
Performance Improvements to LAPACK

for the Cray Scienti�c Library

Edward Anderson �

Cray Research

655F Lone Oak Drive

Eagan, MN 55121

Mark Fahey y

Department of Mathematics

University of Kentucky

Lexington, KY 40506

April 22, 1997

Abstract

This report details local modi�cations to LAPACK routines for the Cray Scienti�c

Library. Performance of selected routines is evaluated and compared to that of the

public domain LAPACK and the equivalent routines from LINPACK or EISPACK.

Timing results from a CRAY T90 series computing system are presented.

1 Introduction

The Cray Scienti�c Library [5] provides an optimized implementation of the public do-
main software package LAPACK [1] for solving dense linear systems and �nding eigenval-
ues/eigenvectors or singular values/singular vectors of dense matrices. Most of the optimiza-
tions come by way of the BLAS [8, 9, 13], a collection of Basic Linear Algebra Subprograms
which have been well-tuned for the Cray architectures. Many of the computationally-
intensive algorithms in LAPACK, such as the LU, Cholesky, and QR factorizations and the
reductions to Hessenberg, tridiagonal, and bidiagonal form, do most of their work in the
BLAS and have already been studied in detail [3, 6, 10]. These algorithms are well-suited
to the Cray architectures, and their implementation in the Cray Scienti�c Library di�ers
little from that of the public domain LAPACK.

The LAPACK routines employed after a factorization or reduction has been completed
have attracted less attention from performance optimizers, and it is here where most of the
local improvements have been made. This report discusses performance improvements for
the Cray Scienti�c Library to a wide range of LAPACK routines, including:

� triangular solve routines in linear system solving,

� auxiliary routines for computing elementary re
ections and rotations,

� balancing for the nonsymmetric eigenvalue problem,

� symmetric and nonsymmetric inverse iteration,

� the QZ algorithm for the generalized nonsymmetric eigenvalue problem.

�eca@cray.com
ymrfahey@ms.uky.edu

1

Many of these modi�cations are algorithmic improvements that would be bene�cial on archi-
tectures other than those considered in this report. Other more Cray-speci�c enhancements,
such as selective inlining of BLAS, will be mentioned brie
y for completeness. An interest-
ing but otherwise irrelevant empirical result on the optimal blocksize for block factorization
algorithms is included in an appendix.

The metric for much of this optimization work was the output generated by the timing
programs distributed with the LAPACK test package [4]. These programs show the per-
formance of standard LAPACK routines against that of the equivalent EISPACK routines,
inviting comparison. We observed initially that some of the EISPACK routines were faster
than the LAPACK routines that were supposed to replace them. We also found instances
in which the Cray Scienti�c Library version of EISPACK was faster than the public do-
main version of EISPACK, and worked to identify those optimizations and transfer them
to LAPACK.

In x 2, we describe the computing environment and identify the di�erent libraries com-
pared in this report. In x 3 and x 4 we review all the local modi�cations to LAPACK library
routines. Changes to the algorithm or loop structure are called out in separate subsections;
changes that involved only inlining are collected at the end. We conclude with followup
remarks in x 5.

2 Preliminaries

2.1 Compute environment

Our compute environment consisted of a CRAY T94, a parallel-vector processing (PVP)
computing system with four processors, a shared memory space of 128 MWords, and IEEE

oating-point arithmetic. The cycle time is 2.222 nsec (450 MHz), and the vector
oating-
point units can retire four operations per clock, giving a peak rate of approximately 1800
M
ops per processor. Although the CRAY T94 is a parallel processor, most of the algo-
rithms we evaluated are serial, so most of our results are for a single processor.

2.2 Libraries

We will compare the performance of our enhanced version of LAPACK to the public domain
version, as well as to LINPACK[7] and EISPACK[16], which are earlier collections of Fortran
77 subroutines for solving linear systems, eigenvalue problems, and singular value problems.
The following conventions will be used in referring to the di�erent libraries:

libsci is the name of the Cray Scienti�c Library where the modi�cations described here
have been implemented

LAPACK in this report refers to the public domain source code for LAPACK 2.0, available
from netlib at http://www.netlib.org.

LINPACK refers to the public domain source code for LINPACK.

EISPACK refers to the modi�ed source code for EISPACK supplied with the LAPACK
timing routines. Further details on the modi�cations to EISPACK are given below.

2

libsci EISPACK is a unique hybrid of an early version of EISPACK with Cray library
enhancements and the algorithmic changes from the 1983 update to EISPACK. Al-
though this software is being phased out of libsci, we include it for comparison in a
few cases where it is still the fastest alternative.

The naming convention for LAPACK routines in the Cray Scienti�c Library uses a
leading `S' in the routine name to indicate a subroutine operating on 64-bit real data
and a leading `C' for 64-bit complex data. On many other systems, 64-bit data is double
precision, and the equivalent precision library routines would have a leading `D' or `Z' in
their name. For example, the subroutine to compute an LU factorization of a 64-bit REAL
array is named SGETRF in the Cray Scienti�c Library but DGETRF in SGI's CompLib.
All comparisons in this report are for subroutines operating on full precision (64-bit real or
complex) data.

2.3 Modi�cations to EISPACK

One di�culty in comparing LAPACK to EISPACK is that there are many test problems
in the LAPACK timing suite for which EISPACK does not converge or converges with
less accuracy than LAPACK. To remedy this, the LAPACK designers provided a modi�ed
version of EISPACK with the LAPACK timing suite in which the convergence criteria were
changed to be more like LAPACK. Speci�c changes include

� The maximum number of iterations allowed for convergence was increased from 30 to
40 in IMTQL1 and IMTQL2.

� The test for determining if o�diagonal elements are small enough for the matrix to
be split was relaxed in BISECT and TRIDIB. In EISPACK, the criterion was to split
the matrix if

jE(i)j � " (jD(i)j+ jD(i� 1)j) :
This condition implies that jE(i)j � 2"max(jD(i)j ; jD(i� 1)j), so if both D(i) and
D(i � 1) are less than UNFL=2", where UNFL is the under
ow threshhold, then E(i)
must be zero to split. In LAPACK, the criterion is to split the matrix if

jE(i)j2 < "2 jD(i)j jD(i� 1)j+ SAFMIN;

where SAFMIN is the smallest representable number in the
oating point model (the
\safe minimum"). Thus jE(i)j may be greater than " jD(i)j if it is su�ciently smaller
than " jD(i� 1)j, and the matrix will always split if jE(i)j< p

UNFL, regardless of the
values of D.

� Global matrix information was added to the splitting criterion for determining if
o�diagonal elements are small enough in COMQR, COMQR2, HQR, and HQR2. For
instance, when looking for a single small subdiagonal element in HQR, the test was

jH(i; i� 1)j � "S

where S = jH(i� 1; i� 1)j+ jH(i; i)j, or S = kHk if this value is zero. This test was
changed to

jH(i; i� 1)j � max("S; r)

3

where r = max(SAFMIN; "kHk). This allows the matrix to split if H(i; i� 1) is small
either in an absolute sense or relative to the norm of the matrix H , even if it is
not small relative to its immediate diagonal neighbors. Previously, global matrix
information was incorporated only if H(i� 1; i� 1) and H(i; i) were zero.

� The absolute test for small o�diagonal elements in TQLRAT was replaced with a
relative test. Instead of checking for values of E2(i) < "2, where E2(i) = E(i)2, the
new test checks for

p
E2(i) < " (jD(i)j+ jD(i+ 1)j).

It is debatable whether or not EISPACK with all these changes is really EISPACK any
more, but this is the methodology that has been established for comparing LAPACK to
EISPACK.

2.4 Test Matrix Types

Some of the eigenvalue routines studied in this report have di�erent performance character-
istics for di�erent types of matrices. This is because their rate of convergence depends on
the separation of adjacent eigenvalues and on whether or not there are repeated eigenvalues
in the solution. In the timing results of x 4, we report the matrix type along with the timing
data. The enumeration of matrix types follows that used in the LAPACK timing program,
which is described in further detail in the Installation Guide for LAPACK [4]. If no type is
indicated, matrices of type 1 were used.

3 Modi�cations to LAPACK, I: Linear System Solving

The modi�cations we have made to subroutines in the LAPACK library are extensive and
so we have divided them into two groups. The �rst group, described in this section, consists
of improvements to the software for solving linear systems of equations and least squares
problems. The second group, described in x 4, consists of improvements to the software for
solving eigenvalue and singular value problems. Because of the modular design of LAPACK,
there is some overlap between the two groups.

3.1 Linear System Solve Routines (xxxTRS)

Solving a linear system with multiple right-hand sides is a naturally parallel operation
because each right-hand side can be solved independently. However, since vectorized code
can run about 10 times faster than scalar code on a single Cray processor, it is often better
to try to vectorize �rst. In keeping with their BLAS-�rst strategy, the LAPACK solve
routines always vectorize across right-hand sides, leaving any opportunities for parallelism
to the underlying BLAS. This approach may be acceptable if the number of right-hand sides
is large relative to the number of processors, but it is ine�cient for the small numbers of
right-hand sides that are often found in applications.

Our strategy for redesigning the solve routines was to move the parallelism to the out-
ermost loop. The standard solve routine xxxTRS was renamed xxxTS2@, and special case
code for one right-hand side was added to xxxTS2@. Then a new routine xxxTRS was
written to call xxxTS2@ in a parallel loop. The stride for the parallel loop, called NB by
analogy with the block factorization routines where NB is the block size, is determined by a
call to a new auxiliary routine ILATRS@, which returns NB = 1 if the number of right-hand

4

sides is too small to vectorize, and NB > 1 to have each processor solve for NB right-hand
sides at a time.

