of L to rows of L.

In the �gure, the small dot \�" indicates an entry in S that was pruned from R

by symmetric reduction. The (8; 2) entry was pruned due to the symmetric nonzero pair
(6; 2) and (2; 6). The �gure shows the current state of the reduced structure based on the
�rst seven columns of the �lled matrix.

It is instructive to follow this example through one more column to see how sym-
bolic factorization is carried out in the reduced supernodal structure. Consider the symbolic
step for column 8. Suppose a28 and a38 are nonzero. The other nonzeros in column 8 of
the factor are generated by paths in the reduced supernodal structure (we just show one
possible path for each nonzero):

8
AT
! 2

R
! 6;
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8
AT
! 3

R
! 8;

8
AT

! 2
R
! 6

R
! 9;

8
AT

! 3
R
! 10;

Figure 4.6 shows the reduced supernodal structure before and after column 8. In
column 8 of A, the original nonzeros are shown as \�" and the �lled nonzeros are shown as
\�". Once the structure of column 8 of U is known, more symmetric reduction is possible.
The entry l10;3 is pruned due to the symmetric nonzeros in l83 and u38. Also, l96 is pruned
by l86 and u68. Figure 4.6 shows the new structure.

The supernodal symbolic factorization relies on the path characterization in The-
orem 3 and on the path-preserving property of symmetric reduction. In e�ect, we use the
modi�ed path condition

i
AT
!

R
=) j

on the symmetrically-reduced supernodal structure R of L(: ; J)T .
Finally we note that only the adjacency list of the last column in each supernode

needs to be stored. We call this last column the representative of the supernode. In this
example, the representatives are 2, 3, 6, and 8. Now the depth-�rst search traversal and
the symmetric pruning work on the adjacency lists of the representative columns, that is,
the supernodal graph instead of the nodal one.

4.3.3 Detecting supernodes

Since supernodes consist of contiguous columns of L, we can decide at the end of
each symbolic factorization step whether the new column j belongs to the same supernode
as column j � 1.

For T2 supernodes, the test is straightforward. During symbolic factorization, we
test whether L(: ; j) � L(: ; j � 1) (where the containment applies to the set of nonzero
indices). At the end of the symbolic factorization step, we test whether nnz(L(: ; j)) =
nnz(L(: ; j� 1))� 1. Column j joins column j � 1's supernode if and only if both tests are
passed.

T3 supernodes also require the diagonal block of U to be full. To check this, it
su�ces to check whether the single element urj is nonzero, where r is the �rst column
index of the supernode. This follows from Corollary 2: urj 6= 0 implies that uij 6= 0 for all
r � i � j. Indeed, we can even omit the test L(: ; j) � L(: ; j � 1) for T3 supernodes. If
urj 6= 0, then uj�1;j 6= 0, which means that column j � 1 updates column j, which implies
L(: ; j)� L(: ; j� 1). Thus we have proved the following.

Theorem 4 Suppose a T3 supernode begins with column r and extends at least through
column j� 1. Column j belongs to this supernode if and only if urj 6= 0 and nnz(L(: ; j)) =
nnz(L(: ; j � 1))� 1.

For either T2 or T3 supernodes, it is straightforward to implement the relaxed
versions discussed in Section 3.3. Also, since the main bene�ts of supernodes come when
they �t into the cache, we impose a maximum size for a supernode.
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Figure 4.7: The supernodal directed graph corresponding to L(1: 7; 1: 7)T.

4.3.4 Panel depth-�rst search

The supernode-panel algorithm consists of an outer factorization (applying updates
from supernodes to the active panel) and an inner factorization (applying supernode-column
updates within the active panel). Each has its own symbolic factorization. The outer
symbolic factorization happens once per panel, and determines two things: (1) a single
column structure, which is the union of the structures of the panel columns, and (2) which
supernodes update each column of the panel, and in what order. This is the information
that the supernode-panel update loop in Figure 4.2 needs.

The inner symbolic factorization happens once for each column of the panel, inter-
leaved column by column with the inner numeric factorization. In addition to determining
the nonzero structure of the active column and which supernodes within the panel will
update the active column, the inner symbolic factorization is also responsible for forming
supernodes (that is, for deciding whether the active column will start a new supernode) and
for symmetric structural pruning. The inner symbolic factorization is, therefore, exactly
the supernode-column symbolic factorization described above.

The outer symbolic factorization must determine the structures of columns j to
j+w�1, i.e., the structure of the whole panel, and also a topological order for U(1: j; j: j+
w � 1) en masse. To this end, we developed an e�cient panel depth-�rst search scheme,
which is a slight modi�cation of the column DFS. The panel depth-�rst search algorithm
maintains a single postorder DFS list for all w columns of the panel. Let us call this the PO
list, which is initially empty. The algorithm invokes the column depth-search procedure for
each column from j to j+w� 1. In the column DFS, each time the search backtracks from
a vertex, that vertex is appended to the PO list. In the panel DFS, however, the vertex is
appended to the PO list only if it is not already on the list. This gives a single list that
includes every position that is nonzero in any panel column, just once; and the entire list is
in (reverse) topological order. Thus the order of updates speci�ed by the list is acceptable
for each of the w individual panel columns.

We illustrate the idea in Figure 4.7, using the sample matrix from Figure 4.5
and 4.6 and a panel of width two. The �rst seven columns have been factored, and the
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current panel consists of columns 8 and 9. In the panel, nonzeros of A are shown as \�" and
�ll in F is shown as \�". The depth-�rst search for column 8 starts from vertices 2 and 3.
After that search is �nished, the panel postorder list is PO = (6; 2; 3). Now the depth-�rst
search for column 9 starts from vertices 6 and 7 (not 4, since 6 is the representative vertex
for the supernode containing column 4). This DFS only appends 7 to the PO list, because
6 is already on the list. Thus, the �nal list for this panel is PO = (6; 2; 3; 7). The postorder
list of column 8 is (6; 2; 3) and the postorder list of column 9 is (6; 7), which are simply two
sublists of the panel PO list. The topological order is the reverse of PO, or (7; 3; 2; 6). In
the loop of line 3 of Figure 4.2, we follow this topological order to schedule the updating
supernodes and perform numeric updates to columns of the panel.

4.4 Test matrices

To evaluate our algorithms, we have collected matrices from various sources, with
their characteristics summarized in Table 4.1.

Some of the matrices are from the Harwell-Boeing collection [31]. Many of the
larger matrices are from the ftp site maintained by Tim Davis of the University of Florida.
Those matrices are as follows. Memplus is a circuit simulation matrix from Steve Hamm of
Motorola. Rdist1 is a reactive distillation problem in chemical process separation calcula-
tions, provided by Stephen Zitney at Cray Research, Inc. Shyy161 is derived from a direct,
fully-coupled method for solving the Navier-Stokes equations for viscous ow calculations,
provided by Wei Shyy of the University of Florida. Goodwin is a �nite element matrix in
a nonlinear solver for a uid mechanics problem, provided by Ralph Goodwin of the Uni-
versity of Illinois at Urbana-Champaign. Venkat01, Inaccura and Raefsky3/4 were
provided by Horst Simon of NASA. Venkat01 comes from an implicit 2-D Euler solver for
an unstructured grid in a ow simulation. Raefsky3 is from a uid structure interaction
turbulence problem. Raefsky4 is from a buckling problem for a container model. Bai is
from solving an unsymmetric eigenvalue problem, provided by Zhaojun Bai of the Univer-
sity of Kentucky. Ex11 is from a 3-D steady ow calculation in the SPARSKIT collection
maintained by Yousef Saad at University of Minnesota. Wang3 is from solving a coupled
nonlinear PDE system in a 3-D (30� 30� 30 uniform mesh) semiconductor device simula-
tion, as provided by Song Wang of the University of New South Wales, Sydney. Vavasis3
is an unsymmetric augmented matrix for a 2-D PDE with highly varying coe�cients [109].
Dense1000 is a dense 1000� 1000 random matrix.

The matrices are sorted in increasing order of flops=nnz(F ), the ratio of the
number of oating-point operations to the number of nonzeros nnz(F ) in the factored
matrix F = U + L � I . The reason for this order will be described in more detail in
section 4.6.

This thesis does not address the performance of column preordering for sparsity.
We simply use the existing ordering algorithms provided by Matlab [62]. For all matrices,
except 1, 14 and 21, the columns were permuted by Matlab's minimum degree ordering of
ATA, also known as \column minimum degree" ordering. However, this ordering produces
tremendous amount of �ll for matrices 1, 14 and 21, because it only attempts to minimize the
upper bound on the actual �ll (Section 3.1.2), and the upper bounds are too loose in these
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Matrix s Rows Nonzeros Nonzeros/row

1 Memplus .983 17758 99147 5.6
2 Gemat11 .002 4929 33185 6.7
3 Rdist1 .062 4134 9408 2.3
4 Orani678 .073 2529 90158 35.6
5 Mcfe .709 765 24382 31.8
6 Lnsp3937 .869 3937 25407 6.5
7 Lns3937 .869 3937 25407 6.5
8 Sherman5 .780 3312 20793 6.3
9 Jpwh991 .947 991 6027 6.1
10 Sherman3 1.000 5005 20033 4.0
11 Orsreg1 1.000 2205 14133 6.4
12 Saylr4 1.000 3564 22316 6.3
13 Shyy161 .769 76480 329762 4.3
14 Goodwin .642 7320 324772 44.4
15 Venkat01 1.000 62424 1717792 27.5
16 Inaccura 1.000 16146 1015156 62.9
17 Bai .947 23560 460598 19.6
18 Dense1000 1.000 1000 1000000 1000
19 Raefsky3 1.000 21200 1488768 70.2
20 Ex11 1.000 16614 1096948 66.0
21 Wang3 1.000 26064 177168 6.8
22 Raefsky4 1.000 19779 1316789 66.6
23 Vavasis3 .001 41092 1683902 41.0

Table 4.1: Characteristics of the test matrices. Structural symmetry s is de�ned to be the
fraction of the nonzeros matched by nonzeros in symmetric locations. None of the matrices
are numerically symmetric.
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cases. When these three matrices were symmetrically permuted by Matlab's symmetric
minimum degree ordering on A+AT , the amount of �ll is much smaller than using column
minimum degree ordering.

4.5 Performance on an IBM RS/6000-590

In this section we carry out numerical experiments on an IBM RS/6000-590 to
demonstrate the e�ciency of our new code, SuperLU. The CPU clock rate of this machine
is 66.5 MHz. The processor has two branch units, two �xed-point units, and two oating-
point units, which can all operate in parallel if there are no dependencies. In particular,
each FPU can perform two operations (a multiply and an add or subtract) at every cycle.
Thus, the peak oating-point performance is 266 Mops. The data cache is of size 256
KB with 256-byte lines, and is 4-way set-associative with LRU replacement policy. There
is a separate 32 KB instruction cache. The size of the main memory is 768 MB. The
SuperLU algorithm is implemented in C, using double precision arithmetic; we use the AIX
xlc compiler with -O3 optimization.

In the inner loops of our sparse code, we call the two dense BLAS-2 routines
DTRSV (triangular solve) and DGEMV (matrix-vector multiply) provided in the IBM
ESSL library [77], whose BLAS-3 matrix-matrix multiply routine (DGEMM) achieves
about 250 Mops when the dimension of the matrix is larger than 60 [1]. In our sparse
algorithm, we �nd that DGEMV typically accounts for more than 80% of the oating-
point operations, as depicted in Figure 4.8. This percentage is higher than 95% for many
matrices. Our measurements reveal that for typical dimensions arising from the benchmark
matrices, DGEMV achieves roughly 235 Mops if the data are from cache. If the data are
fetched from main memory, this rate can drop by factors of 2 to 3.

The BLAS speed is clearly an upper bound on the overall factorization rate.
However, because symbolic manipulation usually takes a nontrivial amount of time, this
bound could be much higher than the actual sparse code performance. Figure 4.9 shows
the fraction of the total factorization spent in numeric computation. For matrices 1 and
2, the program spent less than 35% of its time in the numeric part. Compared to the
others, these two matrices are sparser, have less �ll, and have smaller supernodes, so our
supernodal techniques are less applicable. Matrix 2 is also highly unsymmetric, which
makes the symmetric structural reduction technique less e�ective. However, it is important
to note that the execution times for these two matrices are small. We also note that neither
symbolic nor numeric time dominates the other, which means the symbolic algorithms are
e�cient as well.

Table 4.2 presents the absolute performance of the SuperLU code on this system.
All oating point computations are in double precision. The third column gives the nonzero
growth factor in F . For larger and denser matrices such as 17 { 21, we achieve between
110 and 125 Mops, which is about half of the machine peak. These matrices take much
longer to factor, which could be a serious bottleneck in an iterative simulation process. Our
techniques are successful in reducing the solution times for this type of problem.

For a dense 1000 � 1000 matrix, our code achieves 117 Mops. This compares
with 168 Mops reported in the LAPACK manual [8] on a matrix of this size. That is
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Matrix nnz(F ) nnz(F )
nnz(A) #ops (106) Seconds Mops

1 Memplus 140388 1.4 1.8 0.57 3.08
2 Gemat11 93370 2.8 1.5 0.27 5.64
3 Rdist1 338624 3.6 12.9 0.96 13.47
4 Orani678 280788 3.1 14.9 1.11 13.48
5 Mcfe 69053 2.8 4.1 0.24 17.42
6 Lnsp3937 427600 16.8 38.9 1.50 25.97
7 Lns3937 449346 17.7 44.8 1.65 27.16
8 Sherman5 249199 12.0 25.2 0.82 30.78
9 Jpwh991 140746 23.4 18.0 0.52 34.57
10 Sherman3 433376 21.6 60.6 1.37 44.24
11 Orsreg1 402478 28.5 59.8 1.21 49.42
12 Saylr4 654908 29.3 104.8 2.18 48.07
13 Shyy161 7634810 23.2 1571.6 25.42 61.83
14 Goodwin 3109585 9.6 665.1 12.55 52.99
15 Venkat01 12987004 7.6 3219.9 42.99 74.90
16 Inaccura 9941478 9.8 4118.7 67.73 60.81
17 Bai 13986992 30.4 6363.7 75.91 83.83
18 Dense1000 1000000 1.0 666.2 5.68 117.28
19 Raefsky3 17544134 11.8 12118.7 107.60 112.62
20 Ex11 26207974 23.8 26814.5 247.05 108.54
21 Wang3 13287108 74.9 14557.5 116.58 124.86
22 Raefsky4 26678597 20.3 31283.4 263.13 118.89
23 Vavasis3 49192880 29.2 89209.3 786.94 113.36

Table 4.2: Performance of SuperLU on an IBM RS/6000-590.
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to say, when input matrix is dense, our sparse code achieves roughly 70% e�ciency of a
state-of-the-art dense code.

4.6 Understanding cache behavior and parameters

In this section, we analyze the behavior of SuperLU in detail. We wish to un-
derstand when our algorithm is signi�cantly faster than other algorithms. We would like
performance-predicting variable(s) that depend on \intrinsic" properties of the problem,
such as the sparsity structure, rather than algorithmic details and machine characteristics.
We begin by analyzing the speedups of the enhanced codes over the base GP implementa-
tion. Figures 4.10, 4.11 and 4.12 depict the speedups and the characteristics of the matrices,
with panel size w = 8.

4.6.1 How much cache reuse can we expect?

As discussed in Section 4.2, the supernode-panel algorithm gets its primary gains
from improved data locality, by reusing a cached supernode several times. To understand
how much cache reuse we can hope for, we computed two statistics: ops-per-nz and ops-per-
ref . After de�ning these statistics carefully, we discuss which more successfully measures
reuse.

Ops-per-nz is simply calculated as #flops=nnz(F ), the total number of oating
point operations per nonzero in the �lled matrix F . If there were perfect cache behavior,
i.e., one cache miss per data item (ignoring the e�ect of cache line size), then ops-per-nz
would exactly measure the amount of work per cache miss. In reality, ops-per-nz is an upper
bound on the reuse. Note that ops-per-nz depends only on the fact that we are performing
Gaussian elimination with partial pivoting, not on algorithmic or machine details. Ops-per-
nz is a natural measure of potential data reuse, because it has long been used to distinguish
among the di�erent levels of BLAS, for example, for an n�n matrix-matrix multiplication
(BLAS-3) versus matrix-vector multiplication (BLAS-2).

In contrast, ops-per-ref provides a lower bound on cache reuse, and does depend
on the details of the SuperLU algorithm. Ops-per-ref looks at each supernode-panel update
separately, and assumes that all the associated data is outside the cache before beginning
the update. This pessimistic assumption limits ops-per-ref to twice the panel size, 2w.

Now we de�ne ops-per-ref more carefully. Consider a single update from supernode
(r: s) to panel (j: j + w � 1). Depending on the panel's nonzero structure, each entry in
the updating supernode is used to update from 1 to w panel columns. Thus each entry in
the updating supernode participates in between 0 and 2w oating point operations during
a supernode-panel update. We assume that the supernode entry is brought into cache
from main memory exactly once for the entire sup-panel update, if it is used at all. Thus,
during a single sup-panel update, each entry accessed in the updating supernode accounts
for between 2 and 2w operations per reference. The ops-per-ref statistic is the average
of this number over all entries in all sup-panel updates. It measures how many times the
average supernode entry is used each time it is brought into cache from main memory.
Ops-per-ref ranges from 2 to 2w, with larger values indicating better cache use. If there is
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Figure 4.10: Speedups of each enhancement over GP code, on an IBM RS/6000-590.

little correlation between the row structures of the columns in each panel, ops-per-ref will
be small; if there is perfect correlation, as in a dense matrix, it will be close to 2w.

Now we describe how we compute the average ops-per-ref for the entire factoriza-
tion. For each updating supernode (r: s) and each panel (j: j + w � 1) (see Figure 4.2),
de�ne

ksmin = min
j�jj<j+w; r�i�s

fi j A(i; jj) 6= 0g:

Then nnz(L(r:n; ksmin: s)) entries of the supernode are referenced in the sup-panel update.
The dense triangular solve in column jj of the update takes (s�ks+1) �(s�ks) ops, where
ks = minr�i�sfi j A(i; jj) 6= 0g. The matrix-vector multiply uses 2 � (s�ks+1) �nnz(L(s+
1:n; s)) ops. We count both additions and multiplications. For all panel updates, we sum
the memory reference counts and sum the op counts, then divide the second sum by the
�rst to arrive at an average ops-per-ref.

Now we compare the predictive powers of ops-per-nz (Figure 4.11 (a)) and ops-per-
ref (Figure 4.11 (b)) in predicting speedup (Figure 4.10). The superiority of ops-per-nz is
evident; it is much more strongly correlated with the speedup of SuperLU than ops-per-ref .
This is good news, because ops-per-nz measures the best case reuse, and ops-per-ref the
worst case. But neither statistic captures all the variation in the performance. In future
work, we hope to use a hardware monitor to measure the exact cache reuse rate. (This data
could also be obtained from a simulator, but the matrices we are interested in are much too
large for a simulator to be viable.)
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Figure 4.11: Some characteristics of the matrices.
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4.6.2 How large are the supernodes?

The supernode size determines the size of the matrix to be passed to matrix-vector
multiply and other BLAS-2 routines in our algorithm. Figure 4.12(a) shows the average
number of columns in the supernodes of the matrices, after amalgamating the relaxed
supernodes at the bottom of the column etree (Section 3.4). The average size is usually
quite small.

More important than average size is the distribution of supernode sizes. In sparse
Gaussian elimination, more �ll tends to occur in the later stages. Usually there is a large
percentage of small supernodes corresponding to the leaves of the column etree, even after
amalgamation. Larger supernodes appear nearer the root. In Figure 4.13 we plot the
histograms of the supernode size for four matrices chosen to exhibit a wide range of behavior.
In the �gure, the number at the bottom of each bar is the smallest supernode size in that
bin. The mark \o" at the bottom of a bin indicates zero occurrences; otherwise, a \�" is
put at the bottom of a bin. Relaxed supernodes of granularity r = 4 are used. Matrix 1
has 16378 supernodes, all but one of which have less than 12 columns; the single large
supernode, with 115 columns, is the dense submatrix at the bottom right corner of F .
Matrix 14 has more supernodes distributed over a wider spectrum; it has 13 supernodes
with 54 to 59 columns. This matrix gives greater speedups over the non-supernodal codes.

Figure 4.12 also plots three other properties of each matrix: structural symmetry,
dimension, and density. None of them have any signi�cant correlation with the performance.
The e�ectiveness of symmetric reduction depends on F being structurally symmetric, which
depends on the choice of pivots. So, structural symmetry of A does not give any useful
information.

We note that the speedup achieved by the dense 1000� 1000 problem (matrix 18)
show the best performance gain over SupCol, because this matrix has large supernodes and
exhibits ideal data reuse. It achieves a speedup of 1.43 on the RS/6000-590. The gain for
any sparse matrix should be smaller than this on this machine.

4.6.3 Blocking parameters

In our hybrid blocking algorithm (Figure 4.4), we need to select appropriate values
for the parameters that describe the two-dimensional data blocking: panel width w, max-
imum supernode size t, and row block size b, see Figure 4.14. The key considerations are
that the active data we access in the inner loop (the working set) should �t into the cache,
and that the matrices presented to the BLAS-2 routine DGEMV should be the sizes and
shapes for which that routine is optimized. Here we describe in detail the methodology we
used to choose parameters for the IBM RS/6000. The methodology can be employed on
other machines as well, with the block sizes adapted to the cache sizes.

