
Block-Partitioned Algorithms for Solving the

Linear Least Squares Problem
�

Gregorio Quintana-Ort�� y Enrique S. Quintana-Ort�� z

Antoine Petitet x

LAPACK Working Note # 113.
University of Tennessee at Knoxville Technical Report CS-96-333

Abstract.

The linear least squares problem arises in many areas of sciences and engineerings. When

the coe�cient matrix has full rank, the solution can be obtained in a fast way by using
QR factorization with BLAS-3. In contrast, when the matrix is rank-de�cient, or the rank

is unknown, other slower methods should be applied: the SVD or the complete orthogonal
decompositions. The SVD gives more reliable determination of rank but is computationally
more expensive. On the other hand, the complete orthogonal decomposition is faster and in

practice works well.
We present several new implementations for solving the linear least squares problem by

means of the complete orthogonal decomposition that are faster than the algorithms currently
included in LAPACK. Experimental comparison of our methods with the LAPACK imple-

mentations on a wide range of platforms (such as IBM RS/6000-370, SUN HyperSPARC,
SGI R8000, DEC Alpha/AXP, HP 9000/715, etc.) show considerable performance improve-
ments. Some of the new code has been already included in the latest release of LAPACK

(3.0). In addition, for full-rank matrices the performances of the new methods are very close
to the performance of the fast method based on QR factorization with BLAS-3, thus provid-

ing a valuable general tool for full-rank matrices and rank-de�cient matrices, as well as those
matrices with unknown rank.

Key words. linear least squares, complete orthogonal factorization, QR factorization
with column pivoting, rank-revealing QR factorization, block algorithm.

1 Introduction

The Linear Least Squares (LLS) problem arises in many areas of science and

engineering, for example, in geodesy [21], computer-aided design [23], nonlinear
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least-squares problems [31], solution of integral equations [18], and calculation

of splines [22].

Speci�cally, the LLS problem consists in �nding the vector x that satis�es

min
x
kAx� bk2 (1)

where A is an m � n coe�cient matrix and b is a vector of n components.

Basically, depending on the properties of A, the LLS problem has a unique

solution or in�nite solutions. Consider m � n, then Ax = b de�nes an overde-

termined linear system (there are more equations than unknowns). If A has full

rank (rank(A) = n), then there exists a unique solution to the LLS problem.

Otherwise, if A is rank-de�cient (rank(A) < n), there exist in�nite solutions

and the minimum 2-norm solution,

min
x
kxk2; (2)

is usually the required solution to the LLS problem.

On the other hand, when m < n, there exist in�nite solutions or no solution

to the underdetermined linear system Ax = b, but the LLS problem still has a

unique minimum norm solution.

A more detailed description of the LLS problem and related issues about

existence and uniqueness of solutions, sensitivity, etc., can be consulted in [12,

20,30,37].

Let us focus now on the existing LLS solvers. If A has full rank, a fast

method based on the QR factorization with BLAS-3 can be applied to solve

the problem. However, if A is rank-de�cient or its rank is unknown, alterna-

tive methods must be applied. Therefore, no general fast method is available

unless the matrix has full rank and it is known a priori. Currently, the two

widely accepted numerical tools for solving the rank-de�cient LLS problem are

the Singular Value Decomposition (SVD) and the complete orthogonal decom-

position [20]. The former is considered as the most reliable algorithm for solving

the LLS problem but it presents an important drawback: its higher computa-

tional cost. In contrast, the complete orthogonal decomposition is based on

a low-cost algorithm, the QR decomposition with column pivoting, hereafter

QRP. It theoretically provides less reliable rank determination, yet it usually

performs well in practice. The LAPACK library provides driver subroutines for

both approaches [1].

In this paper we present several faster algorithms for solving the LLS prob-

lem. We have developed code that has been included in LAPACK release 3.0.

The new methods are complete block-partitioned algorithms, that is, the main

computations are block oriented and implemented by using BLAS-3.

Our new algorithms can be categorized into two di�erent types. The �rst

type is based on a new BLAS-3 implementation of the QRP developed by

G. Quintana-Ort��, X. Sun and C. H. Bischof [34]. The second type relies on
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a windowed version of the QRP developed by C. H. Bischof and G. Quintana-

Ort�� [10,11].