The structure of SSYTRS with the new design is as follows:

IF(NRHS.EQ.1) THEN

NB = 1

ELSE

NB = MAX(1, ILATRS@(1, 'SSYTRS', UPLO, N, NRHS, -1, -1))

END IF

*

IF(NB.GE.NRHS) THEN

CALL SSYTS2@(IUPLO, N, NRHS, A, LDA, IPIV, B, LDB)

ELSE

CMIC$ CNCALL

DO 10 J = 1, NRHS, NB

JB = MIN(NRHS-J+1, NB)

CALL SSYTS2@(IUPLO, N, JB, A, LDA, IPIV, B(1, J), LDB)

10 CONTINUE

END IF

Note that we avoid the call to ILATRS@ when NRHS = 1 to minimize overhead in this
common case. Also, the �rst character argument has been converted to an integer in
SSYTS2@, for historical reasons not relevant to this report.

If only one processor is available, then ILATRS@ returns NB = 1 if it is more e�cient to
solve for each right-hand side separately, and NRHS if it is more e�cient to solve for them
all at once, vectorizing across right-hand sides. This is yet another tunable parameter for
LAPACK implementors, but it is straightforward to determine. All that is needed is to
create two tables, one where NB is set to 1 and one where NB is set to NRHS, and observe the
crossover point on a single processor at which the vectorizing code wins out over solving for
each right-hand side individually. For Cray PVP systems, the crossover point is typically
around 8 right-hand sides, although �ner tuning was used in the library.

If multiple processors are available, then an environment-speci�c decision must be made
about the setting of NB. Cray PVP systems utilize a dynamic, demand-driven scheduling
mechanism for assigning processors to processes. In a typical batch environment, users may
specify a maximum number of processors for their jobs via the environment variable NCPUS,
but the actual number of processors assigned may vary from 1 to NCPUS during execution,
depending on the system load and the number of processors kept busy by the user's job.
To make the best use of the available resources under these circumstances, a dynamic load-
balancing algorithm such as Guided Self-Scheduling [15] is often employed. However, if
the system load is light, such as during dedicated time, the user may be able to expect all
NCPUS processors to be available. Then static load balancing can be used to keep all the
processors busy and minimize the execution time. The Cray Scienti�c Library reads the
environment variable MP DEDICATED to choose between its batch (MP DEDICATED = 0) and
dedicated (MP DEDICATED = 1) scheduling strategies.

3.1.1 Non-dedicated strategy

In a multi-processing batch environment, the goal is to use multiple processors without
degrading the single-processor e�ciency too much. Then, if the worst case occurs and only
one processor is attached to the user's job at run time, the execution time will be only
slightly worse than if the user had just set NCPUS = 1. These are fuzzy guidelines, so the

5

scheduling strategy used for the LAPACK solve routines is heuristic. Using the observation
that the single-processor solve routines have nearly reached their asymptotic speed when
NRHS = VLEN (the length of the vector registers), we divide the number of right-hand sides
into m = dNRHS=VLENe pieces, each of size NB = dNRHS=me. For example, if NRHS = 200 and
VLEN = 128, we divide the number of right-hand sides into m = d200=128e = 2 pieces, each
having NB = 100 right-hand sides, regardless of the number of available processors. If more
than two processors are attached to the job at run time, we count on the system to reclaim
the processors left idle.

For instance, the solve routine SSYTRS with N = 512 runs at 1256 M
ops when
NRHS = 200, at 1226 M
ops when NRHS = 100, and at 953 M
ops when NRHS = 50. If the
system had 4 processors, we would still use only 2, and each would solve 100 right-hand sides
at a rate of of 1226 M
ops, for a possible speedup of 2 � (1226=1256) = 1:96. If the system
were so busy that we only ever got one processor, we would still run at 1�(1226=1256) = 0:98
times the single-processor rate. Note that we could have tried to divide the right-hand sides
into four pieces for a potential speedup of 4 � (953=1256) = 3:04, but in the worst case we
would run at only 1�(953=1256) = 0:76 times the single-processor rate. Since we are unlikely
to get the total number of processors on a busy system, the conservative cutting strategy
is preferred.

3.1.2 Dedicated strategy

In a multi-processing dedicated environment, the goal is to minimize the wall-clock time of
the one running process by using all available resources without regard to single-processor
e�ciency. The simple-minded strategy employed in this case is to give each of the p pro-
cessors NRHS=p right-hand sides to solve. If NRHS is large relative to p, this splitting gives
a good load balance. However, the speedup will be less than p because a single processor
can solve for NRHS right-hand sides at a higher rate of speed than it can solve for NRHS=p
right-hand sides.

For example, the solve routine SSYTRS with N = 512 and NRHS = 10 runs at about 354
M
ops on a single processor of the CRAY T94 using code that vectorizes across right-hand
sides. When NRHS = 5, the solve runs at about 258 M
ops using code that does not vectorize
across right-hand sides. If two processors equally share the work, the speedup (ignoring any
multiprocessing overhead) would be (10=354)=(5=258) = 1:46. The cumulative CPU time
will go up using the parallel method, but we assume that, in a dedicated environment, we
only care about wall-clock time.

3.1.3 Sample performance improvements

The dedicated and non-dedicated cutting strategies are the same if NCPUS = 1, so we will
illustrate the improvements in the single-processor case. Table 1 compares the performance
of SSYTRS from LAPACK with the new design in libsci. The factors of 3{8 times improve-
ment for one right-hand side were the obvious motivation for this work. Particular problem
sizes may still bene�t from some �ner tuning; for example, it appears from this table that
N = 750 should use non-vectorizing code for NRHS = 8, while the current code does not
increase the cuto� from 7 to 8 right-hand sides until N = 768.

6

Values of N

Version NRHS 50 100 250 500 750 1000

LAPACK SSYTRS 1 14 23 36 42 45 47
2 27 45 68 81 87 90
4 53 84 126 149 157 164
8 101 160 232 276 294 304
32 284 443 636 724 766 771
100 467 727 1008 1128 1185 1138

libsci SSYTRS 1 35 64 142 247 336 409
2 34 64 140 245 334 406
4 54 87 130 247 335 409
8 102 163 242 286 306 410
32 287 450 657 757 791 815
100 494 773 1077 1207 1204 1297

Table 1: Speed in mega
ops for SSYTRS, CRAY T94, 1 processor

3.2 Tridiagonal Solvers

The case NRHS = 1 is especially important in tridiagonal solvers, for which operations
on the right-hand side constitute a major portion of the work. The LAPACK routines we
studied were the factorization routines xGTTRF and xPTTRF, the solve routines xGTTRS
and xPTTRS, and the driver routines xGTSV and xPTSV. Unlike other LAPACK driver
routines, xGTSV contains special case code for NRHS = 1 that combines the factor and
solve, similar to the LINPACK routines xGTSL and xPTSL. Using the LAPACK timing
program to measure our progress, we set out to make the LAPACK tridiagonal solvers at
least as fast as their LINPACK equivalents, starting from a point at which LAPACK was
up to two times slower.

3.2.1 Tridiagonal factorizations

In SGTTRF, the LU factorization routine for a real general tridiagonal matrix, a row
interchange is done at the ith step if the subdiagonal element DL(i) is greater than the
diagonal element D(i). The LAPACK implementation uses two tests to select the pivot:

IF(DL(I).EQ.ZERO) THEN

...

ELSE IF(ABS(D(I)).GE.ABS(DL(I))) THEN

...

ELSE

...

END IF

This order of tests favors a diagonal matrix �rst, then a matrix which does not require row
interchange, and last a matrix which does require row interchanges. We reordered the tests
as follows:

IF (ABS(D(I)).GE.ABS(DL(I))) THEN

IF(D(I).NE.ZERO) THEN

...

END IF

7

ELSE

...

END IF

The new arrangement requires more comparisons for a diagonal matrix, but fewer compar-
isons in the more typical case when an interchange must be done.

Several other optimizations provided further improvement to SGTTRF:

� The �ll-in vector DU2 was initialized to zero before entering the main loop.

� The last loop iteration (i = N) was moved outside the main loop.

� The setting of INFO in the case of a zero diagonal in U was postponed until after the
main loop. This is possible because the LU factorization continues past a zero pivot.

Table 2 shows the total e�ect of these changes on one processor of a CRAY T94.
The Cholesky factorization SPTTRF was more di�cult to improve upon because it is so

simple. The inner loop in the LAPACK implementation contained only 5 instructions, one
of them an IF test which checks for a zero diagonal. Unlike in the general factorization, the
presence of a zero diagonal element in the Cholesky factorization is a fatal error condition,
so this test could not be moved outside the loop. Unrolling the inner loop by four provided
some bene�t, as shown in Table 2.

Values of N

Version 25 50 100 200 400

LAPACK SGTTRF 13 23 45 88 176
libsci SGTTRF 10 18 33 63 124

LAPACK SPTTRF 8 14 27 52 102
libsci SPTTRF 7 12 22 42 82

Table 2: Time in microseconds for tridiagonal factorizations, CRAY T94, 1 processor

3.2.2 Tridiagonal solves

The solve routines SGTTRS and SPTTRS were redesigned as described in section 3.1, and
additional optimizations were directed at the case NRHS = 1. Within the auxiliary routine
SGTTS2@, the code to solve Lx = b was simpli�ed for the special case NRHS = 1 from

DO 10 I = 1, N - 1

IF(IPIV(I).EQ.I) THEN

B(I+1, J) = B(I+1, J) - DL(I)*B(I, J)

ELSE

TEMP = B(I, J)

B(I, J) = B(I+1, J)

B(I+1, J) = TEMP - DL(I)*B(I, J)

END IF

10 CONTINUE

to

DO 10 I = 1, N - 1

IP = IPIV(I)

TEMP = B(I+1-IP+I, J) - DL(I)*B(IP, J)

B(I, J) = B(IP, J)

B(I+1, J) = TEMP

10 CONTINUE

8

A similar trick was used when solving LTx = b for NRHS = 1. Within the auxiliary routine
SPTTS2@, the solve with the bidiagonal matrix L was replaced by a call to the libsci routine
FOLR (�rst order linear recurrence), as had been done in the libsci version of LINPACK's
SPTSL.