� DGEMV optimization. As indicated in Figure 4.8, the majority of the oating-
point operations are in the matrix-vector multiply. The dimensions (m;n) of the
matrices in calls to DGEMV vary greatly depending on the supernode dimensions.
Very often, the supernode is a tall and skinny matrix, that is, m � n. We measured
the DGEMV Mops rate for various m and n, and present a contour plot in the
(m;n) plane in Figure 4.15(a). Each contour represents a constant Mops rate. The
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(b) Matrix 2: 4929 rows, 2002 supernodes
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(c) Matrix 3: 4134 rows, 2099 supernodes
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(d) Matrix 14: 7320 rows, 893 supernodes
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Figure 4.13: Distribution of supernode size for four matrices.
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dashed curve representsmn = 32K double oats, or a cache capacity of 256 KB. In the
optimum region, we achieve more than 200 Mops; outside this region, performance
drops either because the matrices exceed the cache capacity, or because the column
dimension n is too small.

� Working set. By studying the data access pattern in the inner loop of the 2-D al-
gorithm, lines (7{9) in Figure 4.4, we �nd that the working set size is the following
function of w, t, and b, as shown in Figure 4.14:

WS = b� t| {z }
row block from supernode

+ (t+ b)� w| {z }
vectors in matrix-vector multiply

+ b� w| {z }
part of SPA structure

:

In Figure 4.15(b), we �x two w values, and plot the contour lines for WS = 32K in
the (t; b) plane. If the point (t; b) is below the contour curve, then the working set
can �t in a cache of 32K double oats, or 256 KB.

Based on this analysis, we use the following rules to set the parameters.

First we choose w, the width of the panel in columns. Larger panels mean more
reuse of cached data in the outer factorization, but also mean that the inner factorization
(by the sup-col algorithm) must be applied to larger matrices. We �nd empirically that the
best choice for w is between 8 and 16. Performance tends to degrade for larger w.

Next we choose b, the number of rows per block, and t, the maximum number
of columns in a supernode. Recall that b and t are upper bounds on the row and column
dimensions of the call to DGEMV. We choose t = 100 and b � 200, which guarantees
that the working set �ts in cache (per Figure 4.15(b)), and that we can hope to be near the
optimum region of DGEMV performance (per Figure 4.15(a)).

Recall that b is relevant only when we use row-wise blocking, that is, when the
test \if supernode (r: s) is large" succeeds at line 4 of Figure 4.4. This implies that the
2-D scheme adds overhead only if the updating supernode is large. In the actual code, the
test for a large supernode is

if ncol > 40 and nrow > b then the supernode is large,

where nrow is the number of dense rows below the diagonal block of the supernode, ncol
is the number of dense columns of the supernode updating the panel, i.e., ncol = s� r+ 1.
In practice, this choice usually gives the best performance.

The best choice of the parameters w, t, and b depends on the machine architecture
and on the BLAS implementation, but it is largely independent of the matrix structure.
Thus we do not expect each user of SuperLU to choose values for these parameters. Instead,
our library code provides an inquiry function that returns the parameter values, much in the
spirit of the LAPACK environment routine ILAENV. The machine-independent defaults
will often give satisfactory performance. The methodology we have described here for the
RS/6000 can serve as a guide for users who want to modify the inquiry function to give
optimal performance for particular computer systems.
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4.7 Register reuse

Commercial microprocessor performance has increased dramatically, largely driven
by CMOS fabrication technology improvements. It is now common to see superscalar pro-
cessors capable of executing up to four scalar instructions in every cycle. Given multiple
oating-point units operating in parallel, the peak speed is attainable only if all the source
operands to the FPUs are in registers upon execution. In such systems, not only is cache
reuse important, but su�cient reuse of data in registers becomes vital as well. Register
reuse can reduce the load/store frequency and bandwidth requirement between registers
and cache. We will illustrate this by studying in more detail the performance of DGEMV
and of the complete factorization on the two di�erent superscalar microprocessors.

4.7.1 Performance on the MIPS R8000

As seen from Section 4.5, the IBM RS/6000-590 (POWER2 family) has a peak po-
tential performance of four oating-point operations per cycle. To allow for such a sustained
rate, the IBM POWER2 provides unique quad load/store instructions, which double the ef-
fective bandwidth between oating-point registers (FPRs) and cache. This quad load/store
capability together with a large factor of inner loop unrolling are the keys for the matrix-
vector kernel to achieve nearly peak performance. The code segment in Figure 4.16 for
DGEMV (y  y +A � x) explains the reason. Here, the xj 's and yi's denote the FPRs to
temporarily hold the respective values from vectors x and y. Loop 4{10 performs multipli-
cation of a R-by-C block of matrix A with a C-by-1 subvector of x. The column-wise block
size C can be chosen to minimize the �nite cache and TLB e�ects. The row-wise block size
R (or unrolling factor) depends on the number of available FPRs. For example, R = 24
is appropriate for the IBM POWER2, because there are 32 oating-point registers. In the
multiply-add instructions of the innermost loop 6{9 (which should be fully unrolled in the
actual code), all operands except the two entries from A are already in the FPRs. Since
A(I + i; j) and A(I + i + 1; j) are stored contiguously in memory, only one quad load is
needed to load both entries into the two FPRs, and to feed both FPUs at the peak rate of
two multiply-adds in every cycle. That is essentially how the DGEMV routine in the IBM
ESSL library achieves close to peak performance.

The quad load/store data path on the IBM POWER2 is a nice feature but is
very expensive to implement from hardware point of view, and not many RISC processors
provide this capability. We now study another high performance architecture, the MIPS
R8000 chip set, to see what the peak DGEMV performance is provided that the source
matrix A is in cache. The CPU has a clock frequency of 90 MHz. By four-way superscalar
implementation, the processor can dispatch up to four instructions per cycle, including two
integer and two oating-point instructions. The two oating-point instructions can be a
pair of multiply-add (MADD) instructions, resulting in a throughput of up to four oating-
point operations per cycle and 360 Mops peak rate. However, unlike the IBM POWER2,
there is no quad load/store instruction. Each load can supply only one 64-bit double-word
per cycle. Therefore, the DGEMV inner loop of Figure 4.16 is now limited by load/store
bandwidth. In the vendor-supplied BLAS library, the DGEMV routine achieves at most
210 Mops, roughly 58% of the machine peak. We are therefore motivated to design a



48

1. for J = 1 to n, step C, do
2. for I = 1 to n, step R, do
3. for i = 0 to R� 1 do yi = y(I + i);
4. for j = J to J + C � 1 do
5. xj = x(j);
6. for i = 0 to R� 1, step 2, do
7. yi = yi + A(I + i; j) � xj ;
8. yi+1 = yi+1 + A(I + i+ 1; j) � xj ;
9. endfor;
10. endfor;
11. endfor;
12. endfor;

Figure 4.16: A code segment to implement DGEMV.

new kernel, which we call DGEMV2, that multiplies a matrix with two vectors altogether
(y1  y1 + A � x1; y2  y2 + A � x2). In addition to matrix A, DGEMV2 also takes
two source vectors x1; x2 and two destination vectors y1; y2. The DGEMV2 routine can
be written as in Figure 4.17.

Again, we assume that x1j 's and x2j 's are the FPRs holding the elements from
the two source vectors, y1 and y2 are the two FPRs holding the elements from the two
destination vectors. Then the load requirement in the inner loop 9{11 is only one 64-
bit double-word for A(i; j). This one load can supply two MADDs or four oating-point
operations per cycle. Since the R8000 processor has 32 FPRs, the level of unrolling factor C
can be set to 8. That amounts to 16 FPRs used by the source vectors x1 and x2, 2 FPRs used
by the destination vectors y1 and y2, and 8 FPRs used by the elements from A. With this
level of unrolling, a block column computation in the loop 6{15 performs 32 oating-point
operations, does 8 loads for the A entries, 2 loads and 2 stores for the y entries. In particular,
each A(i; j) is reused across four oating-point operations. Compared with the 2-ops-per-
load ratio in DGEMV, the DGEMV2 kernel certainly reuses registers better and lessens
the load/store requirement. This kernel uncovers another half of the peak speed which is
not achievable by DGEMV. Figure 4.18 shows our measurement of the performance of
DGEMV2, and the vendor optimized BLAS routines DGEMM and DGEMV. For the
C routine implementing DGEMV2, we use the cc compiler with options -O3 -mips4 -64

-OPT:alias=restrict in order for the compiler to generate most e�cient code. From the
�gure we see that DGEMV2 achieves over 95% of the machine peak for matrices of wide
range of dimensions. It sometimes performs better than the vendor-supplied DGEMM

routine. When the matrix size exceeds cache capacity (4 MB), its performance degrades
substantially, but is still better than DGEMV. Overall, DGEMV2 is roughly 70% faster
than DGEMV when the matrix �ts in the cache.

Now we need to alter the LU factorization algorithm in order to call DGEMV2.
Recall that the supernode-panel update involves two matrices A and B, with A being (part
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1. for J = 1 to n, step C, do
2. for j = J to J + C � 1 do
3. x1j = x1(j); x2j = x2(j);
5. endfor;
6. for i = 1 to n do
7. y1 = y1(i); y2 = y2(i); /* load */
9. for j = J to J + C � 1 do
10. y1 = y1 + A(i; j) � x1j ;
11. y2 = y2 + A(i; j) � x2j ;
12. endfor;
13. y1(i) = y1; y2(i) = y2; /* store */
15. endfor;
16. endfor;

Figure 4.17: A code segment to implement DGEMV2.
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the MIPS R8000.
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Figure 4.19: Supernode-panel update using DGEMV or DGEMV2 kernels.

of) a supernode and B being several column segments from U , in skyline form, as shown
in Figure 4.19 (a). In general the vectors in matrix B are of di�erent lengths. As illustrated
in Figure 4.19 (b), we can call DGEMV2 with the pair of adjacent vectors, x1 and x2, using
the length of the shorter vector x1. For the other part of the longer vector x2, we still use
DGEMV with the corresponding columns in matrix A. A more elaborate scheme might be
to pair up the vectors in decreasing order of their lengths, so that vectors of greater lengths
are used in DGEMV2. However, this requires sorting and may be costly to implement.

Table 4.3 shows the overall factorization rate on a MIPS R8000 when using the
two di�erent kernels DGEMV and DGEMV2. The second to last column shows the im-
provement over DGEMV. Depending on how much opportunity there is to use DGEMV2,
some matrices achieve better speedup. The average performance gain is about 25%.

4.7.2 Performance on the DEC Alpha 21164

In this subsection, we study another superscalar architecture, the DEC Alpha
21164, to see whether the DGEMV2 kernel is helpful to improve the performance. The
CPU has a clock frequency of 300 MHz, and is capable of issuing four instructions per cycle.
The processor has one oating-point add pipeline and one oating-point multiply pipeline,
with a throughput of two oating-point operations per cycle. The peak oating-point rate
is therefore 600 Mops. Inside the chip is an 8 KB direct-mapped Level 1 instruction cache,
and an 8 KB direct-mapped write-through Level 1 data cache. Also on the chip there is a
96 KB 3-way set-associative write-back Level 2 uni�ed cache. O� the chip there is a 4 MB
direct-mapped Level 3 cache. This organization of multiple levels of (small) caches makes
it somewhat more di�cult to achieve good performance than on the machines with simpler
cache systems. By measurement, the DGEMM routine from DEC's DXML library achieves
at most about 350 Mops, far from the peak.

We implemented a DGEMV2 routine using Fortran 77, and compiled it with -O5

-fast -tune ev5. Figure 4.20 shows our measurement of the performance of DGEMV2
and the vendor optimized DGEMV. Surprisingly, DGEMV2 is not drastically faster than
DGEMV, as we saw on the MIPS R8000. For the matrices that �t into the L2 cache, the
gain of DGEMV2 over DGEMV is only about 40 Mops. One possible explanation is
that our hand-coded DGEMV2 is not adequately optimized for this architecture. Further
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DGEMV DGEMV2 DGEMV2
Matrix Mops Mops Speedup Seconds

1 Memplus 2.40 2.47 1.03 0.71
2 Gemat11 4.36 5.87 1.35 0.26
3 Rdist1 12.53 13.17 1.05 0.98
4 Orani678 12.27 13.01 1.06 1.15
5 Mcfe 15.92 17.99 1.13 0.23
6 Lnsp3937 21.90 28.88 1.32 1.35
7 Lns3937 22.54 30.10 1.34 1.49
8 Sherman5 27.43 35.55 1.30 0.71
9 Jpwh991 29.96 37.45 1.25 0.48
10 Sherman3 46.98 54.60 1.16 1.11
11 Orsreg1 48.63 59.23 1.22 1.01
12 Saylr4 49.90 60.22 1.21 1.74
13 Shyy161 58.87 66.95 1.34 23.48
14 Goodwin 49.82 72.30 1.45 9.20
15 Venkat01 77.93 105.71 1.36 30.46
16 Inaccura 54.49 86.44 1.59 47.65
17 Bai 92.04 107.03 1.16 59.46
18 Dense1000 133.77 177.64 1.33 3.75
19 Raefsky3 119.64 154.55 1.29 78.41
20 Ex11 109.86 129.75 1.18 205.90
21 Wang3 136.86 168.99 1.24 86.14
22 Raefsky4 116.38 142.88 1.23 218.95
23 Vavasis3 114.12 127.01 1.11 702.38

Table 4.3: Factorization rate in Mops and time in seconds with two di�erent kernels on a
MIPS R8000.
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Figure 4.20: Measurement of the double-precision DGEMV2 and DGEMV on the DEC
Alpha 21164.

investigation is needed to improve DGEMV2 speed.
Table 4.4 presents the overall LU factorization performance on this machine. As

anticipated, the performance gain of using DGEMV2 kernel is rather moderate. For large
matrices, the speedups are between 10% and 15%. For most smaller matrices the speedups
are below 10%.

4.8 Comparison with previous column LU factorization al-
gorithms

In this section, we compare the performance of SuperLU with three of its prede-
cessors, including GP by Gilbert and Peierls [64] (Figure 2.1), GP-Mod by Eisenstat and
Liu [44] (Chapter 2, and Section 4.3.2). and SupCol by Eisenstat, Gilbert and Liu [45]
(Figure 4.1). GP and GP-Mod are written in Fortran; SupCol and SuperLU are written
in C. (Matlab contains C implementations of GP and GP-Mod [62], which we did not test
here.)

We benchmarked the above four codes on six high-end workstations from four
vendors, whose characteristics are tabulated in Table 4.5. The instruction caches, if separate
from the data cache, are not listed in the table. The blocking parameters for SuperLU are
chosen according to the size of data cache, and are reported in each comparison table. In
most cases, the on-chip L1 caches are fairly small, so we use either L2 cache or the o�-chip
cache as reference. MostDGEMM and DGEMVMop rates were measured using vendor-
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DGEMV DGEMV2 DGEMV2
Matrix Mops Mops Speedup Seconds

1 Memplus 4.39 4.58 1.04 0.38
2 Gemat11 9.16 10.17 1.11 0.15
3 Rdist1 22.78 23.47 1.03 0.55
4 Orani678 20.88 23.63 1.13 0.63
5 Mcfe 31.04 31.04 1.00 0.13
6 Lnsp3937 39.65 42.53 1.07 0.92
7 Lns3937 40.17 43.41 1.08 1.03
8 Sherman5 47.32 50.48 1.07 0.50
9 Jpwh991 51.36 53.93 1.05 0.33
10 Sherman3 60.60 64.93 1.07 0.93
11 Orsreg1 66.47 69.02 1.04 0.87
12 Saylr4 60.46 67.61 1.10 1.55
13 Shyy161 65.49 70.38 1.07 22.33
14 Goodwin 66.85 70.51 1.05 9.43
15 Venkat01 85.00 95.53 1.13 33.57
16 Inaccura 68.50 75.05 1.09 54.88
17 Bai 83.65 95.26 1.14 66.80
18 Dense1000 110.72 139.75 1.26 4.75
19 Raefsky3 100.60 113.92 1.13 106.42
20 Ex11 96.26 110.74 1.15 241.53
21 Wang3 105.09 121.48 1.15 119.77
22 Raefsky4 97.17 110.18 1.13 283.77
23 Vavasis3 93.63 108.11 1.15 825.37

Table 4.4: Factorization rate in Mops and time in seconds with two di�erent kernels on a
DEC Alpha 21164.
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Clock On-chip External #Issues Peak DGEMM DGEMV
MHz Cache Cache 1 cycle Mops Mops Mops

RS/6000-590 66.5 256 KB 6 266 250 235
MIPS R8000 90 16 KB 4 MB 4 360 340 210
Alpha 21064 200 8 KB 512 KB 2 200 120 60
Alpha 21164 300 8 KB-L1 4 MB 4 600 350 135

96 KB-L2
Sparc 20 60 16 KB 1 MB 3 60 55� {
UltraSparc-I 143 16 KB 512 KB 4 286 227� {

Table 4.5: Machines used to compare various column LU codes.

supplied BLAS libraries. When the vendors do not supply a BLAS library, we report the
results from PHiPAC [16], with an asterisk (�) beside such a number. For some machines,
PHiPAC is often faster than the vendor-supplied DGEMM.

Because of physical memory limits on the Alpha 21064, the Sparc 20 and the
UltraSparc-I, some large problems could not be tested.

For the Fortran codes, we use Fortran 77 compilers; for the C codes, we use ANSI
C compilers. In all cases, we use highest possible optimization provided by each compiler.
Both SupCol and SuperLU call Level 2 BLAS routines. For the RS/6000-590, we use the
BLAS routines from IBM's ESSL library. For both Alphas, we use the BLAS routines
from DEC's DXML library. There are no vendor supplied BLAS libraries on the Sparcs,
so we use our own routines implemented in C.

Tables 4.6 through 4.11 present the results of comparisons on the six machines. In
all these tables, the column labeled \GP" gives the raw factorization times in seconds of the
GP column-column code. The numbers in each successive column are speedups achieved
by the corresponding enhancement over GP. Thus, for example, a speedup of 2 means that
the running time was half that of GP. The numbers in the last two rows of each table show
the average speedup and its standard deviation. We make the following observations from
these results.

The symmetric structure pruning in GP-Mod is very e�ective in reducing the graph
search time. This signi�cantly decreases the symbolic factorization time in the GP code. It
achieves speedup in all problems, on all machines. Its average speedup on the RS/6000 is
3.64, the highest among all the machines.

Supernodes restrict the search to the supernodal graph, and allow the numeric
kernels to employ dense BLAS-2 operations. The e�ects are not as dramatic as the pruning
technique. For matrices 1 { 3, the runtimes are actually longer than GP-Mod. This is
because supernodes are often small in the sparser matrices.

Supernode-panel update reduces the cache miss rate and exploit dense substruc-
tures in the factor F . For problems without much structure, the gain is often o�set by
various implementation overheads. However, the advantage of SuperLU over SupCol be-
comes signi�cant for larger or denser problems, or on machines with small cache. This is in
part because for small problems or large caches, when SupCol factors consecutive columns,
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Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.40 1.48 1.05 0.68
2 Gemat11 0.27 1.69 1.29 1.00
3 Rdist1 1.90 2.75 2.24 1.94
4 Orani678 13.86 3.55 2.98 3.10
5 Mcfe 1.55 3.44 3.52 3.52
6 Lnsp3937 7.11 3.39 3.86 3.54
7 Lns3937 7.77 3.39 3.85 3.55
8 Sherman5 3.98 3.43 4.57 4.23
9 Jpwh991 2.78 3.61 4.21 4.48
10 Sherman3 7.43 3.54 5.99 5.27
11 Orsreg1 8.73 3.64 5.86 5.98
12 Saylr4 17.51 3.67 5.99 6.30
13 Shyy161 163.14 3.65 6.46 5.67
14 Goodwin 90.63 3.84 6.46 7.16
15 Venkat01 355.50 3.86 8.33 8.87
16 Inaccura 544.91 4.17 7.24 7.94
17 Bai 823.47 4.23 9.58 10.47
18 Dense1000 83.48 4.21 10.22 14.54
19 Raefsky3 1571.63 4.30 11.54 14.00
20 Ex11 3439.41 4.36 11.42 13.87
21 Wang3 1841.27 4.34 12.23 15.75
22 Raefsky4 3968.16 4.35 11.89 15.39
23 Vavasis3 12342.97 4.79 13.11 15.63

Mean 3.64 6.67 7.52
Std 0.79 3.69 5.04

Table 4.6: Speedups achieved by each enhancement over the GP column-column code, on
a RS/6000-590. The blocking parameters for SuperLU are w = 8; t = 100 and b = 200.
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Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.42 1.51 1.10 0.59
2 Gemat11 0.29 1.77 1.61 1.11
3 Rdist1 2.03 2.58 2.07 2.07
4 Orani678 2.26 2.61 1.61 1.96
5 Mcfe 0.60 2.93 2.73 2.61
6 Lnsp3937 5.13 3.23 4.17 3.80
7 Lns3937 5.74 3.32 4.22 3.85
8 Sherman5 3.70 3.38 5.37 5.22
9 Jpwh991 2.50 3.63 4.81 5.21
10 Sherman3 8.73 3.78 8.08 7.87
11 Orsreg1 8.18 3.72 7.24 8.10
12 Saylr4 14.92 3.67 7.65 8.58
13 Shyy161 235.77 3.24 7.11 10.04
14 Goodwin 103.66 3.45 8.87 11.27
15 Venkat01 524.46 2.95 8.51 17.22
16 Inaccura 720.86 2.93 6.36 15.13
17 Bai 1095.30 2.95 7.28 18.42
18 Dense1000 113.28 3.34 11.99 30.21
19 Raefsky3 2263.80 2.88 6.54 28.87
20 Ex11 5302.74 2.96 6.44 25.75
21 Wang3 2710.19 2.80 6.31 31.46
22 Raefsky4 6005.72 2.85 6.29 27.44

Mean 3.02 5.74 12.13
Std 0.57 2.75 10.48

Table 4.7: Speedups achieved by each enhancement over the GP column-column code, on
a MIPS R8000. The blocking parameters for SuperLU are w = 16; t = 100 and b = 800.
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Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.42 1.19 .98 .55
2 Gemat11 0.28 1.31 1.10 .78
3 Rdist1 1.81 1.65 1.37 1.27
4 Orani678 18.16 1.80 1.61 1.85
5 Mcfe 1.63 1.90 2.12 2.09
6 Lnsp3937 8.27 1.84 2.25 2.35
7 Lns3937 9.25 1.81 2.24 2.33
8 Sherman5 4.55 1.81 2.63 2.79
9 Jpwh991 3.40 1.92 2.46 2.79
10 Sherman3 9.63 1.84 3.23 3.54
11 Orsreg1 11.35 1.82 3.09 2.64
12 Saylr4 24.48 1.78 3.13 4.19
13 Shyy161 249.83 1.80 3.43 3.84
14 Goodwin 115.40 1.77 2.82 4.19
18 Dense1000 117.21 1.83 3.60 6.45

Mean 1.74 2.40 2.85
Std 0.21 0.84 1.53

Table 4.8: Speedups achieved by each enhancement over the GP column-column code, on a
DEC Alpha 21064. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.

all (or most) of the source updating supernodes are likely to �t into cache, which means
SupCol already achieves data reuse to some extent. This may be best illustrated by the
results on the DEC Alpha 21164 (Table 4.9). For the six large matrices 18 { 23, SuperLU
achieves more than a factor of 2 speedup over SupCol. This machine di�ers from the others
in that it has multilevel caches, with each cache having rather small capacity. This deep
cache organization makes it easier for SupCol to experience cache thrashing than it is on a
large at cache. On the MIPS R8000, the large matrices achieve more than 4-fold speedup.
This is partly due to better cache reuse, and partly due to better register reuse realized by
DGEMV2 kernel.

