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Abstract

We consider computing the singular value decomposition of a bidiagonal matrix B. This
problem arises in the singular value decomposition of a general matrix, and in the eigen-
problem for a symmetric positive de�nite tridiagonal matrix. We show that if the entries of
B are known with high relative accuracy, the singular values and singular vectors of B will
be determined to much higher accuracy than the standard perturbation theory suggests.
We also show that the algorithm in [Demmel and Kahan] computes the singular vectors as
well as the singular values to this accuracy. We also give a Hamiltonian interpretation of
the algorithm and use di�erential equation methods to prove many of the basic facts. The
Hamiltonian approach suggests a way to use 
ows to predict the accumulation of error in
other eigenvalue algorithms as well.

(This paper appeared in the SIAM J. Numer. Anal., v. 18, n. 5, pp. 1463-1516, 1991)
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1 Introduction

The singular value decomposition (SVD) of a real general n by nmatrixA is the factorization
A = U�V T , where U and V are orthogonal, � = diag f�1; : : : ; �ng, and �1 � � � � � �n � 0.
The �i's are the singular values of A, the columns vi of V the right singular vectors of A,
and the columns ui of U the left singular vectors of A.

In this paper we will consider the SVD of a bidiagonal matrix B

B =

2
666664

a1 b1
. . .

. . .

. . . bn�1
an

3
777775 ; (1:1)

where we may assume without loss of generality that the ai and bi are positive. (Recall
that this assumption implies that all the �i are positive and distinct [Par80].) This problem
arises as the �nal stage of the SVD of a general matrix A [GK65, GVL83], as well as in
computing the eigendecomposition of a symmetric positive-de�nite tridiagonal matrix T

[BD88]. Both computations arise frequently in a wide variety of applications. Our goal in
this paper is threefold: to show that the SVD of a bidiagonal B can be computed much
more accurately than the SVD of a general matrix A, to explain this with the aid of a
Hamiltonian di�erential equation underlying the SVD algorithm used for B, and to suggest
using similar di�erential equations to �nd high accuracy algorithms for other eigenvalue
and singular value problems.

How accurately can the SVD of a general matrix A be computed? To answer this
question, we must consider both the e�ects of uncertainty in the initial data A, as well as
errors introduced by an algorithm (roundo� errors and the e�ects of the stopping criterion);
a good algorithm introduces errors no worse than inherent errors caused by uncertainty in
the data. The standard approach is to bound the uncertainty �A in the initial data by its
two-norm k�Ak: we say that �A is an absolute error of scale � in A if k�Ak = kAk � �. With
this de�nition of � we have:

(A) - The singular values �i of A and �0i of A + �A can di�er by at most � kAk for all i
[GVL83]:

j�i � �0ij � � kAk (1:2)

(B) - Let ui and u0i be the i-th left unit singular vectors of A and A+ �A respectively, and
vi and v

0

i be the right unit singular vectors. Let the absolute gap for �i be de�ned as
the distance from �i to the nearest di�erent singular value, normalized by �1:

absgapi � minj 6=ij�i � �j j=�1 (1:3)

If � < absgapi=2, then the sines of the angles between ui and u
0

i (sin �(ui; u
0

i)), and
between vi and v0i (sin �(vi; v

0

i)), are bounded as follows[DK70]:

max(sin �(ui; u
0

i); sin �(vi; v
0

i)) �
�

absgapi � �
(1:4)
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The reason for limiting � < absgapi=2 is that for larger perturbations the bound (1.4)
is vacuous. This re
ects the fact that larger perturbations by a general matrix can
cause �i to merge with another singular value, so that the singular vectors fail to be
uniquely de�ned.

Now we consider the errors introduced by the standard algorithm [GK65] for the SVD
of a general matrix. We assume a standard model of 
oating point arithmetic, with relative
errors of size at most ", the machine precision, in each basic operation, and assume neither
over
ow nor under
ow occur. Under these assumptions it is well known [GVL83] that the
error bound of the standard algorithm is equivalent to an uncertainty �A in the initial
data with absolute error scale k�Ak = kAk � p(n)", where p(n) depends on details of the
arithmetic and algorithm, and is a modestly growing function of the dimension n of A (a
cubic polynomial in n with modest coe�cients). In other words, the error introduced by
the algorithm is no worse than p(n)" kAk = p(n)"�1 in the singular values and no worse
than p(n)"=absgapi in the singular vectors.

In particular, suppose A has one or more tiny singular values �j , where by tiny we mean
�j � �1 = kAk. The error bound p(n)"�1 for the singular values implies that while large
singular values may be computed with high relative accuracy, tiny ones will in general not
be, since the error bound may greatly exceed their value. Also, if there are two or more
tiny singular values, their absolute gaps will necessarily be small compared to �1, and their
singular vectors correspondingly uncertain. Indeed, these uncertainties are unavoidable as
long as one considers general perturbations �A bounded only in norm, because the bounds
in (A) and (B) above are attainable [Wil65].

Now we return to the case of a bidiagonal matrix B. It turns out that the e�ects of
both initial data uncertainties and roundo� errors are signi�cantly smaller than for general
matrices, and are controlled by the relative error of �B

�r � (2n� 1) �max
ij
j log Bij + �Bij

Bij
j (1:5)

instead of by its norm k�Bk. When �r � 1, this means that the sum of the componentwise

relative errors
P

ij j
�Bij

Bij
j is approximately bounded by �r. In other words, the zero entries

of B must remain zero, and we only permit relative perturbations in the remaining entries,
rather than norm bounded perturbations. Using �r as measure of uncertainty in B, one can
prove:

(A0) - Let the �i be the singular values of B and �0i be the singular values of B+�B. Then

e��r � �0i
�i
� e�r (1:6)

This bound holds for all �r � 0, just as (1.2) holds for all � � 0. When �r � 1, these

upper and lower bounds on
�0i
�i

are approximately 1� �r, meaning that small relative
perturbations in the entries of B only cause small relative perturbations in the �i,
independent of their magnitudes.
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(B0) - For simplicity of notation write e�r = 1 + �0r; when �r � 1, �r � �0r. Let ui and
vi be the singular vectors of B, and let u0i and v

0

i be the singular vectors of B + �B.
Let the relative gap for �i be de�ned as the relative distance from �i to the nearest
di�erent singular value:

relgapi � minj 6=ij�i � �j j=j�i + �j j (1:7)

If �0r < relgapi, then the sines of the angles between ui and u
0

i, and between vi and
v0i, are bounded by

max(sin �(ui; u
0

i); sin �(vi; v
0

i) �
21=2�0r(1 + �0r)

relgapi� �0r
(1:8)

Result (A0) was proven in [Kah68, DK88, BD88]; we include a (new) proof for the
convenience of the reader. Result (B0) is proved here for the �rst time; it was conjectured
in [DK88] with a proof of a weaker result in [BD88].

One can easily see that results (A0) and (B0) are always at least about as strong as
their counterparts (A) and (B). To show how much stronger they may be, consider making
relative perturbations of size 10�10 in a 3 by 3 bidiagonal matrix with singular values
�1 = 1, �2 = 2 � 10�20, and �3 = 10�20. Note that absgap3 = absgap2 = 10�20, and that
relgap3 = relgap2 = 1=3. Since the norm of this perturbation is about 10�10, we may apply
(A) and (B) to get the absolute error bound 10�10 � �3 for �3, and, since 10

�10 � absgap3,
no error bound for the singular vectors at all. Applying (A0), we get a relative error bound
of about 5 � 10�10 in �3. Thus, we have at least 9 decimal digits of accuracy in �3, whereas
(A) predicts changes 1020 times larger. Applying (B0), we get an error bound of about
2:1 � 10�9 in the direction of the singular vectors, whereas (B) provides no error bound at
all. The same results hold for �2 and its singular vectors.

In summary, absolute uncertainties in the entries of a general matrix A yield absolute

error bounds on its singular values, and error bounds depending on the absolute gap for
its singular vectors. In contrast, relative uncertainties in the entries of a bidiagonal matrix
B yield relative error bounds on its singular values, and error bounds depending on the
relative gap for its singular vectors.

Given the much greater accuracy to which singular values and singular vectors of bidi-
agonal matrices are determined by the data, it is desirable to have an algorithm which
computes them to their inherent accuracy. In [DK88] such an algorithm was provided for
computing the singular values to high relative accuracy. This new algorithm is a hybrid of
the standard, shifted QR algorithm in [GK65, BDMS79], and a new, stable implementation
of QR with a zero shift. It was also demonstrated empirically that this new algorithm was
about as fast, and often much faster, than the standard algorithm [BDMS79], which can
only provide absolute error bounds on the singular values.

In this paper we will prove that the algorithm in [DK88] also computes the singular
vectors of bidiagonal B with an error bound depending on the relative gap as in (B0). More
precisely, it will compute singular vectors ui and vi with an error bound q(n)"=relgapi,
where q(n) is a modest function of the dimension n of B, and " is the machine precision
as above. Thus, this algorithm computes all features of the SVD of a bidiagonal matrix
to their inherent uncertainties. (Actually, we will need to change one line in the algorithm
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of [DK88], but this change will e�ect none of the numerical or timing results reported in
[DK88]. We will discuss this change further in sections 3 and 6.)

If the bidiagonal matrix B is the result of reducing a dense matrix A to bidiagonal
form, then in general the entries of B will have uncertainties of order "kAk, thus limiting
the accuracy of the overall computation to bounds (A) and (B). A high accuracy SVD
algorithm for dense matrices can be found in [DV90]. On situation where the reduction to
bidiagonal form is accurate is the symmetric positive de�nite eigenvalue problem [BD88],
where BTB = A is the Cholesky decomposition of A, so the eigenvalues of A are the squares
of the singular values of B.

The proof that the algorithm computes singular vectors as accurately as claimed has
two new parts: bounding the error due to the stopping criterion, and bounding the error
due to roundo� in the zero-shift QR iteration. The stopping criterion bounds are similar to
the bounds in (A0) and (B0), and are obtained via a specialized perturbation argument in
which the SVD problem for a bidiagonal matrix is converted into an eigenvalue problem for a
tridiagonal matrix with zero diagonal, following [GVL83] (see section 4). On the other hand,
bounds for the roundo� errors due to repeated iterations of the algorithm are conveniently
analyzed in terms of the long time behavior of a Hamiltonian di�erential equation on the
space of matrices naturally associated with the algorithm ([DLT89, Sym82, Chu86]).

To proceed, we need to introduce some notation. QR iteration with a zero shift applied
to a general invertible matrix A0 produces a sequence of orthogonally similar matrices Ai

as follows. Given Ai, compute its QR decomposition Ai = QR, where Q is orthogonal
and R is upper triangular with positive diagonal. Then Ai+1 = RQ = QTAiQ. It is well
known that if A0 has eigenvalues with distinct moduli, then Ai converges to a triangular
matrix with the eigenvalues on the diagonal as i ! 1. This algorithm may be applied to
the bidiagonal singular value problem as follows [GVL83]. Let B0 be our initial bidiagonal
matrix. Given Bi, compute the QR decompositions BiB

T
i = Q1R1 and BT

i Bi = Q2R2.
Then let Bi+1 = QT

1BiQ2. Then Bi is bidiagonal for all i and converges as i ! 1 to a
diagonal matrix with the singular values on the diagonal. Observe that Bi+1B

T
i+1

= R1Q1

and BT
i+1

Bi+1 = R2Q2, so that the above zero-shift SVD algorithm implicitly applies the
usual QR iteration to BiB

T
i and BT

i Bi simultaneously.
We think of the SVD algorithm as a mapping from RI 2n�1 (the entries of Bi) to RI 2n�1

(the entries of Bi+1). To understand how errors propagate through iterations of the SVD
algorithm, it is natural to look at the Jacobian of this map, since the Jacobian describes how
small perturbations in Bi a�ect Bi+1. However, since we are interested in the propagation
of relative errors, we will look instead at a Jacobian which maps small relative perturbations
in Bi to relative perturbations in Bi+1. To this end, we will work with the logarithms of
the entries Bi and Bi+1, since small perturbations in the logarithms of the matrix entries
are equivalent to small relative perturbations in the matrix entries themselves. Thus, we
will think of a bidiagonal B as a point in RI 2n�1 through the identi�cation (recall that the
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nontrivial entries of B are positive)

2
666664

a1 b1
. . .

. . .

. . . bn�1
an

3
777775()

2
6666666664

log b1
...

log bn�1
log a1
...

log an

3
7777777775

and think of one step of the SVD algorithm as a map F which maps vectors of logarithms
of entries of Bi to vectors of logarithms of entries of Bi+1, i = 0; 1; 2; : : :. Thus for j > i

F (j�i)(Bi) = F � � � � � F| {z }
j�i times

(Bi) = Bj

We will call its Jacobian M(j; i), which by the chain rule is the product of the one step
Jacobians M(j; i) = M(j; j � 1) � � �M(i + 1; i). It is M(j; i) which describes how initial
relative errors in B and roundo� errors committed during prior SVD iterations propagate
during later SVD iterations.

The following four facts were observed during initial numerical experiments:

Fact 1: The eigenvalues of M(j; i) appear in reciprocal pairs. In other words, if � is an
eigenvalue, so is 1=�.

Fact 2: Near convergence (i.e. for i large enough), the eigenvalues ofM(i+1; i) are simple,
approach 1 and all lie on the unit circle.

Fact 3: As i!1, M(i+ 1; i) converges to the constant matrix

M1 =

"
In�1 �n
0 In

#
where �n =

2
64
�2 2

. . .
. . .

�2 2

3
75 (1:9)

independent of initial data.

Fact 4: kM(j; i)k grows linearly in the number of SVD steps j � i.

More precisely, we observed numerically for a large class of problems that
kM(j; i)k

1
� 5:06 � n � (j � i) (n is the matrix dimension). In section 9, using O.D.E.

methods, we will prove kM(j; i)k
1
� (8n� 4)(j � i) +O(1). This is the essential property

of roundo� error propagation which lets us prove that the algorithm computes singular vec-
tors as accurately as claimed. This linear growth is to be expected because near convergence
we have

M(j; i)�M j�i
1 =

"
In�1 (j � i)�n
0 In

#

which grows linearly in norm. In section 10 we sketch an alternate proof of Fact 4 based
on this intuition.
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In contrast, a straightforward error analysis without the machinery developed in this
paper would yield an error bound growing exponentially in n.

As we will see, Facts 1 and 2 follow from the observation that linear combinations of
the variables log b1; : : : ; logan satisfy a Hamiltonian di�erential equation with Hamiltonian
�tr(log(BBT )2)=4. The relationship between the 
ow and the algorithm � � � ! Bi !
Bi+1 ! � � � is as follows: if log b1(t); : : : ; logan(t) solve the Hamiltonian 
ow with initial

conditions log b
(0)

1
; : : : ; log a

(0)

n , then

2
64

log b1(i)
...

log an(i)

3
75 =

2
664
log b

(i)
1

...

log a
(i)
n

3
775

where

Bi =

2
666664

a
(i)
1

b
(i)
1

. . .
. . .
. . . b

(i)
n�1

a
(i)
n

3
777775

gives the i-th step in the SVD algorithm, starting from

B0 =

2
666664

a
(0)

1
b
(0)

1

. . .
. . .
. . . b

(0)

n�1

a
(0)

n

3
777775

(see sections 7 and 8 below). In contrast to many eigenvalue algorithms (see [Sym82,
DLT89]), where the underlying symplectic structures are Lie-Poisson structures, here the un-
derlying structure is a so called Sklyanin structure [Sem84]. The variables log a1, log a1a2 =
log a1+log a2, : : : , log a1 � � �an�1 = log a1+ � � �+log an�1 will turn out to be the momentum
variables (note that log an does not appear because it is determined by the other variables
through the relation a1 � � �an = det(B) = constant), and the log bi will be the position vari-
ables. In the limit, the momenta converge to constants (the sums of the logarithms of the
singular values), and the positions move at constant speed toward �1 (i.e. the o�diagonals
bi decay to zero geometrically).

Fact 1 will follow from the fact that the Jacobian with respect to the canonical Hamil-
tonian variables is symplectic; symplectic matrices have eigenvalues appearing in reciprocal
pairs. Facts 2, 3 and 4 will follow from the asymptotics of the Hamiltonian system, Fact
1, and Krein's theory of strongly stable symplectic matrices [Kre50, Kre55].

The use of the di�erential equation as outlined above suggests a paradigm for seeking
algorithms to solve other eigenvalue problems to high relative accuracy. The symplectic
interpretation of the (fortuitously chosen) relative errors is that they correspond to pertur-
bations in the canonical variables for the symplectic structure in which the SVD algorithm
is Hamiltonian. The general paradigm we suggest is the following: given a Poisson structure
in which a given eigenvalue algorithm is Hamiltonian, one should try to construct natural
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global canonical variables (i.e. a global Darboux coordinate system). Such variables would
indicate which functions of the eigenvalues (in our case, their logarithms) are relatively
insensitive to appropriate perturbations in the matrix (in our case, relative perturbations
in the entries) and hence are computable to high accuracy.

