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Abstract

We present a new de
ation criterion for the multishift QR algorithm mo-

tivated by convergence analysis for the basic QR algorithm. The performance

of the criterion is illustrated by numerical experiments using the LAPACK

implementation of the double-shift QR algorithm.

1 Introduction

The practical QR algorithm computes the eigenvalues of a full matrix A 2 Cn�n by

�rst reducing A to upper Hessenberg form by a unitary similarity transformation and

then iterating on the Hessenberg form to reduce it to upper triangular form. On each

iteration a de
ation test is used to determine whether a subdiagonal element can be

neglected and the original problem replaced by two subproblems of smaller size. Let

H denote an upper Hessenberg matrix QR iterate. If hi;i�1 is \su�ciently small", for

some 2 � i � n, then we replace hi;i�1 by zero, obtaining

�
H11 H12

0 H22

�
i�1

n�i+1

i�1 n�i+1

;

we say that the problem decouples into two problems of smaller order involving H11

and H22.

Let i be the largest integer such that hi;i�1 is small enough to be set to zero. If

i = n, then we have found an eigenvalue. If i = n�1, we have found two eigenvalues,
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those of the trailing 2� 2 principal submatrix. Otherwise we continue iterating with

the submatrix corresponding to rows and columns from i to n.

We now clarify what we mean by \su�ciently small". Suppose that the elements

of the original matrix A are known to a precision of the order ukAk2 where u is the

unit roundo�. Denote the Hessenberg matrix at step k of the iteration by Hk = (h
(k)

ij ).

If

jh
(k)

i;i�1j � ukAkF (1.1)

then, since A is unitarily similar to Hk, setting h
(k)

i;i�1 to zero corresponds to a pertur-

bation in A that is of order ukHk2, which is a negligible perturbation.

With the use of the criterion (1.1), the QR algorithm is backward stable [6].

Stewart [5] notes, however, that this criterion is unsatisfactory for graded matrices of

the form illustrated by

A =

0
BB@

1 10�2 10�4 10�6

10�2 10�4 10�6 10�8

10�4 10�6 10�8 10�10

10�6 10�8 10�10 10�12

1
CCA ;

for which some of the eigenvalues may be much smaller than ukAkF . Suppose that

h
(k)
nn is converging towards an eigenvalue that is smaller than ukAkF . The criterion

(1.1) might set h
(k)

n;n�1 to zero when it is larger than h
(k)
nn , in which case h

(k)
nn is not a

good approximate eigenvalue in a relative sense. It therefore seems better to have

a criterion that compares the subdiagonal elements to their neighboring diagonal

elements.

Most of the practical implementations of the QR algorithm (see, e.g., [1], [4]) use a

de
ation criterion proposed by Wilkinson [2]. At iteration k, the element in position

(i; i� 1) of the iterated Hessenberg matrix H is set to zero if

jh
(k)

i;i�1j � u(jh
(k)

i�1;i�1j+ jh
(k)

i;i j): (1.2)

Note that if this criterion is satis�ed then the more crude criterion (1.1) is automat-

ically satis�ed.

The criterion (1.2) is essentially a heuristic test motivated by consideration of

graded matrices, and while many years of experience show that it performs well in

practice, there appears to be no mathematical theory to support it.

In this paper, we suggest a new de
ation criterion based on mathematical consider-

ations. The ideas and results presented in this work were motivated by an elementary

2� 2 example. If

H =

�
~�1 M

" ~�2

�
;

where " is very small but M is very large, it is easy to check that the true eigenvalues

are close to the approximate ones ~�1 and ~�2 only if "M=j~�1 � ~�2j is very small. This

suggests that de
ation should take into account simultaneously three parameters:
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1) The size of the subdiagonal elements,

2) the size of the strictly upper-triangular elements, and

3) the distance between the two diagonal elements.

In the next section, we give an analysis that generalizes the 2�2 example. In Section

3 we then propose a de
ation criterion for the implicit multishift QR algorithm. We

illustrate the performance of the de
ation criterion numerically using the LAPACK

implementation of the double-shift QR algorithm.