3.2.3 Tridiagonal driver routines

The LAPACK implementation of the simple driver routines SGTSV and CGTSV solve
an augmented system instead of just calling the factor and solve routines separately. We
extended this idea to SPTSV and CPTSV, and added further optimizations to the NRHS = 1
case similar to those already described for SGTTRF/SGTTRS and SPTTRF/SPTTRS.
Table 3 compares the times in microseconds on one processor of a CRAY T94 for solving a
tridiagonal system with one right-hand side using the libsci, LAPACK, and corresponding
libsci LINPACK subroutines. The libsci LAPACK routines are now faster than LINPACK
in all cases except SPTSL, which outperforms SPTSV by not checking for zeroes on the
diagonal during the factorization.

Values of n

Version 25 50 100 200 400

libsci SGTSV 16 28 52 102 201
LAPACK SGTSV 24 48 91 181 361
libsci SGTSL 18 36 67 131 264

libsci SPTSV 10 17 30 56 99
LAPACK SPTSV 14 23 42 79 156
libsci SPTSL 8 14 26 48 85

libsci CGTSV 33 64 126 249 499
LAPACK CGTSV 41 84 162 335 676
libsci CGTSL 42 80 164 321 642

libsci CPTSV 17 30 56 108 212
LAPACK CPTSV 23 39 71 135 265
libsci CPTSL 23 44 88 175 348

Table 3: Times in microseconds for tridiagonal solvers, CRAY T94, 1 processor

3.3 Sum of Squares (xLASSQ)

An important but often overlooked contribution of LAPACK is its extensive collection of
auxiliary routines, some of which are general enough to be candidates for BLAS extensions.
A noteworthy example is SLASSQ, which computes a scaled sum of squares, returning two
constants SCL and SUMSQ such that

(SCL)2SUMSQ = x1
2 + x2

2 + : : :+ xn
2 + s2q;

where s is the initial value of SCL and q is the initial value of SUMSQ. The values s and q
allow SLASSQ to be used to compute a single sum of squares for a series of vectors, as is
required to compute the Frobenius norm of a matrix.

SLASSQ could be used to implement the Level 1 BLAS routine SNRM2 by means of
the following Fortran code:

9

SCL = 0.0

SUMSQ = 0.0

CALL SLASSQ(N, X, INCX, SCL, SUMSQ)

SNRM2 = SCL*SQRT(SUMSQ)

The scaling factor SCL is the key to the safe implementation of SLASSQ; without it, the
sum of squares would over
ow if the magnitude of any element of x were greater than the
square root of over
ow, or it would under
ow to zero if the magnitude of each element of x
were less than the square root of under
ow.

The public domain version of SLASSQ computes the scaled sum of squares by rescaling
every time it �nds a value in the vector whose absolute value is greater than the current
value of SCL. If x is an increasing vector, it rescales with every xi. The following Fortran
fragment is equivalent to the public domain algorithm when INCX = 1:

DO I = 1, N

IF(X(I).NE.0.) THEN

ABSX = ABS(X(I))

IF(SCL.LT.ABSX) THEN

SUMSQ = 1.0 + SUMSQ*(SCL/ABSX)**2

SCL = ABSX

ELSE

SUMSQ = SUMSQ + (ABSX/SCL)**2

END IF

END IF

END DO

This algorithm prevents under
ow or over
ow in SUMSQ by guaranteeing that it is never less
than one or greater than N . However, it is a textbook example of ine�cient code! The IF
tests inhibit vectorization, and the divides are slow on RISC processors, guaranteeing poor
performance on almost any architecture. 1

Our implementation of SLASSQ is a two-pass algorithm which expands the permissible
range of SUMSQ in order to avoid scaling in most cases. In the �rst pass, we compute the
maximum absolute value in the vector, SMAX. If SMAX is less than 1=N times the square
root of over
ow, but greater than the square root of under
ow, scaling is not necessary,
and the second pass consists of an unscaled sum of squares, returning SCL = 1:0 and
SUMSQ = x1

2 + x2
2 + : : :+ xn

2. Otherwise SCL is reset to SMAX and the sum of squares is
computed as SUMSQ = (x1=SCL)

2 + (x2=SCL)
2 + : : :+ (xn=SCL)

2. Because it avoids scaling
unless it needs to, our scaled sum of squares does not produce the same values of SCL and
SUMSQ as SLASSQ, so the subroutine has been renamed SLASSQ@ in the Cray Scienti�c
Library. An abbreviated listing of the libsci implementation of SLASSQ@ is shown in
Figure 1. The thresholds for scaling have been set for 64-bit IEEE arithmetic in this
version.

Table 4 compares the performance of LAPACK's SLASSQ and libsci's SLASSQ@ on a
random vector, an increasing vector, and a zero vector. SLASSQ rescales the sum of squares
of the random vector many times and the sum of squares of the increasing vector N times,
but does not need to rescale the zero vector. SLASSQ@ does not scale any of the three
sums, and in fact does not even do the sum of the zero vector because the maximum value
is zero. At larger sizes, the libsci routine is 50 times faster than LAPACK on the CRAY
T94.

1The same observation applies to the current netlib version of SNRM2.

10

SUBROUTINE SLASSQ@(N, X, INCX, SCL, SUMSQ)

INTEGER INCX, N

REAL SCL, SUMSQ

REAL X(*)

INTEGER I, IX, IX2

REAL CUTHI, CUTLO, HITEST, SMAX, SQMAX

INTRINSIC ABS, MAX, REAL

DATA CUTLO / 1.00104154759155046E-146 /

DATA CUTHI / 9.48075190810917589E+153 /

IF(N.LE.0) RETURN

HITEST = CUTHI / REAL(N+1)

IF(SUMSQ.EQ.0.0) SCL = 1.0

IF(INCX.EQ.1) THEN

*

* Pass through once to find the maximum value in X.

*

SMAX = ABS(X(1))

DO 10 I = 2, N

SMAX = MAX(SMAX, ABS(X(I)))

10 CONTINUE

SQMAX = MAX(SUMSQ, SMAX)

*

IF(SCL.EQ.1.0 .AND. SQMAX.GT.CUTLO .AND. SQMAX.LT.HITEST)

$ THEN

*

* If SCL = 1.0 and max(SUMSQ,abs(X(i))) is greater than

* CUTLO and less than HITEST, no scaling should be needed.

*

DO 20 I = 1, N

SUMSQ = SUMSQ + X(I)**2

20 CONTINUE

ELSE IF(SMAX.GT.0.0) THEN

*

* Scale by SMAX if SCL = 1.0, otherwise scale by

* MAX(SMAX, SCL).

*

IF(SCL.EQ.1.0 .OR. SCL.LT.SMAX) THEN

SUMSQ = (SUMSQ*(SCL / SMAX))*(SCL / SMAX)

SCL = SMAX

END IF

*

* Add the sum of squares of values of X scaled by SCL.

*

DO 30 I = 1, N

SUMSQ = SUMSQ + (X(I) / SCL)**2

30 CONTINUE

END IF

ELSE

... {general case of INCX is similar}

END IF

RETURN

END

Figure 1: Two-pass implementation of SLASSQ

11

Random Vector Vector [1; :::;N] Zero Vector
N LAPACK libsci LAPACK libsci LAPACK libsci

128 41 6 44 6 17 5
256 78 7 85 7 31 5
512 153 8 166 8 60 6
1024 302 10 329 10 116 8
2048 601 14 657 14 228 11
4096 1197 23 1308 24 452 16

Table 4: Time in microseconds for SLASSQ, CRAY T94, 1 processor

3.4 Generating Givens and Householder Transformations

Perhaps the most fundamental of the LAPACK auxiliary routines are the subroutines to
compute and apply elementary Givens and Householder transformations. These subroutines
are used in the factorization and reduction routines SGEQRF, SGEHRD, SSYTRD, and
SGEBRD, the orthogonal transformation routines SORGQR, SORMQR, and others, the
eigenvalue routines SSTEQR, SHSEQR, SBDSQR, and in many other places as well. Our
evaluation of these kernels turned up several places in which the design could be simpli�ed
and the performance improved. While the performance improvements may seem small, they
are signi�cant because inlining these routines is an e�ective technique for optimizing other
parts of LAPACK.

3.4.1 Generating a Givens rotation (SLARTG)

A Givens rotation is a rank-2 correction to the identity of the form 2

G(i; k; �) =

2
6666666666666666666664

1
.. .

1
c s

1
. . .

1
�s c

1
.. .

1

3
7777777777777777777775

where c = cos(�) and s = sin(�) for some angle �. Premultiplication of a vector x by
G(i; k; �) amounts to a clockwise rotation of � radians in the (i; k) coordinate plane. If
y = G(i; k; �)x, the vector y can be described by

y(j) =

8><
>:

cx(i) + sx(k); j = i

�sx(i) + cx(k); j = k
x(j); j <> i; k

2This discussion borrows from Golub and Van Loan [11], but corrects the notation to match that of
Wilkinson [17] and of LAPACK.

12

We can force y(k) to be zero by choosing � to be the angle described by the vector
[x(i); x(k)]T in the (i; k) plane, which leads to the formulae

c =
x(i)p

x(i)2 + x(k)2
; s =

x(k)p
x(i)2 + x(k)2

This is the particular form of plane rotation computed by the BLAS routine SROTG and
the LAPACK auxiliary routine SLARTG.