The rest of the paper is organized as follows. Section 2 proves the perturbation results
(A0) and (B0). Section 3 describes the algorithm, and section 4 bounds the error in the
singular values and vectors introduced by its stopping criterion. Section 5 uses the bound
on kM(j; i)k (Fact 4) to prove the error bounds for the zero-shift QR algorithm. Section
6 proves the main numerical result of the paper, an error bound for the singular vectors
computed by the overall algorithm. Section 7 describes 
ows and the SVD algorithm. It
also provides an independent proof of the convergence of the zero-shift SVD algorithm
with detailed (and we believe new) asymptotic expressions for the matrix entries. Section 8
discusses the Hamiltonian structure of the 
ow and proves Fact 1 above. Section 9 analyzes
the asymptotics of kM(j; i)k and proves Fact 4. Section 10 discusses the spectrum of the
one-step Jacobian of the SVD, and proves Facts 2 and 3. Section 11 presents numerical
experiments, and section 12 draws our conclusions.

We note that an alternative approach to computing singular values using gradient 
ows
is presented in [Dri87].

Caveat: We will abuse the word \algorithm" in several di�erents ways. Sometimes it
will refer to one step of the QR iteration (with or without shift) and sometimes it will refer
to the full implementation with stopping criteria (the conventional [BDMS79] or the new
[DK88] one). Which one is meant will be clear from context.
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2 Perturbation Theory for Singular Vectors

In this section we prove the perturbation bound (1.8), which says that small relative per-
turbations in the entries of a bidiagonal matrix perturb the singular vectors by an amount
proportional to the reciprocal of the relative gap (1.7). This result was conjectured in
[DK88], and a weaker result proven in [BD88]. For the reader's convenience we also include
a (new) proof of the eigenvalue bound (1.6).

The proofs depend on the following standard transformation [GK65]. Suppose the bidi-
agonal matrix B has entries0

BBBBBB@

s1 s2 

s3 s4

. . .

s2n�3 s2n�2

 s2n�1

1
CCCCCCA

(2:1)

and SVD B = U�V T , with � = diagf�1; : : : ; �ng, V = [v1; : : : ; vn] and U = [u1; : : : ; un].
Then the symmetric matrix

S =

0
BBBBBBBB@

0 s1 

s1 0 s2

s2 0
. . .

. . .

s2n�1

 s2n�1 0

1
CCCCCCCCA

(2:2)

has eigenvalues ��i with normalized, associated eigenvectors

h�i � 2�1=2(vi1;�ui1; vi2;�ui2; : : : ; vin;�uin)T :

(Note for future reference that the components of h�i are bounded by 1=
p
2.) Thus, the

eigendecomposition for S also yields the SVD for B, and so perturbation theory for the
eigenproblem for S also computes perturbation theory for the SVD of B.

As described in [GvL], the transformation B 7! S should be viewed as the result of
composing the SVD ! eigenproblem map,

B 7!
 

0 BT

B 0

!
;

with a perfect shu�e of the rows and columns, f1; 2; 3; : : : ; 2ng ! f1; n+1; 2; n+2; : : : ; n; 2ng,
taking  

0 BT

B 0

!
7! S :

Our �rst result bounds the e�ect of in�nitesimal relative perturbations in the entries of
S; the second result generalizes to �nite perturbations.

Recall the standard fact that the eigenvalues of a tridiagonal matrix with nonzero
o�-diagonal entries are simple, and hence that the eigenvalues and eigenvectors depend
smoothly on the entries of the matrix.
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Theorem 2.3 Let S(t) be a matrix of the form (2.2), but with entries si(t) which are

smooth, positive functions of t. Let ��i(t) and h�i (t) denote the eigenvalues and eigenvectors
of S(t) respectively. Then

j _�i(0)
�i(0)

j � (2n� 1)(max
m

j _sm(0)
sm(0)

j) (2:4)

and

k _h�i (0)k � (2n� 1)(max
m

j _sm(0)
sm(0)

j)( 1

relgapi
) : (2:5)

Proof. Let

f�1; �2; �3; �4; : : :g = f+�1;��1;+�2;��2; : : :g
(2.6)

f!1; !2; !3; !4; : : :g = fh+
1
; h�

1
; h+

2
; h�

2
; : : :g

denote the eigenvalues and associated eigenvectors of S. Then, by regular perturbation
theory, and repeated use of the eigenvalue equation,

_�i = (!i; _S!i) =
2n�1X
j=1

(
2 _sj
sj

)(!i(j) sj!i(j + 1))

= 2
2n�1X
j=1

_sj
sj
!i(j)(�i!i(j)� sj�1!i(j � 1))

= � � � = 2�i

2n�1X
j=1

_sj
sj
(

jX
m=1

!2

i (m)(�1)j�m) : (2.7)

Thus

j _�i
�i
j � 2(max

k
j _sk
sk
j)

2n�1X
j=1

j
jX

m=1

!2

i (m)(�1)j�mj :

On the other hand,it follows from (2.6) and the perpendicularity of h+q and h�q , that

nX
m=1

!2

i (2m) =
nX

m=1

!2

i (2m� 1) =
1

2
(

2nX
m=1

!2

i (m)) =
1

2
: (2:8)

But then

j
jX

m=1

!2

i (m)(�1)j�mj � 1

2
; (2:9)

which proves (2.4).
Again by regular perturbation theory and repeated use of the eigenvalue equation,

_!i =
X
k 6=i

(!k ; _S !i)
!k

�i � �k
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=
2n�1X
m=1

(
_sm
sm

)
X
k 6=i

(!k(m) sm!i(m+ 1) + !i(m)sm!k(m+ 1))
!k

�i � �k

=
2n�1X
m=1

(
_sm
sm

)
X
k 6=i

(!k(m)!i(m)(�i + �k)� !i(m� 1)sm�1!k(m)

�!k(m� 1)sm�1!i(m))
!k

�i � �k

= � � �=
2n�1X
m=1

(
_sm
sm

)
X
k 6=i

(
�i + �k

�i � �k
)(

mX
`=1

!k(`)!i(`)(�1)m�`)!k : (2.10)

Using the orthonormality of the eigenvectors !k, we obtain

k _!ik � (max
m

j _sm
sm
j)

2n�1X
m=1

k
X
k 6=i

(
�i + �k

�i � �k
)(

mX
`=1

!k(`)!i(`)(�1)m�`)!kk

= (max
m

j _sm
sm
j)

2n�1X
m=1

(
X
k 6=i

(
�i + �k

�i � �k
)2(

mX
`=1

!k(k)!i(`)(�1)m�`)2)1=2

� (max
m

j _sm
sm
j)(max

k 6=i
j�i + �k

�i � �k
j)

2n�1X
m=1

(
2nX
k=1

(
mX
`=1

!k(`)!i(`)(�1)m�`)2)1=2

But again, by orthonormality,

2nX
k=1

(
mX
`=1

!k(`)!i(`)(�1)m�`)2 =
X

1�`;q�m

(
2nX
k=1

!k(`)!k(q)!i(`)!i(q)(�1)m�`(�1)m�q)

=
mX
`=1

!2

i (`) � 1 :

A simple computation shows that if �i = ��i0 , then maxk 6=i j�i+�k�i��k
j = (rel gapi0)

�1. This
proves (2.5), and the Theorem. tu

Remark. From (2.3), k _h�i k2 = 1

2
(k _uik2 + k _vik2). Hence (2.5) yields

max(k _uik; k _vik) �
p
2(2n� 1)(max

m
j _sm(0)
sm(0)

j) ( 1

relgapi
) : (2:11)

We also have the following global error bound.

Theorem 2.12 Let B and B0 be bidiagonal matrices with positive entries Bik and B
0

ik. Let

�r � (2n� 1)max
j;k

j log
B0jk

Bjk

j (2:13)

be the relative error in B as de�ned in (1.5), and �0r � e�r � 1 > �r > 0. Then

1� �0r < e��r <
�0i
�i
< e�r = 1 + �0r (2:14)
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which implies

� �0r <
�0i � �i
�i

< �0r : (2:15)

Furthermore, if �0r < relgapi, the sines of the angles �(ui; u
0

i); �(vi; v
0

i) between the unper-

turbed singular vectors ui; vi and the perturbed singular vectors u0i; v
0

i, are bounded by

max(sin �(ui; u
0

i); sin �(vi; v
0

i)) �
p
2�0r(1 + �0r)

relgapi� �0r
(2:16)

Proof. Let S and S0 be matrices of the form (2.2) derived from B and B0 as before.
Set S(t) = S + t(S0 � S), 0 � t � 1. With the notation of Theorem 2.3, we have from (2.7)
and (2.9),

j log �
0

i

�i
j �

Z t

0

j d
dt

log�i(t)j dt

�
2n�1X
j=1

(

Z
1

0

j _sj
sj
j dt)

=
2n�1X
j=1

j log
s0j

sj
j

� �r ;

which proves (2.14). Note that the eigenvalues of s(t) cannot pass through zero as t varies
from zero to one.

In a similar way,from (2.10) and the calculation that follows in Theorem 2.3,

k _!ik � ( max
0�t�1

max
k 6=i

j�i(t) + �k(t)

�i(t)� �k(t)
j)

2n�1X
m=1

j _sm(t)
sm(t)

j ;

which yields

kw0i � wik � ( max
0�t�1

max
k 6=i

j�i(t) + �k(t)

�i(t)� �k(t)
j) �r ;

and hence

k(h�i )0 � h�i k � ( max
0�t�1

max
k 6=i

j�i(t) + �k(t)

�i(t)� �k(t)
j) �r ;

as noted at the end of the proof of Theorem 2.3.
Now observe that

�r(t) = (2n� 1)max
j
j log sj(t)

sj(0)
j � �r

for all 0 � t � 1. Thus from (2.14)

1� �0r < e��r � �i(t)

�i(0)
� e�r = 1 + �0r :

Suppose �i(t) > �k(t) > 0. Then

�i(t) + �k(t) � e�r(�i(0) + �k(0) ) ;

12



and

�i(t)� �k(t) � �i(0)(1� �0r)� �k(0)(1 + �0r)

= [(
�i(0)� �k(0)
�i(0) + �k(0)

)� �0r](�i(0) + �k(0) )

� (relgapi� �0r)(�i(0) + �k(0) ) ;

so that for �0r < relgapi,

j�i(t) + �k(t)

�i(t)� �k(t)
j � e�r

relgapi � �0r
=

1 + �0r
relgapi� �0r

:

The same inequality holds if �k(t) > �i(t), and we obtain

k(h�i )0 � (h�i )k �
�r(1 + �0r)

relgapi � �0r
:

As

sin �(ui; u
0

i) � ku0i � uik �
p
2k(h+i )0 � h+i k

sin �(vi; v
0

i) � kv0i � vik �
p
2k(h+i )0 � h+i k ;

and as �r < �0r, the result follows. tu
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3 The SVD Algorithm

In this section we describe the algorithm for the bidiagonal SVD. This algorithm was in-
troduced in [DK88], and discussed in detail there. Here, we present a simpli�ed version of
the algorithm which is adequate to prove our error bounds. The practical enhancements we
omit here can greatly improve performance in some cases, but will not invalidate our error
analysis. It turns out our eventual error bounds will depend on the number of QR steps
necessary for convergence; the practical enhancements often reduce this number dramati-
cally, and we summarize our numerical experience with the number of QR steps required
in section 11.

Brie
y, the algorithm is a hybrid of the standard shifted QR algorithm and the implicit
zero-shift QR algorithm. The standard shifted QR is used on matrices which are well-
conditioned (�n is not much smaller than �1), and implicit zero-shift QR is used on ill-
conditioned submatrices (�n � �1). Implicit zero-shift QR is much more accurate than
shifted QR, but much slower if the matrix is well-conditioned. Fortunately, shifted QR
is adequately accurate on well-conditioned matrices, so we only need to exploit the more
accurate implicit zero-shift QR when it is also fast. Thus, as the algorithm runs, the
o�diagonal entries decrease and are eventually set to zero, de
ating the matrix. On each
newly de
ated submatrix, �n and �1 are cheaply but reliably estimated and either shifted
QR or implicit zero-shift QR used depending on the ratio �n=�1.

We will need to change one line in the algorithm presented in [DK88] in order to prove
our error bounds in section 6. This change will not alter any of the numerical or timing
results reported in [DK88].

We will present the implicit zero-shift QR algorithm, the stopping criterion for setting
tiny o�diagonal entries to zero, and �nally the overall algorithm. Implicit zero-shift QR
calls the subroutine ROT (f; g; cs; sn; r) [GVL83], which takes f and g as inputs and returns
r, cs = cos � and sn = sin � such that"

cs sn

�sn cs

#
�
"
f

g

#
=

"
r

0

#
(3:1)

ROT(f ; g; cs; sn; r): take f and g as input and returns cs, sn and r satisfying (3.1).

if (f = 0) then
cs = 0; sn = 1; r = g;

elseif (jf j > jgj) then
t = g=f ; tt =

p
1 + t2

cs = 1=tt; sn = t � cs; r = f � tt
else

t = f=g; tt =
p
1 + t2

sn = 1=tt; cs = t � sn; r = g � tt
endif
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The algorithm also calls subroutine UPDATE(cs; sn; v1; v2):

UPDATE(cs; sn;v1;v2): replace n-vectors v1 and v2 by cs �v1+sn �v2 and �sn �v1+cs �v2.

for i = 1 to n
t = v1(i)
v1(i) = cs � t + sn � v2(i)
v2(i) = �sn � t + cs � v2(i)

endfor

Implicit Zero-Shift QR Algorithm: Let B be an n by n bidiagonal matrix with diagonal
entries a1; : : : ; an and superdiagonal entries b1; : : : ; bn�1. The following algorithm replaces
ai and bi by new values corresponding to one step of the QR iteration with zero shift.
It also updates the right unit singular vectors vi and left unit singular vectors ui (at the
start of the algorithm, these should be initialized to the columns of the identity matrix:
vi(j) = ui(j) = �ij .

oldcs = 1
f = a1
g = b1
for i = 1, n� 1

call ROT (f; g; cs; sn; r)
call UDPATE(cs; sn; vi; vi+1)
if (i 6= 1), bi�1 = oldsn � r
f = oldcs � r
g = ai+1 � sn
h = ai+1 � cs
call ROT (f; g; cs; sn; r)
call UPDATE(cs; sn; ui; ui+1)
ai = r

f = h

g = bi+1

oldcs = cs

oldsn = sn

endfor
bn�1 = h � sn
an = h � cs
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This algorithm may also be expressed in the following terser but equivalent form (we
will need the expanded form above for the analysis):

oldcs = 1
cs = 1
for i = 1, n� 1

call ROT (ai � cs; bi; cs; sn; r)
call UDPATE(cs; sn; vi; vi+1)
if (i 6= 1), bi�1 = oldsn � r
call ROT (oldcs � r; ai+1 � sn; oldcs; oldsn; ai)
call UPDATE(cs; sn; ui; ui+1)

endfor
h = an � cs
bn�1 = h � oldsn
an = h � oldcs

Next we discuss the stopping criterion, i.e. how to decide when to set an o�diagonal bi
to zero and so converge. It is important that the stopping criterion introduce error in the
singular vectors not much worse than the bound of Theorem 2.2, since otherwise we will not
compute the singular vectors to their inherent accuracy. The criterion described in [DK88]
is the following.
Stopping Criterion: This algorithm decides when an o�diagonal entry bi can be set to
zero. 0 < tol < 1 is a relative error tolerance.

�1 = a1
for j = 1, n� 1

if jbjj < tol � �j , set bj = 0
�j+1 = jaj+1j � (�j=(�j + jbjj))

endfor

It was shown in [DK88] that this criterion perturbs the singular values of B by no more
than about n � tol=21=2 when tol � 1. In sections 4, 5 and 6 we will show that it also has a
small e�ect on the singular vectors, in particular that it does not change them in direction
by more than about O(tol=relgapi), which is the same level as their inherent uncertainty.
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Thus, the overall algorithm can be summarized as follows.

Bidiagonal SVD Algorithm (simpli�ed)

Loop:

Find the bottommost unreduced submatrix of B; call it B̂.

(Let s and e be the starting and ending indices of B̂ within B.
Then be = 0 if e < n, bs�1 = 0 if s > 1 and bi 6= 0 for s � i � e� 1.)

If B̂ is 1 by 1 (s = e), we are done.

Apply the stopping criterion to B̂; if any bi are set to 0, return to Loop

Estimate the smallest singular value � and the largest singular value � of B̂.

if n � �=� < max("=tol; :01) then

Use implicit zero-shift QR on B̂
else

Use standard shifted QR on B̂
endif

Goto Loop

The di�erence between this algorithm and the one in [DK88] (besides some insigni�cant
simpli�cations) is the use of the test (n��=� < max("=tol; :01)) in place of (n��=� < "=tol)
to determine whether or to use zero-shift QR or shifted QR. The reason for this change will
become apparent in section 6. In [DK88] the value of tol used in the numerical tests was
tol = 100 � ", so this change has no e�ect on the results reported there. The value 100 was
chosen empirically to make the algorithm fast, but could easily be made as large as 1000 or
as small as 10 without greatly impacting performance.

We summarize here the ways in which the above description simpli�es the actual algo-
rithm of [DK88], argue that we have not omitted any features which could greatly increase
the error, and summarize the properties of the practical algorithm we do need for the error
analysis.

Bidirectional QR: If B is as given in (1.1), we de�ne rev(B) as the matrix

rev(B) =

2
666664

an bn�1
. . .

. . .

