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Banded Cholesky Factorization
using Level 3 BLAS

Peter Mayes and Giuseppe Radicati

Absiract

Thizs note describes & black implementation of the Cholesky factorization
of a symmetric positive definite banded matrix. It is based on Level 3 BLAS
and designed to perform well on & machine with a hierarchy of memories., The
performance on the IBM 3090/VFE of the block implementation is shown to be
much better than implementations bazed on Level 2 BLAS.

1 Introduction

This note describes a series of experiments performed on the IBM 3090/VF with
routines for computing the Cholesky factorization .c'f a symmetric positive definite
banded matrix, We have compared:

1. the LINPACK routine DPEFA [1],
2. the routine DPBF {rom IBM’s ESSL Release 3 Library [2],

3. several implementations of the proposed LAPACK routine DFETRF [3,4]
based on calls to Level 2 BLAS [5,6],

4. block implementations of DPETRF based on Level 3 BLAS [T,8].

For problems where the band widih is large, the performance of block algorithms
for this factorization can be significantly higher than routines based on Level 2
ELJ’LS:_ and comes close Lo the Epccr] of routines prcnridtd h}r the manufacturer. This
approach can be extended to other factorizations of banded matrices, and also to
the Cholesky factorization of a variable band width (or skyline) matrix.

2 The LINPACK Code

The LINPACK reutine for computing the Cholesky factorization of a positive def-
inite banded matrix is DPGFA. DPBFA computes the UP U factorization of the



matrix A, whose upper triangle is supplied in banded storage mode. In this storage
scheme, columns of the original matrix A are stored in columns in banded storage,
and diagonals of A are stored in rows. If the half band width is K, then the leading
diagonal of A is stered in row K+1 in banded storage, as shown in the example
below, where N=7 and K=2:

Tl Tty (]
12 22 23 24 0 O
13 23 33 34 35 0
24 34 44 45 46
0 35 45 55 56 57T
0 0 46 56 66 67
0 0 0 a7 &7 77/

oo Qo

15 stored as

12 23 34 45 56 67
11 22 23 44 55 66 77

The LINPACK routine is implemented using the Level 1 BLAS routine DDOT,
using columns of the matrix A, Since these are stored in columns in banded storage,
the elements of the matrix are accessed with unit stride, which is highly desirable on
the 3090/VF. The performance is limited only by the speed of DDOT, implemented
in IBM's ESSL Library. For very large band widths, the peak speed of DPBFA is
about 25 megaflops. For sufficiently large matrices, the speed of DPRFA depends
only on the band width, and not on the size of the matrix.

13 24 35 46 5?]

3 Level 2 BLAS Implementations of DPBTRF

The propesed LAPACK routine DPBTRF extends the functionality of the LIN-
PACK routine DPBFA by working not only with the IUTI7 factorization of 2 matsix
A whose upper triangle is supplied (UPLO="1"), but also with the LIT factorization
of a matrix A whose lower triangle is supplied (UPLO="L?). For this second case, the
matrix A is stored in a banded storage mode analogous to the URLO='0? case, but
this time the leading diagonal is stored in the first row in banded storage, as shown

belaw:
SR e m e 1]

0
21 22 32 42 0 0
31 32 33 43 53 0O
0 42 43 44 54 64
0 0 53 54 55 65 75

0 0 0 64 65 66 76

0 0 0 0 7 76 77 )




is stored as

21 32 43 54 65 76
31 42 53 64 75

Initial implementations of DFETRF were based on Level 2 ELAS. For example,
the code to compute the case UPLO="U" was based on the routine DTRSV. Because
DTRSY is not included in ESSL Release 3, and no tuned version was available to
us, in the timing experiments we describe in the next section we have used DTRSM,
which is available in ES5L Release 3, called with only one right hand side,

The code to compute the case UPLO=?L? was based on the routine DSYR. We
also implemented a version based on DTRSV, and although this was faster for small
band widihs, it has the drawback that the right hand side vector is accessed with
stride equal to the half band width. This means that on the 2090/VF this variant
15 slower than the variant calling DSYR for large band widths.

There appears to be an inherent problem with the TPLO="L" case on the 3090/VF,
if the factorization is fo be baszed on Level 2 BLAS. Although the desire for access-
ing vectors with unit stride wherever possible leads us to prefer the version calling
D5SYR, we do not believe rank-1 updates can run any faster than a DAXPY oper-
ation on the 3090/VF. Thus a version based on Level 2 BLAS is likely to perform
at Level 1 BLAS speeds, even with highly tuned Level 2 BLAS.