2 Approximation by the Diagonal Coe�cients

Consider an upper Hessenberg matrix of the form

Hn(") =

0
BBB@

h11 : : : : : : h1n

�1(")
. . .

...
. . .

. . .
...

0 �n�1(") hnn

1
CCCA

where the subdiagonal entries are functions of " and satisfy �i(0) = 0. The analysis

in this section makes no reference to the QR iteration, but in the next section, we

regard Hn(") as a QR iterate.

Let �(") be an eigenvalue of Hn("). If the function " 2 jC 7! �(") 2 jC is analytic

in a neighborhood of 0 and if �(0) = hii, then a �rst order MacLaurin expansion gives

the bound

j�(")� hiij � j�0(0) "j+O(j"j2): (2.1)

If some eigenvalues are defective, we need to increase the order of the expansion.

Hence j�0(0)j measures the quality of hii as an approximate eigenvalue and can be

used to suggest a stopping criterion for the basic QR algorithm.

In the following, we give two ways to obtain a simple expression for �0(0). The

�rst one uses the characteristic polynomial of Hn and the second uses some results

from perturbation theory.

2.1 Characteristic polynomial

We begin by giving some useful lemmas. The �rst concerns the characteristic poly-

nomial of Hn(").

Lemma 1 For n > 2, the characteristic polynomial of Hn, denoted by pn("; �), is

given by:

pn("; x) = (hnn � x)pn�1("; x)� �n�1(") hn�1;n pn�2("; x)

+ �n�1(")�n�2(")�n�2("; x);
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where �n�2("; x) is the determinant of a matrix of order n� 2 depending on " and x.

Proof. If we expand det(Hn(")� xI) with respect to the last row, we obtain

pn("; x) = (hnn � x)pn�1("; x)� �n�1(")qn�1("; x) (2.2)

where qn�1("; x) is de�ned by

qn�1("; x) = det

0
BBB@

h11 � x : : : : : : h1n

�1(")
. . .

...
. . . hn�2;n�2 � x hn�2;n

0 �n�2(") hn�1;n

1
CCCA :

In a similar way, expanding qn�1("; x) with respect to the last row, yields

qn�1("; x) = hn�1;npn�2("; x)� �n�2(x)�n�2("; x); (2.3)

where �n�2("; x) is de�ned by

�n�2("; x) = det

0
BBB@

h11 � x : : : : : : h1n

�1(")
. . .

...
. . . hn�3;n�3 � x hn�3;n

0 �n�3(") hn�2;n

1
CCCA :

Because pn("; �(")) is identically zero for all su�ciently small ",

d

d"
pn("; �(")) =

@pn

@"
("; �(")) + �0(")

@pn

@x
("; �(")) = 0:

The last equality applied to �(0) = hii leads to

�0(0)
@pn

@x
(0; hii) = �

@pn

@"
(0; hii): (2.4)

The next lemma concerns the calculation of
@pn

@x
(0; hii) and

@pn

@"
(0; hii).

Lemma 2 Suppose that the �i are di�erentiable in GGGGa neighborhood of 0. For

n > 1, we have

@pn

@"
(0; x) = �

n�1X
i=1

�
0

i(0) hi;i+1

8>><
>>:

nY
j=1

j 6=i;i+1

(hjj � x)

9>>=
>>;
; (2.5)
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Proof.

The proof is by induction. If �
0

1
(0) is de�ned, then, for n = 2,

@p2

@"
(0; x) = ��

0

1
(0)h12:

Using Lemma 1, for n � 3, we have

pn("; x) = (hnn � x)pn�1("; x)� �n�1(") hn�1;n pn�2("; x) + �n�1(")�n�2(")�n�2("; x)

Since the functions �i are di�erentiable in a neighborhood of 0,

@pn

@"
("; x) = (hnn � x)

@pn�1

@"
("; x)� �

0

n�1(") hn�1;npn�2("; x)� �n�1(") hn�1;n
@pn�2

@"
("; x)

+ �
0

n�1(")�n�2(")�n�2("; x) + �n�1(")�
0

n�2(")�n�2("; x)