. . . b1
a1

3
777775 ; (3:2)

i.e. B with the diagonals reversed. The SVDs of B and rev(B) are simply related since
B = Prev(B)TPT , where P is the permutation matrix with ones going from the bottom
left to the upper right: B = U�V T implies rev(B) = (PV )�(PU)T . It turns out that

17



QR iteration may converge much faster applied to rev(B) than B, and so the practical
algorithm tries to exploit this and perform whichever one is faster. The reason for the
speed di�erence is as follows. As zero-shift QR converges, the singular values appear on the
diagonal in decreasing order from upper left to lower right. If the entries of B are already
graded in this way, the algorithm will converge more quickly than if they are not. The
algorithm tests for this grading in a very simple way: if ja1j > janj, QR is applied to B,
and otherwise to rev(B). This is not a foolproof scheme, but can quadruple the speed for
strongly graded matrices.

Since the SVDs of B and rev(B) are essentially permutations of one another, it su�ces
to perform an error analysis either of QR applied to B or QR applied to rev(B). Our error
bound will however depend on the total number of QR steps taken, and so bene�t from the
practical enhancements; we summarize our numerical experience with the number of QR
steps required for convergence in the section 11. Of course, in practice the number of QR
steps is known after the algorithm terminates, and this value could be used in our later
error bounds.

Bidirectional stopping criterion: Just as QR can be applied either to B or rev(B), so can
the stopping criterion. In fact we apply it to both B and rev(B), no matter to which of the
two we apply QR.

2 by 2 submatrices: When the bottommost unreduced submatrix B̂ is 2 by 2, we can
apply the quadratic formula to directly compute its SVD. In practice, we implement it
quite carefully so that when addition and subtraction are implemented with a guard digit
(fl(a � b) = (a � b)(1 + "1), j"1j � ") we compute both the singular values and singular
vectors to nearly full machine precision, even if the relative gap is small so that the singular
vectors are ill-conditioned. In the absence of a guard digit (the model of arithmetic in (5.1))
we only compute nearly the exact singular values and vectors of a matrix which di�ers from
the input in a few bits in each entry. Thus, the global perturbation bounds of section 2 are
respected.

De
ation when ai = 0: When some ai = 0, then the code will automatically set bi�1, bn�1
and an to zero; this is because f = h = 0 at the end of each loop iteration. Thus, this case
needs no special consideration (in contrast to the standard SVD [BDMS79] which treats
this case specially).

Choosing implicit zero-shift QR versus standard shifted QR: We need to compute cheap
and reliable estimates of the smallest singular value � and largest singular value � in order
to decide whether to use standard or implicit zero-shift QR. The largest singular value �
can clearly be estimated to within a factor of 2 by the largest absolute entry of B. The
smallest singular value � turns out to be estimated to within a factor of n�1=2 by mink �k,
where the �k are computed by the recurrence in the Stopping Criterion above [DK88]. This
uncertainty in � and � will contribute a factor of n1=2 to our �nal error bound.
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4 Error Bounds for the Stopping Criterion

Let B be a bidiagonal matrix with positive entries ap; bq, and let B
0 be the bidiagonal matrix

obtained from B by setting bj = 0 for some j, 1 � j � n�1. Let S and S0 be the associated
tridiagonal matrices of form (2.2).

De�ne vectors z2j ; z2j+1 through

Sz2j = e2j (4:1)

Sz2j+1 = e2j+1 ; (4:2)

where feig give the standard basis in RI2n. A simple calculation, using the explicit form of
S, shows that

z2j(`) = 0 if ` is even or ` > 2j + 1 (4:3)

z2j+1(`) = 0 if ` is odd or ` < 2j (4:4)

Set

m1 � min(s2jkz2jk1; s2jkz2j+1k1)
m0

1 � em1 � 1 > m1

m2 � min (s2jkz2jk2 ; s2jkz2j+1k2)
m0

2
= em2 � 1 > m2 ;

where k � k1; k � k2 denote the L1 and L2 norms respectively. It is easy to see that for a given
j,

m1 = bj�j (4:5)

where �j appears in the Stopping Criterion of x3. Similarly,

m2 = bj�j (4:6)

corresponds to �j , but for rev (B) as in (3.2). (See the discussion of the bidirectional
stopping criterion in x3.)

Theorem 4.1 Let B;B0 etc. be as above. Let �i; �
0

i be the singular values of B;B
0 respec-

tively, and let ui; vi and u
0

i; v
0

i be the associated singular vectors, making angles �(ui; u
0

i); �(vi; v
0

i)
respectively. Then for 1 � i � n,

1�m0

` < e�m` � �0i
�i
� em` = 1 +m0

` ; (4:7)`

where ` = 1; 2.
Furthermore, if m0

1
< relgapi,

max(sin �(ui; u
0

i); sin �(vi; v
0

i)) � m0

1(
1p
2
(1 +

r
n� 1

2
) + (

1 +m0

1

relgapi �m0

1

)

r
2n+ 5

4
) ; (4:8)1

and if m0

2
< relgap,

max ( sin �(ui; u
0

i); sin �(vi; v
0

i)) � m0

2(1 +
(1 +m0

2
)

relgapi �m0

2

): (4:8)2
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Proof. Let S(t) be the matrix obtained from S by replacing s2j by ts2j , 0 � t � 1.
Note that S(1) = S, S(0) = S0. By (4.1) and (4.2), note that

S(t)z2j = Sz2j = e2j

S(t)z2j+1 = Sz2j+1 = e2j+1

for all t in the interval.
With the notation of Theorem 2.3,

_�i(t) = 2sij(e2j ; wi(t)) (e2j+1; wi(t))

= 2sij(S(t)z2j; wi(t)) (e2j+1; wi(t))

= 2sij �i (z2j ; wi(t)) (e2j+1; wi(t)) :

But j(e2j+1; wi(t))j = 2�1=2 and j(z2j; wi(t))j � kz2jk1kwi(t)k1 � kz2jk12�1=2. On the other
hand from (4.3),

j(z2j; wi(t))j � 2�1=2kz2jk2kvi0(t)k2 ; for suitable i0;
= 2�1=2kz2jk2 :

(4:9)

Thus ����d log�i(t)dt

���� � s2jkz2jk` = m` ; ` = 1; 2

and integration gives the desired eigenvalue bound (4.7)`, ` = 1; 2.
We now prove (4.8)2. Perturbation theory gives

dwi

dt
=

X
k 6=i

(wi; _Swk)
wk

�i � �k

= s2j
X
k 6=i

((e2j; wi) (e2j+1; wk) + (e2j; wk)(e2j+1; wi))
wk

�i � �k

= s2j
X
k 6=i

(�i(z2j ; wi)(e2j+1; wk) + �k(z2j ; wk)(e2j+1; wi))
wk

�i � �k
; as S(t)z2j = e2j ;

=
s2j

2

X
k 6=i

��
�i + �k

�i � �k

�
(z2j; wi)(e2j+1; wk) +

�
�k + �i

�i � �k

�
(z2j ; wk)(e2j+1; wi)

�
wk

+
s2j

2

X
k 6=i

�
(z2j ; wi)(e2j+1; wk)� (z2j ; wk)(e2j+1; wi)

�
wk :

The second sum is bounded in norm by

j(z2j; wi)j ke2j+1k2 + j(e2j+1; wi)j kz2jk2 �
p
2kz2jk2 ; by (4.9).

The �rst sum is bounded in norm by

max
k 6=i

�����i + �k

�i � �k

����
� 2nX

k=1

�
(z2j ; wi)

2(e2j+1; wk)
2 + (z2j ; wk)

2(e2j+1; wi)
2

+2(z2j ; wi)(e2j+1; wi)(e2j+1; wk)(z2j; wk)

��
1=2
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= max
k 6=i

�����i + �k

�i � �k

����
�kz2jk22

2
+
kz2jk22
2

+ 2 � (2�1=2kz2jk2) � 2�1=2 � kz2jk2
�1=2

=
p
2

�
max
k 6=i

j�i + �k

�i � �k
j
�
kz2jk2 :

Combining terms,

kd!i(t)
dt

k
2
� s2jkz2jk2p

2
(1 + max

k 6=i
j�i(t) + �k(t)

�i(t)� �k(t)
j) :

A similar computation shows that the same inequality holds with kz2jk2 replaced by kz2j+1k2.
Furthermore, note that the proof of (4.7)` shows that

1�m0

` < e�m` � e�(1�t)m` � �i(t)

�i
� e(1�t)m` � em` = 1 +m0

` ;

and hence, arguing as in the proof of Theorem 2.11,

kdh
�

i (t)

dt
k
2
� m2p

2
(1 +

1 +m0

2

relgapi �m0

2

) ;

which yields (4.8)`, upon integration.
The inequality (4.8)1 is proved in the same way. Factors of order

p
n appear, for example,

in estimating the term X
k 6=i

(z2j ; wk)
2 � (2n� 1)(2�1=2kz2jk1 :

tu
Remark. The inequality (4.7)` was proved in [DK88] by a di�erent method.
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5 Error Bounds for the Implicit Zero-Shift QR Algorithm

In this section we will derive error bounds for the quantities computed by m steps of the
implicit zero-shift QR algorithm of section 3. We will use the bound on kM(i; j)k to be
derived in section 9 to bound the round o� error propagated from step to step. Our main
results will be Lemma 5.11, which bounds the relative errors in the bidiagonal matrix
entries after m zero-shift QR steps, and Lemma 5.14, which bounds the absolute error in
the computed orthogonal matrix of the m zero-shift QR steps.

In the error analysis, we will use the fact that an absolute perturbation � in log x is to
�rst order equivalent to a relative perturbation � in x:

log x(1 + �) = log x+ log(1 + �) � log x+ �

Therefore, the Jacobian map M(j; i) which propagates absolute perturbations in the log-
arithms of entries of Bi to Bj also propagates relative perturbations of entries of Bi to
Bj .

As is traditional in numerical analysis, we will bound quantities of the form
Q
(1+�i) by

instead bounding s �P j�ij. When s� 1 (the case of interest), we then have approximately
that 1 � s � Q

(1 + �i) � 1 + s. If more rigor is desired, we can use the fact that for all
s < 1 we have 1� s � Q(1 + �i) � es.

Our model of arithmetic is a variation on the standard one: the 
oating point result
fl(�) of the operation (�) is given by

fl(a� b) = a(1 + "1)� b(1 + "2)

fl(a� b) = (a� b)(1 + "3) (5.1)

fl(a=b) = (a=b)(1+ "4)

fl(
p
a) =

p
a(1 + "5)

where j"ij � ", and " � 1 is the machine precision. This is somewhat more general than
the usual model which uses fl(a� b) = (a� b)(1+ "1) and includes machines like the Cray
which do not have a guard digit. We do not consider over/under
ow; methods for extending
error analysis to include under
ow are presented in [Dem84].

Our analysis proceeds by �ve lemmas. Lemma 5.2 [DK88] analyzes the roundo� errors
in the subroutine ROT of section 3. Lemma 5.4 uses Lemma 5.2 to bound the errors in
the bidiagonal matrix B after one step of the implicit zero-shift QR algorithm. Lemma
5.11 uses Lemma 5.4 and the bound on kM(j; i)k of section 9 to bound the errors in the
bidiagonal matrix after m steps of the implicit zero-shift QR algorithm. Lemma 5.13 shows
that small errors in the sines and cosines computed by one step of the algorithm only cause
small errors in the computed orthogonal matrices containing the singular vectors. Finally
Lemma 5.14 bounds the absolute error in the computed orthogonal matrices containing the
singular vectors after m steps of the algorithm.

Lemma 5.2 Let cos �, sin � and � denote the exact outputs of ROT for inputs f and g and

exact arithmetic. Let cs = (1 + �cs) cos�, sn = (1 + �sn) sin � and r = (1 + �r)� denote the


oating point results of ROT applied to the perturbed inputs f̂ = (1+�f )f and ĝ = (1+�g)g.
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Then to �rst order we may bound the relative errors �cs, �sn and �r in terms of �f , �g and

the machine precision " as follows:

j�csj � (j�f j+ j�gj) sin2 � +
21"

4

j�snj � (j�f j+ j�gj) cos2 � +
21"

4
(5.3)

j�rj � j�f j cos2 � + j�g j sin2 � +
13"

4

Proof. See the proof of Lemma 5 in [DK88]. The slightly di�erent model fl(a� b) =
(a�b)(1+"1) used in [DK88] does not a�ect the �nal result because only positive quantities
are added in ROT ; this makes the two models equivalent. tu

To state the next lemma, we need to be able to distinguish the di�erent values the
variables in the implicit zero-shift QR algorithm take on at di�erent times. To this end, we
state the following equivalent algorithm, where the variables are labeled by the loop counter
i:
Labeled Implicit Zero-Shift QR Algorithm:

oldcs1 = 1
f1 = a1
g1 = b1
for i = 1, n� 1

call ROT (fi; gi; csi1; sni1; ri1)
call UDPATE(csi1; sni1; vi; vi+1)
if (i 6= 1), bi�1 = oldsni � ri1
fi1 = oldcsi � ri1
gi1 = ai+1 � sni1
hi = ai+1 � csi1
call ROT (fi1; gi1; csi2; sni2; ri2)
call UPDATE(csi2; sni2; ui; ui+1)
ai = ri2
fi+1 = hi
gi+1 = bi+1

oldcsi+1 = csi2
oldsni+1 = sni2

endfor
bn�1 = hn�1 � snn�1;2
an = hn�1 � csn�1;2

Let the n by n bidiagonal matrix B have diagonal entries ai and o�diagonal entries bi.
Let the matrix B0 with entries a0i and b

0

i be the the result of applying the implicit zero-shift
QR algorithm to B once in exact arithmetic, and let the variables in the labeled implicit
zero-shift QR algorithm above denote the corresponding intermediate values.

Now let B̂ be the slightly perturbed matrix with entries âi = ai(1 + �ai) and b̂i =
bi(1 + �bi), and let B̂0 (with entries â0i = a0i(1 + �a0i) and b̂

0

i = b0i(1 + �b0i)) be the result of

applying the implicit zero-shift QR algorithm in 
oating point arithmetic to B̂. Let hatted
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variable denote the corresponding intermediate 
oating point variables (e.g. f̂i = fi(1+�fi)).

We wish to bound the �nal relative errors �a0
i
and �b0

i
in the entries of B̂0 and the relative

errors �ĉsi1 �ŝni1 , �ĉsi2 , and �ŝni2 in the sines and cosines in terms of the initial relative errors
�ai and �bi and the machine precision ".

Lemma 5.4 In terms of the notation just introduced,

max
i
(j�a0

i
j; j�b0

i
j) � 6(2n� 1)max

i
(j�aij; j�bi j) + (47n� 27)" (5:5)

and

�cs;sn � max
i
(j�ĉsi1 j; j�ŝni1 j; j�ĉsi2 j; j�ŝni2 j) � 5(2n� 1)max

i
(j�ai j; j�bij) + (41n� 66)" (5:6)

Remark 5.7 Lemma 5.4 is a variation on Lemma 7 in [DK88].

