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Abstract

The level 3 Basic Linear Algebra Subprograms (BLAS) are designed to perform

various matrix multiply and triangular system solving computations. The devel-

opment of optimal level 3 BLAS code is costly and time consuming, because it

requires assembly level programming/thinking. However, it is possible to develop

a portable and high-performance level 3 BLAS library mainly relying on a highly

optimized GEMM, the routine for the general matrix multiply and add operation.

With suitable partitioning, all the other level 3 BLAS can be de�ned in terms of

GEMM and a small amount of level 1 and level 2 computations. Our contribution

is two-fold. First, the model implementations in Fortran 77 of the GEMM-based

level 3 BLAS, which are structured to e�ectively reduce data tra�c in a memory

hierarchy. Second, the GEMM-based level 3 BLAS performance evaluation bench-

mark, which is a tool for evaluating and comparing di�erent implementations of

the level 3 BLAS with the GEMM-based model implementations.

1 Introduction

The memory organization in current advanced computer architectures is hierarchical.
Accesses to data in the upper levels of the memory hierarchy (registers, cache and/or
local memory) are much faster than those in lower levels (o�-processor and shared
memory). Typically, the peak performance measured in Mops or Gops (106 and
109 oating point operations per second, respectively) is only delivered for data stored
in the top level of the memory hierarchy. Therefore, it is important to organize the
computations such that we can maximize reuse of data in the upper levels of the memory
hierarchy. Matrix and vector operations are basic in most scienti�c computations and
can most often be reorganized for e�ective data reuse. For example, an n-by-n matrix
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multiply C = AB involves O(n3) arithmetic but O(n2) data movements (usually).
Thus, as n grows the cost of accessing data is increasingly dominated by the cost of
computation. This fact has lead to a technique to reorganize standard algorithms to
perform matrix-matrix (level 3) operations in their inner loops (e.g., see [12]). Typically,
these matrix-matrix operations are expressed as calls to level 3 Basic Linear Algebra
Subprograms (BLAS) [9, 10], which together with level 1 BLAS [22] and level 2 BLAS
[7] are de facto standards for basic matrix and vector operations. The level 3 BLAS
have been successfully used as building blocks for several applications, including the
software library LAPACK [3]. With a highly optimized level 3 BLAS, most of the
LAPACK codes will \automatically" peform well.

However, due to the complex hardware organization of advanced computer architec-
tures it can be very costly and time consuming to develop a high-performance level 3
BLAS because it requires assembly level programming/thinking. The GEMM-based
approach presents a way to attain high performance and portability with a limited
e�ort. The GEMM-based level 3 BLAS concept [21] shows that it is possible to formu-
late the level 3 BLAS operations in terms of the level 3 operation for general matrix
multiply and add (GEMM) and some level 1 and level 2 BLAS operations. Whenever
new high-performance architectures or extensions and modi�cations of existing ones are
introduced, we see the great bene�ts of the GEMM-approach, since we only require a
few underlying routines to be optimized for the target architecture. Most important are
the routines that implement the level 3 GEMM operation and the level 2 operation for
general matrix-vector multiply and add (GEMV).Morover, the GEMM-based approach
provides possibilities to invoke parallelism, for example, by using parallel versions of
the underlying routines. It is also possible to create a level 3 BLAS library based on
fast algorithms for the GEMM operation, e.g., Strassen's or Winograd's algorithms
[25, 26, 15, 11].

Our contribution is two-fold. First, the model implementations in Fortran 77 of the
GEMM-based level 3 BLAS, which are structured to e�ectively reduce data tra�c in
a memory hierarchy. Second, the GEMM-based level 3 BLAS performance evaluation
benchmark, which is a tool for evaluating and comparing di�erent implementations of
the level 3 BLAS with the GEMM-based model implementations. All software come in
all four data precisions and are designed to be easy to implement and use on di�erent
platforms. Each of the GEMM-based routines has a few system dependent parameters
that specify internal block sizes, cache characteristics, and intersection points for alter-
native code sections, which are given as input to a program that facilitates the tuning
of these parameters. For simplicity, we also provide sample values for some common
architectures.

We present the GEMM-based model implementations and benchmark in a two-
part paper. In this part, we review the GEMM-based concept, and we present the
design principles behind and the model implementations, and the performance eval-
uation benchmark. Moreover, we report results from extensive testings on several
high-performance platforms. In a companion paper [20], we describe the installation
and tuning of the GEMM-based model implementations, and the use and installation
of the performance evaluation benchmark.