With more and more sophisticated techniques introduced, the added complications
in the code increase the the runtime overhead to some extent. This overhead can show up
prominently in small or sparse problems. The two supernodal codes are particularly sensitive
to the characteristic of the problems. This can be seen from the large standard deviations
of their average speedups.

In practical applications, matrices are of varying size and sparsity, a natural ques-
tion to ask is whether we can provide \black box" software that can choose the best al-
gorithm based on characteristics of the matrix. This still remains a challenge in software
engineering and deserves future investigation. The chief di�culty is that we cannot make
the decision simply by looking at matrix itself. Take matrix 1 as an example. This matrix
is large in dimension, and fairly sparse. More importantly, it remains sparse after factor-
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Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.17 1.25 1.01 0.45
2 Gemat11 0.13 1.54 1.26 0.84
3 Rdist1 0.80 1.76 1.77 1.45
4 Orani678 0.92 1.74 1.47 1.45
5 Mcfe 0.24 1.71 2.01 1.85
6 Lnsp3937 2.09 1.93 2.61 2.27
7 Lns3937 2.33 1.94 2.59 2.27
8 Sherman5 1.50 1.92 3.13 3.00
9 Jpwh991 1.06 2.14 3.20 3.20
10 Sherman3 3.65 2.10 4.06 3.93
11 Orsreg1 3.41 2.07 3.87 3.91
12 Saylr4 6.73 2.05 4.01 4.34
13 Shyy161 102.19 1.81 3.97 4.58
14 Goodwin 46.18 1.92 3.84 4.90
15 Venkat01 235.01 1.71 4.08 7.00
16 Inaccura 333.24 1.72 3.48 6.07
17 Bai 497.36 1.68 4.03 7.45
18 Dense1000 49.29 1.82 4.82 10.38
19 Raefsky3 1065.88 1.68 4.00 10.02
20 Ex11 1563.17 1.73 4.12 10.61
21 Wang3 1324.79 1.74 3.92 11.06
22 Raefsky4 2939.42 1.73 3.96 10.36
23 Vavasis3 9477.62 1.83 4.51 11.48

Mean 1.80 3.29 5.34
Std 0.20 1.10 3.69

Table 4.9: Speedups achieved by each enhancement over the GP column-column code, on a
DEC Alpha 21164. The blocking parameters for SuperLU are w = 16; t = 50 and b = 100.

ization (only 1.4 �ll factor, which is actually good for sparse code). There is no gain from
introducing supernodes. Unfortunately, we know this only after the factorization.

4.9 Working storage requirement

In this section, we analyze the storage e�ciency of the new panel algorithm. Apart
from the data structures required to store the factored matrices L and U , a certain amount
of working storage is also needed to facilitate the factorization process. Because of the
inevitable �ll-ins in direct factorization algorithms, memory is almost always at a premium.
The resource limitation preventing the solution of large problems is often memory, not CPU
hours. Therefore, a low working storage requirement is an important criterion to judge a
solver's e�cacy.
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Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.86 1.19 1.25 .75
2 Gemat11 0.57 1.32 1.71 1.09
3 Rdist1 3.77 1.64 1.65 1.58
4 Orani678 29.13 1.86 1.78 1.81
5 Mcfe 3.18 1.80 2.16 2.32
6 Lnsp3937 14.68 1.82 2.36 2.33
7 Lns3937 16.29 1.84 2.47 2.27
8 Sherman5 8.12 1.82 2.74 2.81
9 Jpwh991 5.74 1.85 2.39 2.58
10 Sherman3 16.04 1.90 3.19 3.09
11 Orsreg1 18.81 1.89 3.09 3.20
12 Saylr4 38.72 1.95 3.09 3.32
13 Shyy161 442.48 2.08 3.47 3.55
14 Goodwin 195.06 1.89 3.02 3.91
18 Dense1000 195.08 1.96 3.13 4.89

Mean 1.78 2.49 2.63
Std 0.24 0.68 1.09

Table 4.10: Speedups achieved by each enhancement over the GP column-column code, on
a Sparc 20. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.

Matrix GP (Seconds) GP-Mod SupCol SuperLU

1 Memplus 0.36 1.17 1.08 0.58
2 Gemat11 0.23 1.27 1.16 0.93
3 Rdist1 1.53 1.69 1.56 1.46
4 Orani678 1.86 1.64 1.25 1.33
5 Mcfe 0.52 1.97 1.85 1.92
6 Lnsp3937 4.26 1.86 2.16 2.24
7 Lns3937 4.89 1.94 2.11 2.33
8 Sherman5 3.15 1.94 2.28 3.03
9 Jpwh991 2.32 2.18 2.47 3.09
10 Sherman3 7.73 2.01 2.84 3.59
11 Orsreg1 7.2 1.97 2.69 3.52
12 Saylr4 13.88 1.96 2.52 3.84
13 Shyy161 188.72 1.91 3.01 3.43
14 Goodwin 89.30 1.89 2.62 4.41
18 Dense1000 94.77 2.05 3.33 4.25

Mean 1.83 2.19 2.66
Std 0.28 0.69 1.22

Table 4.11: Speedups achieved by each enhancement over the GP column-column code, on
an UltraSparc-I. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.



60

In our supernode-panel factorization approach, the working storage is allocated
during the factorization of a single panel, including both its outer and inner factorizations.
The same working storage is then used repeatedly by factorizations across di�erent panels.
The working storage consists of two parts, where one part is used by symbolic factorization,
and another part is used by numerical factorization. In symbolic factorization, �ve integer
n-vectors are used in the column and panel depth-�rst search (Sections 4.3.1 and 4.3.4),
where n is the order of the matrix. One integer n-vector is used to record the topological
order obtained from the depth-�rst traversal. We use an n-by-w integer array to keep track
of the position of the �rst nonzero of each supernodal segment in U , for all the columns in a
panel of width w. An n-vector of integers is used as pointers pointing into the adjacency list
of L, representing the pruned subgraph of L (Section 4.3.2). During the outer factorization,
we use an n-by-w integer array to temporarily record the row indices of the nonzeros �lled
in the panel and below the U part. This is obtained by panel depth-�rst search, and is used
immediately by the inner factorization. Thus, the total integer storage equals n� (7+2 w).

In numerical factorization, an n-by-w oating-point SPA is used to allow random
access to the entries in the active panel. Another oating-point temporary array is employed
to store the results of BLAS calls. The size of this array is determined by the blocking
parameters, and is calculated as (t+b)�w, with t, b and w being illustrated in Figure 4.14.
The total oating-point storage is n � w + (t + b) � w. Note that all the above working
storage is reclaimed when the factorization is completed.

Table 4.12 reports the statistics on working storage usage. We compare the working
storage requirement with the LU storage in two di�erent ways. In the third column of the
table, the total working storage divided by the number of bytes used by the factor matrix
F = L + U � I is shown. We include both integer and oating-point storage for F . We
assume that an integer occupies 4 bytes, and a double precision oating-point number
occupies 8 bytes. In the last column of the table only oating-point working storage is
considered. Here, the oating-point working storage divided by the number of nonzeros in
F is shown.

It can be seen from this table that the working storage requirement for smaller
and sparser problems is relatively high, such as matrices 1 and 2. Since their L and U

factors only occupy small amount of memory, memory is not a bottleneck for this type of
problem. For large problems where L and U take up more than tens of Megabytes, the
working storage usually represents only a few percent of the LU storage. Thus, being free
from undue memory usage, the new algorithm is capable of solving the largest problems
that can �t into core memory.

4.10 Supernodal triangular solves

Not only the factorization can bene�t from supernodes; so can the triangular
solution. Since our data structures and storage layouts for L and U are di�erent, the
lower and upper triangular solves are implemented di�erently. Here, we assume that the
right-hand side vector is full.

Figure 4.21 shows the forward substitution procedure to solve a lower triangular
system. Since L has supernode structures, both the triangular solve at line 3 and the matrix-
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LU storage Fraction of Fraction of
Matrix (MB) LU storage LU oats

1 Memplus 1.75 1.74 1.45
2 Gemat11 1.03 .82 .56
3 Rdist1 3.77 .19 .12
4 Orani678 3.34 .13 .09
5 Mcfe 0.73 .19 .12
6 Lnsp3937 4.59 .15 .09
7 Lns3937 4.83 .14 .08
8 Sherman5 2.65 .21 .13
9 Jpwh991 1.47 .12 .07
10 Sherman3 4.38 .19 .12
11 Orsreg1 4.04 .09 .06
12 Saylr4 6.60 .09 .05
13 Shyy161 78.04 .16 .10
14 Goodwin 33.96 .03 .02
15 Venkat01 129.83 .08 .05
16 Inaccura 105.18 .02 .02
17 Bai 142.61 .03 .02
18 Dense1000 9.85 .01 .01
19 Raefsky3 178.79 .02 .01
20 Ex11 275.50 .01 .01
21 Wang3 133.54 .03 .02
22 Raefsky4 267.59 .01 .01
23 Vavasis3 510.86 .01 .01

Table 4.12: Working storage requirement as compared with the storage needed for L and
U . The blocking parameter settings are: w = 8, t = 100, and b = 200.
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1. x = b;
2. for each supernode (r : s) in increasing order do
3. x(r : s) = L(r : s; r : s)�1 � x(r : s);
4. x(s+ 1 : n) = x(s+ 1 : n)� L(s+ 1 : n; r : s) � x(r : s);
5. end for;

Figure 4.21: Forward substitution to solve for x in Lx = b.

1. x = b;
2. for each supernode (r : s) in decreasing order do
3. x(r : s) = U(r : s; r : s)�1 � x(r : s);
4. for j = r to s do
5. x(1 : r� 1) = x(1 : r � 1)� x(j) � U(1 : r � 1; j);
6. end for;
7. end for;

Figure 4.22: Back substitution to solve for x in Ux = b.
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Figure 4.23: Fraction of the oating-point operations and runtime in the triangular solves
over the LU factorization. Runtime is gathered from a RS/6000-590.

vector update at line 4 can call dense BLAS-2 routines. Moreover, if there are multiple
right-hand side vectors, we can call the corresponding BLAS-3 routines, respectively.

Figure 4.22 shows the back substitution procedure to solve the upper triangular
system Ux = b. Recall that diagonal blocks in U are stored together with the rectangular
supernodes, so the triangular solve at line 3 can call a BLAS-2 routine. But since di�erent
columns of U usually have di�erent structures, the update kernel at line 5 can only be a
BLAS-1 operation.

Finally we note that at line 4 of Figure 4.21 and line 5 of Figure 4.22, we must
�rst perform the respective dense operations in temporary arrays, then scatter the results
into the destination vector x.

Figure 4.23 shows the fraction of the oating-point operations and the runtime of
the solve phase as compared to the sequential LU factorization. Each is solved with only
one right-hand side vector. Note that the percentage of the ops is usually lower than the
percentage of the runtime. This is because each oating-point operation in the solve phase
takes longer time than in the factorization.

4.11 Conclusions

Our starting point in this chapter was the supernode-column LU factorization
algorithm developed by Eisenstat et al. [45]. Based on this, we designed both symbolic
and numeric algorithms to perform the supernode-panel updates, in order to achieve better
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Figure 4.24: SuperLU speedup over previous codes on an IBM RS/6000-590.

data reuse. For the new code, SuperLU, we have conducted careful performance studies on
several high performance machines. We studied both runtime and working storage e�ciency.

Figures 4.24 1 to 4.26 summarize, in graphical form, the improvement of SuperLU
over the earlier codes on three cache-based superscalar machines. Each matrix has a \�gure
of merit": the ratio of oating-point operations to the (minmum possible) number of mem-
ory references. This �gure limits the performance one can hope to achieve on a particular
matrix. SuperLU delivers high performance matrices with high �gures of merit. For large
problems, SuperLU achieves more than 2-fold and 4-fold speedups over SupCol on the DEC
Alpha 21164 and SGI MIPS R8000, respectively.

Figure 4.27 summarizes SuperLU factorization rate in ops-per-cycle on the three
platforms. We give the respective peak ops-per-cycle �gure in parentheses after each
machine name. For large sparse matrices, we see that SuperLU achieves up to 40% of the
peak oating-point rate on both RS/6000-590 and MIPS R8000. Given a dense matrix
of size 1000-by-1000, SuperLU achieves roughly 70% of the e�ciency of the dense LU

factorization code implemented in LAPACK; this is the consequence of employing both
symmetric reduction and the e�cient \BLAS-212" numeric kernel. The 30% e�ciency loss
is due to the time spent in symbolic factorization and indirect addressing, which cannot
be eliminated in any sparse code. On the Alpha 21164, we achieve no more than 25%
of the peak; this is somewhat disappointing. On the other hand, we note that DGEMM
achieves only about 58% of the peak (Table 4.5). Table 4.13 gives a summary of the absolute
factorization performance achieved by SuperLU on the three machines. For a problem from

1Figure 4.24 is identical to Figure 4.10
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Figure 4.25: SuperLU speedup over previous codes on a MIPS R8000.
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Figure 4.26: SuperLU speedup over previous codes on a DEC Alpha 21164.
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Figure 4.27: SuperLU factorization rate in ops/cycle, on the three platforms.

a 3-D semiconductor device simulation (matrix 21), the raw Mop rates are 125 on the
RS/6000-590, 169 on the MIPS R8000, and 121 on the Alpha 21164.

In addition to the LU factorization algorithm described in this chapter, we have
developed a suite of supporting routines to solve general sparse linear systems. The complete
SuperLU package includes condition number estimation, iterative re�nement of solutions,
and componentwise error bounds for the re�ned solutions [9]. These are all based on the
dense matrix routines in LAPACK [8]. In addition, SuperLU includes a Matlab mex-�le
interface, so that our factor and solve routines can be called as alternatives to those built
into Matlab.

We reported an earlier version of these results in a technical report [25].
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RS/6000-590 MIPS R8000 Alpha 21164
Matrix Seconds Mops Seconds Mops Seconds Mops

1 Memplus 0.57 3.08 0.71 2.47 0.38 4.58
2 Gemat11 0.27 5.64 0.26 5.87 0.15 10.17
3 Rdist1 0.96 13.47 0.98 13.17 0.55 23.47
4 Orani678 1.11 13.48 1.15 13.01 0.63 23.63
5 Mcfe 0.24 17.42 0.23 17.99 0.13 31.04
6 Lnsp3937 1.50 25.97 1.35 28.88 0.92 42.53
7 Lns3937 1.65 27.16 1.49 30.10 1.03 43.41
8 Sherman5 0.82 30.78 0.71 35.55 0.50 50.48
9 Jpwh991 0.52 34.57 0.48 37.45 0.33 53.93
10 Sherman3 1.37 44.24 1.11 54.60 0.93 64.93
11 Orsreg1 1.21 49.42 1.01 59.23 0.87 69.02
12 Saylr4 2.18 48.07 1.74 60.22 1.55 67.61
13 Shyy161 25.42 61.83 23.48 66.95 22.33 70.38
14 Goodwin 12.55 52.99 9.20 72.30 9.43 70.51
15 Venkat01 42.99 74.90 30.46 105.71 33.57 95.53
16 Inaccura 67.73 60.81 47.65 86.44 54.88 75.05
17 Bai 75.91 83.83 59.46 107.03 66.80 95.26
18 Dense1000 5.68 117.28 3.75 177.64 4.75 139.75
19 Raefsky3 107.60 112.62 78.41 154.55 106.42 113.92
20 Ex11 247.05 108.54 205.90 129.75 241.53 110.74
21 Wang3 116.58 124.86 86.14 168.99 119.77 121.48
22 Raefsky4 263.13 118.89 218.95 142.88 283.77 110.18
23 Vavasis3 786.94 113.36 702.38 127.01 825.37 108.11

Table 4.13: Factorization time in seconds and rate in Mops on the RS/6000-590, the MIPS
R8000 and the Alpha 21164.
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Chapter 5

A Parallel Supernode-Panel

Algorithm

In this chapter we study an e�cient parallel algorithm based on our left-looking
blocking algorithm discussed in Chapter 4. The primary objective of this chapter is to
achieve good e�ciency on shared memory systems with a modest number of processors.
Examples of such commercially popular machines include Sun SPARCcenter 2000 [107],
SGI Power Challenge [104], DEC AlphaServer 8400 [46], and Cray C90/J90 [110, 111]. In
addition to demonstrating the e�ciency of our parallel algorithm on these machines, we
also study the (theoretical) upper bound on performance of this algorithm.

Several methods have been proposed to perform sparse Cholesky factorization [49,
73, 90] and sparse LU factorization [6, 57, 65] on shared memory machines. A common
practice is to organize the program as a self-scheduling loop, interacting with a global pool
of tasks that are ready to be executed. Each processor repeatedly takes a task from the pool,
executes it, and puts new ready task(s) in the pool. This pool-of-tasks approach has the
merit of balancing work load automatically even for tasks with large variance in granularity.
There is no notion of ownership of tasks or submatrices by processors { the assignment
of tasks to processors is completely dynamic, depending on the execution speed of the
individual processors. Our scheduling algorithm employs this model as well. Our parallel
algorithm resembles the supernode-panel sparse Cholesky factorization studied in [73] in
the way we de�ne the basic tasks and the computational primitives. The way we handle the
coordination of the dependent tasks is reminiscent of the approach used by Gilbert [65] in
his column-wise sparse LU factorization. However, our algorithm represents a non-trivial
extension to the earlier work in that we have incorporated several new mechanisms, such
as unsymmetric supernodes and symmetric structure reduction.

We begin this chapter by looking at the architectural features and the programming
environments of several shared memory machines which we use in our study. We focus
on the features that are most relevant to the design and performance of our algorithm.
In Section 5.2 we describe our basic strategies in parallelization, such as where we shall �nd
parallelism in the problem, and how we shall de�ne the individual tasks. Section 5.3 sketches
the high-level parallel scheduling algorithm. Section 5.4 describes speci�c implementation
details and shows the design choices we have made in di�erent components of the algorithm,
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such as handling the dependent tasks, and memory management. In Section 5.5 we show
the parallel performance (or speedup) achieved by the test matrices on various platforms.
Both time and space e�ciency will be illustrated. Finally, in Section 5.8 we establish a
PRAM model to predict theoretical upper bound on speedups attainable by the underlying
algorithm.

5.1 Shared memory machines

Many of the shared memory machines belong to the category of symmetric mul-
tiprocessing systems (SMP). By symmetric multiprocessing we mean that all processors in
the system have the same computational power, and that they all have the same access
latency to any location in the globally shared main memory. The processor-memory-I/O
interconnect is often implemented using a shared bus, or some high speed switch. Main
memory is usually con�gured in multiple logical units. There is no penalty for accessing a
memory unit which is physically distant from the processor because all units are equidis-
tant in an architectural sense. The provision of quick memory access is ensured by o�ering
extensive interleaving. Individual DRAMs are incapable of providing data on a continuous
basis. After each access, the chip must spend time recovering before permitting the next
access. In interleaved memory schemes, the memory is subdivided into several independent
memory banks and the addresses distributed across these banks. Memory performance is
increased by arranging for one bank to supply data while other banks are recovering. So
multiple memory components can operate in parallel.

The shared memory model often o�ers �ne-grain, low latency access to remote
data, which is a nice feature for our application. The major sources of overhead in shared
memory programs are bus and memory contention due to sharing data. On modern cache-
based SMP systems, variants of invalidation-based cache coherence protocols are often im-
plemented in hardware. An update to a local copy of the shared block requires that every
other copy must be either updated or invalidated. This may generate a lot of bus tra�c.
To maintain data integrity in globally shared data structures, it is necessary to serialize the
concurrent accesses by di�erent processors to a critical section, such as a segment of code
that modi�es a shared data structure. This mutually exclusive access is guaranteed by using
locks on mutual exclusion variables (mutex variables). There are two types of performance
problems associated with the mutual exclusion: (1) contention for a mutex variable because
the critical region is too large; (2) overhead of lock acquisition even if no other processor is
holding the lock. It is important to minimize the use of critical sections to obtain the best
performance.

