
LAPACK Working Note 118

Department of Computer Science Technical Report CS-97-347

The Design and Implementation of the Parallel Out-of-core
ScaLAPACK LU, QR and Cholesky Factorization Routines 1

E. F. D'Azevedo
Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

J. J. Dongarra,
Department of Computer Science

University of Tennessee
Knoxville, Tennessee 37996-1301

VERSION 0.1, January 1997

Abstract

This paper describes the design and implementation of three core factorization routines
| LU, QR and Cholesky | included in the out-of-core extension of ScaLAPACK. These
routines allow the factorization and solution of a dense system that is too large to �t entirely
in physical memory. An image of the full matrix is maintained on disk and the factorization
routines transfer sub-matrices into memory. The `left-looking' column-oriented variant of
the factorization algorithm is implemented to reduce the disk I/O tra�c. The routines
are implemented using a portable I/O interface and utilize high performance ScaLAPACK
factorization routines as in-core computational kernels.

We present the details of the implementation for the out-of-core ScaLAPACK factoriza-
tion routines, as well as performance and scalability results on the Intel Paragon.

1This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by

the Defense Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the

Army Research O�ce; by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract

DE-AC05-84OR21400; and by the National Science Foundation Science and Technology Center Cooperative

Agreement No. CCR-8809615, and Center for Computational Sciences at Oak Ridge National Laboratory

for the use of the computing facilities.

1

Contents

1 Introduction 3

2 I/O Library 3

2.1 Low-level Details . 3
2.2 User Interface . 5

3 Left-looking Algorithm 7

3.1 Partitioned Factorization . 7
3.2 LU Factorization . 9
3.3 QR Factorization . 10
3.4 Cholesky Factorization . 10

4 Numerical Results 11

5 Conclusions 13

2

1 Introduction

This paper describes the design and implementation of three core factorization routines
| LU, QR and Cholesky | included in the out-of-core extensions of ScaLAPACK. These
routines allow the factorization and solution of a dense linear system that is too large to �t
entirely in physical memory.

Although current computers have unprecedented memory capacity, out-of-core solvers
are still needed to tackle even larger applications. A modern workstation is commonly
equipped with 64 to 128Mbytes of memory and capable of performing over 100 M
ops/sec.
Even on a large problem that occupies all available memory, the in-core solution of dense
linear problems typically takes less than an hour. On a network of workstations (NOW) with
100 processors, each with 64Mbytes, it may require about 30 minutes to factor and solve
at 64-bit precision a dense linear system of order 30,000. This suggests that the processing
power of such high performance machines is under-utilized and much larger systems can
be tackled before run time becomes prohibitively large. Therefore, it is natural to develop
parallel out-of-core solvers to tackle large dense linear systems. Such dense problems arise
from high resolution three-dimensional electromagnetic scattering problems or in modeling

uid
ow around complex objects.

The development e�ort has the objective of producing portable software that achieves
high performance on distributed memory multiprocessors, shared memory multiprocessors,
and NOW. The implementation is based on modular software building blocks such as the
PBLAS (Parallel Basic Linear Algebra Subprograms), and the BLACS (Basic Linear Alge-
bra Communication Subprograms). Proven and highly e�cient ScaLAPACK factorization
routines are used for in-core computations.

One key component of an out-of-core library is an e�cient and portable I/O interface.
We have implemented a high level I/O layer to encapsulate machine or architecture speci�c
characteristics to achieve good throughput. The I/O layer eases the burden of manipulating
out-of-core matrices by directly supporting the reading and writing of unaligned sections of
ScaLAPACK block-cyclic distributed matrices.

Section 2 describes the design and implementation of the portable I/O Library. The im-
plementation of the `left-looking' column-oriented variant of the LU, QR and Cholesky fac-
torization is described in x3. Finally, x4 summarizes the performance on the Intel Paragon.

2 I/O Library

This section describes the overall design of the I/O Library including both the high level
user interface, and the low level implementation details needed to achieve good performance.