Proof. We begin systematically applying (5.1) and Lemma 5.2 to all the operations
in the labeled implicit zero-shift QR algorithm in order to derive a recurrence relation for
j�fi j and j�oldcsi j. Initially

f̂1 � f1(1 + �f1) = a1(1 + �a1) and ĝ1 � g1(1 + �g1) = b1(1 + �b1)

so that �f1 = �a1 and �g1 = �b1 . At the top of the loop we always have ĝi = b̂i and so
�gi = �bi . After the �rst call to ROT we have

ĉsi1 � csi1(1 + �csi1 ) where j�csi1 j � (j�fi j+ j�bi j)sn2i1 +
21"

4

ŝni1 � sni1(1 + �sni1 ) where j�sni1 j � (j�fi j+ j�bi j)cs2i1 +
21"

4

r̂i1 � ri1(1 + �ri1) where j�ri1 j � j�fi jcs2i1 + j�bi jsn2i1 +
13"

4

Next, we get

f̂i1 � fi1(1 + �fi1) where j�fi1 j � j�oldcsi j+ j�ri1 j+ " � j�oldcsi j+ j�fi jcs2i1 + j�bi jsn2i1 +
17"

4

ĝi1 � gi1(1 + �gi1) where j�gi1 j � j�ai+1 j+ j�sni1 j+ " � j�ai+1 j+ (j�fi j+ j�bi j)cs2i1 +
25"

4

ĥi � hi(1 + �hi) where j�hi j � j�ai+1 j+ j�csi1 j+ " � j�ai+1 j+ (j�fi j+ j�bi j)sn2i1 +
25"

4

After the second call to ROT we have

ĉsi2 � csi2(1 + �csi2 ) where j�csi2 j � (j�oldcsi j+ j�ai+1 j+ 2j�fi jcs2i1 + j�bi j)sn2i2 +
63"

4

ŝni2 � sni2(1 + �sni2 ) where j�sni2 j � (j�oldcsi j+ j�ai+1 j+ 2j�fi jcs2i1 + j�bi j)cs2i2 +
63"

4
r̂i2 � ri2(1 + �ri2) where j�ri2 j � j�oldcsi jcs2i2 + j�ai+1 jsn2i2 + j�fi jcs2i1

+j�bi j(cs2i2sn2i1 + sn2i2cs
2

i1) +
55"

4
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Since oldcsi+1 = csi2 and fi+1 = hi, we have �oldcsi+1 = �csi2 and �fi+1 = �hi , so"
j�fi+1 j
j�oldcsi+1 j

#
�
"

sn2i1 0
2cs2i1sn

2

i2 sn2i2

#
�
"

j�fi j
j�oldcsi j

#
+

"
sn2i1 1
sn2i2 sn2i2

#
�
"

j�bi j
j�ai+1 j

#
+

"
25
63

#
"

4

We may write this as
Ei+1 � Ai �Ei + Fi +Gi

where

Ei =

"
j�fi j
j�oldcsi j

#
; Fi =

"
1
1

#
(j�bi j+ j�ai+1 j) and Gi =

"
25
63

#
"

4

This implies

Ei+1 �
iX

j=1

(Ai � � �Aj+1)(Fj +Gj) + (Ai � � �A1)E1

Since componentwise

Ai � � �Aj+1 �
"
sn2i1 0
2cs2i1 1

#
� � �
"
sn2j+1;1 0

2cs2j+1;1 1

#
=

"
sn2i1 � � �sn2j+1;1 0

2(1� sn2i1 � � �sn2j+1;1) 1

#
�
"
1 0
2 1

#

we �nally get that

Ei+1 =

"
j�fi+1 j
j�oldcsi+1 j

#
�
"
1
3

#
(

iX
j=1

j�bj j+
i+1X
j=1

j�aj j) +
"

25
113

#
i"

4
(5:8)

Now we can bound j�a0i j and j�b0i j. From the algorithm we see for i � n � 1 we have
a0i = ri2 so that �a0

i
= �ri2 . Substituting the bounds for j�oldcsi j and j�fi j from (5.8) into the

bound for j�ri2 j and simplifying yields

j�a0
i
j � 4(

iX
j=1

j�bj j+
i+1X
j=1

j�aj j) + (35i� 20)" where i � n � 1

We also see from the algorithm that an = hn�1 � csn�1;2, which implies j�a0n j � "+ j�hn�1 j+
j�csn�1;2 j. Substituting the bounds for j�oldcsi j and j�fi j from (5.8) into the bounds for j�hn�1 j
and j�csn�1;2 j, adding and simplifying, yields

j�a0n j � 5(
n�1X
j=1

j�bj j+
nX

j=1

j�aj j) + (41n� 58)"

Next we see from the algorithm that bi = oldsni+1�ri+1;1 for i � n�2. Since oldsni+1 =
sni2, this implies j�b0

i
j � " + j�sni2 j + j�ri+1 j. Substituting the bounds for j�oldcsi j and j�fi j

from (5.8) into the bounds for j�sni2 j and j�ri+1 j, simplifying and adding yields

j�b0i j � 6(
i+1X
j=1

j�bj j+
i+1X
j=1

j�aj j) + (47n� 27)" where i � n � 2
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We also see from the algorithm that bn�1 = hn�1 � snn�1;2, which implies j�b0
n�1
j � " +

j�hn�1 j+ j�snn�1;2 j. Substituting the bounds for j�oldcsi j and j�fi j from (5.8) into the bounds
for j�hn�1 j and j�snn�1;2 j, simplifying and adding yields

j�b0
n�1
j � 5(

n�1X
j=1

j�bj j+
nX

j=1

j�aj j) + (41n� 58)"

Combining the last four displayed inequalities yields claim (5.5) of the lemma.
Next we bound the relative errors in the computed sines and cosines �sni1 , �sni2 , �csi1

and �csi2 . Substituting the bounds for j�oldcsi j and j�fi j from (5.8) into the earlier bounds
on the j�sni1 j, j�sni2 j, j�csi1 j and j�csi2 j and simplifying yields

j�sni1 j �
iX

j=1

j�bj j+
iX

j=1

j�aj j+ (7i� 1)"

j�sni2 j � 5(
iX

j=1

j�bj j+
i+1X
j=1

j�aj j) + (41i� 25)"

j�csi1 j �
iX

j=1

j�bj j+
iX

j=1

j�aj j+ (7i� 1)"

j�csi2 j � 5(
iX

j=1

j�bj j+
i+1X
j=1

j�aj j) + (41i� 25)"

Combining the last four inequalities yields

�cs;sn � max
i
(j�sni1 j; j�sni2 j; j�csi1 j; j�csi2 j) � 5(

n�1X
j=1

j�bj j+
nX

j=1

j�aj j) + (41n� 66)"

implying (5.6). tu
Now we bound the relative error in the computed bidiagonal matrix after m steps of

the implicit zero-shift QR algorithm. For reasons which will become clear shortly, we will
denote our initial bidiagonal matrix by B(00), the matrix after m steps of the algorithm in
exact arithmetic by B(m0), and the matrix after m steps of the algorithm in 
oating point
arithmetic by B(mm). We wish to bound the maximum componentwise relative di�erence
between B(m0) and B(mm), which we measure by

reldif(B(m0); B(mm)) � max
ij
j log

B
(m0)

ij

B
(m0)

ij

j

the subscripts i; j varying over the bidiagonal entries.
The proof will use the matrix M(m1; m2), which is the Jacobian matrix of the transfor-

mation induced by the algorithm in going from the m1-st to the m2-nd bidiagonal matrix,
but in the variables log ai and log bi. Because small absolute perturbations of the logarithms
log ai + � are the same as small relative perturbations of the matrix entries log ai(1 + �),
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M(m1; m2) measures how relative errors in the m1-st bidiagonal matrix are propagated to
the m2-nd.

M(m1; m2) will be analyzed in detail in section 9, but we need just one result (Theorem
9.23) from that section:

kM(m1; m2)k1 � (8n� 4)(m2 �m1) +O(1) (5:9)

where n is the dimension of the bidiagonal matrix. The numerical simulations in section 11
show that the O(1) can indeed be replaced by zero.

Since the bound (5.9) does not depend on the bidiagonal matrix, it can be used to get
global error bounds: if B1 and B2 are two bidiagonal matrices, and B1(m) and B2(m) are
the matrices after m applications of the algorithm in exact arithmetic, then

reldif(B1(m); B2(m)) � ((8n� 4)m+ O(1)) � reldif(B1; B2) (5:10)

Lemma 5.11 In terms of the above notation

reldif(B(m0); B(mm)) � 188n2m2"+ O(nm")

Remark 5.12 In practice, as illustrated by the numerical experiments of section 11, the
O(nm") term may be replaced by 0. By assuming that the angles encountered in the course
of the algorithm are bounded away from �=2 (which is reasonable, since they approach
zero in the limit), the n2 dependence may be replaced by something proportional to n (see
Lemma 8 in [DK88]).

Proof. Let B(kk) denote the computed bidiagonal matrix after k steps of the algorithm
in 
oating point arithmetic. Starting from B(kk), consider the sequence B(k+1;k), B(k+2;k),
: : :, B(mk) which would be computed by applying the algorithm in exact arithmetic to B(kk).
We will bound reldif(B(m0); B(mm)) by

reldif(B(m0); B(mm)) �
mX
k=1

reldif(B(mk); B(m;k�1))

Now B(mk) and B(m;k�1) arise from applying the algorithm in exact arithmetic to B(kk)

and B(k;k�1), respectively. Therefore, by (5.10) the relative di�erence between them will be
bounded by

reldif(B(mk); B(m;k�1)) � ((8n� 4)(m� k) + O(1))reldif(B(kk); B(k;k�1))

But B(kk) is obtained from B(k�1;k�1) by one step of the algorithm in 
oating point arith-
metic, and B(k;k�1) is obtained from B(k�1;k�1) by one step of the algorithm in exact
arithmetic. Therefore, reldif(B(kk); B(k;k�1)) is bounded by (5.5) in Lemma 5.4:

reldif(B(kk); B(k;k�1)) � (47n� 27)"

Combining the last three displayed equations yields the claimed result. tu
We note that the method of proof is analogous to the way error bounds are derived for

computed solutions of initial value problems for di�erential equations: The truncation error
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at each step is analogous to our one step error bounded in Lemma 5.4. Then the di�erential
equation being solved is used to propagate the error bound for the truncation error forward;
this is exactly what we are doing.

The next lemma shows that if the maximum error �cs;sn in the computed sines and
cosines is small, so will be the error in the singular vectors computed by UPDATE:

Lemma 5.13 Let V be an n by n orthogonal matrix, and V 0 the updated orthogonal matrix

obtained by running one step of the implicit zero-shift QR algorithm in exact arithmetic.

Let �V be a perturbation of V , and let V 0 + �V 0 be the matrix obtained by running the

algorithm in 
oating point on V + �V , where we assume the relative errors in the computed

sines and cosines are bounded by �cs;sn. Then to �rst order in �cs;sn, ", and k�V k2

�V 0


2
� 23=2(n� 1)"+ 21=2(n� 1)�cs;sn + k�V k2

Proof. It su�ces to analyze the errors from one call to UPDATE. Let cs and sn be
the true values of the cosine and sine, and cs(1+ �cs) and sn(1+ �sn) the perturbed values.
Let v1 and v2 denote the two columns of V being modi�ed. Then their true new values are

[v01; v
0

2] = [v1; v2] �
"
cs �sn
sn cs

#

Let [�v1; �v2] be the perturbation of [v1; v2] due to all previous contributions. Then the j-th
components of the new perturbation after computing can be written (to �rst order in �cs;sn,
" and k�V k

2
) as

[�v01j ; �v
0

2j ] = [v1j ; v2j]�
"
cs(�cs + "1 + "2) �sn(�sn + "3 + "4)
sn(�sn + "5 + "6) cs(�cs + "7 + "8)

#
+[�v1j ; �v2j]�

"
cs �sn
sn cs

#

where j"ij � ". Thus 

[�v01; �v02]

2 � 21=2(�cs;sn + 2") + k[�v1; �v2]k2
and applying this bound n� 1 times (for each call to UPDATE) we get the result claimed
in the lemma. tu

Lemma 5.14 Let B be an n by n bidiagonal matrix, and let V and U be the orthogonal

matrices obtained by running the implicit zero-shift QR algorithm m times in exact arith-

metic. In other words, set V and U to n by n identity matrices initially, and let them be

modi�ed by the calls to UPDATE in the algorithm. Now let V̂ and Û be the 
oating point

matrices obtained by running the algorithm in arithmetic of precision ". Then to �rst order

in " we have

max(



V̂ � V 




2
;



Û � U




2
) � 947n4(m3 +m)"+ O("n3m2) (5:15)

Remark 5.16 In the numerical experiments of section 11, the O("n3m2) term above may
be replaced by 0. By assuming that the angles encountered in the course of the algorithm
are bounded away from �=2 (which is reasonable, since they approach zero in the limit),
the n4 in the error bound may be replaced by something proportional to n2 (see Lemma 8
in [DK88]).
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Proof. By Lemma 5.13, after each application of the algorithm the error in V increases
by p

2(n� 1)(�cs;sn + 2�)

By Lemma 5.4, at the k-th stage �cs;sn is bounded by

j�cs;sn j � 5(2n� 1)reldif(B(kk); B(k0)) + (41n� 66)"

By Lemma 5.11, reldif(B(kk); B(k0)) is bounded by

reldif(B(kk); B(k0)) � "(188n2 � 282n+ 54)(k2 � k + 1) + O(nk")

Combining the last three displayed expressions yields




V � V̂ 



2
�

mX
k=1

p
2(n�1)�(5(2n�1)["(188n2�282n+54)(k2�k+1)+O(nk")]+(41n�66)"+2")

which, when simpli�ed, yields the desired result. tu
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6 Global Error Bounds on the Computed Singular Vectors

In this section we present the main practical contribution of the paper: an error bound for
singular vectors computed by the overall bidiagonal SVD algorithm:

Theorem 6.1 The error in the computed the i-th left and right singular vectors is

p(n;m)tol=relgapi

where tol is the desired relative precision input to the algorithm, p(n;m) is a low degree

polynomial in the matrix dimension n and number of QR steps m, and the relative gap

relgapi was de�ned in 1.7.

Remark. If we were to apply straightforward error estimates without using the machin-
ery of this paper, the resulting error bounds would grow exponentially in n and m instead
of polynomially.

Proof. To perform the error analysis we need to associate a tree with the execution
of the algorithm. Nodes of the tree will correspond to unreduced submatrices Bi upon
which the algorithm operates. The root node corresponds to the original matrix and the
leaf nodes correspond to 1 by 1 and 2 by 2 submatrices where the algorithm has converged
(recall that 2 by 2 matrices are handled specially). A directed edge from node Bi to node
Bj will mean that Bj is obtained from Bi by performing some step of the algorithm. There
are three kinds of edges: \stopping" edges, \zero-shift QR" edges, and \shifted QR" edges.
Stopping edges correspond to the stopping criterion deciding to set one or more o�diagonal
entries of Bi to zero. In this case Bj is a submatrix of Bi. If the stopping criterion sets p
o�diagonal entries of Bi to zero at the same time, Bi will have p + 1 child nodes, one for
each resulting submatrix. A zero-shift QR edge corresponds to one or more applications of
the zero-shift QR algorithm. A zero-shift QR edge connecting Bi to Bj represents all the
zero-shift QR steps applied to Bi before the stopping criterion is satis�ed. Finally, if the
sequence of QR steps by which Bj is obtained from Bi includes at least one shifted QR step,
then Bi is connected to Bj by a shifted QR edge. Normally a shifted QR edge will represent
only shifted QR steps. However, our estimates �(Bi) and �(Bi) of the smallest and largest
singular values of Bi, which are used to choose between shifted QR and zero-shift QR, are
not perfect, so there is a chance the algorithm could apply both kinds of QR steps to the
same submatrix. As we will see, this does not impact the error analysis.

Thus, any path from the root of the tree to a leaf node starts with a QR edge of either
type, and then alternates between stopping edges and QR edges until �nally hitting a leaf
node at the end of a stopping edge. A node can have at most one entering edge (stopping
or QR), and either one exiting edge (which must be a QR edge) or more than one exiting
edge (which must be stopping edges).

The proof of the theorem proceeds by induction from the leaves of the tree toward the
root. We will show that if the computed singular vectors of all the children of a parent node
satisfy the error bound O(tol=relgapk), then so do the computed singular vectors of the
parent node. First we explain the induction without computing detailed error estimates,
and then we include the error estimates. In the proof the notation O(�) will absorb all
dependence on dimension and number of QR steps.
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First consider the leaf nodes, which are all 1 by 1 and 2 by 2. There is nothing to prove
for the 1 by 1 nodes, and for 2 by 2 nodes the special subroutine discussed in section 3
computes the singular vectors with the desired error bounds.

Now Suppose Bi is the �rst node on the path from the root whose exiting edge is a shifted
QR edge. In other words, only zero-shifted QR steps have been applied toBi so far. Starting
with Bi, the algorithm essentially reverts to the standard shifted SVD algorithm, which is
backward stable in the usual normwise sense and so computes the k-th singular vectors of
Bi with an error bound O(tol=absgapk), where absgapk = minl j�k(Bi) � �l(Bi)j=�1(Bi).
From the algorithm of section 3, we see that shifted QR is used only when �(Bi)=�(Bi) >
n�1max("=tol; :01) > :01=n, i.e. only when the smallest singular value of Bi is not more
than about :01=n times smaller than the largest singular value. This implies that the relative
gap relgapk = minl j�k(Bi) � �l(Bi)j=j�k(Bi) + �l(Bi)j cannot be more than about 200n
times larger than the absolute gap absgapk. Thus the error bound for the k-th computed
singular vectors of Bi are still O(tol=relgapk) as desired.

(This is where we use the modi�cation of the original algorithm from [DK88]. If the
threshold for using shifted QR had been n�1"=tol instead of n�1max("=tol; :01), the error
bound would have been O(tol2=(" �relgapk)) instead of O(tol=relgapk). For tol just slightly
larger than " there is no di�erence, but for tol approaching "1=2 the bound O(tol2=(" �
relgapk)) is signi�cantly weaker than O(tol=relgapk).)

At this point in the induction we have shown that the error bounds for computed singular
vectors are O("=relgapk) for all nodes which only have zero-shift QR edges and stopping
edges between them and the root. First consider stopping edges. Suppose Bi is the parent
node from which the stopping edges issue. By Theorem 4.1, the stopping criterion only
changes the singular vectors by O(tol=relgapk), where relgapk is measured with respect to
the singular values of Bi only. This relgapk may be larger than the relgapk measured with
respect to the entire matrix (since Bi contains only a subset of the spectrum of the original
matrix), but this only improves the error bound O(tol=relgapk). This lets us moves the
induction toward the root along stopping edges.

Finally, consider a zero-shift QR edge from Bi to Bj . Let true(Bj) denote the matrix
that would have been computed from Bi in exact arithmetic, and U and V the orthog-
onal matrices that transform true(Bj) to Bi: U

T � true(Bj) � V = Bi. We will consider
right singular vectors only; the proof for left singular vectors is identical. Let the nota-
tion true vectork(B) denote the true k-th right singular vector of the matrix B, and let
comp vectork(B) denote the computed k-th right singular vector ofB. We want to show that
ktrue vectork(Bi)� comp vectork(Bi)k2 = O(tol=relgapk). Note that true vectork(Bi) =

V T � true vectork(true(Bj)) and comp vectork(Bi) = V̂ T � comp vectork(Bj), where the
di�erence between V and V̂ is bounded in Lemma 5.14. Consider the following triangle
inequality:

ktrue vectork(Bi)� comp vectork(Bi)k2
=



V T � true vectork(true(Bj))� V̂ T � comp vectork(Bj)





2

�



V T � true vectork(true(Bj))� V̂ T � true vectork(true(Bj))





2
+


V̂ T � true vectork(true(Bj))� V̂ T � true vectork(Bj)





2
+ (6.2)
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V̂ T � true vectork(Bj)� V̂ T � comp vectork(Bj)




2

� I1 + I2 + I3

By Lemma 5.14, I1 = O("). By Theorem 2.12 and Lemma 5.11, I2 = O("=relgapk). By the
induction hypothesis, I3 = O(tol=relgapk). Thus, the sum I1+ I2+ I3 = O(tol=relgapk) as
desired. This completes the induction.