The results for the Level 2 BLAS implementation of DPBTRF are included in
Figures 2 and 3, along with the LINPACK routine, the ESSL routine, and the block
variants to be described below. For UPLO=*TU?, the Level 2 BLAS implementation
calling DTRSV is significantly faster than the LINPACK code, but still falls far
short of the ESSL code DPBF. For UPLO='L?, the Level 2 BLAS code based on
DSYR. is actually slower than the LINPACKH code.

(11 23 33 44 55 66 i’?)

4 Variants of the Cholesky Factorization

Many algorithms in numerical linear algebra can be expressed in several different,
but mathematically equivalent, forms. For example, Deongarra et al. [10] have de-
scribed different variants of matrix multiplication and LU factorization, emphasizing
those vaniants which use column-wise aceess, and are suitable for implementation in
Fortran. If we consider the LLT (UPLO='L") Cholesky factorization, then we may
derive three block variants by partilioning the matrices A and L as follows:

An A5 A Ly 0 0 I I I
An Az AL, |=| Ln Lz 0 0 Li L3

Ay A Am Lz Liz Lag (N Jey
L]ILE‘[ L'_]_Lg\.l L‘l]Lg;
= | LnL}; LaLL + L.I% Ly LT + Ly LT,
L], Lall + Laoli, LIl + LaaLT, + LIl



1. “Top-looking” or “I” variani: the matrix L is generated one block row at a
time, using the triangle already calculated above the current block row. The
steps involved and corresponding BLAS calls are:

(a) Calculate the current block row: Ly — Az (Lf;)™"
CALL DTRSM{'Right',’Lower’,’Transpose’,...)

(b) Update the diagonal block: daz +— Azs — L LT,
CALL DSYRK('Lower',’'No transpese',...)

(¢) Factorize the current diagonal block: As; — Ly LT,
CALL DPOTF2(...)

2. “Left-looking” or “J" wvariant: the matrix L is generated one block column
at a time, using the block already calculated to the left of the current block
column. The steps involved and corresponding BLAS calls are:

(a) Update the current dizgonal block: Az — Az = L L3,
CALL DSYRK(’'Lowexr','No transpose’,...)

(b) Factorize the current diagonal block: Az — L L]
CALL DPOTF2(....)

(¢) Update the subdiagonal block column: Aaz «— Aay — Loy L)
CALL DGEMM(’'Ne transpose',’'Transpose’,...)

(d) Compute the subdiagenal block column: Ly — Agz(L7,)7?
CALL DTRSM(’Right?,'Lower’, Transpose’,...)

3. "Right-looking” or “K" variant: the current block column is computed, and
immediately used to update the trailing submatrix to the right. The steps
involved and corresponding BLAS calls are:

{a) Factorize the current diagonal block: Az — Ly L3,
CALL DPOTF2(...)

(b} Compute the subdiagonal block column: Lgy = dgp(LT,)?

CALL DTRSM('Right’, ’Lower','Transpose’,...)
(¢] Update the trailing submatrix: dss — Ags — L3 LT,
CALL DSYRK('Lover’,’Ne transpese’,...)

In each case we need to factorize the current diagenal block, a symmetric positive
definite matrix, of which only the lower triangle is stored. There are two routines in
LAPACK to form the Cholesky factorization of 2 symmetric positive definite matrix:
a blocked version DPOTRF, and an unblocked version DPOTF2, Since recursion is
not permitted in Fortran 77, DPOTRF must call DPOTF?2 to factorize the diagonal
block.



5 Block Factorizations of a Banded Matrix

If we consider a block right-locking (er H-variant) Cholesky factorization of a full
matrix, which on the 3090/VF is the the fastest version for a full matrix, the bulk
of the work is performed in the update of the trailing submatrix using DSYRK (sec
[11,12]). If, however, we consider & banded matrix, as shown in figure 1, then the
size of the trailing submatrix which must be updated using DSYRK as well as the
size of the triangular system which must be solved using DTRSM, is limited by the
size of the band widith. Note that the dimensions of the submatrices, shown as IE,
I2 and I3 on figure 1, are called by the same names in the Fortran listing given in
the appendix.

