
||||||||

LAPACK Working Note 116

||||||||

Parallel Matrix Distributions: Have we been doing it

all right?

Majed Sidani and Bill Harrod

Applications Division

Cray Research, A Silicon Graphics Company

November 14, 1996

* Electronic mail address: sidani@cray.com, harrod@cray.com

1

Parallel Matrix Distributions: Have we been doing it all right?

Majed Sidani and Bill Harrod

Applications Division

Cray Research, A Silicon Graphics Company

November 14, 1996

1 Introduction

Providing a framework for matrix distributions in parallel linear algebra libraries that is exible

enough for parallel applications developers is an important feature. The added exibility could

however result in added complexity in the libraries development and present the developers with

many challenges.

A new package [6], PLAPACK, containing a number of parallel linear algebra solvers, was

brought to our attention as a prototype of a more exible alternative to ScaLAPACK ([3]).

The parallel matrix distribution in PLAPACK, its authors submitted, is the new feature that

allowed the superior exibility where applications developers are concerned. The purpose of

this short note is to show that the PLAPACK matrix distribution scheme is a variation on the

ScaLAPACK scheme.

The answer to the question we asked in the title is: Yes! What prompted the question

{ and supports the answer { is the fact that the authors of PLAPACK started their investigation

by considering the parallel distributions needs of applications, and as a result determined the

distribution to be supported in PLAPACK. The fact that their implementation does not provide

any matrix distribution capability beyond what is available in ScaLAPACK is remarkable, given

that the authors of PLAPACK's position is that this library is not quite satisfactory ([2]).

2

2 Block-Cyclic Distributions

We review briey here the parallel matrix distributions known as block-cyclic distributions. The

npes processors available to the application are viewed as �lling a logical two-dimensional grid

of r rows and c columns, with npes = r � c. Given a m� n matrix A, partition it as

0
B@

A00 � � � A0q

...
...

Ap0 � � � Apq

1
CA

where each Ai;j is a block of br rows and bc columns, with the possible exception of the blocks in

the last column which may have fewer columns than bc, and the blocks in the last row which may

have fewer rows than br. Then block Ai;j is mapped to the processor in the (i mod r, j mod c)

position of the grid, i.e., the processor in row, i mod r, and column, j mod c. For example,

assume that a 2� 3 grid of processors is chosen. Then �gure 1 illustrates one possible mapping

of the six processors to the grid. If m = 6 � br and n = 6 � bc, then �gure 2 illustrates how the

blocks of A are mapped to the grid. By varying the dimensions of the blocks of A and those of

the grid, one can generate di�erent mappings.

0 2 4

1 3 5

Figure 1: A two-dimensional grid �lled in a column major order with 6 processors.

0
BBBBBBB@

0 2 4 0 2 4

1 3 5 1 3 5

0 2 4 0 2 4

1 3 5 1 3 5

0 2 4 0 2 4

1 3 5 1 3 5

1
CCCCCCCA

Figure 2: Block-cyclic distribution of a matrix. A number in a block is that of the processor

owning the particular block of the matrix.

3

3 PBMD

The Physically Based Matrix Distribution (PBMD) was proposed by the authors of PLA-

PACK [6, 1, 2] as a basis for more exible parallel linear algebra libraries. It was claimed that

applications developers will not have to "unnaturally" modify the way they want to distribute

data in order to �t the library's required distribution. They have the freedom to distribute

the vectors (which contain the data of "physical signi�cance") across processors in a way that

only depends on the application. The matrix (the operator) is then distributed in a conforming

way that in e�ect optimizes matrix-vector products involving the vectors and the matrix. The

concept in its most general form will not be discussed in any more details in this note. Interested

readers are referred to the articles mentioned above.

We describe instead the Physically Based Matrix Distribution that is supported in PLAPACK.

Given a two-dimensional grid of r rows and c columns of processors, a vector (1-dimensional),

is assumed to be distributed uniformly by blocks of b components across the processors of the

entire grid, in a column-major order. Assume that x and y are vectors of length n that are

related by y = A � x, where A is a n � n matrix. Then PLAPACK requires that x and y be

distributed conformally in this fashion, and that A be partitioned into square blocks of order

b, and distributed according to the following rule: A block of A is in the same column of the

processor grid as the block of x it multiplies and the same row of the grid as the block of y it

updates. Now, starting from the �rst block, every r contiguous blocks of x will reside in the

same column of the grid of processors. Contiguous blocks of y will reside on di�erent rows of

the grid in general (r > 1). When the rule above is applied, the blocks of A in one row of

blocks are dealt r at a time to processors in a row of the grid, and the blocks in the next row

of blocks are assigned to the next row of processors in the grid. If r contiguous blocks of A

of order b are viewed as one block of b rows and r � b columns, PBMD is then readily found

to be a block-cyclic distribution, with the blocks of A being b � r � b. In the notation of the

previous section, PLAPACK's PBMD is a block-cyclic distribution with br = b and bc = r � b.

4

An example follows.

Example: Assume that the (user-de�ned) grid of processors is the same as in �gure 1, which

we reproduce here for convenience.