Before we go into any further details we outline the content of this paper. To set
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the scene Section 2 gives a brief summary of the level 3 BLAS operations and calling
sequences with parameter lists. In Section 3 we summarize the GEMM-based level 3
BLAS concept and illustrate our approach with a sample level 3 BLAS operation.
Section 4 discusses the design principles used in the GEMM-based model implementa-
tions. In Section 5 we give a more detailed presentation of the high-performance and
portable model implementations of the GEMM-based level 3 BLAS. Section 6 presents
the GEMM-based level 3 BLAS benchmark, its purpose and design. In Section 7 we
report results from our extensive testings. Section 7.1 presents measured performance
results for di�erent architectures (vector as well as RISC-based), including single pro-
cessor results for IBM SP2, Intel Paragon, NEC SX-3, Parsytec GC/PowerPlus and
the workstations IBM RS6000 and Silicon Graphics Indy. Notice that any implementa-
tion of distributed versions of level 3 operations or block-partitioned algorithms should
be designed to minimize communication overhead, as well as to make use of highly
optimized single processor level 3 kernels. For an increasing number of processors,
any improvement of the performance of a single processor will (at least for a single
program multiple data (SPMD) application) have a multiplicative e�ect on the over-
all performance. In section 7.2 we present some benchmark results for di�erent level 3
BLAS implementations. Section 8 presents some additional techniques that can be used
to even gain some more performance from the GEMM-based model implementations.
Finally, in Section 9 we give some conclusions regarding our contributions.

2 Level 3 BLAS Summary

The level 3 BLAS consist of routines for both general and \structured" matrix multipli-
cation, including multiple right hand side triangular system solving. The six level 3 op-
erations (and routine names) are general matrix multiply and add ( GEMM), symmetric
matrix multiply ( SYMM, HEMM), symmetric rank-k update ( SYRK, HERK), sym-
metric rank-2k update ( SYR2K, HER2K), triangular matrix multiply ( TRMM), and
triangular system solve ( TRSM). In a complete implementation of the level 3 BLAS
there are four versions of the routines GEMM, SYMM, SYRK, SYR2K, TRMM
and TRSM corresponding to four di�erent data types and with the following pre�xes
of the routine names: S for single precision real data, D for double precision real data,
C for single precision complex data and Z for double precision complex data. The
routines HEMM, HERK and HER2K concern hermitian matrices and therefore they
only exist with pre�xes C and Z.

In tables 1 and 2, the operations and the parameter lists of the level 3 BLAS are
summarized [3]. We mainly discuss the real case here. Some comments on the complex
case are given in Section 5.6.

Options of a level 3 operation are controlled by arguments that specify op(X) =
X;XT or XH (trans = 'N', 'T' or 'C'), the storage format of op(X); upper or lower
triangular (uplo = 'U' or 'L'), unit or non-unit triangular (diag = 'U' or 'N'), and
whether op(X) should be applied from left or right (side = 'L' or 'R'). Each routine
has two or four (only TRMM and TRSM) form parameters for specifying di�erent
options. The parameters m, n and k specify the sizes of the matrices A;B and/or C
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Table 1: Level 3 BLAS operations.

Routine Operation Pre�xes

GEMM C  �op(A)op(B) + �C; op(X) = X;XT ; XH ; C is m� n S, D, C, Z

SYMM C  �AB + �C;C  �BA+ �C;C is m� n;A = AT S, D, C, Z

HEMM C  �AB + �C;C  �BA+ �C;C is m� n;A = AH C, Z

SYRK C  �AAT + �C;C  �ATA + �C;C = CT is n� n S, D, C, Z

HERK C  �AAH + �C;C  �AHA+ �C;C = CH is n� n C, Z

SYR2K C  �ABT + �BAT + �C;C  �ATB + �BTA+ �C;C = CT is n� n S, D, C, Z

HER2K C  �ABH + �BAH + �C;C  �AHB + �BHA + �C;C = CH is n� n C, Z

TRMM C  �op(A)C;C  �Cop(A); op(A) = A;AT ; AH ; C is m � n S, D, C, Z

TRSM C  �op(A�1)C;C  �Cop(A�1); op(A) = A;AT ; AH ; C is m � n S, D, C, Z

that participate in the operations, whose leading dimensions are speci�ed by lda, ldb
and ldc, respectively. Finally, alpha and beta correspond to the scalars � and � in
the operations.