Since a Givens rotation only modi�es two elements of a vector, its action can be described
by the 2-by-2 linear transformation"

c s
�s c

"
a
b

#
=

"
r
0

#

The algorithm used to compute c and s, given a and b, can be described as follows:

if b = 0
c = 1;
s = 0

else
if jaj > jbj

� = b=a;

c = 1=
p
1 + �2;

s = � � c
else

� = a=b;

s = 1=
p
1 + �2;

c = � � s
end

end

This is approximately the algorithm used in SLARTG, except that a = 0 is treated as a
special case, and r is computed in addition to c and s.

The LAPACK 2.0 version of SLARTG takes the additional precaution of testing the
magnitudes of a and b before dividing, and rescaling them if necessary to avoid dividing
by a denormalized number. Since Cray arithmetic, including Cray IEEE arithmetic on
CRAY T90 and CRAY T3D/T3E systems, does not support denormalized numbers, we
discarded these additional tests. Figure 2 does a side-by-side comparison of the LAPACK
and libsci versions of SLARTG. Besides looking more like the mathematical algorithm, the
libsci version is about 15% faster. We have found that additional speed can be gained by
writing this totally scalar algorithm in C. However, the standalone performance of SLARTG
is less important than having a straightforward design that lends itself to inlining.

3.4.2 Generating a Householder re
ection (SLARFG)

A Householder re
ection is a matrix of the form

H = I � �vvT

13

where v is a vector and � = 2=(vTv) is a scalar3. The LAPACK auxiliary routine SLARFG
generates a real elementary re
ector H that reduces a real scalar � and a real vector x of
length n� 1 to a real scalar �:

H

�
x

!
=

�
0

!

In order that the n-element Householder vector v may be stored in the (n � 1)-element
vector x, the �rst element of v is constrained to be 1. Also, the sign of the vector is chosen
carefully to avoid cancellation error that would a�ect the orthogonality of the computed H
[11]. The algorithm for computing � , v(2 : n) (overwriting x), and � can be described as
follows:

if kxk = 0
� = 0;
� = �

else

 = sign(�) �p�2 + kxk2;
� = � +
;
� = �=
;
x = x=�;
� = �

end

As always, the 2-norms of x and of [�; x]T must be computed carefully to avoid under
ow
and over
ow. In LAPACK, kxk is computed by SNRM2 and

p
�2 + kxk2 is computed by

the LAPACK auxiliary routine SLAPY2, which is careful about scaling intermediate results.
But then, apparently concerned that SNRM2 might be implemented without scaling, the
LAPACK version adds a test to see if j
j is at least a factor of � away from under
ow.
If j
j is less than this threshold, x is rescaled away from under
ow and the 2-norms are
recomputed. 4

In libsci, SLASSQ@ is used to compute kxk instead of SNRM2. The use of a scaled sum
of squares guarantees the accuracy of kxk, so there is no need ever to rescale x. The libsci
version of SLARFG is shown alongside the LAPACK version in Figure 3. The two versions
are approximately the same speed except in the case where kxk is small enough to trigger
rescaling; then the libsci version is about two times faster.

3.4.3 Vectors of Givens rotations

It is worth mentioning that LAPACK also contains subroutines to generate and apply
vectors of Givens rotations (xLARGV and xLARTV). These are used in the reduction of a
symmetric band matrix to condensed form, because if the band is narrow enough, a single
Givens rotation does not a�ect the entire matrix, and it may be more e�cient to apply
many at once. For consistency, the same algorithm used in xLARTG should also be found
in xLARGV. This is true of the libsci implementation, but it was not true of LAPACK 2.0.

3Lehoucq [14] describes the algorithm used in the complex case. Our comments and modi�cations to
SLARFG also apply to CLARFG.

4There is no test in LAPACK's SLARFG to see if j
j is within � of over
ow, because if j
j were not
computed with scaling, it would have blown up already!

14

LAPACK SLARTG

SUBROUTINE SLARTG(F, G, CS, SN, R)

REAL CS, F, G, R, SN

LOGICAL FIRST

INTEGER COUNT, I

REAL EPS, F1, G1, SAFMIN, SAFMN2,

$ SAFMX2, SCALE

REAL SLAMCH

EXTERNAL SLAMCH

SAVE FIRST, SAFMX2, SAFMIN, SAFMN2

DATA FIRST / .TRUE. /

IF(FIRST) THEN

FIRST = .FALSE.

SAFMIN = SLAMCH('S')

EPS = SLAMCH('E')

SAFMN2 = SLAMCH('B')**INT(LOG(SAFMIN/

$ EPS)/LOG(SLAMCH('B'))/2.0)

SAFMX2 = 1.0 / SAFMN2

END IF

IF(G.EQ.0.0) THEN

CS = 1.0

SN = 0.0

R = F

ELSE IF(F.EQ.0.0) THEN

CS = 0.0

SN = 1.0

R = G

ELSE

F1 = F

G1 = G

SCALE = MAX(ABS(F1), ABS(G1))

IF(SCALE.GE.SAFMX2) THEN

COUNT = 0

10 CONTINUE

COUNT = COUNT + 1

F1 = F1*SAFMN2

G1 = G1*SAFMN2

SCALE = MAX(ABS(F1), ABS(G1))

IF(SCALE.GE.SAFMX2)

$ GO TO 10

R = SQRT(F1**2+G1**2)

CS = F1 / R

SN = G1 / R

DO 20 I = 1, COUNT

R = R*SAFMX2

20 CONTINUE

ELSE IF(SCALE.LE.SAFMN2) THEN

COUNT = 0

30 CONTINUE

COUNT = COUNT + 1

F1 = F1*SAFMX2

G1 = G1*SAFMX2

SCALE = MAX(ABS(F1), ABS(G1))

IF(SCALE.LE.SAFMN2)

$ GO TO 30

libsci SLARTG

SUBROUTINE SLARTG(F, G, CS, SN, R)

REAL CS, F, G, R, SN

REAL T, TT

IF(G.EQ.0.0) THEN

CS = 1.0

SN = 0.0

R = F

ELSE IF(F.EQ.0.0) THEN

CS = 0.0

SN = 1.0

R = G

ELSE IF(ABS(F).GT.ABS(G)) THEN

T = G / F

TT = SQRT(1.0+T*T)

CS = 1.0 / TT

SN = T*CS

R = F*TT

ELSE

T = F / G

TT = SQRT(1.0+T*T)

SN = 1.0 / TT

CS = T*SN

R = G*TT

END IF

RETURN

END

LAPACK SLARTG, cont.

R = SQRT(F1**2+G1**2)

CS = F1 / R

SN = G1 / R

DO 40 I = 1, COUNT

R = R*SAFMN2

40 CONTINUE

ELSE

R = SQRT(F1**2+G1**2)

CS = F1 / R

SN = G1 / R

END IF

IF(ABS(F).GT.ABS(G) .AND.

$ CS.LT.0.0) THEN

CS = -CS

SN = -SN

R = -R

END IF

END IF

RETURN

END

Figure 2: Comparison of LAPACK and libsci implementations of SLARTG

15

LAPACK SLARFG

SUBROUTINE SLARFG (N,ALPHA,X,INCX,TAU)

INTEGER INCX, N

REAL ALPHA, TAU

REAL X(*)

INTEGER J, KNT

REAL BETA, RSAFMN, SAFMIN, XNORM

REAL SLAMCH, SLAPY2, SNRM2

EXTERNAL SLAMCH, SLAPY2, SNRM2

EXTERNAL SSCAL

IF(N.LE.1) THEN

TAU = 0.0

RETURN

END IF

XNORM = SNRM2(N-1, X, INCX)

IF(XNORM.EQ.0.0) THEN

TAU = 0.0

ELSE

BETA = -SIGN(SLAPY2(ALPHA,XNORM),

$ ALPHA)

SAFMIN = SLAMCH('S') / SLAMCH('E')

IF(ABS(BETA).LT.SAFMIN) THEN

*

* XNORM, BETA may be inaccurate;

* scale X and recompute them

*

RSAFMN = 1.0 / SAFMIN

KNT = 0

10 CONTINUE

KNT = KNT + 1

CALL SSCAL(N-1, RSAFMN, X, INCX)

BETA = BETA*RSAFMN

ALPHA = ALPHA*RSAFMN

IF(ABS(BETA).LT.SAFMIN) GO TO 10

*

* Now SAFMIN <= BETA <= 1

*

XNORM = SNRM2(N-1, X, INCX)

BETA = -SIGN(SLAPY2(ALPHA,XNORM),

$ ALPHA)

TAU = (BETA-ALPHA) / BETA

CALL SSCAL(N-1, 1.0/(ALPHA-BETA),

$ X, INCX)

*

* If ALPHA is subnormal, it may lose

* relative accuracy

*

ALPHA = BETA

DO 20 J = 1, KNT

ALPHA = ALPHA*SAFMIN

20 CONTINUE

libsci SLARFG

SUBROUTINE SLARFG (N,ALPHA,X,INCX,TAU)

INTEGER INCX, N

REAL ALPHA, TAU

REAL X(*)

REAL SCL, SUMSQ, XA, XB, XN

REAL SLAPY2

EXTERNAL SLAPY2

EXTERNAL SLASSQ@, SSCAL

*

* Quick return

*

TAU = 0.0

IF(N.LE.1) RETURN

*

* Compute the 2-norm of x

*

SCL = 1.0

SUMSQ = 0.0

CALL SLASSQ@(N-1, X, INCX, SCL, SUMSQ)

XN = SCL*SQRT(SUMSQ)

*

* Compute the reflection if || x || > 0.

*

IF(XN.GT.0.0) THEN

XA = SIGN(SLAPY2(ALPHA,XN), ALPHA)

XB = ALPHA + XA

TAU = XB / XA

CALL SSCAL(N-1, 1.0 / XB, X, INCX)

ALPHA = -XA

END IF

RETURN

END

LAPACK SLARFG, cont.