5.1.1 The Sun SPARCcenter 2000

Each processor in the Sun SPARCcenter 2000 [107] is a SuperSPARC micropro-
cessor rated at 50 MHz. The processor is capable of executing up to three independent
instructions per clock cycle. The on-chip cache consists of a 5-way set associative, 16 KB
data cache, and a 5-way set associative, 20 KB instruction cache; both caches are physi-
cally addressed and operate in write-through mode. There is an external uni�ed data and
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instruction cache associated with each processor, of size 1 MB, that is physically-addressed
and direct-mapped. The external cache always operates in write-back mode. This inte-
grated processor module can be easily upgraded with newer generation microprocessors to
capture the most recent advances in processor technology. The parallel machine used in our
study has 4 processors.

Dual high-speed packet-switched buses, called XDBuses, are used as interconnect.
The packet-switched design permits split phase transactions of bus requests and their cor-
responding replies, and so enjoys higher bus utilization than circuit-switching. The dual
buses provide 500 MB/sec e�ective data transfer bandwidth.

To access multiple processors, we use a user-level multithread library implemented
in the Solaris 2.x operating system [106]. In this model, the lightweight user-level threads
within a single UNIX process are multiplexed on top of kernel-supported threads. Synchro-
nization and context switching of the user-level threads are accomplished rapidly, without
entering the OS kernel.

5.1.2 The SGI Power Challenge

A 64-bit MIPS R8000 microprocessor and MIPS R8010 oating-point chip are used
for each processor of the Power Challenge [104]. The chip set delivers peak performance
of 360 MIPS and 360 double-precision Mops with a clock frequency of 90 MHz. This
processor was used in Chapter 4, see Table 4.5. Each processor contains a 16 KB direct-
mapped level-one data cache in the integer unit (IU). This small on-chip cache allows fast
access for integer loads and stores and helps the IU to accomplish fast integer and address
calculations. A large 4 MB four-way set associative o�-chip cache, called the data streaming
cache, serves as a second-level cache for integer data and instructions, and as a �rst-level
cache for oating-point data. Floating-point loads and stores bypass the on-chip cache and
communicate with the large o�-chip cache directly. The data streaming cache is pipelined
to allow for continuous access by the oating-point functional units. Total cache bandwidth
is 1.2 GB/sec, or two 64-bit double words per cycle. The cache line size is 512 bytes (64
double words). The parallel machine has 16 processors, and we use 12 processors in our
experiments.

The memory subsystem consists of several memory modules. Each module is
further divided into several banks. Memory is interleaved on cache line boundaries. The
system used in our study has 2 GB of main memory, and is 4-way interleaved.

The multiprocessor system uses the POWERpath-2 interconnect. This bus struc-
ture provides cache-coherent communication between processors, main memory, and I/O.
The address (40-bit) and data (256-bit) buses are separate. Read transactions are split:
independent address and data transactions can occur simultaneously, creating a pipeline
e�ect. A sustained transfer rate is 1.2 GB/sec, or two 64-bit double words per cycle.

The MIPS Power C compiler enables multiprocessing directives to ease parallel
programming development. The system provides hardware support for fast synchronization
operations, such as fork and join, semaphores and locks. These allow for e�cient �ne-grain
parallel processing.
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5.1.3 The DEC AlphaServer 8400

The DEC AlphaServer 8400 is based on the 64-bit Alpha 21164 microprocessor
and the AlphaServer 8000-series platform architecture [46]. The clock frequency of the
processor is 300 MHz with peak oating-point rate 600 Mops. Each microprocessor has
its own independent caches, including an 8 KB instruction cache, an 8 KB data cache, a
96 KB write-back second-level cache, and a 4 MB tertiary cache. This processor was used
in Chapter 4, see Table 4.5. The parallel system used in our study has 8 processors.

Main memory is divided into multiple modules and supports between 2-way and
8-way interleaving. The system used in our study has a 4 GB of main memory.

The interconnect features separate address and data buses. With the emphasis on
the low memory latency and the advantages of simple bused system, a wide (256-bit) and
high frequency bus is used for the data path. The address bus supports a 40-bit address
space. The system bus operates at 75 MHz which when applied to the 256-bit data path,
produces a peak bandwidth of 2.4 GBytes/sec. However, a sustainable bandwidth is 1.6
GBytes/sec.

In the parallel program development, we use the pthread interface provided by
DECthreads, Digital's multithreading run-time library [26]. The pthread interface imple-
ments a version of the POSIX 1003.1c API draft standard for multithreaded program-
ming [91]; thus, the code will be easily portable to future systems. Similar to the Solaris
threads model, multiple threads execute concurrently within (and share) a single address
space. On the DEC, the multithreaded program is capable of utilizing multiple processors
if the operating system supports kernel threads.

5.1.4 The Cray C90/J90

The Cray C90 [110] and J90 [111] are Cray Research's two series of vector super-
computers. The J90 series is the latest entry-level supercomputing system that is designed
to address low price and high performance. Both systems have multiple processors, in
which each processor is a vector machine. On each processor, high performance is achieved
through vectorization { a version of the Single Instruction Multiple Data (SIMD) parallel
processing technique. Unlike scalar processing, which requires a separate instruction cycle
for each operation, vector processing requires only one instruction to carry out the same
operation on an entire list of operands. The maximum number of processors for the C90
and J90 are 16 and 32, respectively.

In each processor of C90 and J90, the scalar chip is responsible for scalar processing
and control for both the scalar and vector processors (VU chip). The scalar chip contains
oating-point functional units, 32-word instruction bu�ers, and scalar and address registers.
The VU chip contains the vector registers and vector (segmented) functional units. The
vector registers are the operational registers for the vector operations. The vector registers
can be loaded from memory, from the functional units, from other vector registers, or even
from scalar registers. The segmented functional units divide an operation into distinct
suboperations, each requiring one clock period to complete.

Central memory is highly interleaved. It is organized into eight sections for the 4
CPUs on a module. Each section is made up of eight subsections, which are further broken



72

Bus Read Memory Programming
Machine Processor CPUs Bandwidth Latency Size Model

Sun SuperSPARC 4 500 MB/s 1200 ns 196 MB Solaris thread
SGI MIPS R8000 16 1.2 GB/s 252 ns 2 GB Parallel C
DEC Alpha 21164 8 1.6 GB/s 260 ns 4 GB pthread
Cray C90 8 245.8 GB/s 96 ns 640 MB microtasking
Cray J90 16 51.2 GB/s 330 ns 640 MB microtasking

Table 5.1: Characteristics of the parallel machines used in our study.

down into separate banks. There are altogether 1024 memory banks. Each word has 8
bytes, or 64 bits, of data. All integer values occupy a full 64-bit word. All oating-point
values use Cray single-precision (64-bit) representation and 64-bit arithmetic hardware.

The clock speed of the C90 is 240 MHz. Each processor can produce four oating-
point results per cycle, two adds and two multiplies, resulting in 960 Mops peak on vector
code.

The clock speed of the J90 is 100 MHz. The processor can produce two oating-
point results per cycle, an add and a multiply, resulting in 200 Mops peak on vector code.
The peak scalar code performance is 100 MIPS. The vector register length is 64 words.
Each scalar chip contains an 1 KB of 2-way, set-associative cache.

On both C90 and J90, the Cray C compiler provides a user-directed tasking (also
called microtasking) capability to use multiple processors. In our C program, we insert the
taskloop directive for the top level scheduling loop. The taskloop construct allows di�erent
iterations of a loop to be executed on di�erent processors. Synchronization primitives are
supported on both machines.

Table 5.1 summarizes the con�gurations and several key parameters of the �ve
parallel systems. In the column \Bus Bandwidth" we report the e�ective or sustainable
bandwidth. In \Read Latency" we report the minimum amount of time it takes a processor
to fetch a piece of data from memory into a register in response to a load instruction.

5.2 Parallel strategies

Two crucial issues must be addressed in designing a parallel algorithm. One is
to exploit as much concurrency as the problem presents to us. Another is to maintain a
su�cient level of per-processor e�ciency by choosing an appropriate granularity of task as
a single scheduling unit. Care must be taken to strike a good balance between sustained
amount of concurrency and per-processor performance. Before describing the detailed algo-
rithm, we �rst address the above two issues in the context of our supernode-panel algorithm.

5.2.1 Parallelism

In dense linear algebra software, such as LAPACK [7], parallelism can simply
rely on the parallel BLAS routines. So the sequential and shared memory parallel code
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are identical, except that the BLAS implementations di�er. However, for sparse matrix
factorizations, parallelism in the dense matrix kernels is quite limited, because the dense
submatrices are typically small.

We can exploit two sources of parallelism in the sparse LU factorization. The
coarse level parallelism comes from the sparsity of the matrix, and is exposed to us by
the column elimination tree of A (see Section 3.3). Recall that each node in the elimina-
tion tree corresponds to one column in the matrix, so we will use \node" and \column"
interchangeably.

In symmetric sparse Cholesky factorization, the elimination tree describes accurate
column dependencies. A column will update its parent column and a subset of its ancestor
columns along the path leading to the root. However, columns from two di�erent subtrees
never modify each other during the elimination process. This implies that the factorization
of the independent subtrees can proceed concurrently. Almost all parallel sparse Cholesky
factorization algorithms take advantage of this type of parallelism, referred to as tree or
task parallelism.

In unsymmetric LU factorization with partial pivoting, we also wish to determine
column dependencies prior to the factorization. It has been shown in a series of studies
[50, 54, 63, 65] that the column elimination tree gives the information about all potential
dependencies. We herein simply state the most relevant results. The interested reader can
consult Gilbert and Ng [63] for a complete and rigorous treatment of this topic. Recall that
column i of L and/or U modi�es column j if and only if uij 6= 0. Part 3 of Theorem 1
implies that the columns in di�erent subtrees do not update one another. Furthermore,
the columns in independent subtrees can be computed without referring to any common
memory, because the columns they depend on have completely disjoint row indices (Theorem
3.2 in [65]).

In general we cannot predict the nonzero structure of U precisely before the fac-
torization, because the pivoting choice and hence the exact nonzero structure depend on
numerical values. The column elimination tree can overestimate the true column depen-
dencies. A typical example is

A =

0
BBB@
1 � � �
2
3
4

1
CCCA ;

in which ATA is symbolically full, so the column elimination tree is a single chain. But
regardless of the numeric values in the entries, matrix A has a trivial LU decomposition,
and no column will update any other column. Despite the possible overestimate, part 4 of
Theorem 1 says that if A is strong Hall, this dependency is the strongest information ob-
tainable from the structure of A alone. (The example matrix is not strong Hall.) Therefore
we will live with some pessimism in scheduling independent tasks. (In Section 5.2.2 we will
be concrete about task de�nition.)

For a matrix that is not strong Hall, we might be able to improve the quality of the
estimate by permuting the matrix to a block upper triangular form (called the Dulmage-
Mendelsohn decomposition) [94], in which each diagonal block is strong Hall. Then, we only
need to factorize the diagonal blocks.
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Having studied the parallelism arising from di�erent subtrees, we now turn our
attention to the dependent columns, that is, the columns having ancestor-descendant rela-
tions. When the elimination process proceeds to a stage where there are more processors
than independent subtrees, we need to make sure all processors e�ectively work on depen-
dent columns. Thus the second level of parallelism comes from pipelining the computations
of the dependent columns.

Consider a simple situation with only two processors. Processor 1 gets a task Task
1 containing column j, processor 2 gets another task Task 2 containing column k, and node
j is a descendant of node k in the elimination tree. The (potential) dependency says only
that Task 2 cannot �nish its execution before Task 1 �nishes. However, processor 2 can start
Task 2 right away with the computations not involving column j; this includes performing
the symbolic structure prediction and accumulating the numeric updates using the �nished
columns that are descendants in the tree. After processor 2 has �nished the other part
of the computation, it has to wait for Task 1 to �nish. (If Task 1 is already �nished at
this moment, processor 2 does not waste any time waiting.) Then processor 2 will predict
the new �lls and perform numeric updates that may result from the �nished columns in
Task 1. In this way, both processors do useful work concurrently while still preserving the
precedence constraint. Note that we assume the updates can be done in any order. This
could give di�erent numerical result and is therefore not a straightforward parallelization
of the sequential algorithm.

The pipelining scheme above can be generalized to an arbitrary number of pro-
cessors. When a processor obtains a panel, it uses appropriate data structures to keep
track of the currently un�nished descendants of this panel. The processor �rst performs
updates from the computed descendants, waits for the others to �nish, and �nally performs
any updates that may come from the just-�nished descendants. Although this pipelining
mechanism is complicated to implement, it is essential to achieve higher concurrency. This
is because, in most problems, a large percentage of the computation occurs at a few top
levels of the etree, where there are fewer branches than processors. An extreme example is
a dense matrix, the elimination tree of which is a single chain. Here, all parallelism must
come from pipelining.

5.2.2 Panel tasks

As studied in Chapter 4, the introduction of supernodes and panels makes the
computational kernels highly e�cient. Recall that a panel di�ers from a supernode in that
we do not require the row structures of its constituent columns to be the same (although
the more similar, the better opportunity for data reuse). We may view supernodes as
blocks intrinsic to the problem, whereas panels arise from algorithmic blocking. The size
of each panel can be set before factorization, but supernode boundaries must be identi�ed
dynamically. To retain the serial algorithm's ability to reuse data in cache and registers,
we treat the factorization of one panel as a unit task to be scheduled; it computes the
part of U and the part of L for all columns within this panel. More speci�cally, a panel
task comprises two distinct subtasks. The �rst corresponds to the outer factorization, which
accumulates the updates from the descendant supernodes. The second subtask is to perform
the panel's inner factorization, which factors one column at a time, including supernode
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(a) (b) (c)

Figure 5.1: Panel de�nition. (a) relaxed supernodes at the bottom of the elimination tree;
(b) consecutive columns from part of one branch of the elimination tree; (c) consecutive
columns from more than one branch of the elimination tree.

detection, partial pivoting, and symmetric pruning. For this simple algorithm, we do not
exploit potential parallelism within a panel factorization.

A panel consists simply of a set of consecutive columns in the matrix. Since the
parallel algorithm uses the column elimination tree as the main scheduling tool, it is worth
studying the relationship between the panels and the structure of the column elimination
tree. We assume that the columns of the matrix are ordered according to a postorder on
the elimination tree. Recall that the sequential algorithm takes the panel size w as an input
parameter. It tries to factorize w consecutive columns at a time. There might exist panels
of size smaller than w. This happens whenever two columns j and j+1 come from di�erent
subtrees. Then there is no bene�t from grouping j and j + 1 into one panel, because their
respective sets of updating supernodes are disjoint. In this case, column j + 1 will start a
di�erent panel. Pictorially, panels can be classi�ed into three types, depending on where
they are located in the elimination tree, as illustrated in Figure 5.1.

In the parallel algorithm, panels of type (a) and (b) are easy to handle. To deal
with type (c) panels, the pipelining scheme requires complex data structures to keep track
of the busy descendant panels, because each panel may contain columns from di�erent
branches of the tree. We need to identify all the frontier busy columns hanging o� the
di�erent subtrees. We realize that the cost of this book-keeping and the cost associated
with the complicated control logic would be enormous.

To simplify this matter, we have rede�ned the panels so that type (c) panels do
not occur. We will let a panel stop before a node (column) that has more than one branch
in the elimination tree. Every branching node necessarily starts a new panel. Under this
restriction, the busy descendant panels, except type (a) panels, always form one path in
the elimination tree. If a processor needs to wait for, and later perform, the updates from
the busy panels, it can simply walk up the path in the etree starting from the most distant
busy descendant(s). By this new de�nition of panels, there will be more panels of smaller
sizes. The question arises whether this will hurt performance. We studied the distribution
of oating-point operations on di�erent panel sizes for all of our test matrices, and observed
that usually more than 95% of the oating-point operations are performed in the panels
of largest size, and these panels tend to occur at a few topmost levels of the elimination
tree. Thus, panels of small sizes normally do not represent much computation. On unipro-
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Slave worker()

1. newp = NULL;
2. while ( there are more panels ) do
3. oldp = newp;
4. Scheduler( oldp; newp; Q );
5. if ( newp is a relaxed supernode ) then
6. relaxed supernode factor( newp );
7. else
8. panel symbolic factor( newp );
9. { determine which supernodes will update panel newp;
10. { skip all BUSY panels/supernodes;
11. panel numeric factor( newp );
12. { accumulate updates from the DONE supernodes, updating newp;
13. { wait for the BUSY supernodes to become DONE, then predict

new �lls and accumulate more updates to newp;
14. inner factorization( newp ); /* independent from other processors */
15. { perform supernode-column update within the panel;
16. { perform row pivoting;
17. { detect supernode boundary;
18. { perform symmetric structure pruning;
19. end if;
20. end while;

Figure 5.2: The parallel scheduling loop to be executed on each processor.

cessors, we see almost identical performance using the earlier and the new de�nitions of
panels. Therefore, we believe that this restriction on panels simplies the parallel scheduling
algorithm with no performance compromise on individual processors.

5.3 The asynchronous scheduling algorithm

Having described the parallelism and basic computational tasks, we are now in a
position to describe the parallel factorization algorithm. This section presents the organiza-
tion of the scheduling algorithm, with more implementation details to appear in Section 5.4.
Our scheduling approach used some techniques from the parallel algorithm developed by
Gilbert [65], which was based on the sequential GP algorithm. Figure 5.2 sketches the top
level scheduling loop. Each processor executes this loop until its termination criterion is
met, that is, all panels have been factorized.

The parallel algorithm maintains a central priority queue of tasks (panels), denoted
by Q, that are ready to be executed by any free processor. The content of this task queue
can be accessible and altered by any processor. At any moment during the elimination, a
panel is tagged with a certain state, such as READY, BUSY, or DONE. Every processor
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repeatedly asks the scheduler (at line 4) for a panel task in the queue. The Scheduler()

routine implements a priority-based scheduling policy described below. The input argument
oldp denotes the panel that was just �nished by this processor. The output argument newp
is a newly selected panel to be factorized by this processor. The selection preference is as
follows:

(1) The scheduler �rst checks whether all the children of oldp's parent panel, say parent,
are DONE. If so, parent now becomes a new leaf and is immediately assigned to newp
on the same processor.

(2) If parent still has un�nished children, the scheduler next attempts to take from Q a
panel which can be computed without pipelining, that is, an initial leaf panel.

(3) If no more leaf panels exist, the scheduler will take a panel that has some BUSY
descendant panels currently being worked by other processors. Then the new panel
must be computed by this processor in a pipelined fashion.

One may argue that (1) and (2) should be reversed in priority. Choosing to eliminate the
immediately available parent �rst is primarily concerned with locality of reference. Since
a just-�nished panel is likely to update its parent or other ancestors in the etree, it is
advantageous to schedule its parent and other ancestors on the same processor.

To implement the above priority scheme, the task queue Q is initialized with
the leaf panels, that is, the relaxed supernodes, which are marked as READY. Later on,
Scheduler() may add more panels at the tail of Q. This happens when all the children of
newp's parent, parent, are BUSY; parent is then enqueued into Q and is marked as eligible
for pipelining. By rule (1), some panel in the middle of the queue may be taken when all
its children are DONE. This may happen even before all the initial leaf panels are �nished.
All the intermediate leaf panels are taken in this way. By rule (2) and (3), Scheduler()
removes tasks from the head of Q.

It is worth noting that the executions of di�erent processors are completely asyn-
chronous. There is no global barrier; the only synchronization occurs at line 13 in Figure 5.2,
where a processor stalls when it waits for some BUSY updating supernode to �nish. As
soon as this BUSY supernode is �nished, all the processors waiting on this supernode are
awakened to proceed. This type of synchronization is commonly referred to as event noti-
�cation. Since the newly �nished supernode may produce new �lls to the waiting panels,
the symbolic mechanism is required to discover and accommodate these new �lls.

We use the SPMD (Single Program Multiple Data) parallel programming style, in
which a single program text is executed by all processors. At the program level, multiple
concurrent (logical) threads are created for the scheduling loop Slave worker(). Scheduling
these threads on available physical processors is done by the operating system or runtime
library. Thread migration between processors is usually invisible to us.

5.4 Implementation details

In this section we present assorted implementation details. The details in this
section are not required for understanding later sections of this thesis.
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5.4.1 Linear pipelining

In the most general pipeline approach, a panel, say p, can begin execution as
soon as all its children are either DONE or BUSY. To implement this scheme, we must
record all the busy descendants, possibly from many di�erent branches down the etree.
This bookkeeping can be very expensive. Instead, we have implemented a simpler pipeline
mechanism, in which a panel p is allowed to start pipeline execution only if it has exactly
one busy child. Under this rule, the busy panels must always form a single path in the
etree. We therefore call this linear pipelining. Let d be the �rst (lowest numbered) panel
in this busy chain. That is, all the children of d are �nished but d is still busy. Then the
processor working on p simply walks up the etree from d, waits for all the columns between
d and p to �nish, and accumulates new updates from those columns along the path. The
only bookkeeping required by each processor is to record d, the most distant busy panel in
this linear chain.

5.4.2 Symmetric pruning

Symmetric pruning [43, 44] was discussed in Section 4.3.2 for the sequential al-
gorithm. The idea is to use a graph H with fewer edges than G(LT ) to represent the
structure of L. Traversing H gives the same reachable set as does traversing G, but is less
expensive. As shown in Section 4.5, this technique is very e�ective in reducing the symbolic
factorization time. Therefore, we want to retain this technique in the parallel algorithm.