2.1 Low-level Details

Each out-of-core matrix is associated with a device unit number (between 1 and 99), much
like the familiar Fortran I/O subsystem. Each I/O operation is record-oriented, where each
record is conceptually an MMB�NNB ScaLAPACK block-cyclic distributed matrix. Moreover
if this record/matrix is distributed with (MB,NB) as the block size on a P � Q processor
grid, then mod(MMB; MB � P) = 0 and mod(NNB; NB � Q) = 0, i.e. MMB (and NNB) are exact

3

multiples of MB � P (and NB � Q). Data to be transferred is �rst copied or assembled into
an internal temporary bu�er (record). This arrangement reduces the number of lseek()
system calls and encourages large contiguous block transfers, but incurs some overhead in
memory-to-memory copies. All processors are involved in each record transfer. Individually,
each processor writes out an (MMB/P) by (NNB/Q) matrix block. MMB and NNB can be adjusted
to achieve good I/O performance with large contiguous block transfers or to match RAID
disk stripe size. A drawback of this arrangement is that I/O on narrow block rows or block
columns will involve only processors aligned on the same row or column of the processor
grid, and thus may not obtain full bandwidth from the I/O subsystem. An optimal block
size for I/O transfer may not be equally e�cient for in-core computations. On the Intel
Paragon, MB (or NB) can be as small as 8 for good e�ciency but requires at least 64Kbytes I/O
transfers to achieve good performance to the parallel �le system. A 2-dimensional cyclically-

shifted block layout that achieves good load balance even when operating on narrow block
rows or block columns was proposed in MIOS (Matrix Input-Output Subroutines) used in
SOLAR. However, this scheme is more complex to implement, (SOLAR does not yet use
this scheme). Moreover, another data redistribution is required to maintain compatibility
with in-core ScaLAPACK software. A large data redistribution would incur a large message
volume and a substantial performance penalty, especially in a NOW environment.

The I/O library supports both a `shared' and `distributed' organization of disk layout.
In a `distributed' layout, each processor opens a unique �le on its local disk (e.g `/tmp' par-
tition on workstations) to be associated with the matrix. This is most applicable on a NOW
environment or where a parallel �le system is not available. On systems where a shared par-
allel �le system is available (such as M ASYNC mode for PFS on Intel Paragon), all processors
open a common shared �le. Each processor can independently perform lseek/read/write

requests to this common �le. Physically, the `shared' layout can be the concatenation of the
many `distributed' �les. Another organization is to `interlace' contributions from individual
processors into each record on the shared �le. This may lead to better pre-fetch caching
by the operating system, but requires an lseek() operation by each processor, even on
reading sequential records. On the Paragon, lseek() is an expensive operation since it
generates a message to the I/O nodes. Note that most implementations of NFS (Networked
File System) do not correctly support multiple concurrent read/write requests to a shared
�le.

Unlike MIOS in SOLAR, only a synchronous I/O interface is provided for reasons of
portability and simplicity of implementation. A fully portable (although possibly not the
most e�cient) implementation of the I/O layer using Fortran record-oriented I/O is also
possible2. The current I/O library is written in C and uses standard POSIX I/O operations.
System dependent routines, such as NX-speci�c gopen() or eseek() system calls, may be
required to access �les over 2Gbytes. Asynchronous I/O that overlaps computation and I/O
is most e�ective only when processing time for I/O and computation are closely matched.
Asynchronous I/O provides little bene�ts in cases where in-core computation or disk I/O
dominates overall time. Asynchronous pre-fetch reads or delayed bu�ered writes also require
dedicating scarce memory for I/O bu�ers. Having less memory available for the factorization
may increase the number of passes over the matrix and increase overall I/O volume.

2We are not aware of any implementation of fully portable asynchronous I/O without using threads.

However, a portable thread library may not be available and greatly complicates the code.

4

2.2 User Interface

To maintain ease of use and compatibility with existing ScaLAPACK software, a new ScaLA-
PACK array descriptor has been introduced. This out-of-core descriptor (DTYPE = 601)
extends the existing descriptor for dense matrices (DTYPE = 1) to encapsulate and hide
implementation-speci�c information such as the I/O device associated with an out-of-core
matirx and the layout of the data on disk.