ELSE

TAU = (BETA-ALPHA) / BETA

CALL SSCAL(N-1, 1.0/(ALPHA-BETA),

$ X, INCX)

ALPHA = BETA

END IF

END IF

RETURN

END

Figure 3: Comparison of LAPACK and libsci implementations of SLARFG

16

4 Modi�cations to LAPACK, II: Eigensystem Solving

4.1 Balancing and Back Transformation (xGEBAL and xGEBAK)

In the nonsymmetric eigenvalue problem, balancing (row or column scaling) is sometimes
used to narrow the spectrum and improve convergence. The e�ect of this scaling on an
eigenvalue � and eigenvector x of a nonsymmetric matrix A is that the equation

Ax = �x

becomes
DAD�1Dx = �Dx

for a nonsingular scaling matrixD. The scaled matrixB = DAD�1 has the same eigenvalues
as A, and an eigenvector y of B is related to an eigenvector x of A by the equation Dx =
y. The subroutine to compute the scaled matrix B is called BALANC in EISPACK and
SGEBAL in LAPACK, and the subroutine to do the back-transformation, that is, solve for
x in the equation Dx = y, is called BALBAK in EISPACK or SGEBAK in LAPACK.

Balancing in the style of EISPACK proceeds by computing the row sum r and the
column sum c (excluding the diagonal element) of each row/column pair in turn. When r

is less than c (similarly, c is less than r) by more than a scaling constant s, then D(i; i) is
initialized to s. Multiplying the row by s and the column by 1=s changes r to r � s and c
to c=s, narrowing the gap between r and c by a factor of s2. Since r � s < c and c=s > r,
scaling always brings the sums closer together. This process is repeated until r is within a
factor s of c. In EISPACK, s = 2, guaranteeing full accuracy in the scaled matrix, while
LAPACK uses s = 10. Scaling by a factor that is not a power of the base introduces a small
relative error, but if balancing is used as a preprocessing step for another algorithm, the
error should not be signi�cant. The larger scaling factor in LAPACK brings r and c into
agreement faster than EISPACK if they are many orders of magnitude apart.

The libsci version of SGEBAL, while equivalent to EISPACK except for the size of the
scaling factor, has been modi�ed into a more structured programming style. We compare
the balancing portion of this subroutine to the LAPACK 2.0 version in Figure 4. The DO

WHILE loops in the libsci version compute the scaling constant for a particular row and
column using two multiplies for each factor of SCL { one to update the scaling factor and
one to reduce the larger of the row or column sum. By contrast, the LAPACK version uses
a combination of six multiplies and divides to keep track of the 1-norm of the row, the max
norm of the row, the 1-norm of the column, the max norm of the column, and both the
cumulative row scaling factor and the cumulative column scaling factor. We are mysti�ed
by this redundant work and could not construct an example for which it is needed.

Table 5 compares the performance of the balancing routines from EISPACK, LAPACK,
and libsci for three di�erent matrix types:

1. Random matrix (does not require scaling)

2. Matrix with row sums greater than column sums (superdiagonal is set to 1:� 10100)

3. Matrix with column sums greater than row sums (subdiagonal is set to 1:� 10100)

Matrices of types 2 and 3 are pathological cases designed to exercise the scaling code, and
the lower operation count of the libsci version is evident here. However, libsci's SGEBAL
is also three times faster than LAPACK for larger sizes when no scaling is done.

17

LAPACK SGEBAL

140 CONTINUE

NOCONV = .FALSE.

DO 200 I = K, L

C = 0.0

R = 0.0

DO 150 J = K, L

IF(J.EQ.I) GO TO 150

C = C + ABS(A(J, I))

R = R + ABS(A(I, J))

150 CONTINUE

ICA = ISAMAX(L, A(1,I), 1)

CA = ABS(A(ICA,I))

IRA = ISAMAX(N-K+1, A(I,K), LDA)

RA = ABS(A(I,IRA+K-1))

IF(C.EQ.0.0 .OR. R.EQ.0.0) GO TO 200

G = R / SCLFAC

F = ONE

S = C + R

160 IF(C.GE.G .OR. MAX(F,C,CA).GE.SFMAX2

$.OR. MIN(R,G,RA).LE.SFMIN2) GO TO 170

F = F*SCLFAC

C = C*SCLFAC

CA = CA*SCLFAC

R = R / SCLFAC

G = G / SCLFAC

RA = RA / SCLFAC

GO TO 160

170 CONTINUE

G = C / SCLFAC

180 IF(G.LT.R .OR. MAX(R,RA).GE.SFMAX2.OR.

$ MIN(F,C,G,CA).LE.SFMIN2) GO TO 190

F = F / SCLFAC

C = C / SCLFAC

G = G / SCLFAC

CA = CA / SCLFAC

R = R*SCLFAC

RA = RA*SCLFAC

GO TO 180

190 CONTINUE

IF((C+R).GE.0.95*S) GO TO 200

IF(F.LT.ONE.AND.SCALE(I).LT.ONE)

$ THEN IF(F*SCALE(I).LE.SFMIN1)

$ GO TO 200

END IF

IF(F.GT.ONE.AND.SCALE(I).GT.ONE)

$ THEN IF(SCALE(I).GE.SFMAX1/F)

$ GO TO 200

END IF

G = ONE / F

SCALE(I) = SCALE(I)*F

NOCONV = .TRUE.

CALL SSCAL(N-K+1, G, A(I,K),LDA)

CALL SSCAL(L, F, A(1,I), 1)

200 CONTINUE

IF(NOCONV) GO TO 140

libsci SGEBAL

110 CONTINUE

NOCONV = .FALSE.

DO 120 I = ILO, IHI

F = ABS(A(I,I))

C = SASUM(IHI-ILO+1, A(ILO,I), 1)-F

R = SASUM(IHI-ILO+1, A(I,ILO), LDA)-F

*

* No need to scale if |A(I,I)|

* dominates the row or column.

*

IF(C.EQ.0.0 .OR. R.EQ.0.0) GO TO 120

IF(C.LE.R) THEN

*

* If C <= R, compute a scaling

* constant G for the row.

*

F = R*SCL

G = ONE

DO WHILE(C.LT.F)

F = F*SCL2

G = G*SCL

END DO

F = ONE / G

ELSE

*

* If C > R, compute a scaling

* constant F for the column.

*

G = C*SCL

F = ONE

DO WHILE(R.LT.G)

G = G*SCL2

F = F*SCL

END DO

G = ONE / F

END IF

*

* Balance if C+R is reduced by 5%.

*

IF((C*F+R*G).LT.0.95*(C+R)) THEN

SCALE(I) = SCALE(I)*F

NOCONV = .TRUE.

CALL SSCAL(IHI, F, A(1,I), 1)

CALL SSCAL(N-ILO+1, G, A(I,ILO), LDA)

END IF

120 CONTINUE

*

* Compute the scaling factors again

* if any were changed.

*

IF(NOCONV) GO TO 110

Figure 4: Balancing portion of LAPACK and libsci versions of SGEBAL

18

matrix libsci LAPACK libsci
N type BALANC SGEBAL SGEBAL

128 1 0.59 1.29 0.82
128 2 24.57 18.63 8.52
128 3 28.91 21.06 8.62

256 1 1.42 3.35 1.89
256 2 55.34 49.02 20.70
256 3 70.44 55.33 20.83

384 1 2.55 6.19 3.21
384 2 104.03 91.62 37.07
384 3 127.04 104.49 37.82

512 1 3.69 10.10 4.51
512 2 142.21 146.25 52.64
512 3 179.58 165.64 53.20

640 1 4.74 14.61 5.94
640 2 185.91 212.43 68.84
640 3 237.36 242.02 69.62

768 1 5.93 19.90 7.40
768 2 247.19 292.47 87.99
768 3 303.75 335.71 88.65

896 1 7.42 26.20 9.22
896 2 294.20 392.24 112.03
896 3 365.91 439.11 106.88

1024 1 8.65 33.32 10.59
1024 2 377.36 492.85 129.68
1024 3 435.20 529.03 127.80

Table 5: Time in milliseconds for balancing routines, CRAY T94, 1 processor

Modi�cations were also made to SGEBAK to inline SSWAP and SSCAL. These simple
changes made the libsci version of SGEBAK about two times faster than LAPACK and
about 20% faster than EISPACK's BALBAK.

4.2 Eigenvalues of a symmetric matrix (SSTEQR)

SSTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal
matrix using the implicit shift QL or QR method. The closest routines in EISPACK are
IMTQL1 (eigenvalues only) and IMTQL2 (eigenvalues and eigenvectors), but EISPACK
utilizes only the QL variant. The symmetric QL/QR algorithm is an iterative technique that
diagonalizes a tridiagonal matrix by repeated application of orthogonal transformations. In
the inner loop of a QL or QR iteration step, a Givens rotation is generated and applied to
the tridiagonal matrix. This rotation creates a bulge { a �ll element outside the tridiagonal
structure { which must be eliminated by applying several more rotations to chase the bulge
up or down the matrix.

The LAPACK 2.0 version of SSTEQR generates the Givens rotations by calling the
LAPACK auxiliary routine SLARTG in its two innermost loops. These calls are obvious
candidates for inlining because the granularity of SLARTG is quite small. Our previous
work to simplify the design of this kernel pays bene�ts here. We inlined SLARTG, and

19

further optimized the inlined code by reordering the tests so that the nonzero cases of F
and G are evaluated sooner, as follows:

IF(ABS(F).GT.ABS(G) .AND. G.NE.0.0) THEN

...

ELSE IF(ABS(G).GE.ABS(F) .AND. F.NE.0.0) THEN

...

ELSE IF(G.EQ.0.0) THEN

...

ELSE IF(F.EQ.0.0) THEN

...

END IF

This order of tests is preferred for the tridiagonal matrices that arise in the symmetric
QL/QR algorithm, because if one of the o�diagonal elements were zero we would have
detected it already.