Our new LLS methods are faster than the existing methods on rank-de�cient

matrices and, when applied to full-rank matrices, they perform very close to the

LLS solver for full-rank matrices. Therefore, these methods can be successfully

applied to all types of matrices and achieve good performance.

The organization of the paper is as follows. In section 2 we briey describe

the LLS solvers currently included in LAPACK. In section 3 we introduce the

basic tools for our algorithms (BLAS-3 QRP and windowed QRP); then, we

present the new LLS solvers and outline their advantages. In section 4 the

results of the experimental study are reported. Finally, section 5 contains the

concluding remarks.

2 LLS solvers available in LAPACK

Currently, the LAPACK library provides three di�erent driver subroutines

for solving the LLS problem: xGELS, xGELSX, and xGELSS.

Subroutine xGELS solves (1) when rank(A) = min(m;n), that is, when A has

full rank. If m > n, it computes the unique solution of the over-determined lin-

ear system. On the other hand, ifm < n, then it computes the minimum2-norm

solution of the undetermined problem. xGELS is based on the QR factorization

with BLAS-3, thus providing a high-speed computational tool.

When rank(A) < min(m;n), subroutines xGELSX and xGELSS compute the

solution that minimizes both kAx� bk2 and kxk2. The �rst subroutine is based
on the complete orthogonal factorization that uses the QR factorization with

column pivoting, whereas the second one is based on the SVD. xGELSX is usually

much faster than xGELSS, though it is completely based on BLAS-2.

All the above mentioned subroutines allow the computation of several so-

lutions x1; x2; : : : ; xk to di�erent problems de�ned by b1; b2; : : : ; bk with the

same coe�cient matrix in just one call. It should be noted that this process

is di�erent from minimizing kAX �Bk2, where X = [x1; x2; : : : ; xk] and B =

[b1; b2; : : : ; bk].

Since our algorithms also compute a complete orthogonal factorization, next

we will describe subroutine xGELSX.

2.1 Subroutine xGELSX

The computational tasks carried out by this subroutine are the following:

1. Matrices A andB are scaled (if necessary) to avoid overow and underow.

2. The QR factorization with column pivoting of the matrix A is computed:

AP = QR:
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3. From the triangular matrix R, the numerical rank r of A is obtained using

the incremental condition estimator ICE [5, 6]. This value de�nes the

following partition of R:

R =

�
R11 R12

0 R22

�

where R11 is an r � r well-conditioned upper triangular matrix.

4. R12 is zeroed applying unitary transformations from the right de�ned by

Y : (R11; R12) = (T11; 0)Y:

5. The unitary transformations of stage 2 are also applied to B from the left:

QHB:

6. T�1
11

(QHB) is computed. Speci�cally, this stage consists in solving an

upper triangular linear system with a possibly multiple right-hand side

matrix.

7. Y H is applied to the previous result: Y H(T�1
11

QHB):

8. The solution X is obtained by applying the permutation matrix P to the

result of the previous stage: X = P (Y HT�1
11
QHB):

9. A and X are unscaled (if necessary).

3 New algorithms for the LLS problem

In this section we �rst describe some key tools of our LLS solvers: a BLAS-3

version of the QRP, and two windowed pivoting versions of the QRP. Then we

outline the main advantages of our LLS solvers.

3.1 BLAS-3 QR factorization with column pivoting (xGEQP3)

This algorithm, developed by G. Quintana-Ort��, X. Sun and C. H. Bischof [34]

and called xGEQP3, is a BLAS-3 version of QRP with considerable performance

improvements over LINPACK subroutine xQRDC (based on BLAS-1) and LA-

PACK subroutine xGEQPF (based on BLAS-2), while maintaining the same nu-

merical behavior as those implementations.