+ �n�1(")�n�2(")
@�n�2

@"
("; x):

Since for n � 1,

pn(0; x) =

nY
j=1

(hjj � x); (2.6)

and �i(0) = 0, evaluating @pn
@"
("; x) in " = 0 leads to

@pn

@"
(0; x) = �(hnn � x)

n�2X
i=1

�
0

i(0)hi;i+1

8>><
>>:

n�1Y
j=1

j 6=i;i+1

(hjj � x)

9>>=
>>;

� �
0

n�1(0)hn�1;n

n�2Y
j=1

(hjj � x)

= �

n�1X
i=1

�
0

i(0) hi;i+1

8>><
>>:

nY
j=1

j 6=i;i+1

(hjj � hii)

9>>=
>>;
;

as claimed.

Lemma 3 For n � 1,

@pn

@x
(0; hii) = �

nY
j=1
j 6=i

(hjj � hii): (2.7)
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Proof. If we di�erentiate (2.6) with respect to x, we obtain

p0n(0; x) = �

nX
k=1

nY
j=1
j 6=i

(hjj � x);

and the result follows with x = hii.

The next theorem gives a simple expression for �
0
(0).

Theorem 1 Assume that �0(0) exists, the �i(:) are di�erentiable in a neighborhood

of 0 and that the hii are all distinct. Then,

If �(0) = h11; �0(0) =
�0
1
(0)h12

h11 � h22
:

If �(0) = hnn; �0(0) =
�0n�1(0)hn�1;n

hn�1;n�1 � hnn
:

If �(0) = hii for an i such that 2 � i � n� 1,

�0(0) =
�0i�1(0)hi�1;i

hi;i � hi�1;i�1
+

�0i(0)hi;i+1

hi;i � hi+1;i+1
:

Proof. If the hii are all distinct then, following (2.7),
@pn

@x
(0; hii) is nonzero. If

the �i are di�erentiable at 0, equations (2.4) and (2.5) leads to

�0(0) =
�
@pn

@"
(0; hii)

@pn

@x
(0; hii)

=

n�1X
i=1

�
0

i(0) hi;i+1

8>><
>>:

nY
j=1

j 6=i;i+1

(hjj � hii)

9>>=
>>;

nX
i=1

nY
j=1
j 6=i

(hjj � hii)

:

After simpli�cations, we obtain the desired results.

2.2 Perturbation Theory

Here, we use classical results from function theory. We still suppose that the �i(") are

di�erentiable functions in a neighborhood of zero. Let us rewrite Hn(") in the form
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Hn(") = Hn(0) + "E(") where

E(") =

0
BBB@

0 : : : : : : 0

�0
1
(") +O("2)

. . .
...

. . .
...

0 �0n�1(") +O("2) 0

1
CCCA :

Suppose that � is a simple eigenvalue of Hn(") 2 jCn�n and that x and y satisfy

Hn(0)x = �x and y�Hn(0) = �y� with kxk2 = kyk2 = 1.

It can be shown that in a neighborhood of zero, there exist di�erentiable x(") and

�(") such that

Hn(")x(") = �(")x(");

where x(0) = x and �(0) = �.

By di�erentiating this equation with respect to " and setting " = 0 in the result,

we obtain

Hn(0)x
0(0) + E(0)x = �0(0)x+ �x0(0):

Applying y� to both side yields to

y�E(0)x = �0(0)y�x:

As � is a simple eigenvalue then y�x 6= 0 and �0(0) is given by

�0(0) =
y�E(0)x

y�x
: (2.8)

Lemma 4 Suppose that � = hii and hii 6= hjj; j 6= i. Then x and y are de�ned by

�
xk = �

1

hkk�hii

Pi

j=k+1 hkjxj; for k > i;

xk = 0 for k < i

�
yk = 0 for k > i;

yk = �
1

hkk�hii

Pi

j=k+1 hkjxj; for k < i:

xi and yi are chosen such that kxk2 = kyk2 = 1.