0 2 4

1 3 5

We have then r = 2 and c = 3 using our notation for the number of rows and columns in the

grid.

Let x and y be two vectors of length n that are related by y = A�x, where A is a n�n matrix.

As we stated earlier, PLAPACK requires that these vectors be partitioned in a uniform fashion

and that the same block size be used for both vectors. Assume that x and y are partitioned into

6 blocks. Let b denote the block size. Then these vectors are mapped to the processor grid as

follows:

y0 y2 y4
y1 y3 y5

x0 x2 x4
x1 x3 x5

In general, if xi is the ith block of x (i = 0; � � �), and row(xi) and col(xi) are the row and

column numbers of the processor of the grid to which xi is mapped, then we have:

row(xi) = i mod r; col(xi) = (i=r) mod c;

where i=r is the euclidean quotient.

Given the partitioning of x and y, A is partitioned into 6 blocks in each dimension, in order

to conform to the partitioning of x and y. The blocks of A are square of order b (with the usual

possible exceptions for the last blocks in a column or a row).
0
BBBBBBB@

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

1
CCCCCCCA

According to the PBMD distribution rule, block Aij should be mapped to the processor of

the grid in the (row(yi); col(xj)) position, i.e., the (i mod r; (j=r)mod c) position. For instance:

5

A00 and A01 must reside on processor (0; 0), i.e., processor 0 in our grid; A02 and A03 must

reside on processor (0; 1), i.e., processor 2, and so on. Figure 3 shows where each block of A in

our example resides.

0
BBBBBBB@

0 0 2 2 4 4

1 1 3 3 5 5

0 0 2 2 4 4

1 1 3 3 5 5

0 0 2 2 4 4

1 1 3 3 5 5

1
CCCCCCCA

Figure 3: Given the grid in �gure 1 and a block size, PLAPACK's PBMD partitions the matrix

uniformly into square blocks, and deals the blocks to the processors as shown. The number of

contiguous blocks in a row that are mapped to one processor is equal to the number of rows in the

grid of processors { in the previous example it is 2. When the contiguous blocks that are residing

on one processor are viewed as one block (with 2 times the number of columns), PLAPACK's

PBMD reduces to a traditional block-cyclic distribution.

It is clear that given any k, Ai;kr; Ai;kr+1; � � � ; Ai;kr+(r�1) will reside on the same processor

(i mod r; k mod c). But these r contiguous blocks can be viewed as one aggregate block with r�b

columns, indeed the kth such block in the ith row. Let's call these aggregate blocks Âi;k. Then

Âi;k is mapped to processor (i mod r; k mod c). This shows that the parallel matrix distribution

in PLAPACK is no more than a block-cyclic distribution of these aggregate blocks1.

4 Algorithmic Issues

It is natural to ask whether this speci�c block-cyclic distribution has resulted in any algorithmic

advantages for parallel linear algebra operations. In this section, we will examine the impact of

this distribution on basic algorithms.

1High Performance FORTRAN (HPF, [4]) provides a compact notation in this context. In HPF notation,

PLAPACK requires that vectors and matrices be distributed as:

!HPF$ TEMPLATE, DIMENSION(r � c) :: GRID1

!HPF$ TEMPLATE, DIMENSION(r, c) :: GRID2

!HPF$ DISTRIBUTE x(BLOCK(b)), y(BLOCK(b)) ONTO GRID1

!HPF$ DISTRIBUTE A(BLOCK(b), BLOCK(r � b)) ONTO GRID2

6

Using our example in the previous section, assume that we want to compute y = A �x. Then

the �rst step in the PLAPACK implementation of this operation is to perform the following

data communications:

x0 ! (1; 0) x2 ! (1; 1) x4 ! (1; 2)

x1 ! (0; 0) x3 ! (0; 1) x5 ! (0; 2)

where (i; j) is the processor in the ith row and jth column of the grid. In general, an all-to-all

broadcast is performed across each column in the grid which leaves x entirely distributed across

each row in the grid.

This is the starting point for the matrix-vector computation in ScaLAPACK (more precisely,

ScaLAPACK requires that x be on one row or one column of the grid). And indeed, the matrix-

vector product computations in PLAPACK and ScaLAPACK are identical after that point until

y is computed on one column of the grid of processors. After that, PLAPACK scatters each

block of y across the row of the grid where it resides, which results in y being distributed across

all the processors of the grid. This example suggests that no particular advantage was gained

from PLAPACK's distribution for this important computation.

More generally, the matrix distribution in PLAPACK is but one instance of a broader class

of distributions that is available in ScaLAPACK. The broader class of distributions provides for

more exibility in algorithmic choices and might conceivably allow more e�cient algorithms for

distributed operations.

Lastly, we consider the impact of this distribution on parallel matrix generation and the claims

of the authors of PLAPACK in this regard. Henceforth, the matrix is assumed to be square and

we de�ne a \diagonal block" of the matrix to be one containing a portion of the main diagonal

of the matrix.