For each column, both LINPACK and LAPACK implementations select one

column, permute it, compute the reector that zeroes its components under

the matrix diagonal, and apply it to the rest of the matrix. LINPACK code

performs the update by means of BLAS-1, whereas LAPACK code performs

the update by means of BLAS-2. In contrast, for each stage the new method

only updates one column and one row of the rest of the matrix (since that is the

only information needed for the next pivoting phase). Thus, the update of the
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rest of the matrix is delayed until nb columns have been processed and therefore

nb reectors are available. This delay allows the use of BLAS-3 kernels, thus

obtaining a faster execution speed.

3.2 New block-algorithms for computing rank-revealingQR (RRQR)

factorizations xGEQPX and xGEQPY

These two new methods, developed by C. H. Bischof and G. Quintana-

Ort�� [10,11], are based on a faster approach.

Both algorithms consist of two stages: preprocessing and postprocessing.

The �rst stage is an e�cient block-oriented algorithm for computing an approx-

imate RRQR factorization. Basically, it is a windowed version of the QRP,

based on BLAS-3 and monitorized by Bischof's incremental condition estima-

tion (ICE) [5, 6]. The second stage is an e�cient implementation of RRQR

algorithms well-suited for triangular matrices. Subroutine xGEQPX includes a

variant of S. Chandrasekaran and I. Ipsen's algorithm [14] with improvements

with respect to condition estimation, termination criteria and Givens update.

A theoretical study as well as the description of this postprocessing algorithm

can be found in [35]. Subroutine xGEQPY includes a variant of C. T. Pan and

P. T. P. Tang's algorithm [32] with similar improvements.

The experimental study in [10] shows that the performances of the these two

new algorithms are usually within 15% of the performance of QR factorization

(LAPACK xGEQRF) but 2 to 3 times faster than the QR factorization with

column pivoting (LAPACK xGEQPF).

3.3 New LLS solvers

Using the above mentioned algorithms we have developed the following three

LLS solvers:

xGELSY: One of the main di�erences of this solver is that it performs stage 2

(the QR factorization with column pivoting of the coe�cient matrix) by

means of subroutine xGEQP3.

xGELSA: This algorithm performs stage 2 by using subroutine xGEQPX.

xGELSB: This algorithm performs stage 2 by using subroutine xGEQPY.

The advantages of our new methods over the current implementations are

the following:

Faster QRP decomposition: (Step 2 in algorithm xGELSX). All the new solvers

use BLAS-3 to compute the QRP factorization of the coe�cient matrix.

Experience of previous experimental studies shows that xGEQP3, xGEQPX,

and xGEQPY are much faster than LINPACK and LAPACK QRP [10,34].
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Faster annihilation of R12: (Step 4). LAPACK subroutine xGELSX nulli�es

R12 from the right by using BLAS-2 code, while the three new drivers use

BLAS-3.

Faster update of B: (Steps 5 and 7). LAPACK subroutine xGELSX updates

matrix B by means of BLAS-2 code (subroutine xORM2R for stage 5 and

xLATZM for stage 7), whereas the new drivers use BLAS-3 code in both

cases. Solver xGELSY uses subroutine xORMQR for stage 5 and xORMRZ for

stage 7). On the other hand, solvers xGELSA and xGELSB do not use

subroutine xORMQR since that update is carried out while matrixA is being

triangularized and, therefore, the same block reectors are used in both

tasks.

Faster permutation: (Step 8). The original code in LAPACK uses a oat-

ing point vector as workspace to control the components that have been

permuted. Our new algorithms use this vector in a faster and more sim-

ple way: each column to be permuted is copied to this vector and then

it is moved to its proper position. The new method requires the same

workspace and is faster since no comparisons between oating point num-

bers are required.

All these advantages provide faster LLS solvers. The important improve-

ments in the execution speed of our new algorithms are due to the fact that all

stages in the process have been redesigned to use BLAS-3 and are block-oriented.

Thus, we expect that the improvement of the new drivers will be similar to that

obtained when migrating an application from BLAS-2 to BLAS-3.

Single, double, complex, and double complex code for xGELSY, xGELSA, and

xGELSB have been developed.