In the sequential algorithm, in addition to the adjacency structure for G, there is
another adjacency structure to represent the reduced graph H . For each supernode, since
the row indices are the same among the columns, we only store the row indices of the �rst
column for G and the row indices of the last column for H . (If we use only one adjacency
list for each supernode, since pivoting may have reordered the rows so that the pruned and
unpruned rows are intermingled in the original row order, it is then necessary to reorder all
of L and A to account for it.) Figure 5.3 illustrates the storage layout for the adjacency
lists of G and H of a sample matrix (also see Figures 3.3 and 3.5). Array Lsub[*] stores
the row subscripts. G ptr[*] points to the beginning of each supernode in array Lsub[*].
H ptr[*] points to the pruned location of each supernode in array Lsub[*]. Using G ptr

and H ptr together can locate the adjacency list for each supernode in H . This matrix has
four supernodes: f1,2g, f3g, f4,5,6g, and f7,8,9,10g. The adjacency lists for G and H are
interleaved by supernodes in the global memory Lsub[*]. For a singleton supernode, such
as f3g, only one adjacency list is used for both G and H . The storage for the adjacency
structure of H is reclaimed at the end of the factorization.

The pruning procedure works on the adjacency lists for H . Each adjacency list of
a supernode (actually only the last column in the supernode) is pruned at the position of
the �rst symmetric nonzero pair in the factored matrix F , as indicated by the small \�" in
the �gure. Both column DFS (Section 4.3.1) and panel DFS (Section 4.3.4) traverse the
adjacency structure of H , as given by H ptr[*] in Figure 5.3.

In the parallel algorithm, contention occurs when one processor is performing DFS
using H 's adjacency list of column j (a READ operation), while another processor is pruning
the structure of column j, since pruning will reorder the row indices in the list (a MODIFY
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Figure 5.3: Storage layout for the adjacency structures of G and H .
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operation). There are two possible solutions to avoid this contention. The �rst solution is
to associate one mutex lock with each adjacency list of H . A processor acquires the lock
before it prunes the list and releases the lock thereafter. Similarly, a processor uses the lock
when performing DFS on the list. Although the critical section for pruning can be very
short, the critical section for DFS may be very long, because the list must be locked until
the entire depth-�rst search starting from all nodes in the list is completed. During this
period, all the other processors attempting to prune the list or to traverse the list will be
blocked. Therefore this approach may incur too much overhead, and the bene�t of pruning
may be completely o�set by the cost of locking.

We now describe a better algorithm that is free from locking. We will use both
graphs H and G to facilitate the depth-�rst search. Recall that each adjacency list is
pruned only once throughout the factorization. We will associate with each list a status bit
indicating whether it is pruned or not. Once a list is pruned, all the subsequent traversals
on the list involve only READ operations, and hence do not require locking. If the search
procedure reaches a list ofH that is not yet been pruned, we will direct the search procedure
to traverse the list of the corresponding column in G. So when the search algorithm reaches
column j, it does the following:

if column j is pruned then

continue search from nodes in the H-list of column j;
else

continue search from nodes in the G-list of column j;
endif

In order for this scheme to work, we need to maintain two copies of an identical list for
each singleton supernode. This incurs a little more working storage requirement than the
sequential algorithm.

Since H is generally a subgraph of G, the depth-�rst search algorithms in the
parallel code may traverse more edges than those in the sequential code. This is because in
the parallel algorithm, a supernode may be pruned later than in the sequential algorithm.
However, because of the e�ectiveness of symmetric reduction, very often the search still
uses the pruned list in H . So it is likely that the time spent in the slight extra search in
the G-lists is much less than that when using the locking mechanism. Figure 5.4 shows the
relative size of the reduced supernodal graph H , and Figure 5.5 shows the fraction of the
number of searches that use the H-lists. The numbers in both �gures are collected on a
single processor Alpha 21164.

5.4.3 Supernode storage using nonzero column counts in QR factorization

Recall that we have used two blocking structures in our algorithm, which are
panels and supernodes. A panel di�ers from a supernode in that we do not require the row
structures of its constituent columns to be the same (although the more similar the better
the chance of data reuse). We may view supernodes as blocks intrinsic to the problem,
whereas panels arise from algorithmic blocking.

The reader may refer to Section 3.2 for our de�nition of T2 supernodes and the
storage scheme used to store supernodes in memory. It is important to store the columns
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of a supernode consecutively in memory, so that we can call BLAS routines directly in-
place without paying the cost of copying the columns into contiguous memory. Although
this contiguity is easy to achieve in a sequential code, it poses problems in the parallel
algorithm.

Consider the scenario of parallel execution depicted in Figure 5.6. According to
the order of the �nishing times speci�ed in the �gure, panel f3,4g will be stored in memory
�rst, followed by panel f1,2g, and then followed by panel f5,6g. The supernode f3,4,5,6g is
thus separated by the panel f1,2g in memory. The major di�culty comes from the fact that
the supernodal structure emerges dynamically as the factorization proceeds, so we cannot
statically calculate the amount of storage required by each supernode. Another di�culty is
that panels and supernodes can overlap in many di�erent ways.

One immediate solution is not to allow any supernode to cross the boundary of a
panel. In other words, the leading column of a panel is always treated as the beginning of a
new supernode. Thus a panel can possibly be subdivided into more than one supernode, but
not vice versa. In such circumstances, the columns of a supernode can be easily guaranteed
to be contiguous in memory because they are part of a panel and assigned to a single
processor by the scheduler. Each processor simply stores a (partial) ongoing supernode in
its local temporary store, and copies the whole supernode into the global data structure as
soon as it is �nished.

This restricted de�nition of supernodes would mean that the maximum size of
supernodes would be bounded by the panel size. As discussed in Chapter 4, for best
performance, we would like to have large supernodes but relatively small panels. These
conicting demands make it hard to �nd one good size for both supernodes and panels.
We conducted an experiment with this scheme for the sequential algorithm. Figure 5.7
shows the uniprocessor performance loss with varying panel size (i.e., the maximum size of
supernodes). For large matrices, say matrices 12 { 21, the smaller panels and supernodes
result in more performance loss. For example, when panel size is w = 16, the slowdown can
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Parallel execution:

Processor  P1  finishes panel  {3, 4}  first;

Processor  P2  finishes panel  {1, 2}  second;

Processor  P3  finishes panel  {5, 6}  last.

Supernode

Figure 5.6: A snapshot of parallel execution.

be as large as 20% to 68%. Even for large panel sizes, such as w = 48, the slowdown is still
between 5% and 20%. However, in the parallel algorithm, such large panels give rise to too
large a task granularity and severely limit the level of concurrency in the parallel algorithm.
We therefore feel that this simple solution is not satisfactory. Instead, we seek a solution
that does not impose any restriction on the relation between panels and supernodes, and
that allows us to vary the size of panels and supernodes independently in order to better
trade o� concurrency and single-processor e�ciency.

Our second proposed solution is to allocate space that is an upper bound on the
actual storage needed by each supernode in the L factor, irrespective of the numerical
pivoting choice. Then there will always be space to store supernode columns as they are
computed. Note that after Gaussian elimination with partial pivoting, we can write A =
P1L1P2L2 � � �Pn�1Ln�1U . We de�ne L as the unit lower triangular matrix whose i-th
column is the i-th column of Li, such that L � I =

P
i(Li � I).1 Let Lc be the result of

forming ATA symbolically and then performing symbolic Cholesky factorization. (i.e., in
the absence of conincidental numerical cancellation.) We shall make use of the following
structure containment properties in our storage scheme. Here we only quote the results
without proof.

Theorem 5 [54] Let A be a nonsingular matrix with nonzero diagonal. If Lc is the symbolic
Cholesky factor described above, and L and U are the triangular factors of A represented
as above, then Struct(L+ U) � Struct(Lc + LTc ).

Theorem 6 [50, 55] Consider the QR factorization A = QR using Householder transfor-
mations. Let H be the symbolic Householder matrix consisting of the sequence of House-

1This L is di�erent from the L̂ in PA = L̂U . Both L and L̂ contain the same nonzero values, but in
di�erent positions. In this section, L is used as a data structure for storing L̂.
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Figure 5.7: The sequential runtime penalty for requiring that a leading column of a panel
also starts a new supernode. The times are measured on the RS/6000-590.

holder vectors as used to represent the factored form of Q. If A is a nonsingular matrix
with nonzero diagonal, and L and U are the triangular factors of A represented as above,
then Struct(L) � Struct(H), and Struct(U) � Struct(R).

Theorem 7 [20] Suppose A has full (column) rank. If Lc is the symbolic factor described
above, then Struct(RT ) � Struct(Lc). Furthermore, if A is strong Hall, then at most an
arbitrarily small perturbation in the nonzero values of A is needed to achieve Struct(RT) =
Struct(Lc).

In what follows, we describe how these upper bounds can facilitate our storage
management for the L supernodes. First, we need a notion of fundamental supernode,
which was introduced by Ashcraft and Grimes [11] for symmetric matrices. In a fundamental
supernode, every column except the last is an only child in the elimination tree. Liu et al. [84]
gave several reasons why fundamental supernodes are appropriate, one of which is that
the set of fundamental supernodes are the same regardless of the particular postordering.
For consistency, we now also impose this restriction on the supernodes in L,2 Lc and H ,
respectively. For convenience, let SL denote the fundamental supernodes in the L factor,
SLc denote the fundamental supernodes in the symbolic Cholesky factor Lc, and SH denote
the fundamental supernodes in the symbolic Householder matrix H . In the following, we
shall omit the word \fundamental" when it is clear.

2The sequential SuperLU does not have this restriction on supernodes.
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Figure 5.8: Bound the L supernode storage using the supernodes in Lc.

Our code breaks the L supernode at the boundary of an Lc (or H) supernode,
forcing the L supernode to be contained in the Lc (or H) supernode. In fact, if we use
fundamental L supernodes and ignore numerical cancellation (which we must do anyway
for symmetric pruning), we can show that an L supernode is always contained in an Lc (or
H) supernode [69]. Our objective is to allocate storage based on number of nonzeros in
either SLc or SH , so that this storage is su�ciently large to hold SL. Figure 5.8 illustrates
the idea of using SLc as a bound. Two supernodes in SL from di�erent branches of the
elimination tree will go to their corresponding memory locations of the enclosing supernodes
in SLc . For those SL supernodes occurred in the same SLc supernode, even if their panels
are assigned to di�erent processors, the scheduling algorithm guarantees that the panels
(and hence the supernodes) are �nished in the order of increasing column numbers. So the
columns of each SL supernode are contiguous in the storage of the SLc supernode.

To determine the storage for SLc , what we need is an e�cient algorithm to com-
pute the column counts nnz(Lc�j) for Lc. We also need to identify the �rst vertex of each
supernode in SLc . Then the number of nonzeros in each supernode is simply the prod-
uct of the column count of the �rst vertex and the number of columns in the supernode.
To compute nnz(Lc�j ) and SLc , we can apply the supernodal count algorithm for sparse
Cholesky factor [70] to ATA. However, forming the structure of ATA may be expensive
and ATA may be much denser than A. To achieve the needed level of e�ciency, Gilbert,
Ng and Peyton [69] suggested ways to modify their Cholesky-column-count algorithm [70]
to work with the structure of A without explicitly forming ATA. The running time of this
algorithm is O(m �(m;n)), where m = nnz(A) and �(m;n) is the slowly-growing inverse
of Ackermann's function coming from disjoint set union operations.

For H , we need the following crucial result by George, Liu and Ng ([50], Theorem
2.1): Each row set Struct(Hi�) consists of all the vertices on a path in the column elimination
tree from fi to the smaller of i or the root of the elimination subtree containing fi, where
fi is the column subscript of the �rst nonzero in row i of A. Thus the column counts
nnz(H�j) can be obtained using a simple variant of Cholesky-column-count algorithm, with
time complexity O(nnz(A)). It can be easily incorporated into the column count algorithm
for Lc. Furthermore, the �rst vertices of the fundamental supernodes in H are characterized
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by the following theorem, which we established through discussions with Ng [88].

Theorem 8 Vertex j is the �rst vertex in a fundamental supernode of H if and only if
vertex j has two or more children in the column elimination tree T , or j is the column
subscript of the �rst nonzero in some row of A.

Proof: It is clear by de�nition that if vertex j has two or more children in T it must be
the �rst node of a fundamental supernode. Therefore we only need to prove the second case
in which vertex j has exactly one child j � 1.

\if" part: Let aij be the �rst nonzero in row i of A. Then we must have hi;j�1 = 0,
for otherwise, there exists a path in T associated with Struct(H�i) from some k (� j � 1)
to i, and aik 6= 0. This leads to the contradiction that aik = 0; for all k < j. It follows
that Struct(H�j) �=Struct(H�;j�1); thus j must start a new supernode.

\only if" part: Assume that node j is the �rst node of its fundamental supernode,
implying that Struct(H�j) 6= Struct(H�;j�1)�fj� 1g. Then there exists a row i such that
hi;j�1 = 0 and hij 6= 0. If there is an aik 6= 0 with k � j � 1, then hi;j�1 cannot be zero,
because j � 1 is on the path from k to i in T . This leads to a contradiction. Therefore we
must have aik 6= 0 for all k � j � 1, that is, aij is the �rst nonzero in row i of A. 2

Finding the �rst nonzeros in each row (hence SH) takes time O(nnz(A)). In
summary, the combined QR-column-count algorithm takes Struct(A) and the postordered
T as inputs, and computes nnz(Lc�j ), SLc , nnz(H�j) and SH . The complexity of the
algorithm is almost linear in nnz(A). In practice, it is as fast as computing the column
elimination tree T . Table 5.2 reports the respective runtimes of the etree algorithm and
the QR-column-count algorithm. In both the etree and QR-column-count algorithms, the
disjoint set union operations are implemented using path halving and no union by rank.
(see Gilbert et al. [70] for details.)

One remaining issue yet to be addressed is what we should do if the static storage
given by an upper bound structure is far too generous than actually needed. We developed
a dynamic approach to better capture the structural changes of the LU factors during
Gaussian elimination. It overcomes the ine�ciency of the purely static analysis based solely
on Struct(A). In this scheme, we still use either the supernode partition SLc or SH as found
in their respective upper bound structure. For brevity, we will use B to represent either Lc
or H , and use the notation Sbnd to denote either SLc or SH , because the method works the
same way using either SLc or SH . Unlike the static scheme, which uses the column counts
nnz(Lc�j ) or nnz(H�j), we dynamically compute the column count for the �rst column of
each supernode as follows. When a processor obtains a panel that includes the �rst column
of some supernode B(:; r : s) in Sbnd, the processor invokes a search procedure on the
directed graph G(L(:; 1 : r � 1)T ), using the nonzeros in A(:; r : s), to determine the union
of the row structures in the submatrix (r : n; r : s). We use the notation D(r : n; r : s) to
denote this structure. It is true that

Struct((L+ U)(r : n; r : s)) � Struct(D(r : n; r : s)) � Struct(B(r : n; r : s)) : (5.1)

The search procedure is analogous to (yet simpler than) the panel DFS described in Sec-
tion 4.3.4; now we only want to determine the count for the column D(r : n; r), without
the nonzero structure or the topological order of the updates. Then we use the product
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Matrix Tetree Tcnt Tcnt=Tetree
1 Memplus 0.070 0.101 1.4
2 Gemat11 0.023 0.029 1.3
3 Rdist1 0.059 0.056 0.9
4 Orani678 0.015 0.015 1.0
5 Mcfe 0.014 0.018 1.3
6 Lnsp3937 0.018 0.025 1.4
7 Lns3937 0.017 0.025 1.4
8 Sherman5 0.014 0.021 1.5
9 Jpwh991 0.004 0.006 1.4
10 Sherman3 0.057 0.078 1.4
11 Orsreg1 0.010 0.013 1.4
12 Saylr4 0.015 0.022 1.4
13 Shyy161 0.241 0.371 1.5
14 Goodwin 1.081 1.003 0.9
15 Venkat01 0.202 0.176 0.9
16 Inaccura 0.629 0.547 0.9
17 Bai 0.300 0.380 1.3
18 Dense1000 0.610 0.430 0.7
19 Raefsky3 0.945 0.735 0.8
20 Ex11 0.680 0.640 0.9
21 Wang3 0.124 0.169 1.4
22 Raefsky4 0.832 0.702 0.9
23 Vavasis3 1.055 1.262 1.2

Table 5.2: Running time in seconds of the etree (Tetree) and QR-column-count (Tcnt) algo-
rithms on an IBM RS/6000-590.
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Static Dynamic

Matrix nnz(SL)
nnz(SLc )

nnz(SL)
nnz(SH )

nnz(SL)
nnz(SLc )

nnz(SL)
nnz(SH )

1 Memplus < :01 .04 .23 .68
2 Gemat11 .52 .85 .87 .90
3 Rdist1 .48 .72 .64 .73
4 Orani678 .11 .56 .48 .90
5 Mcfe .41 .73 .61 .89
6 Lnsp3937 .41 .84 .75 .92
7 Lns3937 .42 .86 .77 .94
8 Sherman5 .50 .92 .82 .96
9 Jpwh991 .52 .88 .81 .94
10 Sherman3 .57 .89 .91 .91
11 Orsreg1 .57 .90 .91 .92
12 Saylr4 .53 .89 .89 .92
13 Shyy161 .54 .91 .91 .92
14 Goodwin .35 .95 .86 .98
15 Venkat01 .07 .11 .69 .74
16 Inaccura .47 .96 .97 .99
17 Bai .53 .95 .96 .97
18 Dense1000 1.00 1.00 1.00 1.00
19 Raefsky3 .57 .99 .98 .99
20 Ex11 .56 .99 .99 1.00
21 Wang3 .09 .14 .86 .89
22 Raefsky4 .57 .99 .99 .99
23 Vavasis3 .64 .95 .98 .98

Table 5.3: Supernode storage utilization by various upper bounds. The notations nnz(SL),
nnz(SLc) and nnz(SH) denote the number of nonzeros in the supernodes of L, Lc and H ,
respectively.

of nnz(D(r : n; r)) and s � r + 1 to allocate storage for the L supernodes within columns
r and s. Since nnz(L(r : n; r)) � nnz(D(r : n; r)) � nnz(B(r : n; r)), the dynamic storage
bound so obtained is usually tighter than the static bound.

The storage utilizations for the supernodes in SL are tabulated in Table 5.3. The
utilization is calculated as the ratio of the actual number of nonzeros in the supernodes
of the L factor to the number of nonzeros in the supernodes of an upper bound structure.
When collecting this data, the maximum supernode size t was set to 64. The results in the
table lead to the following observations.

In both static and dynamic schemes, the bounds using H are tighter than those
using Lc. The di�erence is especially large in the static schemes. Note that this observation
is consistent with what George and Ng observed for a set of smaller test problems in [55].
For most matrices, the storage utilizations using the static bound by H are quite high; they
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are often greater than 70% and are over 85% for 14 out of the 21 problems.
In the static scheme using H , the storage utilizations for matrices 1, 14 and 21

are only 4%, 11% and 14% respectively. The dynamic schemes certainly overcome the low
utilizations. When using H in the dynamic scheme, the utilizations now become 68%, 74%
and 89% for those three problems. These percentage utilizations are quite satisfactory. For
other problems, the dynamic approaches also result in higher utilizations.

The runtime overhead associated with the dynamic schemes is usually between
2% and 15% on the RS/6000-590. From these experiments, we conclude that the static
scheme using H often gives a tight enough storage bound for SL. For some problems, such
as matrices 15 and 21, the dynamic scheme must be employed to achieve better storage
utilization. Then the program will su�er from a certain amount of slowdown. Our code
tries the static scheme �rst and switches to the dynamic scheme only if the static scheme
predicts too much space.

5.5 Parallel performance

In this section we demonstrate e�ciency of our algorithm on real machines. We
�rst look at some distinct features of the Crays and their impact on our algorithm.

The Cray architecture is quite di�erent from the other cache-based systems which
we studied in Chapter 4. First, it has much larger bandwidth between memory and CPU
(Table 5.1), and the memory organization is at. This implies that cache reuse is not
an issue. As shown in Figures 5.9 and 5.10, performance of SGEMV and SGEMM do
not di�er signi�cantly. Once the matrix dimension exceeds the vector register length (128
and 64 words, respectively), performance remains roughly the same. In fact, with varied
panel size w for SuperLU, we found that w = 1 gives the best performance. Secondly, a
scalar code on this machine runs signi�cantly slower than a vectorized code. In our code,
the depth-�rst search algorithm is not vectorizable, and takes large percentage of the total
factorization time.

Figure 5.11 shows the percentage of the total runtime spent in the depth-�rst
search on single processors of the three parallel machines. On the Cray J90, because of the
slow depth-�rst search, the Mop rate is rather low. For dense matrix 18, about 40% of the
total time is spent in the depth-�rst search alone, despite the fact that the symmetrically
reduced graph is simply the graph of a tridiagonal matrix. SuperLU achieves only 65
out of 200 peak Mops, while LAPACK achieves 165 Mops. For large sparse problems,
SuperLU achieves at most 89 Mops. Figure 5.11 suggests that Alpha 21164 has the best
integer performance, relative to oating-point performance. (or the worst oating-point
performance relative to integer performance.)

5.5.1 Speedup

Tables 5.4 through 5.8 report the speedups of the parallel algorithm on the �ve
platforms, with number of threads varied. Because of memory limits we could not test all
problems on the SPARCcenter 2000. The speedup is measured against the best sequential
runtime achieved by SuperLU on a single processor of each parallel machine.
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Figure 5.9: BLAS performance on single
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Figure 5.12: Overhead of the parallel code on a single processor, compared to SuperLU.

The column labeled \P = 1" illustrates the overhead in the parallel code when
compared with the sequential code, using the same blocking parameters. This is also de-
picted in Figure 5.12. The structure of the parallel code, when run on a single processor,
does not di�er much from sequential SuperLU, except that a global task queue and various
locks are involved. The extra work in the parallel code is purely integer arithmetic. Fig-
ure 5.12 also suggests that the Alpha 21164 has the best integer performance. Matrices 15
and 21 experience more overhead in the parallel code than the other large matrices. This is
because we must use the dynamic memory allocation scheme developed in Section 5.4.3. The
static upper bounds on supernodes storage are too loose for these two problems (Table 5.3).