Now we consider more rigorous bounds. Explicit formulas for such bounds would be
quite complicated and pessimistic and shed little new light on the problem. However, it
is illuminating to use the tree to explain how errors accumulate. We use the fact that if
V1 and V2 are orthogonal, and �V1 and �V2 are small perturbations, then to �rst order
kV1V2 � (V1 + �V1)(V2 + �V2)k2 � k�V1k2 + k�V2k2. This means that to �rst order pertur-
bation bounds simply add as we proceed up the tree. Thus, every time we move along
an edge, we add the error contributed by that edge. For leaf nodes which correspond to
2 by 2 submatrices, we use error bounds for the special subroutine discussed in section 3.
For stopping edges we used the bounds of Theorem 4.1. For nodes whose exiting edge is
the �rst shifted QR edge, we can use the error bounds for the conventional SVD algorithm
[GK65]. For zero-shift QR edges we use the analysis of the last paragraph. Only the edges
connecting a leaf to the root contribute to the error for the singular vector corresponding
to the leaf. tu
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7 Flows and the SVD Algorithm

For a matrix A, let A� denote its strictly lower triangular part and set �0(A) = A� � AT
�
.

We will consider 
ows on invertible real matrices A of the form

dA

dt
= A(�0(F (A

TA)))� (�0(F (AA
T )) )A ; A(t = 0) = A0 ; (7:1)

where F is a smooth, real-valued function on (0;1).
Such 
ows were �rst considered in the singular value context by M. Chu [Chu], who

analyzed the Toda case, F (x) = x. For SVD we will set F (x) = log x, but initially, for
reasons of general interest and to suggest additional possibilities, we will consider general
F .

Convention. By the QR factorization of a real, invertible matrix X , we mean X =
QR, where Q is orthogonal and R is upper triangular with positive diagonal entries (see
[GVL83]).

Theorem 7.2 Equation (7.1) has a unique, global solution A(t) which preserves the sin-

gular values of A(t). The 
ow can be solved explicitly, as follows. Let

et F (AT
0
A0) = Q1(t) R1(t) (7:3)

et F (A0A
T
0
) = Q2(t) R2(t) (7:4)

be the QR-factorizations of etF (AT
0
A0) and etF (A0A

T
0
) respectively. Then

A(t) = QT
2 (t) A0 Q1(t) : (7:5)

Finally, (7.1) preserves bidiagonality i.e. if A0 is bidiagonal, then A(t) is bidiagonal for all
t > 0. Moreover the signs of its nonzero entries are preserved.

Proof. Di�erentiation of (7.3) and (7.4), give

d

dt
Q1 = Q1 �0(Q

T
1 F (A

T
0A0)Q1) = Q1 �0(F ((Q

T
2A0Q1)

T (QT
2A0Q1))) = Q1�0(F (A(t)

TA(t)))

and

d

dt
Q2 = Q2�0(Q

T
2 F (A0A

T
0 )Q2) = Q2�0(F ((Q

T
2A0Q1)(Q

T
2A0Q1)

T )) = Q2�0(F (A(t)A(t)
T )) :

Thus

d

dt
A(t) = [� �0(F (A(t) A(t)

T )) QT
2 ] A0Q1 +QT

2A0[Q1�0(F (A(t)
TA(t)))]

= A(t)�0(F (A(t)
TA(t)))� �0(F (A(t)A(t)T )) A(t) ;

which is equation (7.1). From (7.3), (7.4), (7.5),

A(t) = (R2(t) e
�t F (A0A

T
0
)) A0 (e

t F (AT
0
A0)(R1(t))

�1)

= R2(t) A0(R1(t))
�1 ; (7.6)
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from which we learn that (7.1) preserves upper triangularity. On the other hand, we also
have

AT (t) A(t) = Q1(t)
T AT

0A0Q1(t)

= R1(t) e
�tF (AT

0
A0)AT

0A0 e
t F (AT

0
A0)(R1(t))

�1

= R1(t) A
T
0A0(R1(t))

�1 ; (7.7)

so that AT (t)A(t) is upper Hessenberg, and hence tridiagonal, by symmetry. It follows that
A(t) is bidiagonal. Furthermore, it follows from (7.6) and (7.7) that

sgn Aii(t) = sgn(A0)ii ; sgn Ai i+1(t) = sgn(A0)i i+1 : (7:8)

In particular, if ap and bq are positive initially, they are positive for all time.
Finally, the preservation of singular values is immediate from (7.5), and this proves the

theorem. tu
The above result is due to Chu [Chu86], and is modeled on related results ([Sym80],

[Sym82]) and Deift-Nanda-Tomei [DNT83], for the symmetric eigenvalue problem. The
relationship between the singular value 
ow (7.1) and Toda-type eigenvalue 
ows ([Sym80],
[Sym82], [DNT83], [DLNT86], [DLT89], [Wat84]), is described by the following theorem,
whose proof is immediate.

Theorem 7.9 Under the map

A 7! T (A) = ATA (7:10)

equation (7.1) is transformed into

dT

dt
= [T; �0(F (T ))] : (7:11)

tu

Remark 7.12 The perfect shu�e A 7!
 

0 AT

A 0

!
7! S(A) of Section 2, transforms

the singular value problem for A into an eigenvalue problem for S. One might ask what
happens to (7.1) under the map A 7! S. One �nds that (7.1) is transformed into the
Toda-type isospectral deformation

dS

dt
= [S; �0(F (S

2))] : (7:13)

Of particular interest is the case F (x) = x. Here (7.11) becomes the Toda 
ow, dT
dt =

[T; �0(T )], but (7.13) reduces to
dS
dt

= [S; �0(S2)]; in the case where A is bidiagonal and S
takes the form (2.2), this is the so-called Kac-van Moerbeke lattice [KvM75].

The 
ow that is directly related to the SVD algorithm corresponds to the choice F (x) =
log x. To see this note that (7.11) becomes

dT

dt
= [T; �0(logT )] ; T (0) � AT

0A0 ;
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whose solution is given by (7.7),

T (t) = QT
1 (t) T (0) Q1(t) :

But from (7.3),
T (0) = elogT (0) = Q1(1) R1(1) ;

and so
T (1) = R1(1) Q1(1) :

Thus
AT (0) A(0) = T (0) 7! T (1) = A(1)TA(1)

is just one step of QR, and hence, in the bidiagonal case,

A(0) 7! A(1)

is one step of SVD.
In summary, we have proven the following basic result.

Theorem 7.14 Let A0 be bidiagonal and let F (x) = log x. Then the integer time eval-

uation of the solution A(t) of (7.1) gives precisely the iterates of the SVD algorithm,

A0; A1; : : : ; Ak; : : : . Thus

A(k) = Ak ; k = 0; 1; 2; : : : : (7:15)

We will call the 
ow induced by (7.1) in the case F (x) = log x, the SVD 
ow.
In the classical case of the Toda 
ow, where T is tridiagonal and F (x) = x, Moser

[Mos75] proved the remarkable result that the solution T (t) of (7.11) converges to a diagonal
matrix as t ! 1. The same is true if T is a full symmetric matrix, provided F (x) is
strictly monotonic on spec T (see, e.g., [DLT85]). In the bidiagonal case, the convergence
of T (t) = A(t)TA(t) in turn implies that A(t) also converges to a diagonal matrix (see
[Chu86]). For the reader's convenience we will present a (new) proof of the convergence
of A(t), calculating en route the leading asymptotics as t ! 1. By Theorem 7.14, this of
course gives an independent proof of the convergence of SVD and, by Theorem 7.9, also
QR.

To �x notation, let

A = B =

0
BBBB@
a1 b1 


. . .
. . .

bn�1

 an

1
CCCCA ; ai; bi > 0 ;

with singular values �1 > �2 > : : : > �n > 0, and let

T = BTB =

0
BBBBB@

c1 d1 

d1

. . .
. . .

. . . dn�1

 dn�1 cn

1
CCCCCA ;

35



so that
ci = a2i + b2i�1 ; 1 � i � n ; (7:16)

di = aibi ; 1 � i � n � 1 : (7:17)

(Here b0 � 0.) Let vi = (vi(1); : : : ; vi(n))
T , 1 � i � n, denote the unit right singular vectors

for B, Tvi = �2i vi, normalized so that vi(1) > 0. Set b2 =
Pn�1

i=1
b2i .

Theorem 7.18 (Asymptotics for SVD). Let B(t) be the solution of (7.1) with B(0) = B0

bidiagonal and F (x) increasing on spec BTB. Then as t!1

aj(t) = �j

 
1 +

b2j

2(�2j+1
� �2j )

(1 +O(b2)) +
b2j�1

2(�2j�1 � �2j )
(1 +O(b2))

!
(7:19)

and

bj(t) �
1

�j
[

Q
k�j(�

2

k � �2j+1
)Q

k�j�1(�
2

k � �2j )
] [
vj+1(1)

vj(1)
] e(F (�2j+1)�F (�2j ))t (7:20)

(Here
Q

k�j�1(�
2

k � �2j ) � 1 for j = 1).

Proof. From (7.7) and (7.3),

vj(1; t) = (e1; Q
T
1
(t) vj)

= ((R1(t))
�1e1; e

tF (T0)vj)

=
e
tF (�2

j
)

(R1(t))11
vj(1) ;

and hence

vj(1; t) =
etF (�2j )vj(1)

(
Pn

m=1
e2tF (�2m) v2m(1))

1=2
: (7:21)

In particular, as F (x) is increasing,

vj(1; t)! �j1 (7:22)

as t!1.
Now recall (see e.g. [GvL]) that the rows

v1(1) v2(1) � � � vn(1)
v1(2) v2(2) � � � vn(2)

...

of the matrix of eigenvectors V for the tridiagonal matrix T can be computed by applying
the Gram-Schmidt procedure to the row vectors

v1(1) v2(1) � � � vn(1)
�21v1(1) �22v2(1) : : : �2nvn(1)

...

�
2(k�1)
1

v1(1) �
2(k�1)
2

v2(1) : : : �
2(k�1)
n vn(1) :
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In particular if v(1; t) = (v1(1; t); : : : ; vn(1; t)), v(2; t) = (v1(2; t); : : : ; vn(2; t)) denote the
�rst two rows of the matrix of eigenvectors V (t) for T (t); then

1 = (v(1; t)^ v(2; t); v(1; t)^ v(2; t)) =
X
i<k

 ���� vi(1; t) vk(1; t)
vi(2; t) vk(2; t)

����
!
2

:

But by Gram-Schmidt vm(2; t) = �1(t)�
2
mvm(1; t) + �2(t)vm(1; t) where �1(t) and �2(t) are

independent of m, �1(t) 6= 0. Using (7.21) we �nd

���� vi(1; t) vk(1; t)
vi(2; t) vk(2; t)

����2���� v1(1; t) v2(1; t)
v1(2; t) v2(2; t)

����2
=

���� 1 1
�2i �2k

����2���� 1 1
�2
1

�2
2

����2
�
vi(1)vk(1)

v1(1)v2(1)

�
2

e2[F (�2
i
)+F (�2

k
)�F (�2

1
)�F (�2

2
)]t ;

which, by the monotonicity of F , converges to zero as t!1, unless i = 1 and k = 2. Thus���� v1(1; t) v2(1; t)
v1(2; t) v2(2; t)

���� �! �1

and as jv1(2; t)j � 1 and v2(1; t)! 0 by (7.22), we conclude that

vj(2; t)! ��j2 (7:23)

Continuing by induction we learn that

vj(k; t)! ��jk (7:24)

as t!1, and hence

T (t) = V (t) �2V (t)! �2 = diag(�2
1
; : : : ; �2n) : (7:25)

In particular di(t) = ai(t) bi(t)! 0. But det T (t) = (det A(t))2 =
Qn

i=1
a2i (t) = constant 6=

0, as (7.11) is isospectral, and maxi ai(t) is bounded by (7.5), which implies kA(t)k = kA0k.
It follows that bi(t)! 0, and from (7.17) (and (7.8)),

ai(t) =
q
ci(t)� b2i�1(t)! �i :

The eigenvalue equation for T (t) implies

vi(k + 1; t) =
vi(1; t)

(
Qk

m=1
dm)

det(�2i � T (t))k (7:26)

where (�2i � T (t))k is k � k matrix formed from the �rst k rows and columns of �2i � T (t).
In particular, setting i = k + 1 and using (7.21), (7.24), (7.25) in (7.26), we �nd

kY
m=1

dm(t) � �
vk+1(1)

v1(1)

� kY
m=1

(�2k+1 � �2m)
�
e(F (�2

k+1
)�F (�2

1
))t ;

which leads directly to (7.20).
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To obtain the asymptotics for ai(t), conjugate the eigenvalue equation for T using a
diagonal matrix to the form

0
BBBBBB@

c1 � �2i d21
1 (c2 � �2i ) d2

2

. . .
. . .

. . .

1 (cn�1 � �2i ) d2n�1
1 (cn � �2i )

1
CCCCCCA

0
BBBBBB@

~vi(1)

...

~vi(1)

1
CCCCCCA
= 0 :

Applying Cramer's rule to the leading (i�1)�(i�1) matrix and to the trailing (n�i)�(n�i)
matrix, one sees easily that

~vi(i� 1)=~vi(i) =
d2i�1

�2i � �2i�1
(1 +O(

X
j

d2j ))

and

~vi(i+ 1) = ~vi(i) =
1

�2i � �2i+1

(1 +O(
X
j

d2j )) ;

respectively. Inserting these relations in the ith equation

ci � �2i = � ~vi(i� 1)

~vi(i)
� d2i

~vi(i+ 1)

~vi(i)
;

and using (7.16), the result follows. tu

Remark 7.27 From (7.24), vj(k; t) ! ��jk as t ! 1. The choice of signs can be de-
termined from (7.26). Indeed as t ! 1, vk+1(k + 1; t) � (pos.) � Qk

i=1
(�2k+1

� �2i ), and
so

vj(k; t)! (�1)k+1�jk :

Remark 7.28 The form of (7.19) suggests a proof using more standard techniques in nu-
merical analysis. Indeed (7.19) can easily be proved by applying two consecutive Jacobi
rotations in the planes (j � 1; j) and (j; j + 1) respectively, and then using second order
perturbation theory.

Remark 7.29 Note that a linearization of (7.1) around the equilibrium point A(1) =
diag(�1; : : : ; �n), would also give the asymptotic rates (7.19) and (7.20), but without the
precise constants.

Remark 7.30 The asymptotics in (7.20) can be used to calculate the scattering matrix for
the classical Toda lattice (see [Mos75]) directly.
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8 The Hamiltonian Structure for the Flows

In this section we show that equation (7.1) is Hamiltonian. More precisely, we show that
there is a Poisson bracket f�; �gS, the Sklyanin bracket, de�ned on the space of matrices,
and a Hamiltonian HF , such that the di�erential equations generated by (HF ; f�; �gS),

d

dt
�(A(t)) = f�;HFgS(A(t)) ; A(0) = A0 ; (8:1)

for all observables �, are equivalent to (7.1).
A general reference for the Hamiltonian mechanics used in this paper is [Arn78]; a

description of the Sklyanin bracket can be found in [Sem84]. The Sklyanin bracket can be
de�ned in great generality on groups and on associative algebras (see also [LPar]), but we
will restrict ourselves to the case where the underlying space is Mn(RI ), the algebra of real
n� n matrices.

We begin with some notation and de�nitions. The space Mn(RI ) carries a natural
(gl(n;RI )-ad-) invariant pairing

(A;B) � tr AB ; (8:2)

(A; [B;C]) = �([B;A]; C) ; (8:3)

where A;B;C belong to Mn(RI ) and [�; �] denotes the standard commutator. Denote by
Xa (resp. eXa) the (Gl(n;RI )-) left-invariant ((Gl(n;RI )-) right-invariant, resp.) vector �eld
generated by a 2Mn(RI ). Thus for smooth functions � :Mn(RI )! RI ,

Xa�(g) =
d

dt
jt=0

�(g eta) � (D0�(g); a) (8:4)

eXa�(g) =
d

dt
jt=0

�(etag) � (D�(g); a) (8:5)

for all g 2Mn(RI ). Clearly
D0�(g) = (r�(g))Tg (8:6)

D�(g) = g(r�(g))T ; (8:7)

where r�(g) is the matrix with entries @�
@gij

(g). Standard computations for Lie brackets

show that
[Xa; Xb] = X[a;b] (8:8)

[ eXa; eXb] = � eX[a;b] ; (8:9)

and
[Xa; eXb] = 0 : (8:10)

Finally, a linear map R : Mn(RI ) ! Mn(RI ) is said to solve the modi�ed Yang-Baxter

equation (mYB) if

[R(A); R(B)]� R([A;R(B)] + [R(A); B]) = �[A;B] (8:11)

for all A;B 2Mn(RI ). (Such an R is an example of a classical r-matrix | see [Sem84]).
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Theorem 8.12 Suppose R and R0 are skew symmetric

(A;R(B)) = �(R(A); B) ; (A;R0(B)) = �(R0(A); B) (8:13)

solutions of (mYB). Then

f�;  gR;R0(g) � (R(D�(g)); D (g)) + (R0(D0�(g)); D0 (g)) (8:14)

de�nes a Poisson bracket on Mn(RI ).