4 Experimental Results

We report in this section the experimental results comparing the double

precision codes DGELS, DGELSX, and DGELSS from LAPACK, and our new solvers

DGELSY, DGELSA and DGELSB. The tests included a wide range of platforms: IBM

RS/6000-370, SUN HyperSPARC @ 150MHz, SGI MIPS R8000 @ 90MHz, DEC

Alpha/AXP, and HP 9000/715. In each case, we used the vendor-supplied BLAS

(ESSL, Performance Library, SGIMATH, DXML, and Blaslib, respectively).

We only present the results on the IBM and the SUN since similar results

were obtained on the other platforms.

We generated 18 di�erent matrix types to evaluate the algorithms, with

various singular value distributions and numerical rank ranging from 3 to full

rank. Details of the test matrix generation are beyond the scope of this paper,

and we give only a brief synopsis here.

Test matrices 1 through 5 were designed to exercise column pivoting. Matrix

6 was designed to test the behavior of the condition estimation in the presence
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Table 1: Test Matrix Types (p = min(m;n)).

N# Description r

1 Matrix with rank p=2� 1 p=2� 1

2 A(:;2 : p) has full rank, R(A) = R(A(:;2 : p)) p� 1

3 Full rank p

4 A(:;1 : 3) small in norm, A(:;4 : n) of full rank p� 3

5 A(:;1 : 3) small in norm, R(A) = R(A(:;1 : 3)) 3

6 5 smallest singular values clustered p

7 Break1 distribution p=2 + 1

8 Reversed break1 distribution p=2 + 1

9 Geometric distribution p=2 + 1

10 Reversed geometric distribution p=2 + 1

11 Arithmetic distribution p=2 + 1

12 Reversed arithmetic distribution p=2 + 1

13 Break1 distribution p� 1

14 Reversed break1 distribution p� 1

15 Geometric distribution 3p=4 + 1

16 Reversed geometric distribution 3p=4 + 1

17 Arithmetic distribution p� 1

18 Reversed arithmetic distribution p� 1

of clusters for the smallest singular value. For the other cases, we employed

the LAPACK matrix generator xLATMS, which generates random symmetric

matrices by multiplying a diagonal matrix with prescribed singular values by

random orthogonal matrices from the left and right. For the break1 distribution,

all singular values are 1.0 except for one. In the arithmetic and geometric

distributions, they decay from 1.0 to a speci�ed smallest singular value in an

arithmetic and geometric fashion, respectively. In the \reversed" distributions,

the order of the diagonal entries was reversed. For test cases 7 though 12,

we used xLATMS to generate a matrix of order n

2
+ 1 with smallest singular

value 5.0e-4, and then interspersed random linear combinations of these \full-

rank" columns to pad the matrix to order n. For test cases 13 through 18, we

used xLATMS to generate matrices of order n with the smallest singular value

being 2.0e-7. We believe this set to be representative of matrices that can be

encountered in practice.

4.1 Computing performance

In all the �gures, we employ the solid line for the performance of DGELSX,

the dotted line with symbol \+" for DGELSY, the dotted line with symbol \x"
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Figure 1: Average Performance (in seconds) versus Block Size on

the IBM RS/6000-370 for 150 � 150 (left) and 300 � 150 matrices

(right).

for DGELSA, and the dotted line with symbol \*" for DGELSB.

In �gures 1 through 4 (IBM), and �gures 5 through 8 (SUN), we present

the results on square and rectangular matrices of size 150, 250, 300, 500, and

1000 using a block size (nb) of 1, 5, 8, 12, 16, 20, and 24. These �gures show

the average performances of algorithms DGELSX, DGELSY, DGELSA, and DGELSB

on the 18 matrix types versus the block size.

Let us focus now on the di�erence between our new LLS solvers and DGELSX.

The latter solver is based on BLAS-2 and it is not block-oriented. Therefore,

its execution time, as shown in all the �gures, is not a�ected by the block size

at all. The behavior of our LLS solvers is very di�erent. Since all of them

are mainly based on BLAS-3 subroutines, the new solvers perform better than

DGELSX in all cases except for very small matrices. DGELSA and DGELSB obtain

very similar execution times since they di�er only in the post-processing stage

and it has very little inuence on the overall execution time of the algorithm.