Proof. The left and right eigenvectors x and y are the solutions of the upper and

lower triangular systems (Hn(0)� hiiI)x = 0 and (Hn(0)� hiiI)
�y = 0.

Now, let us evaluate �0(0) using (2.8). First we have

E(0)x =

0
BBBBBBBBBBB@

0

�0
1
(0)x1
...

�0i�1(0)xi�1
�0i(0)xi

0
...

0

1
CCCCCCCCCCCA

and y =

0
BBBBBBBBB@

0
...

0

yi
yi+1
...

yn

1
CCCCCCCCCA
;
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so that, y�E(0)x =
Pn�1

k=1 �
0
k(0)xkyk+1.

If 1 < i < n, then

y�E(0)x = �0i�1(0)xi�1yi + �0i(0)xiyi+1

= ��0i�1(0)
hi�1;i

hi�1;i�1 � hii
xiyi � �0i(0)

hi+1;i

hi+1;i+1 � hii
xiyi;

and y�x = xiyi. Finally,

�0(0) = �0i�1(0)
hi�1;i

hii � hi�1;i�1
+ �0i(0)

hi+1;i

hii � hi+1;i+1
:

If i = 1, y�E(0)x = �0
1
(0)y2 and then

�0(0) = �0
1
(0)

h12

h11 � h22
:

If i = n, y�E(0)x = �0n�1(0)xn�1 and then

�0(0) = �0n�1(0)
hn�1;n

hn+1;n+1 � hnn
:

There are the same expressions as in Theorem 1.

The next theorem gives a bound for the distance between the diagonal elements

of Hn(") and its eigenvalues.

Theorem 2 With same assumptions as in Theorem 1 and the convention h00 = �1,

hn+1;n+1 = +1, we have for i = 1; : : : ; n,

j�(")� hiij �
j�i�1(")j jhi�1;ij

jhi;i � hi�1;i�1j
+
j�i(")j jhi;i+1j

jhi;i � hi+1;i+1j
+O(j"j2): (2.9)

Proof. We obtain (2.9) by using inequality (2.1) and applying Theorem 1 with

"�0i(0) = �i(") +O(j"j2):

We conclude, as in Section 1, that the accuracy of the diagonal elements as eigen-

value approximations depends on three parameters:

1) The size of the subdiagonal elements,

2) the size of the o�diagonal elements, and

3) the distance between two successive diagonal elements.

Note that, in practice, the bound (2.9) can be easily evaluated to �rst order, since

all the quantities involved are known at each QR iteration.
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3 De
ation Criterion

In this section we propose a de
ation criterion for the QR algorithm. We aim to

neglect a subdiagonal element only if the adjacent diagonal element is su�ciently

close to an eigenvalue of the current matrix. That is, at step k, we aim to neglect

h
(k)

i;i�1 if

j�(")� h
(k)

ii j

jh
(k)

ii j

� u:

Using Theorem 2 and approximating the upper bound in (2.9) by the �rst term, leads

to the criterion

jh
(k)

i;i�1j jh
(k)

i�1;ij � ujh
(k)

ii jjh
(k)

ii � h
(k)

i�1;i�1j (3.1)

(recall that �i(") = h
(k)

i+1;i). Note that the term h
(k)

ii on the right-hand side makes this

test appropriate for graded matrices. Our de
ation criterion is that both (3.1) and

(1.1) are satis�ed, where the latter condition is imposed so as to ensure that backward

stability of the algorithm is maintained.

This criterion can be easily implemented in LAPACK [1] by modifying the routine

xLAHQR. This routine is an implementation of the implicit double shift QR algorithm

(see [2], [3], [4]).

After the lines

*

* Perform QR iterations on rows and columns ILO to I until a

* submatrix of order 1 or 2 splits off at the bottom because a

* subdiagonal element has become negligible.

*

DO 130 ITS = 0, ITN

*

* Look for a single small subdiagonal element.

*

replace the lines

*

DO 130 ITS = 0, ITN

*

* Look for a single small subdiagonal element.