Proof. The only point to check is the Jacobi identity, f�1; f�2; �3gR;R0gR;R0+ cyclic
permutations (c.p.) = 0. Set

f�;  gr(g) � (R(D�(g)); D (g))

f�;  g`(g) � (R0(D0�(g); D0 (g)) :

We have

(D0f�2; �3g`(g); a) =
d

dt
jt=0

f�2; �3g`(g eta)

= (R0(D0�2(g));
d

dt
jt=0

D0�3(g e
ta))� (

d

dt
jt=0

D0�2(ge
ta); R0(D0�3(g)))

= XaXR0(D0�2(g))�3(g)�XaXR0(D0�3(g))�2(g) ;

which implies

f�1; f�2; �3g`g` + c.p. =
1

2
(R0(D0�1); D

0f�2; �3g2) + c.p.

= XR0(D0�1)XR0(D0�2)�3 �XR0(D0�1)XR0(D0�3)�2 + c.p.

= [XR0(D0�2); XR0(D0�3)]�1 + c.p.

= X[R0(D0�2);R0(D0�3)]�1 + c.p. ; by (8.8),

= (D0�1; [R
0(D0�2); R

0(D0�3)]) + c.p.

Similarly
f�1; f�2; �3grgr = �(D�1; [R(D�2); R(D�3)]) + c.p.,

and

f�1; f�2; �3grg` + f�1; f�2; �3g`gr = [XR0(D0�2);
eXR(D�3)]�1 + c.p.

= 0 ; by (8.10),

Thus

f�1; f�2; �3gR;R0gR;R0 + c.p. = f�1; f�2; �3g`g` + f�1; f�2; �3grgr + c.p.

= (D0�1; [R
0(D0�2); R

0(D0�3)])� (D�1; [R(D�2); R(D�3)]) + c.p.

= �(D0�1; [D0�2; D0�3]) + (D�1; [D�2; D�3]) ;

where in the last step we have used (mYB), (8.13) and (8.3). Direct substitution of (8.6)
and (8.7) show that the last two terms cancel, and this proves the theorem. tu
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Set
R(A) � A+ �A� ; R0(A) � �R(A) (8:15)

where A+ is the strict upper part of A and A� is strict lower part of A as before. A
straightforward calculation shows that R and R0 are skew and solve (mY B).

For SVD, the Sklyanin bracket is de�ned by

f�;  gS(A) � f�;  gR;�R(A)
= (R(D�(A)); D (A))� (R(D0�(A)); (D0 (A))) (8.16)

Remark 8.17 The R matrix in (8.15) also arises in the study of the Cholesky eigenvalue
algorithm (see [DLT89]).

By Theorem 8.12, f�; �gS gives a Poisson bracket on Mn(RI ). But more is true: f�; �gS
restricts as a Poisson bracket to the submanifolds

fA 2Mn(RI ) : det A = cg

for any constant c 6= 0. Indeed, from the formula (r log det A)T = A�1, we see that
D log det(A) = D0 log det(A) = I , which implies R(D log det(A)) = R(D0 log det A) = 0.
Hence fdet; �gS = 0 for all functions �.

We now show that (7.1) is Hamiltonian.

Theorem 8.18 Let F (x) be a smooth real-valued function on (0;1) and let GF (x) =

�
R x F (s)

2s ds be a primitive of �F (x)=2x. Then the equation

d

dt
�(A(t)) = f�;HFgS(A(t)) ; A(0) = A0 ;

generated by HF (A) = tr GF (A
TA) on fA 2 Mn(RI ) : det A = det A0 6= 0g, is equivalent

to (7.1).

Proof. From (8.17),

_� = f�;HFgS = �(r�T (A); (R(ArHT
F (A)))A) + (r�T (A); AR(rHT

F (A)A)) ;

so that
_A = AR(rHT

F (A)A)� (R(ArHT
F (A)))A : (8:19)

But by di�erentiation,

rHF (A) = 2AG0F (A
TA)

= �A(ATA)�1 F (ATA)

= �(AT )�1 F (ATA) ;

which implies
_A = �AR(F (ATA)) + R(F (AAT ))A :

As �0(S) = �R(S) for any symmetric matrix S, this proves the theorem. tu
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In particular

HSV D(A) � �
1

4
tr(log(ATA))2 (8:20)

generates the SVD 
ow. Also, H = �1

2
tr(ATA) generates the Toda-SVD 
ow in [Chu86].

The bracket f�; �gS is highly degenerate and the determination of the associated sym-
plectic leaves (see [Wei85], [Sem85]) is in general extremely di�cult. We have, however, the
following happy fact.

Theorem 8.21 The set B� of bidiagonal matrices B with positive entries ap; bq and �xed

determinant,

det B =
nY

p=1

ap = � (8:22)

is a (2n� 2)-dimensional symplectic leaf for the Sklyanin bracket f�; �gS. Moreover, B� has

a global Darboux coordinate system given by

xi � log bi ; 1 � i � n� 1 ; (8:23)

yi � log
iY

j=1

aj ; 1 � i � n � 1 ; (8:24)

fxi; xjgS = 0 ; fyi; yjgS = 0 ; fxi; yjgS = �ij : (8:25)

Proof. We compute f�;  gS(B) at a bidiagonal matrix B. Set �(m) = �1; 0; 1 if m is
negative, zero, or positive respectively.

Insert the formulae

(Br�T (B))ij = ai�ji + bi�j;i+1

(R(Br�T (B)))ij = �(j � i) (ai�ji + bi�j;i+1)

(r�T (B)B)ij = aj�ji + bj�1�j�1;i

(R(r�T(B)B))ij = �(j � i) (aj�ji + bj�1�j�1;i)

and their analogs for  , into (8.17), to obtain after some algebra

f�;  gS(B) =
X
i;j

(�(j � i)� �(j + 1� i))aibj�ji i;j+1

+
X
i;j

(�(j � i)� �(j + 1� i))ajbi �j;i+1 ij

=
X
i

(� aibi�1�i�1;i ii � aibi�ii i;i+1 + aibi i;i+1 ii + ai+1bi�i+1;i+1 i;i+1) :

Changing variables, a; b! x; y, on B� now leads to

f�;  gS(B) = f�;  gS(B(x; y)) =
n�1X
i=1

(
@�

@xi

@ 

@yi
� @�

@yi

@ 

@xi
) ; (8:26)

which is the canonical, non-degenerate Poisson bracket on RI 2n�2, and (8.25) follows. tu
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For later convenience, we introduce the notation

yn � log
nY

j=1

aj = log� (8:27)

Remark 8.28 Formula (8.26) makes explicit the fact that B� is a symplectic leaf of f�; �gS.
In particular f�;  gS(B(x; y)) depends only on the values of � and  on B�.

Remark 8.29 The fact that B� is a natural phase space for the Hamiltonian version of
SVD is in striking parallel to the fact that T� , the tridiagonal matrices with prescribed
trace � (and with nonzero o� diagonal elements), provides a natural phase space for the
Hamiltonian version of QR. The relevant Poisson structure for QR is given by the Lie-
Poisson structure on the dual of the Lie algebra of the lower triangular group (see [Kos79],
[Adl79]; see also [DLNT86]). However, the map B 7! BTB from B� to T� is not symplectic
and the relationship between the two Poisson structures is not clear. On the other hand the
perfect shu�e B 7! S of Section 2, induces a Poisson structure on the space of tridiagonal
matrices S, of type (2.2), with �xed determinant. In particular, this shows that the Kac-van
Moerbeke lattice (see Remark 7.12) is Hamiltonian on the space of such matrices S.

We conclude this section by proving Fact 1 of the Introduction. Thus, if M(j; i) is the
Jacobian of the iterated SVDmap fromBi toBj expressed in the variables log b1; : : : ; log bn�1,
log a1; : : : ; logan, then

� 2 spec M(j; i), ��1 2 spec M(j; i) :

For a bidiagonal matrix B set

�i = log bi ; 1 � i � n � 1 ; (8:30)

�i = log ai ; 1 � i � n : (8:31)

so that  
�

�

!
=

 
1 0
0 N

! 
x

y

!
; (8:32)

where N is the n � n matrix

0
BBBBB@

1 

�1 .. .

. . .
. . .


 �1 1

1
CCCCCA. Note N�1 =

0
BBBBBB@

1 

1 1
...

. . .

1
1 1 1 1

1
CCCCCCA
.

Let

 
�i

�i

!
=

 
1 0
0 N

!  
xi

yi

!
,

 
�j

�j

!
=

 
1 0
0 N

!  
xj

yj

!
be the coordinates of

the ith and jth SVD iterates Bi and Bj , with i < j. Then

M(j; i)� @(�j ; �j)

@(�i; �i)
=

 
1 0
0 N

!
@(xj; yj)

@(xi; yi)

 
1 0
0 N�1

!
: (8:33)
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Under the iteration, yjn = log det Bj = log det Bi = yin. Hence

@(xj; yj)

@(xi; yi)
=

0
BBBBBB@

@(x
j
1
;:::;x

j
n�1

;y
j
1
;:::;y

j
n�1

)

@(xi
1
;:::;xi

n�1
;yi
1
;:::;yi

n�1
)

@x
j
1

@yin
...

@y
j
n�1

@yin

0 � � �0 1

1
CCCCCCA
: (8:34)

Now recall the following standard fact from Hamiltonian mechanics ([Ar]): let J de-

note the standard matrix

 
0 I

�I 0

!
and suppose (x(t; x; y); y(t; x; y)) is the solution of a

Hamiltonian system of equations in RI 2n�2 in canonical form

d

dt

 
x

y

!
= J rH =

 
0 I

�I 0

!  
Hx

Hy

!
; (x(0; x; y); y(0; x; y)) = (x; y) ; (8:35)

for some Hamiltonian H : RI 2n�2 ! RI . Then for any t, the Jacobian D = @(x(t;x;y); y(t;x;y))

@(x;y)
is

symplectic, i.e. DTJ D = J . But det(DT � �) = det(JD�1J�1 � �) = det(D�1� �). Thus
if D is symplectic,

� 2 spec D , ��1 2 spec D : (8:36)

Finally from Theorems 7.14, 8.18 and 8.21, xj
1
; : : : ; x

j
n�1; y

j
1
; : : : ; y

j
n�1 is the time t =

j � i evaluation in canonical variables of a Hamiltonian 
ow with initial data xi
1
; : : : ; xin�1,

yi1; : : : ; y
i
n�1. Hence the matrix

@(x
j
1
;:::;x

j
n�1;y

j
1
;:::;y

j
n�1)

@(xi
1
;:::;xin�1;y

i
1
;:::;yin�1)

is symplectic and (8.36) holds. Fact 1

now follows from (8.33) and (8.34).

Remark 8.37 The Hamiltonian HSV D on the (2n-2)-dimensional leaf B� is completely
integrable in the sense of Liouville. The commuting integrals are the singular values
�1; : : : ; �n�1 (recall

Qn
i=1 �i = � is a Casimir), and the associated angles are suitable com-

binations of the logarithms of the �rst components of the unit singular vectors. We leave
the details to the interested reader (cf. [Mos75], [DLNT86], for example).
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9 Asymptotics of kM (j; i)k

By the results of Sections 7 and 8, the SVD 
ow on bidiagonal matricesB =

0
BBBBB@

a1 b1 

. . .

. . .

. . . bn�1

 an

1
CCCCCA

takes the form

dxi

dt
=

@HSVD

@yi
(x1; : : : ; yn�1; yn) ; 1 � i � n� 1 ;

dyi

dt
= �@HSVD

@xi
(x1; : : : ; yn�1; yn) ; 1 � i � n � 1 ; (9.1)

dyn

dt
= 0

xi(0) = xi ; yi(0) = yi ; 1 � i � n � 1 ; yn(0) = yn(t) = yn ;

in the canonical coordinates xi = log bi, yi = log
Qi

j=1
aj , whereHSV D = �1

4
tr(log(BT (x; y)B(x; y)))2.

This leads to the equation

d

dt
Kn =

 
J r2

nHSV D

0 : : : 0

!
Kn ; Kn(0) = I ; (9:2)

for the full (2n� 1)� (2n� 1) Jacobian matrix Kn(t) =
@(x1(t);:::;xn�1(t);y1(t);:::;yn(t))

@(x1;:::;xn�1;y1;:::;yn)
, where

J is again the standard (2n� 2)� (2n� 2) matrix

 
0 I

�I 0

!
and r2

nHSV D is the (2n�

2)� (2n� 1) Hessian matrix

r2

nHSV D =

 
@2HSVD

@zi@zj

!
1�i�2n�2; 1�j�2n�1

(9:3)

(z1; : : : ; z2n�1) � (x1; : : : ; xn�1; y1; : : : ; yn) : (9:4)

Our goal in this section is to evaluate Kn(t) as t ! 1. By (8.33), the asymptotics for
M(j; i) will then follow. Inserting F (x) = log x in Theorem 7.18, we obtain

ai(t) = �i + O(b2) ; 1 � i � n (9:5)

and
bi(t) � b1i (

�i+1

�i
)2t ; 1 � i � n � 1 (9:6)

as t!1, where b1i > 0 and b2 =
Pn�1

j=1
b2j as before.

A convenient formula for HSVD is given by the spectral representation

tr(logBTB)2 = tr
Z
C

(log s)2

s� BTB

ds

2�i
; (9:7)
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where C is the counterclockwise contour

� � � : : : �
0 �2n �2n�1 : : : �2

1

C

;

from which we obtain, after one integration by parts,

@2

@zj@zk
tr(logBTB)2 = tr

Z
C

log s

s

�
@2BTB

@zj@zk

1

s�BTB
+
@BTB

@zj

1

s� BTB

@BTB

@zk

1

s� BTB

�
ds

�i
:

(9:8)
Now @B=@xm = em;m+1bm, 1 � m � n � 1, where eij is the standard n � n matrix with
1 in the (i; j) position, and zero elsewhere. Thus if zj or zk lies in the set fx1; : : : ; xn�1g,
then @2

@zj@zk
tr(logBTB)2 is of order b, and hence is exponentially decreasing. (Here we use

(9.5) and (9.6) to bound maxs2C k(S �BTB)�1k, etc.)
The leading order contribution comes from the derivatives @2=@yj@yk. We �nd

@BTB

@yj
= 2a2jejj � 2a2j+1ej+1;j+1 +O(b) (9:9)

and

@2BTB

@yj@yk
= �jk(4a

2

jejj + 4a2j+1ej+1;j+1)

+ �j�1;k(�4 a2j)ejj + �j+1;k(�4 a2j+1)ej+1;j+1

+ O(b) ; (9.10)

where an+1 � 0, etc. Substituting (9.9) and (9.10) in (9.8), we �nd

@2

@yj@yk
tr(logBTB) = tr

Z
C

log s

s

�
�jk(4�

2

j ejj + 4�2j+1ej+1;j+1)

0
B@

(s� �21)�1 

. . .


 (s � �2n)�1

1
CA

+�j�1;k(�4�2j )eij

0
B@

(s� �2
1
)�1 


. . .


 (s� �2n)
�1

1
CA

+�j+1;k(�4�2j+1)ej+1;j+1

0
B@

(s� �21)�1 

. . .


 (s� �2n)
�1

1
CA

+(2�2j ejj � 2�2j+1ej+1;j+1)

0
B@

(s� �21)�1 

. . .


 (s� �2n)�1

1
CA
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�(2�2kekk � 2�2k+1
ek+1;k+1)

0
B@

(s� �2
1
)�1 


. . .


 (s� �2n)�1

1
CA�ds

�i

+O(b) :

After performing the integrals, this leads to

@2

@yj@yk
tr(logBTB)2 = 16 �jk � 8 �j�1;k � 8 �j+1;k +O(b) ; 1 � j � n � 1 ; 1 � k � n ;

and hence  
J r2

nHSVD

0 : : : 0

!
=

 
On�1;n�1 L

On;n�1 On;n

!
+ O(b) (9:11)

where L is the (n� 1)� n matrix

L =

0
BBBBBBBBBB@

�4 2 

2 �4 2

2 �4
. . .

. . .
. . .

2 �4 2

 2 �4 2

1
CCCCCCCCCCA

(9:12)

Equation (9.2) now takes the form

dKn

dt
=

 
0 L

0 0

!
Kn + C(t)Kn ; Kn(0) = I ; (9:13)

where by (9.6),
kC(t)k � c0 e

��t ; � = min
1�i�n�1

log(�2i =�
2

i+1) > 0 ; (9:14)

for some positive constant c0. Rewriting (9.13) in the standard way (see e.g. [CL55]) in
integral form, we obtain after iteration

Kn(t) = e(
0

0

L
0
)t

 
A11 A12

A21 A22

!
(1 + o(1))

=

 
A11 + t LA21 A12 + t LA22

A21 A22

!
(1 + o(1)) (9.15)

for suitable constant matricesAij . Here the terms o(1) are exponentially decreasing. Finally,
as in (8.33),

M(t; 0) =
@(�(t); �(t))

@(�; �)
=

 
B11 + t�nB21 B12 + t�nB22

B21 B22

!
(1 + o(1)) (9:16)
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for suitable Bij , where �n is the (n� 1)� n matrix,

�n = LN�1 =

0
BBBBBB@

�2 2 

�2 2

. ..
. . .