The in-core ScaLAPACK calls for performing a Cholesky factorization may consist of:

*

* initialize descriptor for matrix A

*

CALL DESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,LDA,INFO)

*

* perform Cholesky factorization

*

CALL PDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

where the array descriptor DESCA is an integer array of length 9 whose entries are described
by the following:

DESC () Symbolic Scope De�nition
Name

1 DTYPE A (global) The descriptor type DTYPE A=1.
2 CTXT A (global) The BLACS context handle, indicating the

BLACS process grid over which the global
matrix A is distributed. The context itself
is global, but the handle (the integer value)
may vary.

3 M A (global) The number of rows in the global array A.
4 N A (global) The number of columns in the global array A.
5 MB A (global) The blocking factor used to distribute

the rows of the array.
6 NB A (global) The blocking factor used to distribute

the columns of the array.
7 RSRC A (global) The process row over which the �rst row

of the array A is distributed.
8 CSRC A (global) The process column over which the �rst

column of the array A is distributed.
9 LLD A (local) The leading dimension of the local

array. LLD A � MAX(1,LOCp(M A)).

The out-of-core version is very similar:

*

* initialize extended descriptor for out-of-core matrix A

5

*

CALL PFDESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,IODEV,

`SHARED',MMB,NNB,ASIZE, `/pfs/a.data'//CHAR(0),INFO)

*

* perform out-of-core Cholesky factorization

*

CALL PFDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

where the array descriptor DESCA is an integer array of length 11 whose entries are described
by the following:

DESC () Symbolic Scope De�nition
Name

1 DTYPE A (global) The descriptor type DTYPE A=601
for an out-of-core matrix.

2 CTXT A (global) The BLACS context handle, indicating the
P� Q BLACS process grid over
which the global matrix A is distributed.
The context itself is global,
but the handle (the integer value) may vary.

3 M A (global) The number of rows in the global array A.
4 N A (global) The number of columns in the global array A.
5 MB A (global) The blocking factor used to distribute

the rows of the MMB� NNB submatrix.
6 NB A (global) The blocking factor used to distribute

the columns of the MMB� NNB submatrix.
7 RSRC A (global) The process row over which the �rst row

of the array A is distributed.
8 CSRC A (global) The process column over which the �rst

column of the array A is distributed.
9 LLD A (local) The conceptual leading dimension of the global

array. Usually this is taken to be M .
10 IODEV A global The I/O unit device number associated with

the out-of-core matrix A.
11 SIZE A local The amount of local in-core memory available for

the factorization of A.

Here ASIZE is the amount of in-core bu�er storage available in array `A' associated with
the out-of-core matrix. A `Shared' layout is prescribed and the �le `/pfs/A.data' is
used on unit device IODEV. Each I/O record is an MMB by NNB ScaLAPACK block-cyclic
distributed matrix.

The out-of-core matrices can also be manipulated by read/write calls. For example:

CALL ZLAREAD(IODEV, M,N, IA,JA, B, IB,JB, DESCB, INFO)

6

Panel X Panel Y

Figure 1: Algorithm requires 2 in-core panels.

reads in an M by N sub-matrix starting at position (IA,JA) into an in-core ScaLAPACK
matrix B(IB:IB+M-1,JB:JB+N-1). Best performance is achieved with data transfer exactly
aligned to local processor and block boundary; otherwise redistribution by message passing
may be required for unaligned non-local data transfer to matrix B.

3 Left-looking Algorithm

The three factorization algorithms, LU, QR, and Cholesky, use a similar `left-looking' or-
ganization of computation. The left-looking variant is �rst described as a particular choice
in a block-partitioned algorithm in x3.1.

The actual implementation of the left-looking factorization uses two full column in-core
panels (call these X, Y; see Figure 1). Panel X is NNB columns wide and panel Y occupies
the remaining memory but should be at least NNB columns wide. Panel X acts as a bu�er
to hold and apply previously computed factors to panel Y. Once all updates are performed,
panel Y is factored using an in-core ScaLAPACK algorithm. The results in panel Y are
then written to disk.

The following subsections describe in more detail the implementation of LU, QR and
Cholesky factorization.

3.1 Partitioned Factorization

The `left-looking' and `right-looking' variants of LU factorization can be described as par-
ticular choices in a partitioned factorization. The reader can easily generalize the following
for a QR or Cholesky factorization.