The last two columns in each table show the factorization time and Megaop rate,
respectively, corresponding to the largest number of processors used. In order to achieve
higher degree of concurrency, the panel size (w) and maximum size of a supernode (maxsup)
for \P > 1" are set smaller than those used for \P = 1".

5.5.2 Working storage requirement

As in the sequential algorithm, parallel factorization requires a certain amount of
working storage, and perhaps much more. In the shared memory parallel model, multiple
threads share heap storage, static storage, and code, all residing in main memory. Each
thread, upon execution, is allocated a private stack and has its own register set. Our
program does not use many stack variables, so the stack size for each thread need not be
very large. All working storage is allocated via malloc() from the heap. The working
storage consists of two parts, where one part is shared among all threads, and another part
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Matrix P = 1 P = 2 P = 4 Seconds Mops

1 Memplus 0.44 0.82 0.74 2.35 1
2 Gemat11 0.77 1.25 1.51 0.47 3
3 Rdist1 0.86 1.92 1.82 1.71 8
4 Orani678 0.71 1.24 2.08 1.98 8
5 Mcfe 0.79 1.38 2.00 0.45 9
6 Lnsp3937 0.96 1.85 2.03 2.26 18
7 Lns3937 0.92 1.73 3.09 2.41 19
8 Sherman5 0.83 1.70 2.81 1.26 20
9 Jpwh991 0.77 1.56 2.77 0.84 22
10 Sherman3 0.90 1.74 2.92 2.77 22
11 Orsreg1 0.89 1.75 3.17 2.27 27
12 Saylr4 0.88 1.76 3.10 4.17 25
13 Shyy161 0.90 1.82 3.25 59.55 26
15 Goodwin 0.92 1.86 3.61 20.50 33
18 Dense1000 0.97 1.96 3.64 16.39 41

Mean 0.83 1.62 2.64
Std 0.13 0.32 0.83

Table 5.4: Speedup, factorization time and Mop rate on a 4-CPU SPARCcenter 2000.

is local to each thread. The shared working storage is mainly used to facilitate the central
scheduling activity and memory management. It includes:

� one integer array of size p used as the task queue, where p is the total number of
panels;

� one bit vector of size n to mark whether a column is busy;

� four integer arrays of size n to record the status of each panel;

� one integer array of size n to record a column's most distant busy column down the
etree during pipelining;

� three integer arrays of size n to implement storage layout for supernodes (Section 5.4.3).

The local working storage used by each thread is very similar to that used by sequential
SuperLU, that is, all that is necessary to factorize one single panel. It includes:

� eight integer arrays of size n to perform the panel and column depth-�rst search;

� one n-by-w integer array to keep track of the position of the �rst nonzero of each
supernodal segment in U ;

� one n-by-w integer array to temporarily store the row subscripts of the nonzeros �lled
in the panel;
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Matrix P = 1 P = 4 P = 8 P = 12 Seconds Mops

1 Memplus 0.72 1.73 1.73 1.69 0.42 4
2 Gemat11 0.89 1.86 2.36 3.71 0.07 22
3 Rdist1 0.89 1.66 1.56 2.23 0.44 32
4 Orani678 0.68 1.72 2.40 2.56 0.45 33
5 Mcfe 0.68 1.92 2.09 3.29 0.07 59
6 Lnsp3937 0.97 3.00 3.65 3.86 0.35 122
7 Lns3937 0.98 2.98 3.92 3.73 0.40 117
8 Sherman5 0.86 2.29 3.09 3.09 0.23 111
9 Jpwh991 0.83 2.40 3.43 5.33 0.09 205
10 Sherman3 0.87 2.36 2.78 2.78 0.40 157
11 Orsreg1 0.88 2.67 2.73 2.97 0.34 180
12 Saylr4 0.90 2.81 3.48 4.58 0.38 284
13 Shyy161 0.86 2.71 3.54 5.06 4.64 332
14 Goodwin 0.89 3.45 5.17 5.90 1.56 433
15 Venkat01 0.65 1.72 2.00 1.98 15.37 209
16 Inaccura 0.85 2.77 4.14 5.00 9.53 438
17 Bai 0.91 2.98 5.10 6.70 8.87 722
18 Dense1000 0.85 2.64 3.32 4.17 0.90 740
19 Raefsky3 0.92 3.07 5.62 6.91 11.35 1070
20 Ex11 0.94 3.23 5.96 7.64 26.95 1046
21 Wang3 0.85 2.20 3.39 4.03 21.37 681
22 Raefsky4 0.94 3.05 5.17 6.52 33.57 936
23 Vavasis3 0.91 3.58 6.06 6.69 105.06 862

Mean 0.86 2.56 3.59 4.37
Std 0.09 0.59 1.36 1.73

Table 5.5: Speedup, factorization time and Mop rate on a 12-CPU SGI Power Challenge.
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Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mops

1 Memplus 0.46 0.79 0.79 0.78 0.64 0.59 3
2 Gemat11 0.83 1.63 1.88 1.88 1.88 0.08 20
3 Rdist1 0.90 1.98 2.10 1.77 1.77 0.31 40
4 Orani678 0.83 1.29 2.00 2.33 2.42 0.26 57
5 Mcfe 0.72 1.80 3.00 2.17 2.17 0.06 66
6 Lnsp3937 0.93 1.94 3.19 3.68 3.68 0.25 159
7 Lns3937 0.95 1.83 3.08 3.81 4.12 0.25 187
8 Sherman5 0.91 1.89 2.89 2.94 2.94 0.17 151
9 Jpwh991 0.92 1.89 3.00 3.30 3.00 0.11 178
10 Sherman3 0.88 1.83 2.72 2.74 2.74 0.34 180
11 Orsreg1 0.93 1.88 2.93 3.35 3.35 0.26 231
12 Saylr4 0.91 1.98 3.20 3.78 4.08 0.38 276
13 Shyy161 0.95 1.93 3.23 4.21 4.79 4.66 334
14 Goodwin 0.99 1.98 3.68 5.39 6.33 1.49 453
15 Venkat01 0.89 1.92 2.95 3.04 3.16 10.62 303
16 Inaccura 0.99 1.83 3.08 4.15 5.02 10.94 380
17 Bai 0.95 1.98 3.72 5.03 5.77 11.58 553
18 Dense1000 0.98 1.86 3.35 4.32 4.80 0.99 675
19 Raefsky3 0.98 1.98 3.81 3.16 3.61 28.65 422
20 Ex11 0.99 1.98 3.76 5.56 7.06 34.23 781
21 Wang3 0.93 1.98 3.69 4.75 5.61 21.36 682
22 Raefsky4 0.98 1.98 3.81 5.44 6.63 42.79 734
23 Vavasis3 0.96 1.97 3.69 5.28 6.64 124.24 724

Mean 0.92 1.74 2.89 3.59 4.01
Std 0.13 0.28 0.81 1.31 1.77

Table 5.6: Speedup, factorization time and Mop rate on an 8-CPU DEC AlphaServer 8400.
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Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mops

1 Memplus 0.66 0.75 0.74 0.72 0.71 1.24 2
2 Gemat11 0.76 1.36 2.27 3.09 3.40 0.10 15
3 Rdist1 0.71 1.98 2.41 2.41 2.31 0.48 34
4 Orani678 0.72 1.24 2.22 2.91 3.20 0.41 37
5 Mcfe 0.69 1.25 1.82 2.00 2.00 0.10 43
6 Lnsp3937 0.78 1.51 2.77 2.84 4.41 0.27 151
7 Lns3937 0.78 1.51 2.95 3.97 4.23 0.30 156
8 Sherman5 0.77 1.49 2.90 3.59 4.07 0.15 170
9 Jpwh991 0.78 1.52 2.50 3.18 2.92 0.12 164
10 Sherman3 0.79 1.48 2.53 2.97 2.97 0.29 214
11 Orsreg1 0.80 1.53 2.69 3.25 3.55 0.22 278
12 Saylr4 0.83 1.58 3.05 3.85 3.97 0.33 318
13 Shyy161 0.80 1.50 2.87 3.87 4.86 3.29 477
14 Goodwin 0.84 1.65 3.31 4.83 6.59 0.99 682
15 Venkat01 0.70 1.28 1.65 1.73 1.74 14.04 229
16 Inaccura 0.86 1.70 3.19 4.38 5.21 5.18 807
17 Bai 0.84 1.63 3.22 4.56 4.89 6.24 1035
18 Dense1000 0.95 1.86 2.95 3.30 3.55 0.71 943
19 Raefsky3 0.91 1.74 3.45 4.77 5.83 6.17 1977
20 Ex11 0.90 1.65 3.21 5.02 6.53 10.37 2583
21 Wang3 0.78 1.48 1.82 2.31 2.32 14.62 996
22 Raefsky4 0.92 1.80 3.43 4.60 5.46 13.13 2399

Mean 0.80 1.53 2.63 3.42 3.85
Std 0.08 0.27 0.67 1.11 1.55

Table 5.7: Speedup, factorization time and Mop rate on an 8-CPU Cray C90.
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Matrix P = 1 P = 4 P = 8 P = 12 P = 16 Seconds Mops

1 Memplus 0.65 0.94 0.98 0.97 0.76 3.67 1
2 Gemat11 0.71 2.44 4.38 5.25 5.83 0.18 8
3 Rdist1 0.71 2.86 2.88 2.71 2.39 1.53 10
4 Orani678 0.71 2.07 3.11 3.82 3.85 1.13 13
5 Mcfe 0.77 2.21 2.70 2.70 2.52 0.29 15
6 Lnsp3937 0.75 2.87 4.91 6.21 6.39 0.66 62
7 Lns3937 0.79 2.75 4.63 5.41 5.41 0.83 58
8 Sherman5 0.80 2.91 4.64 5.07 5.32 0.41 63
9 Jpwh991 0.78 2.72 3.57 3.68 3.38 0.37 49
10 Sherman3 0.80 2.63 3.49 3.42 3.31 0.96 66
11 Orsreg1 0.83 2.83 3.88 4.22 4.16 0.70 89
12 Saylr4 0.81 2.91 4.26 4.82 4.82 0.99 108
13 Shyy161 0.83 2.92 5.30 6.94 7.47 8.06 196
14 Goodwin 0.88 3.32 6.66 10.02 12.81 1.94 354
15 Venkat01 0.68 1.84 1.96 1.98 1.90 47.34 68
16 Inaccura 0.90 3.26 5.55 6.64 7.39 15.09 277
17 Bai 0.87 3.22 5.98 7.55 8.49 15.05 431
18 Dense1000 0.93 2.84 3.79 3.92 3.91 2.61 256
19 Raefsky3 0.93 3.38 6.20 7.69 8.43 19.03 641
20 Ex11 0.95 3.56 6.53 9.47 10.17 32.48 831
21 Wang3 0.77 2.53 3.21 3.14 3.06 50.42 288
22 Raefsky4 0.98 3.54 5.87 7.36 8.12 43.54 723

Mean 0.81 2.75 4.29 5.13 5.45
Std 0.09 0.60 1.51 2.38 2.97

Table 5.8: Speedup, factorization time and Mop rate on a 16-CPU Cray J90.
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� one n-by-w real array used as the SPA.

� one scratch space of size (t + b) � w to help BLAS calls. See Figure 4.14 for the
de�nition of t, b and w.

This amount of local storage should be multiplied by P , where P is the number of threads
created. Thus the working storage grows a�nely with respect to P , and this algorithm,
albeit e�cient, is hard to scale up from a memory point of view.

To put this in perspective, Table 5.9 compares the working storage requirement
with the actual LU storage. The last two columns report the amount of working storage
as a fraction of the total LU storage in Megabytes, for 1 and 8 threads, respectively. It is
clear that for P = 8, the working storage requirement can be comparable to the LU storage
for small problems. For large problems, working storage is typically 10% to 20% of the LU
storage. Matrix 13 is exceptionally bad: it is a matrix of medium size for which the required
working storage is more than LU storage. Since we would not use multiple processors on
the small problems anyway, so the overall working storage requirement is quite small.

5.6 Overheads in parallelization

In this section we quantify all the overheads associated with our parallel algorithm.
The overhead mainly comes from four sources: the reduced per-processor e�ciency due to
smaller granularity of unit tasks, accessing critical sections via locks, orchestrating the
dependent tasks via event noti�cation, and load imbalance. The purpose of this section is
to understand how much time is spent in each part of the parallel algorithm and explain
the speedups we saw in Section 5.5.1.

5.6.1 Decreased per-processor performance due to smaller blocking

The �rst overhead is due to the necessity to reduce the blocking parameters in order
to achieve more concurrency. Recall that two blocking parameters a�ect performance: panel
size (w) and maximum size of a supernode (maxsup). For better per-processor performance,
we prefer larger values. On the other hand, the large granularity of unit tasks limits the
degree of concurrency.

On the Cray J90, this trade-o� is not so important, because a small w (w = 1) is
good for the sequential algorithm. We therefore also use w = 1 in the parallel algorithm.
When varying the value of maxsup, we �nd that performance is quite robust in the range
between 16 and 64.

On the Power Challenge and AlphaServer 8400, we observe more dramatic di�er-
ences with varied blockings. Figure 5.13 and 5.14 illustrate this loss of e�ciency for several
large problems on single processors of the two machines, Power Challenge and AlphaServer
8400, respectively. In this experiment, the parallel code is run on single processors with two
di�erent settings of w and maxsup. Figure 5.13 shows, on a single processor Power Chal-
lenge, the ratio of the runtime with the best blocking for 1 CPU (w = 24; maxsup = 64)
to the runtime with the best blocking for 12 CPUs (w = 12; maxsup = 48). Figure 5.14
shows the analogous ratio for the 8-CPU AlphaServer 8400. On the Power Challenge, the
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LU storage Fraction of LU storage
Matrix (MB) P = 1 P = 8

1 Memplus 16.27 .23 1.51
2 Gemat11 1.15 .89 5.92
3 Rdist1 3.70 .23 1.54
4 Orani678 4.77 .11 .73
5 Mcfe 0.88 .18 1.26
6 Lnsp3937 4.93 .16 1.10
7 Lns3937 7.04 .12 .77
8 Sherman5 2.75 .25 1.66
9 Jpwh991 1.58 .13 .88
10 Sherman3 4.68 .22 1.47
11 Orsreg1 4.23 .11 .72
12 Saylr4 6.98 .10 .70
13 Shyy161 80.01 .19 1.31
14 Goodwin 34.25 .04 .30
15 Venkat01 566.09 .02 .15
16 Inaccura 106.06 .03 .21
17 Bai 145.02 .03 .22
18 Dense1000 9.90 .02 .14
19 Raefsky3 183.65 .02 .16
20 Ex11 277.59 .01 .08
21 Wang3 459.14 .01 .07
22 Raefsky4 271.28 .02 .10
23 Vavasis3 521.75 .02 .11

Table 5.9: Working storage requirement as compared with the storage needed for L and U .
The blocking parameter settings are: w = 8, t = 100, and b = 200.
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Figure 5.13: Performance of sequential code
with blockings tuned for parallel code on 1-CPU
Power Challenge.
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Figure 5.14: Performance of sequential code
with blockings tuned for parallel code on 1-CPU
AlphaServer 8400.

blocking used for best parallel performance achieves only 81% uniprocessor e�ciency for
matrices 17 and 19. The corresponding lowest number on the AlphaServer 8400 is 86% for
matrix 22.

5.6.2 Accessing critical sections

The following program segment and shared data structures must be protected
under mutual exclusion: (1) The Scheduler() routine can only be entered by one processor
at a time, because it modi�es the contents of the global task queue. (2) Every time a
processor needs to copy part of L and/or U from its local working arrays into the global
store, it has to call the allocator to get space. (By now, the size of each column or supernode
is already known.) This amounts to one call per column of U for row subscripts (Usub)
and values (Uval), and one call per supernode of L for row subscripts (Lsub). The storage
management for the L supernodes, SL, is discussed in Section 5.4.3. There, the static
scheme does not need locking, because the storage is pre-allocated according to an upper
bound estimate. The dynamic scheme, on the other hand, still requires locking. Each call
to the allocator involves acquiring and relinquishing a lock, although the duration in the
critical section is very short. (3) The increment of supernode number (nsuper) should also
be protected, because di�erent processors may detect di�erent supernodes simultaneously.

In Table 5.10, we roughly count the number of times the program acquires and
relinquishes various locks. Note that the total number of lockings performed are independent
of number of processors.

A mutex variable should be declared for each critical section. Since we want to
allow more than one processor to enter di�erent critical sections simultaneously, we use �ve
named mutex variables to guard each of the above critical regions.

To see how much cost is associated with lockings, in Table 5.11, we measured the
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Critical section Counts

call Scheduler() number of panels (approx.)�

allocate Lsub number of supernodes
allocate Usub/Uval number of columns
allocate SL number of supernodes
increment nsuper number of supernodes

Table 5.10: Number of lockings performed.
* Here we assume that Scheduler() returns a new panel upon each call.

Machine P = 1 P = 4 P=8

SPARCcenter 2000 1.63 (82) 4.34 (217) 4.36 (218)
Power Challenge 1.13 (102) 1.98 (179) 2.02 (182)
AlphaServer 8400 0.98 (294) 2.26 (678) 2.71 (814)
Cray C90 1.34 (323) 1.09 (261) 1.40 (336)
Cray J90 2.67 (267) 4.17 (417) 4.42 (442)

Table 5.11: Time in microseconds (cycles) to perform a single lock and unlock.

time it takes to acquire and relinquish a lock on several platforms, with di�erent numbers
of threads P . The �gure in the parenthesis is the number of clock cycles. In this small
benchmark code, the critical section is simply one statement, to increment a counter. The
locking and unlocking are placed around this statement. The measurement is done in a
tight loop with many iterations. When there is more than one thread, this corresponds to
worst-case contention, because all the threads do nothing besides competing for the lock.
Note that the cost for P > 1 is usually more than twice that of P = 1, because in the latter
case there is no queuing contention to obtain the lock. When there is more than one thread,
the time increases slightly, but not linearly in the number of threads.

The uniprocessor slowdown observed in Figure 5.12 is partly due to the overhead
incurred by using these locks, when there are no other processors competing for the locks.
By multiplying the time for a single lock/unlock in Table 5.11 by the number of the lockings
performed in Table 5.10, we can estimate the locking overhead. As a concrete example, let
us consider a medium size matrix 13, on a single processor Cray J90. Since the sequential
code performance is 26 Mops, each lock/unlock is equivalent to roughly 69 oating-point
operations. When the factorization is performed with panel size w = 1, the total number of
lock acquisitions is 237004, which, when multiplied by 2.67 microseconds, results in about
0.64 seconds. This is less than 3% of the entire factorization time (24.85 seconds). We
observe that this percentage is typical for all matrices. The locking overhead also varies
with machines. For example, it is higher on the Cray J90 than on the Power Challenge and
the AlphaServer 8400.

This estimate ignores time spent waiting for a processor that is in the critical
section, because Table 5.11 had a trivial critical section. In our parallel LU code, most
critical sections are trivial, except for calling Scheduler() (see Table 5.10).
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5.6.3 Coordinating dependent tasks

The third source of overhead is due to insu�cient parallelism in the pipelined
executions of the dependent panels. Dependent panels are those that have an ancestor-
descendant relation in the column etree. When a processor factoring a panel needs an
update from a BUSY descendant panel, this processor simply spins, and waits for that
panel to �nish, as shown at line 13 in the scheduling loop of Figure 5.2. During the spin
wait the processor does nothing useful. The total amount of spin wait time observed is
signi�cant in some cases, especially with a larger number of processors. For example, for
matrix 16, on the 12-CPU Power Challenge, about 40% of the parallel runtime is spent
spinning. The corresponding number for the dense matrix is about 58%. The dense matrix
is the worst one, because the factorization of all panels must be carried out in pipelined
fashion.

Figure 5.15 depicts the locking overhead from Section 5.6.2 and spinning due to
dependencies on the 8-CPU Cray J90. The locking overhead also includes the possible
contention from the 8 processors. In this �gure, we also plot the ine�ciency of the parallel

algorithm. Here, e�ciency = speedup
P

, and ine�ciency = 1� e�ciency. For most matrices,
the spinning overhead due to dependencies is much higher than the overhead from lock
acquisition. Clearly, the loss of parallel e�ciency is at least as large as the percent of time
spent in spin wait. The ine�ciency curve captures very well the overhead curve for spin
wait. In particular, for larger and denser problems, the spin wait is responsible for most
of the ine�ciency. For the dense matrix 18, the spin wait contributes more than 90% of
the ine�ciency. (Even in the presence of these overheads, the parallel e�ciency of the six
largest problems still exceed 70%.)

5.6.4 Load imbalance

We use a balance factor B to measure the load balance. Let fi denote the num-
bers of oating-point operations performed on processor i, and P denote the numbers of
processors. We de�ne B as

B =

P
i(fi)

P maxi(fi)
: (5.2)

In words, B equals the average work load divided by the maximum work load. It is readily
seen that 0 < B � 1, and higher B indicates better load balance. This �gure is shown in
Tables 5.12 and 5.13.

If load imbalance is the sole overhead in a parallel program, the parallel execution
time is simply the execution time of the slowest processor whose work load is highest.

5.6.5 Combining all overheads

In this subsection we evaluate the e�ect of the combined overheads on the parallel
e�ciency. In summary, the overheads include

(1) reduced uniprocessor performance due to smaller blocking

(2) accessing critical sections

(3) idle time (from spin wait in the panel pipeline and in the top-level scheduling loop)
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Figure 5.15: Parallel overhead in percent on an 8-CPU Cray J90.