Besides, both solvers achieve better results than DGELSY.

Figure 9 does not show the average performance, but the exact behavior

of the solvers on every one of the 18 matrix types for block size 20. We only

present the required seconds for 1000 � 500 on the SUN. The plot shows that

in some cases the new solvers are up to 3 times faster.

Table 2 compares all the solvers in LAPACK and our new solvers. In order

to compare DGELS, the tested matrices have full rank. The solver based on the

SVD, DGELSS, is much slower than the others. The new solvers DGELSY, DGELSA,

and DGELSB obtain performances much higher than the LAPACK solver DGELSX
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Figure 2: Average Performance (in seconds) versus Block Size on

the IBM RS/6000-370 for 250 � 250 (left) and 500 � 250 matrices

(right).
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Figure 3: Average Performance (in seconds) versus Block Size on

the IBM RS/6000-370 for 500� 500 (left) and 1000� 500 matrices

(right).
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Figure 4: Average Performance (in seconds) versus Block Size on

the IBM RS/6000-370 for 1000� 1000 matrices.
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Figure 5: Average Performance (in seconds) versus Block Size on the

SUN Hypersparc for 150� 150 (left) and 300� 150 matrices (right).
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Figure 6: Average Performance (in seconds) versus Block Size on the

SUN Hypersparc for 250� 250 (left) and 500� 250 matrices (right).
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Figure 7: Average Performance (in seconds) versus Block Size on

the SUN Hypersparc for 500 � 500 (left) and 1000 � 500 matrices

(right).
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Figure 8: Average Performance (in seconds) versus Block Size on

the SUN Hypersparc for 1000� 1000 matrices.
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Figure 9: Performance (in seconds) versus Matrix Type on the SUN

Hypersparc for 1000� 500 matrices.
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Table 2: Performance (in seconds) on several full-rank matrix sizes

on the SUN Hypersparc with block size 20.

Matrix Size DGELSS DGELSX DGELSY DGELSA DGELSB DGELS

150� 150 1.30 0.016 0.013 0.013 0.013 0.011

300� 150 1.60 0.068 0.048 0.048 0.048 0.040

250� 250 6.80 0.43 0.31 0.15 0.15 0.13

500� 250 8.64 2.10 1.44 0.97 0.97 0.41

500� 500 57.13 9.42 5.63 2.94 2.92 2.53

1000� 500 74.48 23.76 13.99 6.75 6.75 5.88

1000� 1000 456.30 77.75 44.93 21.14 21.07 18.38

and very close to those of the solver for full-rank matrices based on BLAS-3,

DGELS.

4.2 Numerical accuracy

We have conducted several experiments to evaluate the accuracy of the new

algorithms on di�erent matrix types and sizes. Some of the tests were obtained

from the LAPACK Test Suite. We have computed the following residuals and

tests:

� kB �AXk=(max(n;m)kAkkXk�), where � is the precision machine.

� kRTAk=(kAkkBkmax(m;n; k)�), where k is the number of right hand

sides.

� The norm of the trailing block of the triangular factor of the QR factor-

ization with column pivoting of matrix [A;X].

� The norm of the subtraction of the singular values of R and the singular

values of A.

The new algorithms obtained results very similar to those of DGELSX. The

solver DGELSB gave a higher residual in a few cases because it did not reveal the

numerical rank, though it revealed a well conditioned R11.

5 Concluding Remarks

We have developed three new solvers based on BLAS-3 and block oriented

for solving the linear least squares problem. The new subroutines perform much

faster than the LAPACK code for rank-de�cient matrices and very close to the

LAPACK code for full-rank matrices. Some of the drivers have already been

included in the latest release of LAPACK.

13



While maintaining the numerical behavior of the subroutine xGELSX, new

subroutine xGELSY consistently outperforms it. Subroutines xGELSA and xGELSA

are based on a di�erent approach that allows an even higher data locality. These

subroutines are usually even faster than the above mentioned xGELSY and LA-

PACK xGELSX.

Although not reported, similar performance results were obtained on DEC

Alpha/AXP and HP 9000/715 platforms.
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