When eigenvectors are also requested of SSTEQR, the bulge-chasing code of the QL/QR
iteration step is followed by a call to SLASR to apply the sequence of rotations to the or-
thogonal matrix of eigenvectors. Inlining calls to SLASR further improved the performance
in this case. We also split the code into two parts, one that computes eigenvalues only and
one that computes both eigenvalues and eigenvectors, thereby removing the test to see if
each rotation needed to be saved.

The sum of these changes improved the performance of SSTEQR so that it is comparable
to that of libsci's IMTQL1 in the eigenvalue only case. When eigenvalues and eigenvectors
are requested, libsci's SSTEQR outperforms libsci's IMTQL2 for N > 100, and is faster
than the LAPACK 2.0 version for all matrix types and problem sizes. Results are shown
in Table 6. We note that the unmodi�ed IMTQL1/IMTQL2 routines from libsci did not
converge for all matrix types.

Matrix Eigenvalues only Eigenvalues and Eigenvectors
Routine Type 50 100 200 300 400 50 100 200 300 400

libsci SSTEQR 1 2.2 8.3 30 64 111 4.0 18.1 95 269 577
2 1.7 6.3 23 46 86 3.1 13.7 74 199 457
3 1.9 6.2 24 55 88 3.5 13.2 74 227 456
4 1.1 3.1 11 21 38 1.9 6.5 34 86 197

LAPACK SSTEQR 1 3.0 11.1 39 84 145 7.9 30.6 130 331 683
2 2.3 8.7 32 64 119 5.8 22.6 102 245 536
3 2.6 8.4 32 73 118 6.6 22.0 101 281 536
4 1.5 4.2 15 29 52 3.9 11.5 48 110 234

EISPACK IMTQL1/2 1 5.5 21.3 81 170 301 7.2 31.0 156 410 871
2 3.1 11.1 44 94 156 4.3 17.4 98 266 566
3 4.5 14.8 58 136 221 6.0 22.3 117 338 660
4 2.3 7.3 26 51 92 3.0 10.4 50 124 276

libsci IMTQL1/2 1 2.0 7.7 29 61 109 3.8 17.7 105 304 682
2 1.5 5.4 NA NA NA 2.8 12.1 NA NA NA
3 1.6 5.6 22 53 87 3.1 12.8 82 255 526
4 1.0 3.0 NA NA NA 1.8 6.3 NA NA NA

Table 6: Time in milliseconds for SSTEQR equivalents, CRAY T94, 1 processor

20

4.3 SSTERF

SSTERF computes all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-
Kahan variant of the QL or QR algorithm. The LAPACK 2.0 version of this subroutine was
10{20% slower than its EISPACK equivalent, TQLRAT, on the CRAY T94. We achieved
a slight performance improvement by peeling o� the �rst loop iteration to avoid an IF test
in the inner loop. Faced with a construct like this:

DO I = M - 1, L, -1

...

IF(I.NE.M-1)

$ E(I+1) = S*R

...

END DO

we replaced it with special case code for the I = M � 1 loop iteration, followed by a loop
from M � 2 down to L. Although the improvement in absolute terms was small, these
changes eliminated much of the performance di�erence between LAPACK and EISPACK,
as can be seen in Table 7.

Matrix Matrix size N
Routine Type 50 100 200 300 400

libsci SSTERF 1 1.5 5.4 19.0 40.0 69.3
2 0.8 2.8 10.3 21.0 39.2
3 1.2 3.8 14.2 32.5 52.5
4 0.7 1.9 6.3 12.2 22.0

LAPACK SSTERF 1 1.6 5.7 20.0 42.2 72.7
2 0.9 3.1 11.3 23.0 42.8
3 1.4 4.2 15.5 35.5 57.4
4 0.8 2.2 7.0 13.5 24.1

EISPACK TQLRAT 1 1.4 4.9 17.7 36.2 63.7
2 0.8 2.9 10.5 21.6 38.2
3 1.2 3.7 13.5 32.6 53.2
4 0.7 2.2 6.9 13.5 24.3

Table 7: Time in milliseconds for PWK algorithms, Cray T94, 1 processor

4.4 SSTEIN

SSTEIN computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding
to speci�ed eigenvalues, using inverse iteration. The basic outline of inverse iteration is

1. Choose a starting vector y with kyk2 = 1.

2. Solve the tridiagonal system (T � �j)z = y.

3. If the reorthogonalization criterion is satis�ed, orthogonalize the iterate z with respect
to those previously computed eigenvectors corresponding to computed eigenvalues
close to �j .

4. If the stopping criterion is not satis�ed, set y = x and repeat from Step 2.

21

5. Accept z=kzk2 as the computed eigenvector.

Each of the �rst four steps was modi�ed in LAPACK from its EISPACK equivalent,
TINVIT, generally with good reason. However, we found the LAPACK 2.0 version of
SSTEIN to be as much as six times slower than TINVIT, the biggest performance di�er-
ence of any LAPACK routine.

The motivation for many of the algorithmic changes in SSTEIN compared to TINVIT
was the work of Jessup [12]. Two of these, changing the stopping criterion and performing
a �xed number of iterations for all eigenvectors, instead of a �xed number of iterations for
each eigenvector, have already been discussed in x 2.3, and our timing comparisons have
been adjusted for them (by modifying TINVIT). Other enhancements suggested by Jessup
to improve the accuracy of inverse iteration were:

� Use a random starting vector for each eigenvalue, instead of a scaled vector of 1's.

� Perform an extra iteration after convergence, speci�cally to improve the accuracy of
computed eigenvectors that satisfy the convergence criterion after only one iteration.

Additionally, SSTEIN includes yet another extra iteration after convergence and implicit
row scaling in the solution of (T � �j)z = y. These last two features are computationally
expensive, so we focused most of our attention on them.

We quickly abandoned the second of the two extra iterations after convergence. The
extra iterations account for most of the performance degradation between TINVIT and
SSTEIN in the case of well-separated eigenvalues, and while the case had been made for
one extra iteration, there was scant evidence to justify a second. In the cases we examined,
the only e�ect appeared to be to change the sign of the already computed eigenvector. The
LAPACK functionality tests all passed with only one extra iteration.

SSTEIN calls two auxiliary routines to solve the shifted tridiagonal system: SLAGTF
to compute an LU factorization of (T � �j) and SLAGTS to solve the factored system
with one right-hand side. Our �rst observation was that, before calling SLAGTF, SSTEIN
makes three calls to SCOPY to initialize data for the call. These copies could be performed
more e�ciently inside the auxiliary routine, so we replaced SLAGTF with a new interface
having separate input and output vectors. By reusing the original data for the tridiagonal
matrix and making use of its symmetry, we eliminated the equivalent of two vector copies.
We also removed the computation of a tolerance, which was not used, and the test for a
zero subdiagonal element, which was unnecessary, and placed the case K = N-1 outside the
main loop to cut the number of IF statements. The much-streamlined result retains all the
functionality of the original.

LAPACK's SSTEIN calls SLAGTS with an argument specifying that if over
ow would
otherwise occur, the diagonal elements of U are to be perturbed. This is more rigorous
than EISPACK, which only perturbs zero diagonal elements of U . We separated the L-
solve and the U -solve and optimized the L-solve by unrolling, as had already been done
for the tridiagonal solvers. For the U -solve, we noted that the straightforward U -solve as
in TINVIT was much simpler than the code with perturbations of small diagonal elements
and could be used for part of the solve, until the �rst perturbation were required. Also,
the solves are part of an iterative method in which the number of iterations is at least two.
Recalling previous work with scaled triangular solvers in the context of iterative re�nement
[2], we computed a growth factor for the U -solve to �nd the largest trailing submatrix
of U that does not require any perturbations. This allowed us to replace a single call to

22

SLAGTS with an unperturbed solve using part of U , a series of updates, and a robust solve
with only the portion of U that may require perturbations. We also simpli�ed the test for
small diagonal elements in the perturbed U -solve, from

AK = A(K)

PERT = SIGN(TOL, AK)

40 CONTINUE

ABSAK = ABS(AK)

IF(ABSAK.LT.ONE) THEN

IF(ABSAK.LT.SFMIN) THEN

IF(ABSAK.EQ.ZERO .OR. ABS(TEMP)*SFMIN.GT.ABSAK) THEN

AK = AK + PERT

PERT = 2*PERT

GO TO 40

ELSE

TEMP = TEMP*BIGNUM

AK = AK*BIGNUM

END IF

ELSE IF(ABS(TEMP).GT.ABSAK*BIGNUM) THEN

AK = AK + PERT

PERT = 2*PERT

GO TO 40

END IF

END IF

Y(K) = TEMP / AK

to

AK = A(K)

IF(MAX(ABS(TEMP)*SFMIN,SFMIN).GT.ABS(AK)) THEN

PERT = SIGN(TOL, AK)

50 CONTINUE

AK = AK + PERT

PERT = 2*PERT

IF(ABS(TEMP)*SFMIN.GT.ABS(AK))

$ GO TO 50

END IF

Y(K) = TEMP / AK

Finally, we noted that in the Gram-Schmidt reorthogonalization step, it is possible
to replace a loop of calls to SDOT and SAXPY with two calls to SGEMV. This is a
computationally-intensive portion of SSTEIN when there are repeated eigenvalues, and the
introduction of Level 2 BLAS dramatically improved the performance of this case. The
original code was

IF(ABS(XJ-XJM).GT.ORTOL)

$ GPIND = J

IF(GPIND.NE.J) THEN

DO 80 I = GPIND, J - 1

CTR = -SDOT(BLKSIZ, WORK(INDRV1+1), 1, Z(B1, I), 1)

CALL SAXPY(BLKSIZ, CTR, Z(B1, I), 1, WORK(INDRV1+1), 1)

80 CONTINUE

END IF

and this was replaced with

IF(J.GT.J1) THEN

IF(ABS(XJ-XJM).GT.ORTOL) THEN

23

GPIND = J

ELSE

CALL SGEMV('Transpose', BLKSIZ, J-GPIND, ONE, Z(B1, GPIND),

$ LDZ, WORK(IX), 1, ZERO, Z(B1, J), 1)

CALL SGEMV('No transpose', BLKSIZ, J-GPIND, -ONE, Z(B1,

$ GPIND), LDZ, Z(B1, J), 1, ONE, WORK(IX), 1)

END IF

END IF

With these changes, libsci's SSTEIN is now faster than all previous versions in the
clustered eigenvalue case (test matrix type 3), but is still up to 2.5 times slower than the
original TINVIT in the case of well-separated eigenvalues (test matrix type 1) due to the
algorithmic changes to improve accuracy. The improvements over the LAPACK 2.0 version
of SSTEIN can be seen from Table 8. Note that the amount of work performed varies widely
between matrix types because of the iterative nature of this algorithm.