(4) load imbalance

Overhead (1) only a�ects uniprocessor performance. Overhead (2) decreases both unipro-
cessor performance of the parallel code and parallel performance. Compared with the serial
execution, the parallel execution experiences more contention for locks. But Table 5.11
and Figure 5.15 indicate that runtime does not increase signi�cantly in the presence of
contention. Therefore, we may assume that (2) only adds overhead to the uniprocessor ex-
ecution. Overheads (3) and (4) exist only in the parallel computation and their magnitudes
are correlated. Load imbalance may be due to poor assignment of tasks to processors, or
insu�cient parallelism. In either case, the processor with less work to do will sit idle. In
addition, a processor may be idle due to dependencies between tasks, even when the total
work performed by all processors is balanced. We introduce the following notation to denote
various times:

� Ts is the best serial time obtained from SuperLU

� T1 is the execution time of the parallel code on one processor

� TP is the parallel execution time on P processors

� TI is the total idle time of all processors

All the times above are measured independently. In particular, for TI , there are two situa-
tions a processor may sit idle: one is due to spin wait in the pipeline, and another is when



102

a processor calls Scheduler() (line 4 in Figure 5.2) and fails to get a panel from the sched-
uler. We found that, for the test matrices and the numbers of processors being considered,
failure from the scheduler rarely occurs. So most of the idle time is due to pipeline waiting.
The following relation holds for the parallel runtime:

P TP � T1 + TI : (5.3)

We can compute the observed e�ciency (Eactual) and the estimated e�ciency (Eest) as
follows:

Eactual =
Ts

P TP
: (5.4)

Eest =
Ts

T1 + TI
: (5.5)

We also introduce two parameters �1 and �p to quantify the uniprocessor and parallel
overheads, respectively. �1 and �p are calculated based on Ts, T1, TP , and TI as follows:

�1 =
T1 � Ts
T1

= 1�
Ts
T1

: (5.6)

�p =
TI=P

TP
: (5.7)

Both �1 and �p are in the range [0; 1); �1 shows the overhead that degrades the uniprocessor
performance, while �p shows the overhead in the parallel execution. The smaller are �1 and
�2, the more e�cient is the parallel algorithm. In Tables 5.12 and 5.13, we report Eactual,
Eest, �1, �p, and B for the two parallel machines.

Cray J90

As mentioned in Section 5.6.1, the uniprocessor performance on the J90 does not
degrade much with smaller maxsup, that is, overhead (1) does not exist. Therefore, 1��1
can be taken as the numbers from the column labeled \P = 1" in Table 5.8. We gathered the
statistics for �p and B on 16 processors, as shown in Table 5.12. In the last two columns
of Table 5.12, we compare the estimated e�ciency by (5.5) with the actually observed
e�ciency Eactual by (5.4).

The estimated and observed e�ciencies are very close. Their di�erences are mostly
within 4%, except for matrix 20 which has a 7% di�erence. For most problems, the pipeline
spin waiting, as reected by �p, is the primary cause of ine�ciency. This is particularly
evident for matrices 15, 18 and 21, for which 74%, 67% and 71% of the total runtime is spent
in spin wait, respectively. Most problems have achieved good load balance, with exception
of matrix 13.

Power Challenge

On a cache-based machine, the uniprocessor performance loss of the parallel code is
a combination of performing lockings and less e�cient cache utilization. Therefore, 1� �1
equals the product of the numbers from column labeled \P = 1" in Table 5.5 and the
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Matrix �1 �p B Eest Eactual

13 Shyy161 .17 .23 .66 .51 .47
14 Goodwin .12 .10 .97 .77 .80
15 Venkat01 .32 .74 .99 .11 .12
16 Inaccura .10 .46 .97 .45 .46
17 Bai .13 .34 .93 .54 .53
18 Dense1000 .07 .67 .99 .25 .25
19 Raefsky3 .07 .37 .96 .55 .53
20 Ex11 .05 .23 .98 .71 .64
21 Wang3 .23 .71 .99 .17 .19
22 Raefsky4 .02 .43 .97 .53 .51

Table 5.12: Overheads and e�ciencies on a 16-CPU Cray J90.

Matrix �1 �p B Eest Eactual

13 Shyy161 .27 .20 .70 .39 .42
14 Goodwin .18 .25 .87 .49 .49
15 Venkat01 .38 .56 .91 .20 .17
16 Inaccura .21 .40 .88 .42 .42
17 Bai .26 .20 .93 .55 .56
18 Dense1000 .18 .58 .92 .30 .35
19 Raefsky3 .25 .16 .95 .60 .58
20 Ex11 .18 .09 .98 .73 .64
21 Wang3 .19 .52 .93 .36 .34
22 Raefsky4 .23 .15 .95 .62 .54
23 Vavasis3 .14 .17 .97 .68 .56

Table 5.13: Overheads and e�ciencies on a 12-CPU Power Challenge.
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numbers from Figure 5.13. Table 5.13 reports the statistics of �1, �p and B, together with
the estimated and the observed e�ciencies, Eest and Eactual, respectively. Again, Eest and
Eactual match reasonably well, except for matrix 23, for which the gap is 12%.

Compared with J90, we observe that �1 is much larger, because the cache plays
an important role on the Power Challenge. In fact, for matrices 13, 17, 19, 20 and 22,
uniprocessor performance loss is more severe than the parallel overhead. For matrices 15,
18 and 21, the parallel spin waiting is the major bottleneck. Again, load balance is usually
very good, except for matrix 13.

5.7 Possible improvements

We have considered two ways to circumvent the ine�ciency caused by dependen-
cies. One is to uncover more independent panels and hence decrease the number of pipelined
panels. Another is to use a more sophisticated dynamic scheduling algorithm that steals
cycles from the idle processors to do useful work.

5.7.1 Independent domains

The concept of domains has been widely used in sparse Cholesky factorizations,
especially on distributed memory machines [14, 72, 93, 97]. A domain refers to a rooted
subtree of the elimination tree such that all nodes in this subtree are mapped onto the same
processor to factorize. In sparse LU factorization, we may de�ne domains similarly, but
we use the column etree. The factorization within each domain does not require pipelining
or cooperation among processors. Therefore, the bene�t of using domains is two-fold: (1)
it decreases the number of pipelined panels; (2) it improves locality. Since the etree is in
postorder, a domain consists of consecutive columns in the matrix. Note that our relaxed
supernodes (Section 3.4) at the bottom of the etree are in fact domains, but they are too
small to warrant the above listed bene�ts.

The next question is how we shall �nd the domains. We �rst examine what people
have done in sparse Cholesky factorizations. For a well balanced etree, often coming from
a nested dissection ordering, the subtree-to-subcube mapping [53] is quite e�ective. In this
method, the processors are recursively divided into two groups at each branching node of
the tree, until the log P level is reached. At this level there are exactly P disjoint subtrees,
or domains, each being assigned to one processor.

A generalization of this method, called proportional mapping, was proposed by
Pothen and Sun [93], which is intended to work for any unbalanced tree. First, we compute
the amount of arithmetic associated with each node when factorizing the corresponding
column, and the amount of arithmetic associated with each subtree. Secondly, we traverse
etree in a top-down fashion, starting with P processors at the root. When a branching
node with k children is reached, the processors are divided among k children, each with
a number of processors proportional to the relative amount of work required by the child
subtree. This process terminates when a single processor is assigned to a single subtree.

There is a problem with proportional mapping, that is, the proportion of the
number of processors determined from the work distribution of the children may not be an
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integral number. It is necessary to round it to an integer. This rounding may cause serious
load imbalance. Geist and Ng [47] proposed a tasking scheduling method that can alleviate
this problem. They relaxed the condition of �nding exactly P subtrees. Instead, their
algorithm may �nd more than P subtrees, so there will be more exibility to assign them
to the P processors with reasonable load balance. Their algorithm involves a breadth �rst
search of the etree, cutting o� the branches and applying a heuristic bin-packing algorithm
to assign the set of branches to the P bins. This procedure is applied recursively until the
work load across all processors meets a certain tolerance. Intuitively, if the load balance
requirement is high, the algorithm will �nd more subtrees, each with smaller work load.

We use Geist and Ng's approach due to its generality and exibility. To adapt
their algorithm to our LU context, we experimented with the following scheme:

(1) Since we cannot pre-determine the exact amount of arithmetic, we use the column
etree and the nonzero column counts of the Householder matrix H (Section 5.4.3) to
arrive at an estimated amount of work for each column. This gives an upper bound
the actual work.

(2) We ignore the static schedule of domains to processors; instead, we add the domains
into the task queue Q. Processors get domains from Q as factorization proceeds, and
hopefully load balance is automatically maintained.

In the �rst step we �nd the domains based statically only on estimated work. In
the second step we dynamically schedule them onto processors. Therefore, the static load
balance requirement is not so critical.

We experimented this method on the 12-CPU Power Challenge and the 16-CPU
Cray J90. Unfortunately, there is no strong evidence that this pre-scheduling is very prof-
itable. For some problems, we see improvement; while for some others, we see degradation.
Neither the improvement nor the degradation is more than 5%. There may be several rea-
sons that this method is not e�ective. First, LU factorization has a larger proportion of
the work at the top of the etree than does Cholesky. So there is not enough of the total
work in the domains at the bottom. Second, the gross estimate of oating-point operations
may not be su�ciently accurate. Third, our original scheduling policy has already captured
enough locality by favoring the immediate parent in the etree (Section 5.3). We believe
that this type of static pre-schedule will be much more useful for our future algorithm on
distributed memory machines, where a pure dynamic scheduling will be far too expensive
to implement.

5.7.2 No-spin-wait scheduling

Instead of spin waiting for a BUSY panel, the processor can put the current panel
back in the queue, mark the panel as \partially-done", and �nd another panel to work on.
To implement this scheme, we may use two separate queues, say Q1 and Q2, where Q1 is
the same task queue in Figure 5.2 and Q2 holds the partially-done panels. The scheduler
switches between the two queues to assign panels to an available processor. It might be
advantageous to give Q2 a higher priority, because all partially-done panels are likely to be
on the critical path of the computation.
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When a partially-done panel is swapped o� a processor and put in Q2, the partial
factorization result of this panel must be kept in order for the panel to resume factorization
correctly. This includes all the nonzero subscripts and the numeric values in the SPA.
Because of the large amount of state information that must be swapped in and out of a
processor, the bookkeeping may be prohibitively expensive in practice.

When a processor stops working on a partially-done panel, the type of the panel
the processor picks up will a�ect the overall performance. There are two scenarios:

� If the processor obtains a panel not dependent on the partially-done panel, say from
a disjoint subtree, the scheme will certainly pay o�. This could well happen in the
beginning of the computation.

� If the processor obtains a panel which is an ancestor of the partially-done panel, the
partially-done panel clearly lies on the critical path and becomes the bottleneck. This
may happen in a later stage of the computation when the etree becomes narrow.
In this case, having a cascading of partially-done panels implies many swappings of
states, and may severely hurt performance.

We have yet to implement this method. In Chapter 6 we propose other ways to
improve the e�ciency of the parallel algorithm, which we think may be more e�ective.

5.8 A PRAM model to predict optimal speedup

Given a matrix with a �xed column ordering, we want to establish a performance
model to estimate the maximum speedup attainable by the underlying algorithm, and indeed
determine the limitations of algorithms based on a one-dimensional matrix partition. To
this end, we will estimate a lower bound on the parallel runtime. We shall �rst formalize
our notion of parallel completion time and describe how to compute it. We will then show
the results of applying this model to our test matrices.

5.8.1 Method

In a parallel algorithm the total amount of work is divided among multiple pro-
cessors. Because of various precedence constraints, some part of the work must be �nished
before some other part of the work can start. Thus, the completion time of the parallel
algorithm is constrained by the amount of work that must be �nished serially in time,
i.e., the critical path. Our objective is to predict the shortest possible parallel completion
time. In our model we make the following simplifying assumptions: (1) The work only
includes oating-point operations, and each oating-point operation takes one unit of time.
(2) There are an in�nite number of processors. Whenever a task is ready, there will be
a free processor to execute this task immediately. (3) Accessing memory and communi-
cation are free in this hypothetical machine. (4) We ignore various overheads associated
with the actual implementation of the scheduling algorithm and the synchronizations. This
model gives an optimistic estimate; therefore, we can use it to prove lower bounds on the
performance of an algorithm on a real machine.
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Figure 5.17: Tasks associated with panel p.

The LU factorization algorithm presented in Section 5.3 can be modeled by a data
structure called a directed acyclic graph (DAG). Each node in the DAG corresponds to
the computation of a panel. An edge directed from node s to node p corresponds to an
update of panel p by supernode s. The edges also represent precedence relations between
the updating supernodes and the destination panels. Figure 5.16 illustrates such a DAG
for a sample matrix.

5.8.2 Model

In presenting our model, we employ the following notation:

� Tmod(p; d) := the task of updating panel p by a descendant supernode d

� Tdiv(p) := the task of performing the inner factorization of panel p

� tmod(p; d) := time taken by task Tmod(p; d)

� tdiv(p) := time taken by task Tdiv(p)

� EST (p) := earliest possible starting time of Tdiv(p)

� EFT (p) := earliest possible �nishing time of Tdiv(p)

All times are expressed in units of oating-point operations. It is clear that for
any panel p the following relation holds: EFT (p) = EST (p) + tdiv(p).

According to our scheduling algorithm, each panel task Tpanel(p) is assigned to a
single processor P . Tpanel(p) consists of the following two types of subtasks:

Tpanel(p) := fTmod(p; d) j d 2 Dg [ fTdiv(p)g ;

where D is the set of descendant supernodes that update the destination panel p. Figure 5.17
shows the part of the DAG associated with a particular panel p.

Both Tmod and Tdiv are indivisible tasks, and are carried out sequentially on a
processor. Clearly, Tdiv cannot start until all the Tmod's have been �nished. By looking
at the precedence relations of these two types of tasks, we can determine the runtime of
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Tpanel(p) on processor P . We will try to schedule these tasks as early as possible, in order
to derive the minimum parallel execution time.

We �rst look at the tasks associated with one particular panel p, as shown in Fig-
ure 5.17. Suppose there are k descendant supernodes to update panel p, and that all the
times fEFT (d); d2 Dg have been computed. We schedule the tasks fTmod(p; d); d2 Dg to
processor P in the order of Tmod(p; 1); : : : ; Tmod(p; k), such that:

EFT (1) � EFT (2) � : : : � EFT (k) :

Here, EFT (i) is the �nishing time of the last column of supernode i, because a supernode i
cannot update any ancestor panel before its last column is completed. For convenience, we
call this scheduling policy Sched-A. Then we can compute EST (p) and EFT (p) as follows.

1. Run the following recurrence to get the completion time of the Tmod's:

t = 0;
for i = 1 to k

t = max f t; EFT (i) g+ tmod(i);
endfor;

2. Set EST (p) = t and EFT (p) = t+ tdiv(p) .

In the following we will give an informal argument about the optimality of the
parallel runtime resulting from Sched-A.

Theorem 9 For panel p, scheduling the Tmod's by Sched-A gives the shortest completion
time.

Proof: Processor P requires at least
Pk

i=1 tmod(p; i) units of time to �nish all the up-
dates to panel p. Now suppose another scheduling strategy Sched-B starts with a task
Tmod(p; i); i 6= 1. Due to the precedence constraint, Tmod(p; i) cannot start until after
time EFT (i) (� EFT (1)). That means processor P will be idle during the period of
LAG := EFT (i)�EFT (1). Thus the amount of time to �nish all the Tmod s will be at
least LAG+

Pk
i=1 tmod(p; i).

On the other hand, in Sched-A, at least some Tmod(p; j); j < i have been scheduled
in the time period LAG. Hence the amount of work left after time EFT (i) is less than the
work left when using Sched-B. Sched-A will give shorter �nishing time than Sched-B. 2

We are now ready to simulate parallel computation for the whole factorization. To
begin with, theEST s of the leaf panels in the elimination tree are initialized to zero. Various
times (tmod and tdiv in oating-point operations) can be computed successively from the
bottom of the elimination tree to the top. By applying the argument above inductively to
all the panels in the DAG, with leaf panels as the basis, we can show that EFT (root panel)
gives the minimum execution time. The (predicted) optimal speedup can then be computed
by

Predicted speedup =
Total ops

EFT (root panel)
:
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There are several points worth noting in this model. First, because of numerical
pivoting, we do not know the computational DAG in advance of the factorization; rather, the
DAG is built incrementally as the factorization proceeds. Also, the oating-point operations
associated with all the tasks are calculated on the y. So this model gives an a posteriori
estimate. Secondly, for each panel computation, the scheduling method of Sched-A requires
sorting the EFT 's of all the descendant supernodes that will update this panel. The cost
associated with this sorting is prohibitively high, and so this method cannot be used to
schedule panel updates in practice. However, we content ourselves with bounding the
theoretically attainable speedup.

5.8.3 Results from the model

In this subsection, we present the optimal speedups predicted by the model for all
of our test problems. The degree of parallelism (and hence speedup) is strongly dependent
on the granularity of the sequential tasks. In our algorithm, there are two parameters to
control task granularity: The panel size w determines the amount of work in a Tdiv task,
and both w and the maximum supernode size maxsup determine the amount of work in a
Tmod task. Any large supernode of size exceeding maxsup (such as in a dense matrix) is
divided into smaller ones so that they �t in cache.

Table 5.14 reports the predicted speedups when varying w and maxsup. For a
�xed value of maxsup, the simulated speedups decrease with increasing w. For sequential
SuperLU we �nd empirically that the best choice for w is between 8 and 16, depending on
matrices and architectures. In the parallel setting, a smaller w, say between 4 and 8, may
give the best overall performance. This embodies an interesting trade-o� between available
concurrency and per-processor e�ciency.

We now compare the results when �xing w but varying maxsup. In relatively
sparser matrices, such as matrices 1 { 10, the actual sizes of supernodes may be much
smaller than maxsup. The performance of such matrices are not so sensitive to maxsup.
However, for larger and denser matrices, larger value of maxsup results in poorer speedup.

Finally we note that the speedups for small matrices are very low, even with small
values of w and maxsup. Fortunately, for large matrices such as 13 { 21, the predicted
speedups are greater than 20 when w = 8 and maxsup = 32. These matrices perform more
than one billion oating-point operations in the factorization. It is these matrices that
require parallel processing power. The current 1-D algorithm is well suited for most of the
commercially popular SMP machines, because the number of processors on these systems
is usually below 20.

The height of the column etree can also be used as a crude prediction of the parallel
performance. The height of a node i is de�ned as

height(i) =

(
0; if i is a leaf node
1 +maxf height(j) j j 2 child(i)g otherwise

The height of the etree is the height of the root, which represents the longest (critical)
path in the etree. The computation of all the nodes along this path must be performed in
succession. Therefore, the length of the critical path is a constraining factor for performance.



111

maxsup = 32 maxsup = 64
Matrix w = 4 w = 8 w = 16 w = 4 w = 8 w = 16 height=n

1 Memplus 4.8 3.6 2.8 2.9 2.5 2.1 0.95
2 Gemat11 7.3 5.3 4.1 6.4 4.9 3.6 0.06
3 Rdist1 4.6 3.2 2.1 4.6 3.2 2.1 0.99
4 Orani678 42.2 28.4 16.6 42.2 28.4 16.6 0.64
5 Mcfe 6.6 4.3 2.6 6.6 4.3 2.6 0.67
6 Lnsp3937 23.2 15.4 9.7 23.2 15.4 9.7 0.25
7 Lns3937 24.1 15.8 9.6 22.9 15.3 9.6 0.27
8 Sherman5 15.8 11.4 7.5 14.0 10.7 7.2 0.20
9 Jpwh991 13.4 9.7 6.4 11.3 8.3 6.0 0.46
10 Sherman3 12.7 9.7 7.0 8.2 6.9 5.5 0.20
11 Orsreg1 14.4 11.0 7.5 9.2 7.8 5.9 0.34
12 Saylr4 19.8 16.1 11.0 13.1 11.4 8.6 0.29
13 Shyy161 47.9 36.2 24.1 28.1 23.8 18.1 0.04
14 Goodwin 97.4 71.3 43.6 83.4 63.4 40.1 0.19
15 Venkat01 22.0 20.2 17.0 14.3 14.2 13.1 0.73
16 Inaccura 62.6 43.5 26.0 44.5 33.6 22.2 0.45
17 Bai 70.9 55.3 37.2 41.4 35.7 27.4 0.20
18 Dense1000 33.1 23.7 18.4 18.2 14.9 12.7 1.00
19 Raefsky3 140.2 110.6 80.8 80.4 69.6 56.5 0.21
20 Ex11 106.7 83.5 58.2 61.6 53.2 41.7 0.35
21 Wang3 57.6 43.4 29.4 34.3 28.9 22.1 0.94
22 Raefsky4 99.1 77.1 52.0 56.3 48.5 37.3 0.33
23 Vavasis3 176.5 133.9 90.7 106.2 89.5 68.2 0.18

Table 5.14: Optimal speedup predicted by the model, and the column etree height.

The last column of Table 5.14 shows the height of the etree over total numbers of nodes n
in the etree. The larger is height=n, the larger the fraction of panels will be factorized in
pipelined manner, resulting in poor parallelism and more synchronizations. For example,
height=n for matrices 1, 3, 15 and 21 are rather large. This is consistent with the relatively
lower predicted speedups. However, we must note that the etree height alone is not an
accurate measure of parallelism. For example, both dense matrix (18) and a tridiagonal
matrix have height=n = 1:00, but the former possesses much more concurrency than the
later.

The fundamental problem is due to over-prediction of the nonzeros when using
ATA as the analysis tool. The consequences of the over-prediction are: (1) The column
etree is tall, and contains substantial false dependencies. (2) The dynamic storage scheme
(Section 5.4.3) is needed to store supernodes, because the static storage bound is too loose
(Table 5.3). Using the dynamic scheme increases the sequential runtime. For example, for
matrix 15, the runtime increases by about 15%. In the parallel algorithm, this overhead
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Figure 5.18: Speedups on 8 processors of the Power Challenge, the AlphaServer 8400 and
the Cray J90.

also occurs on the critical path, and increases the length of it. So the combined e�ect gives
poor performance on the real machines. On the 8-CPU Power Challenge and AlphaServer
8400, matrix 15 achieves only 2-fold and 3-fold speedups, respectively.