Let an m � n matrix A be factored into PA = LU where P is a permutation matrix,
and L and U are the lower and upper triangular factors. We treat matrix A as a block-

7

partitioned matrix

A =

A11 A12

A21 A22

!
;

where A11 is a square k � k sub-matrix.

1. The assumption is that the �rst k columns are already factored

P1

A11

A21

!
=

L11

L21

!
(U11) ; (1)

where
A11 = L11U11; A21 = L21U11 : (2)

If k � n0 is small enough, a fast non-recursive algorithm such as ScaLAPACK PxGETRF

may be used directly to perform the factorization; otherwise, the factors may be obtained
recursively by the same algorithm.

2. Apply the permutation to the unmodi�ed sub-matrix
~A12

~A22

!
= P1

A12

A22

!
: (3)

3. Compute U12 by solving the triangular system

L11U12 = ~A12 (4)

4. Perform update to ~A22

~A22
~A22 � L21U12 (5)

5. Recursively factor the remaining matrix

P2
~A22 = L22U22 (6)

6. Final factorization is

P2P1

A11 A12

A21 A22

!
=

L11 0
~L21 L22

!
U11 0
U12 U22

!
; ~L21 = P2L21 : (7)

Note that the above is the recursively-partitioned LU factorization proposed by Toledo [4]
if k is chosen to be n=2. A right-looking variant results if k = n0 is always chosen where
most of the computation is the updating of

~A22
~A22 � L21U12 :

A left-looking variant results if k = n� n0.
The in-core ScaLAPACK factorization routines for LU, QR and Cholesky factorization,

use a right-looking variant for good load balancing [1]. Other work has shown [2, 3] that
for an out-of-core factorization, a left-looking variant generates less I/O volume compared
to the right-looking variant. Toledo [5] shows that the recursively-partitioned algorithm
(k = n=2) may be more e�cient than the left-looking variant when a very large matrix is
factored with minimal in-core storage.

8

3.2 LU Factorization

The out-of-core LU factorization PFxGETRF involves the following operations:

1. If no updates are required in factorizing the �rst panel, all available storage is used
as one panel,

(i) LAREAD: read in part of original matrix

(ii) PxGETRF: ScaLAPACK in-core factorization
L11

L21

!
(U11) P1

A11

A21

!

(iii) LAWRITE: write out factors

Otherwise, partition storage into panels X and Y.

2. We compute updates into panel Y by reading in the previous factors (NNB columns
at a time) into panel X. Let panel Y hold (A12; A22)

t,

(i) LAREAD: read in part of factor into panel X

(ii) LAPIV: physically exchange rows in panel Y to match permuted ordering in panel X
~A12

~A22

!
 P1

A12

A22

!

(iii) PxTRSM: triangular solve to compute upper triangular factor

U12 L�1
11

~A12

(iv) PxGEMM: update remaining lower part of panel Y

~A22
~A22 � L21U12

3. Once all previous updates are performed, we apply in-core ScaLAPACK PxGETRF

to compute LU factors in panel Y

L22U22 P2
~A22 :

The results are then written back out to disk.

4. A �nal extra pass over the computed lower triangular L matrix may be required to
rearrange the factors in the �nal permutation order

~L12 P2L12 :

Note that although PFxGETRF can accept a general rectangular matrix, a column-oriented
algorithm is used. The pivot vector is held in memory and not written out to disk. During
the factorization, factored panels are stored on disk with only partially or `incompletely'
pivoted row data, whereas factored panels were stored in original unpivoted form in [2] and
repivoted `on-the-
y'. The current scheme is more complex to implement but reduces the
number of row exchanges required.

9

3.3 QR Factorization

The out-of-core QR factorization PFxGEQRF involves the following operations:

1. If no updates are required in factorizing the �rst panel, all available memory is used
as one panel,

(i) LAREAD: read in part of original matrix

(ii) PxGEQRF: in-core factorization

Q1

R11

0

!

A11

A21

!

(iii) LAWRITE: write out factors

Otherwise, partition storage into panels X and Y.

2. We compute updates into panel Y by bringing in previous factors NNB columns at
a time into panel X.

(i) LAREAD: read in part of factor into panel X

(ii) PxORMQR: apply Householder transformation to panel Y
R21

~A22

!
 Qt

1

A12

A22

!