As will be seen from figure 1, some operations will be wasted in a block version,
because the block row (A2, 413) extends beyond the edge of the band, so that part
of the RHS matrix is zero. However, in the case where the half band width is
significantly larger than a typical block size (say hundreds compared with tens), the
improved performance of the block factorization may make the wasted arithmetic
worthwhile.

In the implementation we have considered, we need to use one auxiliary array
the size of the diagonal block to store the part of the matrix, 4,3, which lies astride
the band front. This is accessed as a square matrix by the Level 3 BLAS, and part
of it lies outside the banded storage array. Note that we always ensure internally
that the block size 15 no bigger than the half band width, Figure 1 shows the way
that we have implemented the calculation of the block row and the update of the
trailing submatrix for the TPLO="U" case.

Initially the upper triangle of the work array is set to zero—this only needs io
be done once. The computation then proceeds in the following steps:

1. the diagonal bleck 44 is factorized using DPOTFZ,
2. A;a is calculated using DTRSM,

3. A4z is updated using DSYRE,

4, If the block row only exiends as far as the edge of the band (rather than to

the edge of the matrix, which happens when the diagonal block nears the end
of the matrix), then 4,5 iz copied into the work array,

5. DTRSM iz called to caleulate the remainder of the block row everwriting 4,3,
B. A3 and A3z are updated using DGEMM and DSYREK respectively.

7. the contents of the work array are copied back into the main array in packed
storage.

To summarize, the updates

A A\ _ [ An-AlLdy Ap - AL A\ ( DSYRK DGEMM
-":133 ."*.:3.3 o 4‘1?3-‘1.13 DS}"-RK



- I8 — I2 =13 —

o e e e = e —

ﬂ.:a

Figure 1: Block banded Chelesky - implementation details



are compuied using the Level 3 BLAS calls shown. The factorization of the di-
agonal block is performed by the unblocked LAPACK routine DPOTF2. We can
use DPOTF2 and the Level 3 BLAS on full sub-matrices stored in banded storage
by passing the matrices to the lower level subroutines with a leading dimension of
LDA-1.

The overhead of the block implementation includes setting the upper triangle of
the work array to zero (done only once), copying the triangular matrix 4,3 into the
work array, performing the operations with zero within DTRSM and DSYREK, and
copying 4,3 back into the main array.

6 Timings of the Block Version

The timings described were obtained on the IBM 3080-600E/VF at ECSEC using
one processor. We used the MVS /XA operating system, V5 Fortran Version 2.3, and
E3SSL Release 3. We have timmed the LINPACK routine DPBFA, the ESSL routine
DPBF, the Level 2 BLAS implementation of DPBTRF, and the block implementa-
tion described in section 3. All speeds reported are in megaflops. Fluctuations of
5% in measured speeds are typical on a loaded system, such as the one we used. The
Level 3 BLAS routines used are DGEMM, DTRSM and DSYREK, together with the
Level 2 BLAS routine DGEMVY. DTRSM, DGEMM and DGEMV are available in
ESSL Release 3. We have developed a tuned Fortran version of DSYRK to improve
its performance.

Figures 2 and 3 show our results for UPLO='T* and TPLO='L? respectively, and
are labelled “Block”. The graphs show the speed of the block implementation on a
matrix of size 2,000 with 2 block size of 32, and illustrate the effect of varying the
half band width. In both graphs the results from the LINPACK and ESSL routines
are the same, as only one variant is available in each case, corresponding to the
UPLO='0"' case.

The ESSL routine, although documented as a U7 DI factorization, in fact uses
the LAPACE UPLO='L’ storage scheme, The elements of D are therefore stored in
the first row in packed storage mode, and the elements of U differ from those of the
corresponding LAPACK matrix by the square roots of the elements of D.

For TPLO='T* the speed of the block implementation increases steadily and
smoothly, apparently reaching a peak of over 60 megaflops for large band widths
and matrix size. By comparison, the ESSL routine DPPF for Cholesky factorization
of a full matrix has a speed of around 64 megaflops for matrices of order around
500.