Matrix Values of N
Routine type 50 100 200 300 400

libsci SSTEIN 1 4.5 15.9 59.3 129. 226.
2 5.6 20.9 85.5 206. 393.
3 6.2 22.7 94.5 230. 443.
4 5.8 20.7 86.8 204. 386.

LAPACK SSTEIN 1 9.7 35.3 133. 293. 518.
2 16.1 65.4 272. 654. 1220.
3 18.7 77.4 331. 788. 1450.
4 17.3 63.5 282. 657. 1170.

EISPACK TINVIT 1 5.1 20.1 78.8 175. 309.
2 5.8 23.9 99.9 234. 440.
3 8.8 43.9 217. 522. 1050.
4 6.1 23.6 101. 235. 433.

libsci TINVIT 1 1.8 6.4 24.5 54. 94.
2 3.7 15.6 67.2 169. 313.
3 9.5 50.9 234. 597. 1120.
4 4.1 15.2 67.2 168. 303.

Table 8: Time in milliseconds for symmetric inverse iteration, CRAY T94, 1 processor

4.5 SHSEQR

SHSEQR computes the Schur factorization of a Hessenberg matrix by a multiple-shift QR
algorithm. The multishift scheme uses the k eigenvalues of the k-by-k trailing submatrix,
which are computed using a double-shift QR algorithm as in EISPACK's HQR. The k-by-k
shift creates a bulge of size k along the diagonal of the Hessenberg matrix. A series of
Householder re
ections are then generated and applied to chase the bulge down the matrix.

The key computational components of the multishift algorithm are forming the block
Householder re
ections, applying the block Householder re
ections, and solving for the k
eigenvalues of the k-by-k shift matrix. Each of these components was optimized to bring
the performance of SHSEQR closer to that of HQR, particularly for small problem sizes
where HQR was three times faster.

24

Much of the disparity between the performance of SHSEQR and HQR is due to the
modularity of LAPACK, which adds overhead for small problem sizes. We removed some
of this overhead by inlining SCOPY and SLARFG both in SHSEQR and in its auxiliary
routine SLAHQR where they determine a re
ection matrix. Although we would have liked
to remove it, we retained the auxiliary routine SLARFX from the LAPACK distribution,
which is just like SLARF but includes hand-unrolled cases for m � 10 and n � 10 to avoid
two calls to Level 2 BLAS with one dimension small. We also removed the test to see if
the Z matrix should be updated in the double-shift QR loop of SLAHQR and provided two
separate DO loops for the eigenvalue-only and eigenvalue/eigenvector cases.

The results in Table 9 show that, while the LAPACK version of SHSEQR is always slower
than HQR in the eigenvalue-only case, the libsci version is more competitive, ranging from
about 15% slower to 15% faster for most matrices. The advantages of higher-level BLAS in
LAPACK are more evident when the Schur form is also computed.

Matrix Eigenvalues only Eigenvalues and Schur Form
Routine Type 50 100 200 300 400 50 100 200 300 400

libsci SHSEQR 1 9.2 49 169 409 785 11.7 67 268 719 1480
3 11.6 42 181 404 784 14.9 58 289 711 1490
4 10.2 40 177 401 790 13.0 55 281 709 1490
6 9.1 38 156 361 719 11.6 51 246 630 1350

LAPACK SHSEQR 1 26.3 80 250 558 1040 30.5 98 354 873 1740
3 25.4 74 254 573 1040 29.3 91 359 893 1740
4 28.1 74 254 547 1050 32.0 90 458 856 1760
6 25.3 68 227 512 913 28.9 83 322 797 1530

EISPACK HQR/2 1 8.2 40 162 420 903 14.1 73 370 1050 2320
3 8.8 36 173 462 882 15.1 68 390 1120 2280
4 8.6 34 171 465 887 14.8 64 383 1120 2290
6 5.3 24 108 299 590 10.5 51 272 797 1620

Table 9: Time in milliseconds for multishift QR, CRAY T94, 1 processor

4.6 SHSEIN

SHSEIN applies inverse iteration to compute the eigenvectors of a nonsymmetric matrix
that has been reduced to Hessenberg form. Most of the work of SHSEIN is contained in
the auxiliary routine SLAEIN, which �nds a single right or left eigenvector corresponding
to a particular eigenvalues of the real Hessenberg matrix H .

One of the reasons SHSEIN is slower than its EISPACK equivalent INVIT is that
SLAEIN computes the 1-norm of the o�diagonal elements and checks for possible over-

ow in the next step if this norm is too large. INVIT does not do this test, which was
always false in our test cases. However, we were able to hide most of this extra work by
computing the 1-norms \on the
y" during the LU decomposition of the Hessenberg matrix
H . Also in SLAEIN, we moved the test IF(RIGHTV) THEN out of the loop that solves
Ux = sv and provided separate code for the right and left eigenvector cases.

Table 10 shows that libsci's SHSEIN is faster than LAPACK's SHSEIN for all sizes and
EISPACK's INVIT for N > 50, but does not beat the performance of libsci's INVIT until
N > 300.

25

Values of N
Routine 50 100 200 300 400

libsci SHSEIN 8.2 31.9 161. 390. 751.
LAPACK SHSEIN 8.5 45.9 237. 599. 1160.
EISPACK INVIT 6.8 52.0 273. 672. 1560.
libsci INVIT 5.5 26.8 141. 345. 822.

Table 10: Time in milliseconds for nonsymmetric inverse iteration, CRAY T94, 1 processor

4.7 STGEVC

STGEVC computes some or all of the right and/or left eigenvectors of a pair of real matrices
(S; P), where S is a quasi-triangular matrix and P is upper triangular. Matrix pairs of this
type are produced by the generalized Schur factorization of a matrix pair (A;B):

A = QSZT ; B = QPZT

as computed by SGGHRD + SHGEQZ. The right eigenvector x and the left eigenvector y
of (S; P) corresponding to an eigenvalue � are de�ned by

Sx = �Px; yTS = �yTP:

The eigenvalues are not input to this routine, but are computed directly from the diagonal
blocks of S and P . If s = Sii is a 1-by-1 diagonal block of S and p = Pii, then � = s=p is
a generalized eigenvalue of the matrix pair (S; P). In the case of a 2-by-2 diagonal block of
S, s is one of a complex conjugate pair of eigenvalues.

It is convenient to leave the eigenvalue in its quotient form and to express the generalized
eigenvalue problem as

aSx = bPx or ayTS = byTP;

where a is the eigenvalue p of P , possibly rescaled, and b is the eigenvalue s of S after scaling.
In solving for the right generalized eigenvector x or the left generalized eigenvector y, we
must di�erentiate between the cases where b is real and b is complex. This is implemented
in STGEVC by testing the
ag ILCPLX, which is false for a real eigenvalue and true for a
complex eigenvalue, or by use of an outer loop from 1 to NW, where NW is either 1 or 2. We
found that testing the size of NW at an outer level, interchanging the loop from 1 to NW with
the next innermost loop, and explicitly unrolling for the separate cases of NW = 1 and NW =
2 improved the performance of both the left and right eigenvector cases.

For example, the following code from the left eigenvector case

DO 120 JW = 1, NW

DO 110 JA = 1, NA

SUMA(JA,JW) = ZERO

SUMB(JA,JW) = ZERO

DO 100 JR = JE, J - 1

SUMA(JA,JW) = SUMA(JA,JW) + A(JR,J+JA-1)*WORK((JW+1)*N+JR)

SUMB(JA,JW) = SUMB(JA,JW) + B(JR,J+JA-1)*WORK((JW+1)*N+JR)

100 CONTINUE

110 CONTINUE

120 CONTINUE

DO 130 JA = 1, NA

IF(ILCPLX) THEN

26

SUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1) -

$ BCOEFI*SUMB(JA,2)

SUM(JA,2) = -ACOEF*SUMA(JA,2) + BCOEFR*SUMB(JA,2) +

$ BCOEFI*SUMB(JA,1)

ELSE

SUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1)

END IF

130 CONTINUE

was replaced with

IF(ILCPLX) THEN

DO 110 JA = 1, NA

SUMA(JA,1) = ZERO

SUMA(JA,2) = ZERO

SUMB(JA,1) = ZERO

SUMB(JA,2) = ZERO

DO 100 JR = JE, J - 1

SUMA(JA,1) = SUMA(JA,1) + A(JR,J+JA-1)*WORK(2*N+JR)

SUMA(JA,2) = SUMA(JA,2) + A(JR,J+JA-1)*WORK(3*N+JR)

SUMB(JA,1) = SUMB(JA,1) + B(JR,J+JA-1)*WORK(2*N+JR)

SUMB(JA,2) = SUMB(JA,2) + B(JR,J+JA-1)*WORK(3*N+JR)

100 CONTINUE

SUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1) -

$ BCOEFI*SUMB(JA,2)

SUM(JA,2) = -ACOEF*SUMA(JA,2) + BCOEFR*SUMB(JA,2) +

$ BCOEFI*SUMB(JA,1)

110 CONTINUE

ELSE

DO 130 JA = 1, NA

SUMA(JA,1) = ZERO

SUMB(JA,1) = ZERO

DO 120 JR = JE, J - 1

SUMA(JA,1) = SUMA(JA,1) + A(JR,J+JA-1)*WORK(2*N+JR)

SUMB(JA,1) = SUMB(JA,1) + B(JR,J+JA-1)*WORK(2*N+JR)

120 CONTINUE

SUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1)

130 CONTINUE

END IF

The e�ect of this change was dramatic in the left eigenvector case, improving the perfor-
mance by a factor of three, as shown in Table 11.