3. Once all previous updates are performed, we apply in-core ScaLAPACK PxGEQRF

to compute QR factors in panel Y

Q2R22
~A22

The results are then written back out to disk.

Note that to be compatible with the encoding of Householder transformation in the
TAU(*) vector as used ScaLAPACK routines, a column-oriented algorithm is used even for
rectangular matrices. The TAU(*) vector is held in memory and is not written out to disk.

3.4 Cholesky Factorization

The out-of-core Cholesky factorization PxPOTRF factors a symmetric matrix into A = LLt

without pivoting. The algorithm involves the following operations:

1. If no updates are required in factorizing the �rst panel, all available memory is used
as one panel,

(i) LAREAD: read in part of original matrix

(ii) PxPOTRF: ScaLAPACK in-core factorization

L11 A11

10

(iii) PxTRSM: modify remaining column

L21 A21L
�t

11

(iv) LAWRITE: write out factors

Otherwise, partition storage into panels X and Y. We exploit symmetry by operating on
only the lower triangular part of matrix A in panel Y. Thus for the same amount of storage,
the width of panel Y increases as the factorization proceeds.

2. We compute updates into panel Y by bringing in previous factors NNB columns at
a time into panel X.

(i) LAREAD: read in part of lower triangular factor into panel X

(ii) PxSYRK: symmetric update to diagonal block of panel Y

(iii) PxGEMM: update remaining columns in panel Y

3. Once all previous updates are performed, we perform a right-looking in-core factor-
ization of panel Y. Loop over each block column (width NB) in panel Y,

(i) factor diagonal block on one processor using PxPOTRF

(ii) update same block column using PxTRSM

(iii) symmetric update of diagonal block using PxSYRK

(iv) update remaining columns in panel Y using PxGEMM

Finally the computed factors are written out to disk.

Although, only the lower triangular portion of matrix A is used in the computation,
the code still requires disk storage for the full matrix to be compatible with ScaLAPACK.
ScaLAPACK routine PxPOTRF accepts only a square matrix distributed with square sub-
blocks, MB=NB.

4 Numerical Results

The prototype code is still under active development and testing3. The double precision
version was tested on the Intel Paragon systems at the Center for Computational Sciences,
Oak Ridge National Laboratory. The xps35 has 512 GP nodes arranged in a 16 row by 32
column rectangular mesh. Each GP node has 32MBytes of memory. The xps150 has 1024
MP nodes arranged in a 16 row by 64 column rectangular mesh. Each MP node has at least
64MBytes of memory. The MP node has 2 compute CPUs to support multi-threaded code,
but to make results comparable to xps35, only one CPU was utilized in the test. The runs
were performed in a multiuser (non-dedicated) environment. Runs on 64 (256) processors
were performed on the xps35 (xps150) using a 8 � 8 (16 � 16) logical processor grid. The
xps150 was used to ensure that in-core solves of the large matrices are resident in memory
without page faults to disk.

3The prototype code is available from http://www.netlib.org/scalapack/prototype

11

Table 1: Performance of out-of-core LU factorization on 64 processors using MB=NB=50.

size of lwork update fact reorder total in-core

matrix (doubles) (sec) (sec) (sec) (sec) (processors)

5000 130000 38 28 18 151 59 (64)

8000 250000 126 60 49 389 180 (64)

10000 375000 231 95 74 640 130 (256)

16000 1000000 858 301 192 1946 388 (256)

20000 1000000 1782 377 290 3502 681 (256)

Table 2: Performance of out-of-core QR factorization on 64 processors using MB=NB=50.

size of lwork update fact total in-core

matrix (doubles) (sec) (sec) (sec) (processors)

5000 130000 78 41 176 92 (64)

8000 260000 271 98 516 310 (64)

10000 410000 496 161 900 200 (256)

16000 1000000 1816 536 2893 647 (256)

20000 1000000 3805 680 5466 1176 (256)

Initial experiments suggest that I/O performance may vary by a wide margin and de-
pends on the I/O and paging requests in other applications. The double precision version
was tested with block size of MB = NB = 50, MMB = 800 and NNB = 400. A shared �le was
used on `/pfs' parallel �le system (16-way interleaved RAID system with 64Kbyte stripes).
The shared �le was opened with NX-speci�c M ASYNC mode in the gopen() system call.