For UPLO="L? the performance of the block implementation is less regular but the
envelope of the performance curve is very similar to the UPLO="0' case. This could
be attributed to the less than optimal cache management of our Foeriran version of
DSYRE. It is likely that the usage of cache and the performance on small matrices
could be significantly improved by using an assembler version of DSYREK, although
we don’t believe that a hand coded version of DSYREK would have & very much
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[ M{=N) DGEMM (Fortran) | DGEMM (ESSL) [ DSYRK (Fortran) |
32 (LDA=512) SIET 33.6 13.8
32 (LDA=530) 33.6 36.4 19.6
| 128 (LDA=512] 57.5 65.8 37.8
128 (LDA=530) 3.3 T 48.0
512 (LDA=512) 53.3 SEEEY 55.5
512 (LDA=530) 63.5 70.7 59.5

Table 1: Comparison of Fortran and ESSL BLAS

higher peak performance than our Fortran version.

In an attempt to see what improvement we might expect from 2 tuned version of
DSYREK, we performed an experiment with DGEMM, which is available in ESSL.
We tock a Foriran version of this routine, and produced an improved Fortran versicn
using & similar restructuring as used for DEYRE. Although DGEMM updates a full
matrix, whereas DSYRK only updates one triangle of a symmetric matrix, the DO-
loop whose limit stops at the leading diagonal is an outler one, and the vector loop
is the same in both cases. Thus although DSYREK performs 2 significant amount of
its operations with short vectors, the periormance gain is likely to be comparable
to the gain in DGEMM.

Table 1 shows the speed of the two versions of DGEMM, and for comparison,
the speed of our improved DSYRK. It will be scen that the biggest differences
between Fortran and ESSL versions of DGEMM occur when the leading dimension,
LDA=512, is unfaverable for the 3090/VF, and when the matrices are small. Theze
are the two situations when the bleck faciorizations fall farthest behind ESSL, and
which we expect a carefully tuned DSYRE to improve. Whilst not wishing to
attach too great an importance to this simple experiment, it s certainly true that
the results we have obtained are not the best that can be hoped for.

One curious feature of the ESSL routine DPBF is that it is the only version which
is significantly aflected by the order of the matrix N, for fixed half band width K. For
example, for K=150, as N increased from 200 to 2000, the ESSL routine decreased
in speed from 49 megaflops to 41 megaflops, whereas the block implementation for
OPLO='L"' increased from 36 megaflops to 37 megaflops with a block size of 32.

We have stated that the results for the block implementation are for a block size
of 32. Although this 15 not always optimal, the perlormance is never much greater
than the performance with this block size, and it would seem to be & good value
at which to fix the block size. For the full matrix case, we found that the optimal
block size was 128, although the performance was not very significantly worse for
smaller values such as 32 and 64, However, in the banded case, the proportion of
wasted operations increases and the performance drops off rapidly for block sizes
larger than 32,

To our knowledge, the ESSL implementation of DTRSM does not contain any
logic for checking for zeroes in the matrix of right hand sides. Because this check
it not done in the innermost DO-leop, we believe that this could be done without

10



degrading the performance of the routine when the right hand side is mestly full.
This could change the performance characteristics of the block implementation,
favoring a larger block size as in the full case. The same could also be done for
DEYRE.

The fact that operations are wasted at present means that for small band width
the versions based on Level 2 BLAS are faster, as the benefits of the block formula-
tion have yet to appear. The question of wasted operations arises with other block
algorithms, such as the QR factorizalion. Although it would be possible to switeh
from a Level 2 BLAS formulation te a Level 3 BLAS version depending on the size
of the hall band width, this adds another dimension to the process of timing and
implementing LAPACK software on different machines. Since this comes into the
realm of “policy decisions” to be made by the LAPACK principal investigators, we
prefer to raise the question while leaving it unanswered.

It should be noted that all the timings reported here have been obtained on an
IBM 3090-E/VF. The more recent “5” model has a faster clock period, a larger
cache, and better memory management. On this machine, the conclusion that
the block implementation is superior to the Level 2 BLAS implementation is still
valid. However, the performance of the ESSL routine DPBF relative to the block
implementation is betier. For example, for a matrix of order 2000 and half band
width 500 with UPLO='U’, DPEFA performs at 34 megafiops, the Level 2 BLAS
implementation of DPBTRF performs at 52 megaflops, the block version performs
at 66 megaflops and DPEF at 72 megaflops.