Parallel linear algebra computations consist in general of two stages. First the matrix must be

generated. Second, a linear algebra problem, such as solving a linear system or computing an

eigensystem is to be addressed. The PLAPACK authors point to an important problem with

7

regard to the �rst stage. In some applications, the generation of the diagonal blocks of the

matrix may require more intensive computations than the rest of the matrix. Diagonal blocks

could require computation involving singular integrals, for example. It is therefore important

to ensure that the generation of the diagonal blocks be distributed across as many processors

as possible. The PLAPACK authors, however, claim that the diagonal blocks of the matrix are

better distributed in a PBMD distribution ([2, 5]) than in other distributions, in the sense that

more processors get a piece of the diagonal. In particular, the authors claim that in distributions

other than PBMD, the diagonal blocks are distributed across
p
(npes) processors only, where

npes is the total number of processors. This is not accurate! It is only correct if the matrix is

partitioned into square blocks and the grid of processors is square.

In general, given a matrix that is partitioned into square blocks and distributed in a block-

cyclic fashion across a two-dimensional grid of r � c processors, the diagonal blocks are dis-

tributed across lcm(r; c) processors, the least common multiple of r and c. To see this, note

that the diagonal blocks in this case are Aii, (i = 0; � � �) and that they are mapped to processors

(i mod r; i mod c) in the grid. The sequence (i mod r; i mod c), (i = 0; � � �), is periodic since

((i1 + lcm(r; c))mod r; (i1 + lcm(r; c))mod c) = (i1 mod r; i1 mod c):

The number of (distinct) processors that get a diagonal block is equal to the period of this

sequence, which we now determine. Let,

(i1 mod r; i1 mod c) = (i2 mod r; i2 mod c):

Then,

(i2 � i1) mod r = 0

(i2 � i1) mod c = 0

Thus i2 � i1 is a multiple of lcm(r; c), which proves our claim. Note that in particular, if r and

c are relatively prime then every processor in the grid gets some diagonal blocks.

It is also possible to increase the number of processors that get a diagonal block by partitioning

8

the matrix into non-square blocks. To see this, assume for simplicity that, using our notation

from section 2, bc = l � br where l is some integer and that the grid of processors is square2. It

is easy to see that

A00; A10; � � � ; Al�1;0; � � � ; Al�k;k; � � � ; Al�k+l�1;k; � � �

are the diagonal blocks of A (i.e., those containing a portion of the main diagonal of A). Since

Aij maps to processor (i mod r; j mod c) in a block-cyclic distribution,

Al�k;k; � � � ; Al�k+l�1;k

will map to processors in the same column of the grid, namely k mod c. The number of processors

in one column of the grid getting a diagonal block is therefore min(r; l)3. The total number of

processors in the grid getting a diagonal block is therefore

min(r; l) � c: (1)

Similarly, if br = l � bc, then the total number of processors getting a diagonal block is,

min(c; l) � r: (2)

An appropriate choice of l will distribute the diagonal blocks across more than
p
(npes) proces-

sors.

We conclude that in order to distribute the diagonal blocks across more than
p
(npes) pro-

cessors, one either chooses a grid of processors with unequal sides or partitions the matrix into

non-square blocks. PBMD does the latter. The speci�c aspect ratio chosen by PBMD is of no

relevance; it just has to be di�erent from 1:1.

2More precisely, it can be shown that the results (1) and (2) that are derived in this paragraph hold true

whenever l � c mod r = 0, or l � r mod c = 0, resp., of which a square grid is a particular case. For this reason we

have kept separate notations for r and c.
3Our assumptions about the grid ensure that the subset of processors in column k mod c that owns the diagonal

blocks of (block) column k of the matrix, will own the diagonal blocks of any other column that maps to column

k mod c.

9

5 Final Remarks

The documentation on PLAPACK is misleading in places. It is often the case that the advantages

of PBMD were contrasted with the disadvantages of a block distribution (a distribution where

only one block of the matrix is assigned to any given processor) thereby obscuring the fact

that these advantages are enjoyed by all block-cyclic distributions ([2], pp 6-7). However, we

credit the PLAPACK authors for talking more about the matrix generation process and for their

concern about the libraries-applications interfacing problem. This particular issue has been one

that was ignored by many library developers.

References

[1] Almadena Chtchelkanova, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt,

and Robert van de Geijn, Towards usable and lean parallel linear algebra libraries, Tech.

report, The University of Texas at Austin, May 1996.

[2] Carter Edwards, Po Geng, Abani Patra, and Robert van de Geijn, Parallel matrix distribu-

tions: Have we been doing it all wrong?, Tech. report, The University of Texas at Austin,

October 1996.

[3] Dongarra et. al, LAPACK working note 93, Installation guide for ScaLAPACK, Tech. report,

The University of Tennesee Knoxville, May 1996.

[4] High Performance FORTRAN Forum, High Performance Fortran language speci�cation,

Tech. report, Rice University, November 1994.

[5] Robert van de Geijn, A comprehensive approach to designing parallel linear algebra libraries,

Tech. report, The University of Texas at Austin, March 1996.

[6] Robert van de Geijn et al., Parallel linear algebra package (PLAPACK) users' guide, Tech.

report, The University of Texas at Austin, August 1996.