*

DO 20 K = I, L + 1, -1

TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )

IF( TST1.EQ.ZERO )

$ TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )

IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
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$ GO TO 30

20 CONTINUE

30 CONTINUE

L = K

IF( L.GT.ILO ) THEN

*

* H(L,L-1) is negligible

*

H( L, L-1 ) = ZERO

END IF

by the lines

*

DO 130 ITS = 0, ITN

*

* Look for a single small subdiagonal element.

*

DO 20 K = I, L + 1, -1

IF( ABS( H( K, K-1 )).GT. (ULP*NORM)) GO TO 20

TST1 = ABS( H( K-1, K-1 ) - H( K, K ) )*

$ ABS( H( K, K ) )

SS = ABS( H( K-1, K ) )

IF( SS.EQ.ZERO ) GO TO 30

IF( ABS( H( K, K-1 )).LE.MAX( ULP*TST1/SS,SMLNUM ))

$ GO TO 30

20 CONTINUE

30 CONTINUE

L = K

IF( L.GT.ILO ) THEN

*

* H(L,L-1) is negligible

*

H( L, L-1 ) = ZERO

END IF

where NORM is the 1-norm of the matrix H and ULP is the machine precision.

Here is a small example where the new de
ation criterion enhances the accuracy.

Let H be de�ned by

H =

0
@ 1 M 0

" 1 + d M

0 " 1 + 2d

1
A :
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For " = 1:1e�8, M = 1:1e5, d = 1:e�2, the classical test of SLAHQR (single precision)

de
ates immediately. The resulting relative error on the computed eigenvalues is of

the order of 0:4e� 1. With the new stopping criterion, three more QR iterations are

needed. The relative error obtained is of the order of 0:7e� 7.

We have made some experiments on several matrices. We have used the LAPACK

routine xDLATME to generate random nonsymmetric square matrices with speci�ed

eigenvalues.

The two de
ation tests are very similar concerning the number of iterations. The

new criterion seems to require a few less iterations when the matrix is diagonalizable

and a few more iterations when the matrix is non-normal (see Table 4.1).

In order to compare the precision of the computed eigenvalues, we ran the two tests

in single precision and compared the results with those obtained in double precision

with DLAHQR (see Table 4.2). Sometimes, the new test requires more iterations but

gives a better accuracy and sometimes it requires less iterations and gives the same

accuracy.

We also have tested graded matrices. As expected, the results are very similar

to those obtained with the classical criterion concerning precision and number of

iterations (see Table 4.3).

4 Conclusion and Suggestions

Our analysis suggests that a de
ation criterion for the practical QR algorithm should

take into account the size of the subdiagonal elements, the size of the strictly upper-

triangular elements and the distance between consecutive diagonal elements. The

criterion that we have proposed has these properties and our numerical experiments

indicate that it is competitive with the traditional test (which is heuristically moti-

vated) in practice.

It is surprising that the new criterion performs so similarly to the traditional

one, while being very di�erent in form. Our work raises the question of what is

the best de
ation criterion for the QR algorithm. Further work is needed to answer

this question, but our work as shown that the heuristically motivated test used in

LAPACK does not always lead to best relative error.
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Diagonalisable Non normal

n Classical test New test Classical test New test

20 43 44 46 46

40 96 91 103 104

60 144 140 163 166

80 174 173 200 198

100 211 210 251 248

Table 4.1: Matrices built using DLATME with MODE=0, D is set to random number

in the range [�1; 1]. Tests done in double precision.

Classical test New test

n Nb. of iterations Relative error Nb. of iterations Relative error

20 50 0.79D-01 51 0.79D-01

40 83 0.11D+01 86 0.41D+00

60 127 0.20D+01 124 0.20D+01

Table 4.2: Matrices built using DLATME with MODE=1 ( D(1) = 1; D(2 : n) = 10�2),

CONDS=1.0D+02.

Classical test New test

n Nb. of iterations Relative error Nb. of iterations Relative error

4 4 0.11D-03 4 0.11D-03

8 10 0.76D-02 10 0.76D-02

10 15 0.58D-02 19 0.58D-02

12 17 0.13D-02 21 0.13D-02

Table 4.3: Graded matrices.
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