7  Summary

We have investigated the use of a block formulation of the Cholesky factorization
of 2 symmetric pesitive definite banded matrix. For small band widths we have
shown that the performance of the block implementations is not much worse than
formulations based on Level 2 BLAS and is likely to improve when a tuned version
of DSYRK becomes available, and if DTRSM (and DSYRK) are modified to take
advantage of sparsity. For larger band widths the block implementation runs at
nearly twice the speed of routines based on Level 2 BLAS.

The block implementation described here has been inecluded in the first bateh
of LAPACK software distributed to test sites. Preliminary results suggest that the
conclusions of this report also apply to other machines with a hierarchical memory
structure.
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A Code for the Block Factorization

SUBROUTINE DPETRF( UPLO, N, K, A, LDA, INFO )

*
* -- LAPACK routine --
* Argonne Natienal Lab, Courant Institute, and M.A.G. Ltd.
* April 1, 1989
*
* .. Scalar ATguments ..
CHARACTER UPLD
INTEGER INFD, K, LDA, M
¥ .
L . Array Argumants ..
DOUBLE PRECISION  A¢ LDa, = )
L]
*®
* Purpose
E EEEEEEE
"
* DFETRF computee the Cholesky factorization of a symmetric positive
® definite band matrix A,
» This is a blocked version which uses & right-lecking Cholesky
. wvariant,
L]
. Contributed by Peter Mayes and Giuseppe Radicati, IBM ECSEC, Roma
* March 23, 1984
*
*  Arguments
E ] SEEEEEEEE
-
* TPLO - CHARACTERw1
* On entry, UPLD specifies whether the upper or lower
* triangular part of the symmetTic band matrix A
» is stored:
* UPLO = ‘U or 'u* The upper triangle of 4 ie etored.
> UPLO = ‘L' or 'l' The lower triangle of A ie stored.
* Unchanged on exit.
*
* N = INTEGER
* On entry, N specifies the number of rows of the matrix
* 4 . N must be at least z4ro,.
* Unchanged on exit,
&
= K - INTEGER
. On entry, K specifies the number of super-diagonals of the
= matrix A if UPLO = *U*, or the number of sub-diagonale of
® the matrix A if UPLD = 'L’. K must be at lemst zero.

L3
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Unchanged on exit.

& = DOUELE PRECISION array of dimensicen{ LDA, K )}
On entry, 4 contains the upper or lower triangle of the
matrix to be factored, stored in band format.
On exit, A is overvritten by the Chelesky factorizatien.
The factorization can be written either as
A = L*L* where L is a lower triangular matrix or
& = U'*J  where U is an upper triangular matrix.

LDA = INTEGER
On entry, LDA specifies the firet dimenmsion of A as
declared in the calling (sub) program.
LDA must be at least ( K + 1 ).
Unchanged on exit.

INFO - IKTEGER
On exit, a value of ¢ indicates a normal return.
A positivae value K indicates that the leading minor of
erder K is mot poeitive definite, which is an error
condition that causes the subroutine to end.
A negative value, say -K, indicates the K-th argument has an
illogal valus,

Parametars
DOUELE PRECISION ONE
INTEGER MAXNE, LDWORK
PARAHETER { ONE = 1,0D+0, MAXNE = 32, LDWORK = MAXNE+1 )

Local Sealars
INTEGER I, Iz, I3, IB, IT, J, JJ, MNE

. Local Arrays
DOUELE PRECISION WORE{ LDWOEK, MAXNE )

External Functicns
LOGICAL LEAHE
EITERNAL LSAHE
. External Subroutines ..
EXTERNAL ENVIR, DGEMH, DPBTFZ, DPOTF2, DSYRE, DTESH,
$ XERBLA

Intrineic Functions ..
INTRINSIC HiY, HIN

Exacutable Statements

14



"

*

#+ * # #

Test the input parameters.

INFO = §
IF{ { .HOT.LSAHEC{ UPLO, *U* ) 3 _AND.
% { .MOT.LSAME({ UPLO, *L* } ) ) THEN

INFOD = -1
ELSE IF{ N.LT.0 ) THEN
INFO = -2
ELSE IF( K.LT.0 .OR. K.GT.MAX({ ¥-1, 0 ) ) THEN
INFOD = -3
ELSE IF{ LDA.LT.K+L } THEN
INFO = =5
END IF

IF{ INFO.NE.D )} THEN
CALL XERELA{ 'DFBTAF', -INFO )}
RETURY

END IF

Quick return if possible.