 �2 2

1
CCCCCCA
; (9:17)

which appears in (1.9).
To compute B21; B22, note that for any t,

�`(B
0) = �`(B) ; 1 � ` < n ;

where B0 = B(t). Thus for 1 � m � n � 1, 1 � ` � n,

nX
i=1

@�`(B0)

@a0i
a0i
@�0i
@�m

+
n�1X
i=1

@�`(B0)

@b0i
b0i
@�0i
@�m

=
@�`

@�m
: (9:18)

By regular perturbation theory applied to the perfect shu�e S of B (see (2.2)), we see that
(in the notation of Section 2)

@�`(B0)

@a0i
= 2h+` (2i� 1) h+` (2i)

= u0`(i) v
0

`(i) ;

where u0`; v
0

` are the unit eigenvectors of B
0(B0)T and (B0)TB0 respectively, chosen such that

u0`(1); v
0

`(1) > 0. But by Remark 7.27, v0`(i) ! (�1)i+1�`i as t ! 1. A similar analysis

shows that the same is true for u0`(i); hence
@�`(B

0

)

@a0
i

! �`i. On the other hand, by (9.16),

@�0i=@�m grows at worst linearly as t!1, but b0i decreases exponentially and @�`(B
0)=@b0i

is bounded, again by regular perturbation theory. Inserting this information into (9.18), we
learn that

lim
t!1

@�0`
@�m

=
1

�`

@�`

@�m
:

Thus

B21 =

�
@ log �i
@�m

�
1�i�n; 1�m�n�1

(9:19)

and similarly

B22 =

�
@ log �i
@�m

�
1�i�n; 1�m�n

: (9:20)

Also

�nB21 =

0
BBB@

@ log�2
2
=�2

1

@�1
: : :

@ log�2
2
=�2

1

@�n�1
...

...
@ log�2n=�

2

n�1

@�1
� � � @ log�2n=�

2

n�1

@�n�1

1
CCCA (9:21)
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and

�nB22 =

0
BBB@

@ log�2
2
=�2

1

@�1
: : :

@ log�2
2
=�2

1

@�n
...

...
@ log�2n=�

2

n�1

@�1
� � � @ log�2n=�

2

n�1

@�n

1
CCCA : (9:22)

Recalling that for any matrix A, kAk1 = maxi
P

j jAij j, we have obtained the following
theorem.

Theorem 9.23 Under the bidiagonal SVD 
ow (9.1), the Jacobian matrix M(t; 0) =
@(�(t);�(t))

@(�;�)
, satis�es

M(t; 0) =

 
B11 + t�nB21 B12 + t�nB22

B21 B22

!
(1 + o(1))

where the term o(1) is exponentially decreasing as t ! 1, and the constant matrices B21,

B22, �nB21, �nB22 satisfy (9.19)-(9.22) respectively.

Also

kM(t; 0)k1 � (8n� 4)t+O(1) (9:24)

as t!1.

Proof. The point to note is that, by (the proof of the) inequality (2.4), the entries of
B21 and B22 are bounded by 1 and the entries of �nB21, �nB22 are bounded by 4. tu

Remark 9.25 From (9.5) and (9.6),

�i(t) = log ai(t) = log �i + o(1) ; 1 � i � n ; (9:26)

and
�i(t) = log bi(t) = t log(�2i+1=�

2

i ) + O(1) ; 1 � i � n� 1 ; (9:27)

The content of Theorem 9.23 is that the leading asymptotics can be di�erentiated with
respect to the initial data. This in turn suggests an alternative proof of Theorem 9.23: if
(9.26) and (9.27) can be shown to hold uniformaly for all initial data in a complex neighbor-
hood of B, then Theorem 9.23 follows immediately from Cauchy's formula. This approach
can indeed be carried out, but we present no details. (In this connection we refer the reader
to [Mos75], where an analysis of the asymptotics of the classical Toda lattice (tridiagonal,
F (x) = x) with complex initial data, is presented.) In Section 10, however, we will present
(the outline of) a third proof of Theorem 9.23 using iterates of the gradient of one step of
the SVD algorithm, and which does not utilize the underlying 
ows.

Finally we note that the proof of (9.24) shows that, more generally,

kM(t2; t1)k1 � (8n� 4)(t2 � t1) +O(1) ; (9:24)0

as t2 � t1 ! 1. Moreover the estimate is uniform in t2 > t1 � 0. Recalling yet again the
relationship between the SVD 
ow and the SVD algorithm, Fact 4 in the introduction is
�nally proven by setting t1 = i and t2 = j in (9.24)0.
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10 The Spectrum of the One-step Jacobian of SVD

We consider one step of SVD taking the bidiagonal matrix B to the bidiagonal matrix B0.
Our goal in this section is to analyze the (2n�2)�(2n�2) Jacobian K of the map B ! B0,
expressed in terms of x; y variables,

K =
@(x01; : : : ; x

0

n�1; y
0

1; : : : ; y
0

n�1)

@(x1; : : : ; xn�1; y1; : : : ; yn�1)

�
 

@x0

@x
@x0

@y
@y0

@x
@y0

@y

!
;

and, in particular, to prove Fact 2 and Fact 3 of the Introduction. Observe that K is the
leading (2n � 2) � (2n � 2) submatrix of the full Jacobian Kn(t = 1) of Section 9; K is
symplectic by the results of Section 8.

We will use the notation

Ai �
iY

j=1

aj = eyi ; 1 � i � n : (10:1)

As before bi = exi , 1 � i � n� 1.
Our �rst result is formula (10.19) below, which computes K to relevant orders in bi.
The SVD algorithm can be implemented by applying a sequence of 2 � 2 rotations to

the matrix B (see [GVL83]). A straightforward induction using these rotations leads to the
following formulae for the entries of B0.

A0j = sj=rj ; 1 � j � n ; (10:2)

b0j =
rj+1

rjsj
sj�1bjaj+1 ; 1 � j � n � 1 ; (10:3)

where rj ; sj satisfy the recurrences

r2i+1 = A2

i+1 + r2i b
2

i+1 ; i � 0 ; (10:4)

and
s2i+1 = r4i+1 + s2i b

2

i+1a
2

i+2 ; i � 0 ; (10:5)

where r0 = s0 � 1.
These recurrence relations imply

r2i =
iX

j=0

A2

j

� iY
k=j+1

b2k

�
(10:6)

and

s2i =
iX

j=0

r4j

�Qi
k=j+1 b

2

k

A2
j+1

�
A2

i+1 ; (10:7)

where
Qi

k=j+1
b2k � 1 if j = i. Observe that

r2i = r2i (A1; : : : ; Ai; b1; : : : ; bi) (10:8)
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s2i = s2i (A1; : : : ; Ai+1; b1; : : : ; bi) ; (10:9)

and hence from (10.2) and (10.3),

x0i = x0i(x1; : : : ; xi+1; y1; : : : ; yi+1) (10:10)

y0i = y0i(x1; : : : ; xi; y1; : : : ; yi+1) : (10:11)

Expansion to third order in b2 =
Pn�1

i=1
b2i , yields

r2i = A2

i +A2

i�1b
2

i +A2

i�2b
2

i�1b
2

i +O(b6) ; (10:12)

s2i = A4

i + (2A2

iA
2

i�1 +A4

i�1A
2

i+1
A�2i )b2i + (2A2

iA
2

i�2

+2A2
i�1A

2
i�2A

2
i+1

A�2i + A4
i�2A

2
i+1
A�2i�1)b

2
i�1b

2
i +A4

i�1b
4
i + O(b6) ;

(10:13)

r2i s
2
i = A6

i + (3A4
iA

2
i�1 +A4

i�1A
2
i+1

)b2i + (3A4
iA

2
i�2 + 2A2

i�1A
2
i�2A

2
i+1

+A2

iA
4

i�2A
2

i+1
A�2i�1)b

2

i�1b
2

i + (3A2

iA
4

i�1 + A6

i�1A
2

i+1
A�2i�1)b

4

i +O(b6) ;
(10:14)

r2i+1
s2i�1 = A2

i+1
A4

i�1 + (2A2

i�1A
2

i�2A
2

i+1
+A4

i�2A
2

iA
2

i+1
A�2i�1)b

2

i�1

+(A2
iA

4
i�1)b

2
i+1

+ (A2
i+2
A4
i�2)b

4
i�1 + (2A2

i�1A
2
i�3A

2
i+1

+ 2A2
i�2A

2
i�3A

2
iA

2
i+1
A�2i�1

+A4

i�3A
2

iA
2

i+1
A�2i�2)b

2

i�1b
2

i�2 + (2A2

i�1A
2

i�2A
2

i

+A4
i�2A

4
iA

�2

i�1)b
2
i�1b

2
i+1

+ A6
i�1b

2
i b

2
i+1

+O(b6) :
(10:15)

We �rst compute @x0=@x, which is lower Hessenberg by (10.10). From (10.3)

�@x
0

i

@xj
= �ij +

1

2

@
@xj

r2i+1
s2i�1

r2i+1
s2i�1

� 1

2

@
@xj

(r2i s
2

i )

r2i s
2

i

: (10:16)

Using (10.15) and (10.16), and the fact that

@

@xi
(anything) = (something)b2i ;

we obtain

(
@x0

@x
� I) =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

�b2i ( 3

�2
1

b22(
1

�2
2

0 : : : 0

+
�2
2

�4
1

+O(b2)) +O(b2))

b21(
2

�2
1

+
a2
2

a4
1

+ O(b2)) �b22( 3

�2
2

+
�2
3

�4
2

+O(b2)) b23(
1

�2
3

+O(b2))

+
a2
2

a4
1

+ O(b2)) +
�2
3

�4
2

+O(b2))

O(b2
1
b2) b2

2
( 2

�2
2

+
�2
3

�4
2

+O(b2))

+
�2
3

�4
2

+O(b2))

...
. . .

. . .

0
b2n�1(

1

�2
n�1

+O(b2))

O(b2
1
b2) O(b2

2
b2) � � � b2n�2(

2

�2n�2
+

�2n�1
�4n�2

+ O(b2)) �b2n�1( 3

�2n�1
+ �2n

�4n�1
+ O(b2))

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

(10:17)
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Similar formulae can be obtained for @x0

@y
, @y0

@x
and @y0

@y
. In particular @y0

@x
is lower triangular

and

@y0

@x
=

0
BBBBBB@

p21b
2
1 0 : : : 0

O(b2
1
b2
2
) p2

2
b2
2

...
...

. . .

0
O(b21b

2
n�1) O(b22b

2
n�1) : : : p2n�1b

2
n�1

1
CCCCCCA
; (10:18)

where

pi =

s
1

�2i
+
�2i+1

�4i
+O(b2) ; 1 � i � n� 1 : (10:19)

The �nal formulae can be written in the form

K = I +

 
E1B

2 E2 +O0(b
2)

B(1 + BE3B)B B2E4

!
(10:20)

where
B = diag(p1b1; : : : ; pn�1bn�1) ; (10:21)

E2 =

0
BBBBBBB@

�4 2 

2 �4 .. .

. . .
. . .

2

 2 �4

1
CCCCCCCA
; O0(b

2) is lower Hessenberg, (10:22)

E1; E4 are lower Hessenberg with entries
(E1)i;i+1; (E4)i;i+1 of the form
(positive constant +O(b2)) ;

(10:23)

and
E3 is strictly lower triangular. (10:24)

Note �rst that (10.20) immediately proves Fact 3 of the Introduction,

K ! K1 =

 
1 E2

0 1

!

as t = k ! 1. Formula (10.20) can also be used to give an alternative proof of the
asymptotics of Kn(t), as mentioned in Remark 9.25. Let K(j) be the leading (2n � 2) �
(2n� 2) submatrix of Kn(t) evaluated at time t = j. We will show that

K(j) =

 
A0
11
+ jE2A

0

12
A0
12
+ j E2A

0

22

A021 A022

!
(1 + o(1)) ; (10:25)

and leave the (rather lengthy) remaining details to the reader. From (10.20) and (9.6) we
have for k large

K(k + 1; k) = K1 + �k ;
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where
k�jk � c �j ; 0 < � < 1 ; c constant.

Writing
K(j) =

Qj�1
k=0

K(k + 1; k)

= Kj
1

Qj�1
k=0

�
1 +K

�(k+1)

1 �kK
k
1

�
:

But
kK�(k+1)

1
�k K

k
1
k � c0k �k

for large k. Thus  
A0
11

A0
12

A021 A022

!
� lim

j!1

j�1Y
k=0

(1 +K�(k+1)

1
�kK

k
1
)

exists and the convergence is exponential. Formula (10.25) now follows.
Our next result towards the proof of Fact 2 shows that the eigenvalues �j , 1 � j � 2n�2,

of K = K(t+ 1; t) eventually lie in Gershgorin-type disks contained in a �xed wedge with
vertex � = 1, symmetric about 1 + iRI , and with aperture 2� less than �.

Figure 1:

In particular (spec K(t+ 1; t))\ RI is eventually empty.
Observe �rst that K � I = K(t+ 1; t)� I can be rewritten as

K � I =
 

1 0
0 B

! 
E1B E2 +O0(b2)

1 +BE3B BE4

!  
B 0
0 1

!
(10:26)
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so that the eigenvalue problem

(K � I)

 
f 0

g0

!
= �

 
f 0

g0

!
; � = 1 + � ; (10:27)

reduces to the system
(E2 + O(b2))g = (�B�1 �E1B)f (10:28)

(1 +BE2B)f = (�B�1 � BE4)g (10:29)

where

� = �� 1 and

 
f

g

!
=

 
Bf 0

g0

!
6= 0 : (10:30)

For t!1, K(t+ 1; t)!
 

1 E2

0 1

!
, and so

� ! 0 : (10:31)

As E3 is strictly lower triangular, (1+BE3B)
�1 exists (even if the bj are not small) and

so g 6= 0. We normalize

kgk2 =
n�1X
j=1

jgjj2 = 1 : (10:32)

We have

(E2 +O0(b
2))g = (�B�1)(1 +BE3B)

�1(�B)�1g +E1B(1 +BE3B)
�1(BE4)g

�E1B(1 +BE3B)�1(�B�1)g � (�B�1)(1 +BE3B)�1(BE4)g
= I + II + III + IV :

Now
I = (�B�1)2 + �2

Pn�1
k=1

(�1)k�1(B�1(BE3B)
kB�1)g

= (�B�1)2 +O1(�2)
(10:33)I

where O1(�2) is strictly lower triangular,

II = O2(b
4) + E1B

2E4 ; (10:33)II

where we note that

E1B
2E4 = O02(b

2) +

0
BBBB@

0 0 O(b22) 0 : : :

0 0 0 O(b2
3
) 0

. ..

: : :

1
CCCCA ; O02(b) is lower Hessenberg,

III = O3(�) ; (10:33)III

and
IV = O4(�) ; (10:33)IV

where O3(�), O4(�) are again lower Hessenberg.
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Thus the eigenvalue problem becomes

(E2 � (�B�1)2)g = (O1(�
2) + O2(b

4)�O0(b
2) + E1B

2E4 +O3(�) +O4(�))g : (10:34)

For our present purposes all we need is that

(E2 � (�B�1)2)g = o5(1) ; kgk = 1 ; (10:35)

which implies

minj j4 + (�=pjbj)
2j �

�Pn�1
j=1

j � 4� (�=pjbj)
2j2jgjj2

�1=2

� kY k2 + o5(1) ;

where Y is the (n� 1)� (n� 1) matrix

Y =

0
BBBBBB@

0 2 0
2

. . .
. . .

2
0 2 0

1
CCCCCCA
; kY k2 = 4 cos

�

n
< 4 : (10:36)

We conclude, �nally, that if � is an eigenvalue of K(t+1; t)� I , then eventually � must
lie in one of the 2(n� 2) Gershgorin-type disks D�j , 1 � j � n� 1,

fz : j4 + (z=pjbj)
2j < �ng ; (10:37)j

where

kY k2 < �n �
1

2
(kY k2 + 4) < 4 (10:38)

In particular, this establishes Fig. 1 with sin 2� = �n=4.
Inserting a free parameter s, 0 � s � 1, in (10.26), as follows,

Ks � I �
 

1 0
0 B

!  
sE1B �4I + s(Y +O0(b2))

1 + sBE2B sBE4

!  
B 0
0 1

!
;

simple bookkeeping shows that we are led to an eigenvalue problem with spectrum lying in
the same disks (10.37)j, uniformly for 0 � s � 1 as t ! 1. But the centers of the disks
are the eigenvalues of K0 � I = Ksjs=0 � I , and a standard continuity argument in s now
shows that each disk D�j contains one eigenvalue of K� I . (If two disks overlap this means
that their union contains two eigenvalues of K � I , etc.)

Recall from (9.6) that

bi(t) � b1i

�
�i+1

�i

�2t

; 1 � i � n� 1 ; b1i > 0 :

In the case that the numbers �i+1=�i, 1 � i � n � 1, are distinct we obtain immediately
a proof of Fact 2. For in this case the disks D�j are eventually disjoint, and each of the
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translated disks 1 +D�j contains precisely one of the 2(n� 2) eigenvalues f�g of K. Thus

the eigenvalues are simple. Suppose � 2 1+D�j for some j. Then �
�1

is also an eigenvalue
by Fact 1, and must lie in the same disk, by a simple computation using (10.37)j. By

simplicity, we must have � = �
�1
, i.e. the roots lie on the unit circle.