A further optimization in the back transformation step of the right eigenvector case
involved replacing two loop nests with a call to SGEMV from the Level 2 BLAS. The
original code was

DO 410 JW = 0, NW - 1

DO 380 JR = 1, N

WORK((JW+4)*N+JR) = WORK((JW+2)*N+1)*VR(JR,1)

380 CONTINUE

DO 400 JC = 2, JE

DO 390 JR = 1, N

WORK((JW+4)*N+JR) = WORK((JW+4)*N+JR) +

$ WORK((JW+2)*N+JC)*VR(JR,JC)

390 CONTINUE

400 CONTINUE

410 CONTINUE

DO 430 JW = 0, NW - 1

27

DO 420 JR = 1, N

VR(JR,IEIG+JW) = WORK((JW+4)*N+JR)

420 CONTINUE

430 CONTINUE

and this was replaced with

IF(ILCPLX) THEN

CALL SGEMV('N', N, JE, ONE, VR(1,1), LDVR,

$ WORK(2*N+1), 1, ZERO, WORK(4*N+1), 1)

CALL SGEMV('N', N, JE, ONE, VR(1,1), LDVR,

$ WORK(3*N+1), 1, ZERO, WORK(5*N+1), 1)

DO 420 JR = 1, N

VR(JR,IEIG) = WORK(4*N+JR)

VR(JR,IEIG+1) = WORK(5*N+JR)

420 CONTINUE

ELSE

CALL SGEMV('N', N, JE, ONE, VR(1,1), LDVR,

$ WORK(2*N+1), 1, ZERO, WORK(4*N+1), 1)

DO 430 JR = 1, N

VR(JR,IEIG) = WORK(4*N+JR)

430 CONTINUE

END IF

Lastly, SLALN2 was inlined for the real case but not for the complex case.
Table 11 shows the performance of the libsci and LAPACK versions of STGEVC and the

EISPACK equivalent QZVEC when all eigenvectors are computed and back-transformed.
The factor of three improvement of libsci over LAPACK in the left eigenvector case has
already been noted. In the right eigenvector case, which is the only case computed by
EISPACK, the libsci version of STGEVC is comparable to QZVEC for small problems and
faster for larger values of N .

Left eigenvectors Right eigenvectors
Routine 50 100 200 300 400 50 100 200 300 400

libsci STGEVC 5.6 23 94 223 420 4.0 16 67 160 306
LAPACK STGEVC 8.8 42 216 613 1310 5.1 20 81 193 363
EISPACK QZVEC 3.5 16 79 200 382

Table 11: Time in milliseconds for STGEVC vs. QZVEC, CRAY T94, 1 processor

4.8 Miscellaneous Inlining

Many other LAPACK computational routines saw performance improvements on the CRAY
T94 from selective inlining of BLAS or LAPACK auxiliary routines. These include

� SGEHD2: Inlined SLARF

� SSYTD2: Inlined SLARFG

� SGEBD2: Inlined SLARF, SLARFG

� SGGHRD: Inlined SROT

� STREVC: Inlined SAXPY, SDOT

28

� SBDSQR: Inlined SLASR

� SHGEQZ: Inlined SLARTG, SROT, SLARFG

Performance improvements ranged from 2% for larger sizes of SGEHRD to 40% for SGGHRD
and SHGEQZ.

5 Conclusion

Several of the performance improvements to LAPACK described in this report take advan-
tage of Cray architectural and software features:

� Cray multitasking software was used to reimplement the linear system solve routines
with higher-level parallelism and better single processor performance. The LAPACK
designers had avoided the use of explicit parallelism because there was no portable
way to express it.

� The absence of denormalized numbers in Cray IEEE arithmetic (or, for that matter,
in traditional Cray arithmetic) led to simpler designs for key kernel routines such as
SLARTG and SLARFG.

� Cray's advanced compiler technology { and relatively high subroutine overhead on
nearly 2 G
op processors { combined to give a signi�cant advantage to inlining.

Other optimizations in this report are algorithmic and would bene�t architectures other
than Cray's:

� Our two-pass algorithm for the sum of squares requires fewer operations and admits
better compiler optimization than rescaling at every step as in LAPACK.

� Using two multiplies per scaling step of the balancing routine, as in EISPACK's
BALANC or libsci's SGEBAL, is naturally faster than the six operations in each
step of the LAPACK 2.0 version.

� Limiting the number of extra iterations in SSTEIN to one and avoiding unnecessary
scaling save time by reducing the amount of work to be done.

� Introducing Level 2 BLAS calls in SSTEIN and STGEVC takes advantage of more
e�cient library routines, correcting apparent oversights in the LAPACK design.

� Changing the order of tests in the tridiagonal routines, combining the factor and solve
in SPTSV and CPTSV for NRHS = 1, moving IF tests out of inner loops, and unrolling
loops that only go from 1 to 2 are good programming practices even if their bene�t
on other architectures is not as great.

Many of these suggestions have been communicated to the LAPACK team and may already
be on their way to being implemented as LAPACK continues to evolve.

29

A Setting Block Sizes

The LAPACK developers left the tuning of block algorithms to the implementors via an
auxiliary routine ILAENV. Many hours of dedicated Cray time were consumed in �ne-
tuning the block size of the LAPACK routines, although in retrospect this was not a very
e�ective use of resources. However, we did discover a simple formula for the optimal block
size on one processor.

It was empirically observed that the vector length VLEN is often a good choice of block
size for su�ciently large problems on Cray vector machines. The vector length also �gures
prominently in the cutting strategy used in the highly optimized Cray BLAS. In the BLAS,
vector operations that are too long for the vector registers are subdivided into a minimal
number of approximately equal parts. Equipartitioning is preferred because the vector
processors have multiple vector units which can operate in parallel, so load balancing is an
issue even on a single processor.

Carrying this rationale to a higher level, we can assist the BLAS in creating regular
partitions by choosing a block size that is tuned to the number of vector segments in one
of the matrix dimensions. The formula is

NB = dn=dn=VLENee:
In Fortran, this is coded as

NTMP = (N+VLEN-1) / VLEN

NB = (N+NTMP-1) / NTMP

For example, if N = 300 and VLEN = 128, the problem must be divided into at least 3
parts, so NB = 300=3 = 100. The formula increases the blocksize until at N = 384 we have
NB = 128. At N = 385 the blocksize resets to NB = 97 and begins increasing again until
it reaches 128 at N = 512. Table 12 illustrates the minor variations in speed of the libsci
routine SGETRF near the optimal blocksize of 100 at N = 300 and N = 400.

NB N = 300 N = 400

64 1176.5 1291.7
92 1177.2 1293.1
100 1179.7 1294.7
108 1179.4 1292.2
128 1178.6 1291.7

Table 12: Speed of SGETRF in mega
ops

Unfortunately, the choice of block size has resisted our attempts to �t into a formula
except in the single-processor case. However, empirical data suggests that deciding whether
or not to use blocking at all is the key point, and the performance varies only slightly among
a range of block sizes.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'
Guide. SIAM, Philadelphia, 1992.

30

[2] Edward Anderson. Robust triangular solves for use in condition estimation. LAPACK
Working Note 36, Technical Report CS-91-142, University of Tennessee, Aug. 1991.

[3] Edward Anderson and Jack Dongarra. Evaluating block algorithm variants in
LAPACK. In Jack Dongarra et al., editors, Proceedings of the Fourth SIAM Conference
on Parallel Processing for Scienti�c Computing, pages 3{8. SIAM, Philadelphia, 1990.
(also LAPACK Working Note 19).

[4] Edward Anderson, Jack Dongarra, and Susan Ostrouchov. Installation guide for
LAPACK. LAPACK Working Note 41, Technical Report CS-91-138, University of
Tennessee, Feb. 1992.

[5] Cray Research, Eagan, Minnesota. Scienti�c Libraries Reference Manual (SR-2081),
1997.

[6] Michel J. Dayd�e and Iain S. Du�. Use of level 3 BLAS in LU factorization on the
CRAY-2, the ETA-10P, and the IBM 3090-200/VF. Technical Report CSS 229, Harwell
Laboratory, Oct. 1988.

[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACKUsers' Guide.
SIAM, Philadelphia, 1979.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft.,
14(1):1{17, March 1988.

[10] K. A. Gallivan and A. H. Sameh. Matrix computation on shared-memory multipro-
cessors. CSRD Report 760, Center for Supercomputing Research and Development,
University of Illinois, April 1988.

[11] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, second edition, 1989.

[12] I. C. F. Ipsen and E. R. Jessup. Solving the symmetric tridiagonal eigenvalue problem
on the hypercube. SIAM J. Sci. Stat. Comput., Vol. 11, No. 2, pages 203{229, 1990.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.

[14] R. B. Lehoucq. The computation of elementary unitary matrices. LAPACK Working
Note 72, Technical Report CS-94-233, University of Tennessee, April 1994.

[15] Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling: A prac-
tical scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,
C-36(12):1425{1439, 1987.

[16] B. T. Smith et al. Matrix Eigensystem Routines { EISPACK Guide. Lecture Notes in
Computer Science 6. Springer-Verlag, New York, second edition, 1976.

[17] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford,
England, 1965.

31