IF( N.EQ.0 )
¥ RETURN

Datermineg the block size for this environment
CALL ENVIR{ 'B’, KE )

The block Bize must not excesed the semi-bandwidth K, and must not
axcesed the limit set by the size of the local array WORK.

NBE = MIN{ NB, X, MAXNE )
IF{ H&E.LE.1 ) THEN
Uze unblozked code

CALL DPBTFz{ UPLOD, N, K, A, LDA, INFD )
ELSE

Use blocked code
IF{ LSAME( UPLO, ‘U’ ) ) THEN
Compute the Chelesky facterization of a symmetric band

matrix, given the upper triangle of the matrix in band
Etorage.
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Zaro tha upper triangle of the work array.

DO 20 J = 1, NB
po10I=1,J -1
WORK( I, J ) = 0.0DO
CONTINUE
CONTINUE

Process the band matrix one diagonal block at a time

b0 70 I = 1, H, HE
IB = MIN( NB, N-I+1 )

Facterize the diagonal block

cALL DPOTF2( UPLO, IB, A{ K+1, I }, LDA-1, II )
IF( II.NE.0 ) THEN
INFO = I + II -1
GO TO 150
END IF
IF{ I+IB.LE.¥ )} THEN

Update the relevant part of the trailing submatrix.
If 411 denotes the diagonal bleck which hae just been
factorized, then we need to update the remaining
blocks in the diagram: :

411 k12 A13
K22 AZ3
k33

The numbers of rowe and columns in the partitioning
are IB, I2, I3 respectively. The blocks AlZ, A22 and
423 are empty it IE = K. The upper triangle of A13
lies cuteide the band.

I2 = MIN( ¥-IB, N-I-IB+1 )
I3 = MINC IB, H=-I-E+1 )

IF({ I2.GT.0 ) THENW
Updata Al1Z
CALL DTRSH( ‘Left’', ‘Upper’', 'Transpose’,

*Nen-unit', IB, I2, ONE, &( K+1, I ),
LDA-1, A{ K+1-IB, I+IB ), LDA-1 )

16
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Update AZZ

CALL DSYRXK{ 'Upper’, ‘Transpese', 12, IB, -ONE,
A{ K+1-IB, I+IB ), LDA-1, ONE,
A( K+1, I+IB ), LDA-1 )

END IF

IF( I3.GT.0 ) THEN

Copy the lower triangle of A13 into the WoTk array.

DO 40 JJ =1, I3
D0 30 II = JJ, IB
WORK( II, JJ ) = A{ II-JJ+1, JJ+I+E-1 )
CONTINUE
CONTINUE

Update A13 (in the work array).

CALL DTRSM( 'Left?, ‘Upper’, ‘Transposa’,
*Non-unit’, IB, I3, OKE, A{ K+1, I ),
LD&-1, WORK, LDWORK )

Update K33

IF{ I2.GT.0 )}
CALL DGEMM( 'Transpose’, *Ne Transpose’, IZ, I3,
IE, -ONME, A( E+1-IB, I+IE }, LDA-1,
WORK, LDWORK, ONE, A( 1+IB, I+K ),
LDA-1 )

Updata A33

CALL DSYRK( *Upper’, *Transpese’, I3, IB, -ONE,
WORK, LDWORK, ONE, A( K«i, I+K ),
LDA=1 )

Copy the lower triangle of Al3 back into placa.

D0 60 JJ = 1, I3
pO 50 II = JJ, IE
A{ II-JJ+1, JJ+I+K=-1 ) = WORK{ II, JJ )
CONTINUE
CONTINUE

END IF
END IF

17
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CONTINUE

ELSE

Compute the Cholesky factorization of a eymmetric band
matrix, given the lower triangle of the matrix in band

storage.

Zerc the lower triangle of the work array.