5.9 Conclusions

We have designed and implemented a parallel algorithm for modest size shared
memory multiprocessors. The e�ciency of the algorithm has been demonstrated on several
parallel machines. Figure 5.18 shows the speedups on 8 processors of the three parallel
machines. Figures 5.19 through 5.22 recall the factorization rate in Megaops for six large
matrices, with increasing number of processors. We believe these large problems are the
primary candidates to be solved on parallel machines. In fact, the largest one in our test
suite takes a little more than 0.5 GBytes memory, far less than most parallel machines have
o�ered. Our algorithm is expected to work well for even larger problems.

For a realistic problem arising from a 3-D ow calculation (matrix 20), on the
Power Challenge, the Cray C90 and J90, our parallel algorithm achieves 25% peak oating-
point performance. On the AlphaServer 8400, it achieves 17% of the peak for the same
problem. The respective Mop rates are 1002, 2583, 831 and 781. These are the fastest
results for the unsymmetric LU factorization on these powerful high-performance machines.
Previous results showed much lower factorization rate because the machines used were
relatively slow and the computational kernel in the earlier parallel algorithms was based on
Level 1 BLAS. The closest work is the parallel symmetric pattern multifrontal factorization
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by Amestoy and Du� [5], also on shared memory machines. However, that approach may
result in too many nonzeros and so is ine�cient for unsymmetric pattern sparse matrices.

Another contribution is providing detailed performance analysis and modeling for
the underlying algorithm. In particular, we identi�ed the three main factors limiting parallel
performance: (1) contention for accessing critical sections, (2) processors sitting idle due
to pipeline waiting, and (3) the need to sacri�ce some per-processor e�ciency in order to
gain more concurrency. Which factor plays more signi�cant role depends on the relative
performance of integer and oating-point arithmetic in the underlying architecture.

We have developed a theoretical model to analyze our parallel algorithm and pre-
dict the optimally attainable speedup. When comparing the theoretical prediction (Ta-
ble 5.14) with the actual speedups (Figure 5.18), we �nd that there exists a discrepancy
between the two. This is because our hypothetical machine and the optimal scheduling used
in the model do not capture all the details of a real machine with real scheduling. Neverthe-
less, we do see a similar shape of curves in the predicted and actual speedups. That is, for
the matrices predicted lower speedups, such as 11, 15, 18 and 21, the actual speedups are
also lower. The model is a useful tool to help identify the inherently sequential problems
with bad column orderings. The model also suggests that the panel-wise parallel algorithm,
although e�cient on small scale SMPs, cannot e�ectively utilize more than 50 processors.
Our future research is to develop a more scalable algorithm for massively parallel machines.
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Figure 5.19: Mop rate on a SGI Power
Challenge.
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Figure 5.20: Mop rate on a DEC Al-
phaServer 8400.

1 2 4 8
0

500

1000

1500

2000

2500

3000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
bai
ex11
raefsky4

Figure 5.21: Mop rate on a Cray C90.
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Figure 5.22: Mop rate on a Cray J90.
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Chapter 6

Conclusions and Future Directions

6.1 Summary of contributions

The main goal of this dissertation is to design, implement and analyze new tech-
niques for sparse LU factorization of large unsymmetric matrices, and to show that the
proposed methods achieve high performance on a wide range of modern architectures. In
addition to algorithm design, a large part of the research lies in performance analysis and
modeling, taking into account the characteristics of algorithms, computer architectures and
input matrices.

Many high performance computers, the so-called superscalar architectures, have
multiple pipelined functional units. Fast but relatively small cache memory is essential
to support this functional parallelism. To e�ectively utilize this level of parallelism, the
algorithm must be structured in such a way that a piece of data in registers and cache
is reused su�ciently often. To this end, we designed the supernode-panel factorization
algorithm in Chapter 4. Although panel factorization, as opposed to column factorization,
was adopted in dense LU factorization several years ago, it is much more complicated
to implement for sparse matrices. Our supernode-panel algorithm is evaluated on several
cache-based superscalar machines, including IBM RS/6000-590, MIPS R8000 and DEC
Alpha 21164.

The amount of performance gain over older algorithms is very much dependent
on the matrix characteristics. We show that, among all matrix properties, ops-per-nz, has
the strongest predictive power for performance gain. Ops-per-nz is the average number of
oating point operations per nonzero in the �lled matrix F , which is an upper bound on
the maximum cache reuse. When the matrices have a large ops-per-nz, the speedups of our
supernode-panel algorithm over an earlier supernode-column algorithm are more than four-
fold on the MIPS R8000 and more than two-fold on the Alpha 21164. The raw factorization
rates are up to 169 Mops and 121 Mops, respectively (see Table 4.13).

Based on our e�cient supernode-panel algorithm, we developed a parallel algo-
rithm on shared memory machines. The major di�culties are dealing with data depen-
dencies and memory management. We designed a low overhead scheduler to dynamically
schedule panel tasks on free processors. A pipeline mechanism is incorporated into the
scheduler to coordinate dependent tasks. We used the nonzero structure of the House-
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holder matrix from the QR factorization as an upper bound on the supernode storage for
the LU factorization, in order to preallocate enough storage to store supernodes contigu-
ously in memory and so to exploit locality. When this upper bound is too loose, we use
a dynamic storage scheme to mitigate storage ine�ciency, at the expense of some runtime
overhead. Overall, our parallel algorithm is practical and easily portable across di�erent
platforms.

Understanding and predicting performance for the parallel algorithm is much more
di�cult than for the serial algorithm mainly because there are so many interacting factors
depending on the algorithm, the machine and the matrices. Among these factors are the
cost of locking, the relative speeds of integer and oating-point arithmetic, the memory
organization, and the matrix characteristics. Depending on the relative speeds of the above
system components, we observe di�erent speedups on di�erent parallel computers, even for
the same input matrix (Figure 5.18). We have been able to quantify the major overheads of
the algorithm on di�erent machines. One interesting trade-o� in the parallel algorithm is to
use tasks of smaller granularity (and so with less potential cache reuse) in order to achieve
more concurrency. On cache-based machines, such as Power Challenge and AlphaServer
8400, this may cause nontrivial performance degradation on individual processors. This
trade-o� is not relevant on the Cray C90 and J90 because these machines do not have
caches and have much better memory performance. We also developed a theoretical model
to predict optimal speedup, irrespective of the architectural details.

For matrices exhibiting su�cient parallelism, the parallel algorithm achieves up
to 7-fold speedup on a 12-CPU Power Challenge, 7-fold speedup on an 8-CPU AlphaServer
8400, 6-fold speedup on an 8-CPU Cray C90, and 12-fold speedup on a 16-CPU Cray J90.
All speedups are obtained when comparing with the best sequential runtime.

6.2 Future research directions

6.2.1 Sequential algorithm

Further improvements in the sequential algorithm are possible. These improve-
ments are more likely to come from better symbolic algorithms than from the numerical
part. Improvement in the symbolic part is especially important for the machines with
relatively slower integer performance, such as the Cray C90 and J90.

It may be worthwhile to switch to a dense LU code at a late stage of the factor-
ization. The dense code does not spend time on symbolic structure prediction and pruning,
thus streamlining the numeric computation. It can also use BLAS-3 naturally. Eliminating
symbolic computation is especially important for vector machines like Crays, because the
symbolic part is hard to vectorize and runs relatively slowly. We believe that, for large
matrices, the �nal dense submatrix will be big enough to make the switch bene�cial. For
example, for a 2-D k � k square grid problem ordered by nested dissection, the dimension
of the �nal dense submatrix is 3

2k �
3
2k; for a 3-D k � k � k cubic grid, it is 3

2k
2 � 3

2k
2, if

pivots come from the diagonal. The Harwell code MA48 [33, 39] employs such a switch to
dense code, which has a signi�cant bene�cial e�ect on performance.

Where is a good point to switch to dense LU? Since our algorithm is left-looking,
we do not know exactly when the trailing submatrix becomes dense or nearly so. We
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considered using the nonzero upper bound approach discussed in Section 5.4.3. Again, we
can use two matrices: the Householder matrix H (in factored form) of the QR factorization
and the Cholesky factor Lc ofA

TA. We know that L is contained in bothH and Lc, and that
H generally gives a tighter bound. Let l denote the �rst column of the last supernode of H
or of Lc. It is reasonable to assume that the reduced submatrix F (l : n; l : n), corresponding
to the last supernode in either H or Lc is fairly dense. Thus, we may use a dense code when
eliminating the variables from l to n. To support our argument, we gathered some statistics
about the last supernode, in Figure 6.1 (for H) and Figure 6.2 (for Lc). In both �gures, we

plot the \density" of the last supernode, de�ned as nnz(F (l:n;l:n))
(n�l+1)2

, the percentage of the total

oating-point operations performed when eliminating the last n � l + 1 variables (\Flops
%"), and the percentage of the variables to be eliminated by a dense code (\(n� l+1)=n").
If we use last supernode in H as switching criterion, F (l : n; l : n) is usually more than
80% full, except for small matrices in which the \dense" part is rather small. On the other
hand, if we use Lc, we will need to do more oating-point operations for more zeros. Even
though these oating-point operations are cheaper in a dense code, it is not clear how the
overall runtime is a�ected. For the large matrices 19 { 23, which is where SuperLU shows
clear advantage, about the last 10% of the rows and columns during elimination are nearly
dense. So those problems will probably bene�t more from switching to dense LU .

Signi�cant improvements may come from better column preordering heuristics that
su�er less �ll. These include column nested dissection, or a hybrid of column minimum
degree and column nested dissection orderings.

6.2.2 Parallel algorithm

Finding a better elimination tree

According to our theoretical model (Section 5.8), for the input matrices we con-
sidered, the current algorithm is not likely to scale up to larger parallel machines with over
a hundred processors. There are two di�erent solutions to overcome this obstacle.

One reason for poor (optimal) speedups of some problems is due to the long (in-
herently sequential) critical path in the column etree, which is determined by a particular
column preordering. An optimal ordering with respect to storage or arithmetic may not
be necessarily optimal for parallel complexity. Since we use the column etree to drive the
parallelism, it is desirable to have a short and wide etree. It is commonly accepted that
minimum degree ordering, either on ATA or A + AT , tends to produce tall and narrow
etrees. In the context of sparse Cholesky factorization, Liu [82] developed a reordering
scheme to reduce the height of the etree (relabeling nodes in G(A) as well). He used a two-
step modular approach to ordering a matrix. He �rst applied a �ll-reducing heuristic (such
as minimum degree ordering) to the original matrix A, resulting in a permuted matrix �A.
In the second step, he applied a sequence of his etree rotation operations [81] to restructure
the etree so that its height is reduced to nearly the minimum. The permutation P found
in the second step has the important property that the reordered matrix P �APT su�ers
the same �ll and requires the same number of arithmetic operations for its factorization as
does �A. An ordering with this property is called an equivalent reordering in the literature.
Therefore, the parallel completion time will be reduced when factoring P �APT , provided
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Figure 6.1: Statistics of the last supernode in H .
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Figure 6.2: Statistics of the last supernode in Lc.
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there are enough processors.
This idea may be extended to deal with the unsymmetric case, where the column

etree is restructured, and the columns of A are permuted accordingly. However, without
knowledge of the numerical values, it is impossible to determine whether a permutation
will preserve �lls and arithmetic operations for the LU factorization, so the term equivalent
reordering is not well de�ned. At best, the same semantics of equivalent reordering may
be used but applied to the Cholesky factor Lc of ATA. This only says that the upper
bounds of the �lls and arithmetic on L and U are the same (Theorem 5 in Section 5.4.3),
with no guarantees for L and U themselves. George and Ng [57] employed this technique
in their parallel sparse Gaussian elimination algorithm. Their implementation makes use
of the static data structure �L and �U obtained from a symbolic row merge algorithm. (In
structure, �L and �U are identical toH and R respectively, by Theorem 6 in Section 5.4.3, and
are upper bounds on L and U .) As they pointed out, if the structure of the column etree
is changed, the number of nonzeros in �U is preserved if A is irreducible, but the number of
nonzeros in �L may not be preserved. They did not report whether restructuring the etree
improved the e�ciency of their parallel algorithm.

If A is reducible, the upper bound may be very loose. After the reordering, the
actual number of nonzeros in L and U and the oating-point operations may become more
or fewer than before. However, the parallel runtime may possibly be decreased even though
the algorithm performs more operations, simply because more concurrency is exposed. This
is a promising area deserving further investigation. It is worth noting that our performance
model established in Section 5.8 can be a useful tool to assess whether restructuring the
etree (or some other reordering heuristic) will be e�ective in parallel runtime reduction.
This is in fact one of our motivations for building the theoretical model in the �rst place.

We may also use the etree de�ned by �U [57] instead of the column etree, which
would present more concurrency than does the column etree. But we should note that it
is more expensive to compute the etree of �U (O(nnz(�L) + nnz( �U))) than to compute the
column etree (almost linear in nnz(A)).

Using 2-D decomposition instead of 1-D decomposition

Another remedy, which we believe will be more e�ective than simply restructuring
the etree, is to parallelize the computation along both row and column dimensions of the
matrix.

Schreiber [101] modeled the lower bounds on parallel completion time of a left-
looking column-oriented sparse Cholesky factorization, and concluded that a two-dimensional
mapping is needed to achieve better scalability. Since then, several researchers [72, 97] have
developed and demonstrated e�cient and scalable 2-D distributed algorithms for sparse
Cholesky. To summarize their results, there are two essential ingredients: (1) computa-
tional kernels are based on BLAS 3 in order to achieve high per-processor performance;
(2) the matrix is partitioned in a 2-D fashion and mapped onto processors in a 2-D grid.
In this mapping, the machine is organized as P � Q processor grid. A block row of the
matrix is mapped to the same row of the processor grid, and a block column of the matrix
is mapped to the same column of the processor grid. Compared with the 1-D mapping,
asymptotically, both the length of the critical path and the interprocessor communication
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volume are reduced for a grid model problem [97].
Unlike sparse Cholesky, the following issues must be addressed in the LU factor-

ization: (1) supernodes (blocks) emerge dynamically, but we need to determine the block
boundaries and distribute matrix prior to factorization; (2) we need to parallelize the under-
lying symbolic algorithm to accommodate dynamic structural change; (3) processors must
cooperate to perform numerical pivoting at each step.

We propose the following strategies to address the above issues.

� block partition. We will use the supernode boundaries in the Householder matrix H
(Section 5.4.3) to partition matrix A into blocks of columns. If a block is too large, we
further divide it into smaller blocks. Then, we can apply the same block partitioning
to the rows of matrix A.

� block mapping. The global 2-D block cyclic mapping successfully used in dense
algorithms [19] may cause serious load imbalance. Instead, we propose a two-phase
mapping method as follows. First, we will use the column etree and arithmetic es-
timate based on the Householder matrix H to �nd independent domains and assign
them to individual processors. We discussed this method in Section 5.7.1. Secondly,
at the higher level of the etree outside domains, we will use a Cartesian product
mapping heuristic proposed by Rothberg and Schreiber [98]. Here, we can estimate
the work associated with each block using the two upper bound matrices H and Lc
(Section 5.4.3). One important observation is that the mapping functions for rows
and columns can be de�ned independently. Compared with the customary 2-D block
cyclic mapping, there are two advantages associated with the independent row and
column mappings: (1) there is more exibility to statically balance the work load; (2)
it can avoid heavily loading the diagonal processors in the processor grid, since the
diagonal blocks tend to have more work than the o�-diagonal blocks and they are now
mapped to not only the diagonal processors but also the o�-diagonal ones.

� symbolic algorithm. Although the current symbolic algorithm is very e�cient in
the sequential and 1-D parallel codes, it may become a performance bottleneck in
the 2-D algorithm, because depth-�rst search does not exploit locality and is hard to
parallelize. We are investigating alternative algorithms to perform structure prediction
that use more localized information.

It should be noted that the 2-D algorithm proposed here is mainly to address scala-
bility and is targeted at massively parallel machines, including distributed memory machines
and clusters of SMPs. We do not expect it to replace the 1-D algorithm developed in Chap-
ter 5 for small-scale SMPs, because the 2-D algorithm requires more synchronizations and
requires more complicated data structures, and will be less e�cient for small-scale SMPs.

6.2.3 Parallel triangular solves

Parallel sparse triangular solves usually attract less attention than factorization,
simply because they usually perform many fewer oating-point operations and require much
less time in sequential code (Figure 4.23). However, once the runtime of LU factorization
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is signi�cantly reduced by parallelization, triangular solves represent a larger fraction of
the total runtime. It therefore becomes more important to parallelize this phase as well,
especially if there are multiple right-hand sides in the equations.

The parallel strategy is very similar to the parallel factorization algorithm. Again,
we can employ the column etree to guide the parallelization, with forward substitution
proceeding from the bottom of the etree upward, and back substitution proceeding in top-
down fashion.

6.3 Available software

As stated earlier, the performance of a sparse code depends not only on the algo-
rithm and architecture, but also on matrix properties, such as dimension, density, structural
symmetry, etc. Some comparisons indicate that no single code or algorithm performs best for
all classes of problems and for all machines. For example, we demonstrated that supernodal
techniques (SuperLU) based on dense matrix kernels are very e�cient for large problems,
on both serial and parallel machines with superscalar or vector hardware. But for small or
extremely sparse matrices, the earlier and simpler codes based on BLAS-1 kernels may be
as e�cient as or more e�cient than SuperLU.

In this section we give an overview of the sparse codes developed recently. Our
purpose is not to give a complete survey or comparison of all the sparse LU codes; rather,
we emphasize functionality and availability of the codes. We hope that this section may
serve as a brief guide for users to choose the appropriate code according to their problems
nature and solution environments. So we only include the codes that are either publically
available, or likely to be available from the authors.

Table 6.1 tabulates these codes. Here we simply highlight the key algorithmic
features of each code. For more details and performance issues, we refer readers to the
original references and a recent survey by Du� [34]. Besides sparse LU factorizations, Du�
also summarized many other advances in sparse numerical linear algebra, including ordering,
linear least-squares, and preconditioning. The new book by Bj�orck [17] contains a complete
list of algorithms and software for sparse least-squares problems.

The last colum in the table shows the availability of each code. All the serial codes
are publically available, and are portable to a majority of uniprocessor platforms. Shared
memory codes have achieved reasonable success in portability. Even if a code is developed
on one system, it is usually not a quite di�cult task to move it onto another parallel
machine. For distributed memory machines, most codes are still at the research stage, and
not so publically accessible. Each code usually works only on one parallel machine. So for
distributed memory machines, much work remains to develop reliable, portable, and high
performance sparse direct solvers. (This is in contrast to dense matrix problems, for which
the ScaLAPACK library is available [19].)

In the future, it will be worthwhile to conduct direct comparisons and evaluations
of some of these codes on the same machines and for the same input matrices.
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Matrix Numerical Status
Type Name Algorithm Kernel /Source

Serial Algorithms

unsym. SuperLU LL, partial BLAS-2.5 Pub/UCB
unsym. UMFPACK [21, 22] MF, Markowitz BLAS-3 Pub/netlib

MA38 (same as UMFPACK) Com/HSL
unsym. MA48 [39] Anal: RL, Markowitz Com/HSL

Fact: LL, partial BLAS-1, SD
unsym. SPARSE [79] RL, Markowitz Scalar Pub/netlib

sym-
pattern

)(
MA41 [4]
MA42 [42]

MF, threshold
Frontal (eqn+element)

BLAS-3
BLAS-3

Com/HSL
Com/HSL

sym.

(
MA27 [40]
MA47 [38]

MF, LDLT
BLAS-1
BLAS-3

Com/HSL
Com/HSL

s.p.d. Ng & Peyton [89] LL BLAS-3 Pub/Author

Shared Memory Algorithms

unsym. SuperLU LL, partial BLAS-2.5 Pub/UCB
unsym. PARASPAR [112, 113] RL, Markowitz BLAS-1, SD Res/Author
sym- MUPS [6] MF, threshold BLAS-3 Res/Author
pattern
unsym. George & Ng [57] RL, partial BLAS-1 Res/Author
s.p.d. Gupta, Rothberg, LL BLAS-3 Com/SGI

Ng & Peyton [73] Pub/Author
s.p.d. SPLASH [78] RL, 2-D block BLAS-3 Pub/Stanford

Distributed Memory Algorithms

unsym. van der Stappen [108] RL, Markowitz Scalar Res/Author
sym- Lucas et al. [85] MF, no pivoting BLAS-1 Res/Author
pattern
s.p.d. Rothberg et al. [98] RL, 2-D block BLAS-3 Res/Author
s.p.d. Gupta [72] MF, 2-D block BLAS-3 Res/Author
s.p.d. CAPSS [74] MF, full parallel BLAS-1 Pub/netlib

(require coordinates)

Table 6.1: Software to solve sparse linear systems using direct methods.

Abbreviations used in the table:

unsym. { fully unsymmetric matrices
sym-pattern { unsymmetric matrices with symmetric nonzero patterns
sym. { symmetric but possibly inde�nite matrices
s.p.d { symmetric positive de�nite matrices
MF, LL and RL { multifrontal, left-looking and right-looking, respectively
SD { switches to a dense code on a su�ciently dense trailing submatrix
Pub { publically available and the authors may be willing to supply the code
Res { published in literature but may not be available from the authors
Com { commercial
HSL { Harwell Subroutine Library

(http://www.rl.ac.uk/departments/ccd/numerical/hsl/hsl.html)
netlib { http://www.netlib.org; netlib@www.netlib.org
UCB { http://www.cs.berkeley.edu/�xiaoye/superlu.html
Stanford { http://www-ash.stanford.edu/apps/SPLASH/
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