Remark 10.39. The idea for the above proof of Fact 2 was suggested to the authors by
Gene Wayne (cf. [dlLW89]).

The remainder of this section is devoted to proving Fact 1 in the (nongeneric) case
where the numbers �i+1=�i are not distinct.

We show �rst that the eigenvalues 1 + � are eventually geometrically simple. From
(10.34), (10.33)I-(10.33)IV , we see that the eigenvalue equation has the form0

BBBBBBB@

�4� ( �
p1b1

)2 + o(1) 2 + o(1) O(b2
2
) 0 : : :

� �4 � ( �
p2b2

)2 + o(1) 2 + o(1) O(b2
3
) 0 : : :

� � �4� ( �
p3b3

)2 + o(1) 2 + o(1) O(b24) 0 : : :
...

...
...

. . .
. . .

...

1
CCCCCCCA

0
BBBBB@

g1
�
�
�
gn�1

1
CCCCCA = 0

(10:40)
where the terms � are bounded as t ! 1. Now if � were geometrically double, we could
take g1 = 0. But by induction

det

0
BBBB@

2 + o(1) O(b22) 0 : : :

�4 � (�=b2p2)2 + o(1) 2 + o(1) O(b2
3
) 0 � � �

. . .
. . .

1
CCCCA = 2n�2 + o(1) 6= 0 ;

which implies (g1; : : : ; gn�1)T = 0, contradicting g 6= 0. Thus the geometric multiplicity is
one.
Remark 10.41. One can show that the eigenvalue equation always takes the form (10.40),
even when the bi's are not small, provided we replace O(b22); O(b

2
3); : : : by certain positive

quantities. This implies, in particular, that the geometric multiplicity of any eigenvalue of
K(t; t+ 1) is at most 2, for all t.

Next we show that for the eigenvalue problem (10.27), as t!1,

� 
f
0

g0

!
; iJ

 
f 0

g0

!�
> 0 if Im � > 0 ; (10:42)

and � 
f
0

g0

!
; iJ

 
f 0

g0

!�
< 0 if Im � < 0 ; (10:43)

where (�; �) = (�; �)m denotes the real Euclidean inner product in RIm. Indeed, from (10.27),

(E2 +O0(b2))g0 = (� �E1B
2)f 0

(1 +B2E3)B
2f 0 = (� �B2E4)g

0
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which implies
f 0 = B�2(1 +B2E3)

�1(� �B2E4)g
0

= (� B�2)g0 +O(1) ;

where we have normalized kg0k = 1. Thus

(g0; f 0) = �kB�1g0k2 + O(1) : (10:44)

Now suppose j�kB�1g0k2j remains bounded as t ! 1. Then (g0; f 0) remains bounded by
(10.44) and as t!1

(g0; (E2g
0)) = O(b2) + �(g0; f 0)� (g0; E1B

2f 0)! 0

as b ! 0, � ! 0 and B2f 0 = (1 + B2E3)
�1(� � B2E4)g

0 ! 0. But this contradicts
j(g0; E2g

0)j � inf spec(�E2) > 0. Hence �kB�1g0k2 ! 1 as t!1. Formulae (10.42) and
(10.43) now follow from (10.44) and Figure 1.

Suppose � 6= �
�1

is an eigenvalue of K, K
�f 0
g0

�
= �

�f 0
g0

�
. Then as K is symplectic,

� 
f
0

g0

!
; iJ

 
f 0

g0

!�
=

�
K

 
f 0

g0

!
; iJ K

 
f 0

g0

!�
= ��

� 
f
0

g0

!
; iJ

 
f 0

g0

!�
;

which implies

��f 0
g0

�
; iJ

�f 0
g0

��
= 0 as �� 6= 1, contradicting (10.42), (10.43). (Note Im � 6= 0,

by Figure 1). Thus j�j2 = �� = 1. Furthermore, by our previous calculations, � has
geometric multiplicity one. Suppose � corresponds to a nontrivial Jordan block,

K = U

0
BBBBBBB@

� 1
0 �

0
...

. . .
. . .

...

1
CCCCCCCA
U�1 ;

KT = U�T

0
BBBB@
� 0 : : :

1 � 0
. . .

. . .

1
CCCCAUT :

for some invertible matrix U . Set
�f 0
g0

�
= Ue1; then K

�f 0
g0

�
= �

�f 0
g0

�
. But KTJ

�f 0
g0

�
=

JK�1
�f 0
g0

�
= �

�1
J
�f 0
g0

�
, so that Jf =

P
j 6=1 cjU

�T ej for suitable constants cj , where j = 1 is

excluded as U�T e1 is not an eigenvector of KT . Thus

� 
f
0

g0

!
; iJ

 
f 0

g0

!�
= �

� 
f 0

g0

!
; iJ

 
f
0

g0

!�
= �

X
j 6=1

cj(Ue1; U
�Tej) = 0 ;

again contradicting (10.42), (10.43). We conclude that � is algebraically simple, and this
concludes the proof of Fact 2.
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Figure 2:

In the initial numerical experiments mentioned in the Introduction, in addition to
Facts 1, 2 and 3, it was observed that whenever an eigenvalue � came o� the unit circle
for �nite t = j, the break occurred through � = �1,
The preceding computations give some insight into, but, as yet, not a complete proof of,
this phenomenon. Indeed, if �1 6= �2 are two distinct eigenvalues of K, Khi = �ihi, i = 1; 2,
with positive imaginary parts, then arguing as above, (h1; iJh2) = 0. But then for t large,
when the spectrum of K(t+ 1; t) is simple, we must have

(h; iJh) > 0 (10:45)

for all nonzero h in V+(t) � spanfw : K(t + 1; t)w = �w; Im � > 0g. But V+(t) is clearly
continuous in t as long as the spectrum of K(t + 1; t) does not cross the real axis. Let
t0 <1 be the last time for which spec K(t+1; t)\RI 6= ;. (Such a time may, of course, not
exist.) It follows by continuity that (10.45) holds for all t > t0, and using arguments similar
to those above, one obtains the following result: viewed backwards in time from t =1, the
matrix K(t+ 1; t) is diagonalizable with spec K(t+ 1; t) � f� : j�j = 1g, until such a time
t0 that an eigenvalue touches the real axis at � = +1 or � = �1.

At this point, however, it is not clear how to rule out the case � = 1.
Remark 10.46 The reader familiar with dynamical stability theory will recognize that the
above computations are modeled on the strong stability theory of Krein ([Kre50, Kre55];
see also [GL55], [Mos58]) for symplectic matrices.
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11 Numerical Experiments

In this section we summarize numerical experiments which support the error analysis of
sections 5 and 6. The �rst set of experiments determines the average number of QR steps
necessary for convergence, and were performed in [DK88]; we just cite the needed data here.
The second set describes the growth of kM(t)k for the same set of test problems. The �rst
set of experiments were performed using Fortran on a SUN 4/260 in IEEE standard double
precision 
oating point arithmetic [IEE85]; the machine precision " = 2�53 � 10�16 and
the range of representable numbers is approximately 10�308. The second set of experiments
were performed using Matlab on the same SUN 4/260 using the same arithmetic.

The test matrices were the same 105 bidiagonal matrices in 12 classes used in [DK88]:

Class 1: These eight matrices are graded in the usual way from large at the upper left to
small at the lower right. Four of the matrices are 10 by 10 and four are 20 by 20. The
singular values range from 1 to 10�90 in some examples.

Class 2: This class is identical to class 1 except the order of the entries on the diagonal
and superdiagonal are reversed. Thus these matrices are graded from small at the
upper left corner to large at the lower right.

Class 3: These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in
class 1 with their reversals in class 2. Thus each matrix is small at the upper left,
large in the middle, and small again at the lower right.

Class 4: These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in
class 2 with their reversals in class 1. Thus each matrix is large at the upper left,
small in the middle, and large again at the lower right.

Class 5: These eight matrices are obtained from class 1 by reversing the order of the
superdiagonals. Thus the diagonal is graded from large at the upper left to small at
the lower right, and the superdiagonal is graded in the opposite direction.

Class 6: These eight matrices are obtained from class 5 by reversing the order of both
the diagonals and superdiagonals. Thus the diagonal is graded from small at the
upper left to large at the lower right, and the superdiagonal is graded in the opposite
direction.

Class 7: These sixteen matrices are all small on the diagonal and mostly large on the
o�diagonal. The diagonals range from 10�2 down to 10�16 and the diagonals are
mostly 1 with occasional small values.

Classes 8{11: The ten 20 by 20 matrices in each class are generated by letting each bidi-
agonal entry be a random number of the form r � 10i, where r is a random number
uniformly distributed between �:5 and :5, and i is a random integer. In class 8, i is
uniformly distributed from 0 to �15. In class 9, i is uniformly distributed from 0 to
�10. In class 10, i is uniformly distributed from 0 to �5. In class 11, i is identically
0. Thus, in class 11 each matrix entry is simply uniformly distributed on [�:5; :5].
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Class 12: This one 41 by 41 matrix is graded in as in class 1, with the ratio of adjacent
entries being 10�:1 � :79. Each o�diagonal entry is identical to the diagonal entry
below it. This very dense grading leads to di�erent convergence properties than for
the matrices in class 1, which is why we put this example in a separate class.

Now we describe the results of the �rst experiment, which computes the number of QR
steps needed for convergence with relative error tolerance tol = 100" � 10�14. This is
the number m in the statement of Theorem 6.1. Actually, we compute a related quantity
which is more closely related to the actual work done: the number of \QR inner loops"
divided by n(n + 1)=2, where n is the matrix dimension and one \QR inner loop" is one
pass through the inner loop of the QR algorithm (shifted or unshifted). The reason for
choosing this statistic is as follows. The usual rule of thumb for the number of QR steps
it takes to compute the SVD is two steps per singular value [Par80]. If convergence always
takes place at the end of the matrix, this means there will be 2 steps on a matrix of length
i, for i = n; n � 1; : : : ; 3 (two by two matrices are handled specially). Thus, since one QR
step on a matrix of length i consists of i \QR inner loops", we expect an average of about
n(n+1) \QR inner loops" for the entire SVD. Thus, the quantity \QR inner loops" divided
by n(n + 1)=2 should be a measure of the di�culty of computing the SVD of a matrix
which is independent of dimension, and we expect it to equal 2 on the average. For each of
the twelve problem classes, and for both the algorithm of section 3 and the standard SVD
algorithm [BDMS79], the minimum, average and maximum of this statistic is presented in
Table 1.

Table 1: QR inner loops / (n(n+ 1)=2)

Class Standard SVD New SVD

Min Avg Max Min Avg Max

1 .60 .90 1.33 .09 .49 1.11
2 .60 1.94 3.07 .09 .49 1.11
3 .61 .85 1.19 .56 .82 1.19
4 .32 1.04 1.80 .35 .60 1.04
5 .07 .45 1.11 .09 .57 1.42
6 .07 .40 .93 .09 .57 1.42
7 .10 1.32 2.31 .10 1.04 1.85
8 .41 .64 .95 .26 .49 .77
9 .79 .94 1.29 .57 .75 .93
10 1.07 1.29 1.57 1.04 1.22 1.48
11 1.97 2.26 2.52 2.06 2.20 2.41
12 1.53 1.53 1.53 2.96 2.96 2.96

Since Class 11 corresponds to matrices with uniform random entries, we see that the
rule of thumb of 2 QR steps per singular value is justi�ed. In the worst case, Class 12, the
new SVD algorithm takes 3 QR steps per eigenvalue. In the other classes it takes many
fewer step to reach convergence. Thus, in practice we can bound the number of QR steps
by m = 3n in order to obtain an upper bound depending only on the matrix dimension n
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in Theorem 6.1. Of course, after the algorithm has been run m is easily available, so that
Theorem 6.1 could be used to get less pessimistic bounds.

The second set of experiments measured kM(j; 0)k1 for the same test cases as above.
We computed M(j; 0) as follows. The �rst order perturbation theory in Lemmas 5.2 and
5.4 can be seen as computing the linear operator M(i+1; i) which maps the relative errors
�a1 ; : : : ; �an ; �b1 ; : : : ; �bn�1 in the entries of the bidiagonal matrix B to the relative errors
�a0

1

; : : : ; �a0n ; �b01 ; : : : ; �b
0

n�1
in the entries of the bidiagonal matrix B0 after one zero-shift QR

step. The entries of this matrix are computed as products of the 2 by 2 matrices appearing
in the proofs of Lemmas 5.2 and 5.4, and so the entries of M(i + 1; i) are complicated
polynomials in the sines of cosines of rotation angles occuring during the running of the
algorithm. We obtain M(j; 0) =M(j; j � 1) �M(1; 0) via matrix multiplication.

The experiments were performed by taking each one of the 105 test matrices and running
zero-shift QR until M(i + 1; i) had converged to its asymptotic value, and the graph of
kM(j; 0)k1 versus j had converged to a straight line; this convergence was determined by
examining the graph. (This is not the same as computing all the M(j; i) arising during the
running of the overall hybrid algorithm on the test cases, but is nonetheless a thorough test
of our predicted upper bound (8n� 4)(j � i) +O(1) of Theorem 9.23 on kM(j; i)k1.) For
each test matrix the computed values of kM(j; 0)k1 were analyzed as follows:

1. Let jmax be the number of QR steps taken and n the matrix dimension.

2. Let s � (kM(jmax; 0)k1 � kM(jmax�1; 0)k1)=n be the asymptotic rate of growth of
kM(j; 0)k1 (divided by n).

3. Let r � max1�j�jmax
(kM(j; 0)k1 � n � s � j). Then for all 1 � j � jmax we have

kM(j; 0)k1 � nsj + r. In other words, the line nsj + r is the tightest a�ne upper
bound to kM(j; 0)k1.

4. Let t = max1�j�jmax
(nsj+r�kM(j; 0)k1) be the maximum amount the straight line

nsj + r overestimates kM(j; 0)k1.

Table 2: Growth Statistics for kM(j; 0)k1
Class jmax max s max r max t

min max

1 5 20 2.00 -10.00 .26
2 10 80 2.00 -.02 1.23
3 10 80 2.18 -8.67 4.63
4 20 90 1.86 -7.16 3.34
5 20 90 2.10 -1.00 16.02
6 20 90 2.10 1.00 18.00
7 20 90 4.01 -19.00 18.00
8 30 30 5.06 24.73 151.28
9 40 40 4.00 18.16 59.93
10 40 40 3.41 26.29 49.11
11 40 40 4.15 8.71 27.58
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Table 2 summarizes the values of s, r and t computed. Columns 2 and 3 give the
minimum and maximum values of jmax for the given class. Columns 4, 5 and 6 give the
maximum values of r, s and t, respectively, in each class.

The largest overshoot 151:28 corresponds to a 16% change in nsjmax + r, and small
deviation from linearity. Excluding this case, the maximum deviation is less than 5%. So
even though the analysis leading to the linear growth bound on kM(j; 0)k1 was asymptotic,
we �nd linear growth sets in quite early, much earlier than we can currently explain.

The smallest values s and r which satisfy nsj + r � nsj + r for all 105 (s; r) pairs and
all j are s = 5:06 and r = 0. This justi�es the claims made earlier and used in the error
analyses of sections 5 and 6.
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12 Conclusions

We have proven that the singular values of a bidiagonal matrix are much less sensitive
to relative perturbations in the matrix entries than previously thought: the uncertainty of
singular vector vi is proportional to the reciprocal of the relative gapminj 6=i j�i��j j=(�i+�j)
rather than the reciprocal of the absolute gap minj 6=i j�i � �j j=�max. When the matrix has
two or more tiny singular values, the relative gap can be much larger than the absolute gap,
so the bound is much tighter.

We have also shown that the algorithm in [DK88] is capable of computing the singular
values to this higher accuracy. The proof involves a new analysis of the stopping criterion, as
well as showing that rounding errors during the zero-shift QR algorithm accumulate slowly.
This latter analysis is facilitated by associating to zero-shift QR a Hamiltonian di�erential
equation which interpolates the iterates of the algorithm. In contrast to many eigenvalue
algorithms where the underlying Hamiltonian structures are Lie-Poisson structures (see, e.g.,
[DLNT86, DLT89]), here the underlying structure is a so-called Sklyanin structure. The
canonical variables on the appropriate symplectic leaves for the bidiagonal case turn out to
be linear combinations of logarithms of the matrix entries. The di�erential equation shows
that these canonical variables are relatively insensitive to changes in the initial conditions.
Since the canonical variables are essentially logarithms of matrix entries, this means that
the logarithms of the matrix entries are insensitive. This in turn means that small relative
errors (such as rounding errors) in the matrix entries grow slowly.

If the initial matrix is not bidiagonal, then reduction to bidiagonal form may introduce
errors so large as to swamp the �ner bounds of the bidiagonal SVD. One possibility is to
use Jacobi's method if the original matrix is dense [DV90]. A situation where bidiagonal
reduction is su�ciently accurate is the symmetric positive de�nite tridiagonal eigenproblem,
where the reduction is performed via Cholesky [BD88].

The algorithm described here will be part of the LAPACK linear algebra library for
supercomputers [DDDC*87].
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