Lo 90 J = 1, NBE
DO B0 I =J 4+ 1, NE
WORK{ I, J } = 0.0D0D
CONTINUE
CONTINUE

Process the band matrix one diagonal block at & time

DD 140 I = i1, N, NB
IBE = MIN{ NB, H-I+1)

Fectorize tho diagonal block

CALL DPOTF2( UPLD, IB, A( 1, I ), LDA-1, II )
IF{ II.NE.0 )} THEN
INFO = I + II - 1
GO TO 150
END IF
IF( I+IB.LE.N )} THEN

Update the relevant part of the trailing submatrix.
If A1l denotes the diagonal block which has just been
factorized, then ¥we noed to update the remaining
blocks in the diagram:

111
A21 A2
A3l A3Z  A33

The numbers of rows and columns in the partitioning
are 1B, IZ, I3 respectively. The blocks AZ21, A22 and
832 are ompty if IB = K. The lower triangle of A31
lies outside the band.

MIN{ X-IBE, N-I-IB+1 )
MIN{ IB, N-I-K+1 )

I2
I3

IF{ I2.GT.0 } THEN

18
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Update AZ1

CALL DTRSH({ 'Right’', ’Lower', 'Transpose’,
‘Non-unit*, I2, IE, ONE, A( 1, I ),
LDA-1, A( 1+IB, I ), LDA-1 )

Update A22
CALL DSYRK( ‘Lower’, *No Transpose®, I2, IE, -DNE,

A( 1+IB, T ), LDA-1, ONE, A({ 1, I+IE )},
LDA-1 )

END IF

IF{ IZ.GT.0 )} THEN

Copy the upper triangle of A31 into the work array.

PO 110 I3 = 1, IB
DO 100 II = 1, MIN{ JJ, I3 )
WORK( II, JJ ) = A{ K+1-JJ+II, JJ+I-1 )
CONTINUE
CONTINUE

Update A31 (in the work array).
CALL DTRSM( 'Right’, ‘Lower’, ’Transpose’,
*Non=-unit’, I3, IB, ORE, A( 1, I ),
LDA-1, WORKE, LDWORK 3
Update A32
IF( I2.GT.0 )
CALL DGEMM( ’No transpese’, 'Transpese’, I3, IZ2,
IE, =ONE, WORK, LDWORK,
A( 1+IB, I )}, LDA-1, DNE,
A( 1+K-IB, I+IB }, LDA-1 )
Update A33

CALL DSYRK({ ’Lower', 'No Transpese', IZ, IBE, -0OME,
WORK, LDWORK, ONE, A( 1, I+K ), LDA-1 )

Copy the upper triangle of A31 back into place.

D0 130 JJ = 1, IB
Do 120 IT = 1, MIN( JJ, I3 )
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A( E+1=JJ+II, JJ+I-1 )} = WORK( II, JJ )
CONTINUE
CONTINUE
END IF
END IF
CONTINUE
END IF

END IF
RETURN

CONTINUE
RETURN

End of DPBEIRF

END

B Code based on Level 2 BLAS
SUEROUTINE DPBTF2( UPLO, N, KD, A, LD&, INFO )
o
# -- LAPACK routina =--
] Argenne National Lab, Courant Institute, and N.4.G. Ltd.
ﬂ April 1, 1339
w
* . Gealar Arguments ..
CHARACTER TPLD
INTEGER INFO, KD, LDA, M
‘ L]
® « Array Arguments ..
DOUBLE PRECISION A( LDA, = )
&
"
* Purpose
E EaEoe=——
*
* DPETF2 computes the Cholesky factorization of a symmetric positive
L definite band =atrix A.
- If UPLD = *U* or *u*, the factor U iz computed from
* A= UF = 10]
L It UPLO = 'L’ or '1*, the factor L is computed from
* 4 =L =L*
* Thie ie the Level 2 ELAS version of the algorithm.
*
®  Arguments

20
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UPLO

KD

LDa

- CHARACTER+1

On entry, UPLD specifies whether the upper or lower
triangular part of the symmetric band matrix 4
is storad:
UPLO = *U? or *u’ The upper triangle of A is stored.
UPLD = *L* or *'1' The lower triangle of A is stored.
Unchanged onm exit.

INTEGER
On entry, N specifies the number of rows of the matrix
L . N must be at least zero,

Unchanged on exit.

INTEGER

On entry, KD epecifies the number of super-diagonals of the
matriz 4 if UPLD = 'U’, or the nu=ber of sub-diagonals of
the matrix A if UPLO = 'L*. KD must be at least zaro.
Unchanged on axit.

DOUBLE PRECISION array of dimension( LDA, N )
On entry, A specifies the array which contains the matrix
being factored.