Table 1 shows the runtime (in seconds) for the out-of-core LU factorization on the
Intel Paragon. The �eld lwork is the amount of temporary storage (number of double
precision numbers) available to the out-of-core routine for panels X and Y. Field update

is the computation time (excluding I/O) for PxTRSM and PxGEMM updates from panel X to
panel Y. Field fact is the total computation time (excluding I/O) required to factor panel Y.
Field reorder is the total time for I/O and PxLAPIV to reorder the lower triangular factors
into the �nal pivoted order. Field in-core shows the computation time (and number of
processors used) for an all in-core factorization using ScaLAPACK PDGETRF routine.

We are considering streamlining the out-of-core PFxGETRF LU factorization code (and
PFxGETRS right-hand solver) to leave the lower factors in partially pivoted form and avoid
the extra pass required to reorder the lower triangular matrix into �nal pivoted order.
Note that without this extra reordering cost and assuming perfect speedup from 64 to 256
processors, the out-of-core solver incurs approximately a 18% overhead over in-core solvers
((3502 � 290)=(681 � 4) � 1:18).

Table 2 shows the runtime (in seconds) for the out-of-core QR factorization on the
Intel Paragon. The �eld lwork is the amount of temporary storage (number of double
precision numbers) available to the out-of-core routine for panels X and Y. Field update is
the computation time (excluding I/O) for Householder updates using PxORMQR from panel X
to panel Y. Field fact is the total computation time (excluding I/O) required to factor panel

12

Table 3: Performance of out-of-core Cholesky factorization on 64 processors using
MB=NB=50.

size of lwork update fact total in-core

matrix (doubles) (sec) (sec) (sec) (processors)

5000 130000 20 18 77 39 (64)

8000 260000 56 45 196 90 (64)

10000 410000 93 78 311 60 (256)

16000 1000000 339 264 937 191 (256)

20000 1000000 776 354 1655 340 (256)

Y using PxGEQRF. Field in-core shows the computation time (and number of processors used)
for an all in-core factorization using the ScaLAPACK PDGEQRF routine. For large problems
(and assuming perfect speedup), the out-of-core version incurs an overhead of around 16%
over the in-core solver ((5466=4)=1176 � 1:16).

Table 3 shows the runtime (in seconds) for the out-of-core Cholesky factorization on
the Intel Paragon. The �eld lwork is the amount of temporary storage (number of double
precision numbers) available to the out-of-core routine for panels X and Y. Field update

is the computation time (excluding I/O) for PxSYRK and PxGEMM updates from panel X
to panel Y. Field fact is the total computation time (excluding I/O) required to factor
panel Y. Field in-core shows the computation time (and number of processors used) for
an all in-core factorization using ScaLAPACK PDPOTRF routine. For large problems (and
assuming perfect speedup), the out-of-core version incurs about a 22% overhead over the
in-core version ((1655=4)=340 � 1:22).

5 Conclusions

E�ectiveness of the out-of-core solvers depends in part on the amount of available core
memory and on the performance of the I/O system. The results on the xps35 suggest that
the out-of-core solvers are most e�ective on very large problems greater than available core
memory and incur about a 20% penalty over the in-core solvers.

13

References

[1] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker,

and R. C. Whaley, The design and implementation of the ScaLAPACK LU, QR, and

Cholesky factorization routines, Tech. Report ORNL/TM-12470, Oak Ridge National
Laboratory, 1994.

[2] J. Dongarra, S. Hammarling, and D. Walker, Key concepts for parallel out-of-

core LU factorization, Scienti�c Programming, 5 (1996), pp. 173{184.

[3] K. Klimkowski and R. A. van de Geijn, Anatomy of a parallel out-of-core dense

linear solver, in Proceedings of the International Conference on Parallel Processing,
1995.

[4] S. Toledo, Locality of reference in lu decomposition with partial pivoting, Tech. Report
RC 20344(1/19/96), IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, New York, 1996.

[5] S. Toledo and F. Gustavson, The design and implementation of SOLAR, a portable

library for scalable out-of-core linear algebra computations, in IOPADS Fourth Annual
Workshop on Parallel and Distributed I/O, ACM Press, 1996, pp. 28{40.

14