Before entry with UPLO = 'U' or 'u’, the leading { KD + 1 }
by N part of the array A must contain the upper triangular
band part of the symmetric matrix, supplied column by
column, with the leading diagonal of the matrix in row

( Kb + 1 ) of ths array, the first super-diagonal starting
at positien 2 in row KD, and sec en. The top left KD by KD
triangle of the array A is not referenced.

Before entry with UPLO = *L? or ‘1Y, thsa lgading { KD + 1)
by N part of the array A must contain the lower triangular
band part of the symmetric matrix, supplied column by
c¢olumn, with the leading diagenal of the matrix in row 1 of
the array, the first sub-diagonal starting at position 1 in
row 2, and 50 on. The bottom right KD by KD triangle of the
array A i1s not referencaed.

On exit, the array A is overwritten by the Cholesky
factorization. The factorization can be written either as
=1L * L' vhere L is a lower triangular matrix

er A =TUT' # 1 yhere U is an upper triangular matrix.

INTEGER
On entry, LDA specifies the first dimeneion of & as
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declared in the calling (sub) program.
LDA must be at least { KD + 1 ).
Unchanged on exit.

INFD - INTEGER
On exit, a value of 0 indicates a nmormal return.
A positive value K indicates that the leading miner of
order K is not positive definite, which ie an error
condition that causes the subroutina to end.
& negative value, say -K, indicates the K-th argument has an
illegal wvalu=.

. Paramaters .
DOUBLE PRECISION QHE, ZERD
PARAMETER { ONE = 1.0D+0, ZERO = Q.00+0 )

. Local Scalars ..
INTEGER J, EJ, ELD, KN, KROW
DOUBLE PRECISION S

. External Functicns ..

LOGICAL LSAME
DOUBLE PRECISION  DDOT
EXTERNAL LSAME, DDOT

.. External Subroutines ..
EXTERNAL DSCAL, DSYR, DTRSV, XERBLA

. Intrinsic Functiome ..
INTRINSIC MAX, MIN, SQRT

. Executable 3tatements .
Test the input parameters.
INEFD = @

IF{ { .MOT.LSAME{ UPLO, "U* )} )} .AND.
3 { .HOT.LS&ME({ URLD, *L* )} } )} THEN

INFOD = -1
ELSE IF{ N.LT.0O ) THEN
INFO = =2
ELSE IF( KD.LT.O .OR., KD.GT.MAX( H-1, O ) ) THEN
INFO = -3
ELSE IF{ LDA.LT.XD+1 } THEN
INFO = =5
END IF

IF({ INFO.NE.O )} THEN
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CALL XERELA{ *DPBTF2’, -INFO )
RETURN
END IF

Quick return if possible.

IF{ N.EQ.0 )
$ RETURN

KLD = H2X( 1, LD&-1 )
IF{ LSAME( UPLD, 'U* ) ) THEN

Compute the Chelesky factorization of the gymmetric band matrix
8tored in the upper part of -the BTTAY.

PO 10 T =1, ¥

KEJ = HaX{ J-ED, 1)

EH = J - K]

EEDW = KD + 1 - KN

CALL DTRSV( ‘Upper’, “lranspoge’, *Non-unit’, KN,
3 A{ ED+1, KJ )}, KLD, A{ KROW, J Ja 1)

5 = A{ Ki+1, J ) - DDOT( KN, A KROW, J ), 1, A( KROW, J 3,
S 1)

Exit if the matrix is not positive definite.

IF({ S.LE.ZERD )
g GO TO 30
A( KD+1, J ) = SQRT( 5 )
10 CONTINUE
ELSE

Computa the Cholesky factorizaticn of the symmetric band matrix
stored in the lewer part of the array.

DO 20 J =1, N -1
IF( A{ 1, J ).LE.ZERO )
H GO TO 30
A( 1, J) = SQRTC AC 1, J ) 3
KN = MIN( XD, H-J )
CALL DSCAL( KM, ONE / A( 1, J ), AC 2, J), 1)
CALL DSYR{ ‘Lower’, KN, -ONE, A( 2, J ), 1, Af 1, J+1 11
$ KLD )
20 CONTINUE
J =N
IFC A( 1, ¥ ).LE.ZERD )
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$ G0 TO 30

AC 1, N} = SQRT( &( 1, N ) )
END IF
RETURN

30 CONTINUE
INFO = J
RETURN

End of DPETF2

EXD
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