Table 2: Level 3 BLAS parameter lists.

Routine Parameters

GEMM ( transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc )

SYMM ( side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc )

HEMM ( side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc )

SYRK ( uplo, trans, n, k, alpha, A, lda, beta, C, ldc )

HERK ( uplo, trans, n, k, alpha, A, lda, beta, C, ldc )

SYR2K ( uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc )

HER2K ( uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc )

TRMM ( side, uplo, trans, diag, m, n, alpha, A, lda, C, ldc )

TRSM ( side, uplo, trans, diag, m, n, alpha, A, lda, C, ldc )

3 GEMM{Based Level 3 BLAS Concept

We have shown that \one can live with" just one highly optimized level 3 BLAS routine:
GEMM [21, 17]. This subprogram oversees a general matrix multiply of the form

C  �op(A)op(B) + �C; where op(X) denotes X or XT :

The structured matrix multiplication problems handled by the other level 3 BLAS can
be couched in terms of GEMM and a small amount of level 1 and 2 computations, with
suitable partitionings. Roughly, the idea is to reduce the overall structured multiplica-
tion to a set of general multiplications involving \strips". Here, a strip is either a block
row or a block column. For performance purposes a strip can be further partitioned
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into subblocks. We illustrate our approach with the operation TRSM for triangular
system solve with multiple right hand sides.

From tables 1 and 2, we know the operations and the parameters of TRSM. The
matrix A is triangular and the parameters side and trans are used to specify its action.
Moreover, A may be lower or upper triangular (uplo = 'L' or 'U') and may have a
unit or nonunit diagonal (diag = 'U' or 'N'). The four di�erent situations from the
standpoint of blocking are summarized in Table 3.

Table 3: TRSM blocking cases.

Operation T Possibilities

C  X; TX = C lower triangular (T , uplo) = (A; 'L') or (AT ;'U')

C  X; TX = C upper triangular (T , uplo) = (A; 'U') or (AT ;'L')

C  X; XT = C lower triangular (T , uplo) = (A; 'L') or (AT ;'U')

C  X; XT = C upper triangular (T , uplo) = (A; 'U') or (AT ;'L')

First, we consider the case C  X; TX = C where T is lower triangular.

C1

C2

C3

=

@
@
@
@
@
@
@
@

@@
T11

T21

T31

T22

T32 T33

X1

X2

X3

We illustrate by blocking X in three block rows:

C1 = T11X1;

C2 = T21X1 + T22X2;

C3 = T31X1 + T32X2 + T33X3:

By solving for X in a block forward fashion we can obtain a GEMM-rich procedure:

X1  T�1
11 C1;

X2  T�1
22 (C2 � T21X1);

X3  T�1
33 (C3 � T31X1 � T32X2):

C2 and C3 are updated by calls to GEMM. The update of C2 and C3 with respect to
X1 can be performed by one single call.

Notice, it is only the diagonal blocks Tii that cannot be handled with GEMM
operations. For these we can repeatedly apply the level 2 BLAS operations TRSV
or GEMV. TRSV performs matrix-vector products of the form x  T�1x where T
is a nonsingular triangular matrix described via the variables uplo, diag, and trans.
GEMV performs a matrix-vector multiply and add operation y  �Ax+ �, where �
and � are scalars, x and y are vectors, and A is a general matrix. Indeed, our model
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implementation of TRSM uses one of the two level 2 operations depending on the
values of the form parameters. We refer to the next two sections for more information
on how the choice between two di�erent level 2 operations are handled.

The other three cases listed in Table 3 are similar and require only cursory discus-
sion. For the case TX = C with upper triangular T we have in the i-th step (i = 2
and C1, C2 are already updated with respect to X1);

C1

C2
=

@
@
@
@
@
@
@

@
@@

T12

T22 X2

Solve for X2 : T22X2 = C2;

Update C1 : C1  C1 � T12X2:

It follows that if we resolve the block rows of X in reverse order (from bottom to top)
we can overwrite C with X .

For the case XT = C with T lower triangular we have in the i-th step;

C1 C2 = X2

@
@
@
@
@
@
@
@

T21 T22

Solve for X2 : X2T22 = C2;

Update C1 : C1  C1 �X2T21:

It follows that if we resolve the block columns of X from right to left we can overwrite
C with X .

Finally, for the case XT = C with T upper triangular we have in the i-th step;

C2 C3 = X2

@
@
@
@
@
@
@
@

T22 T23

Solve for X2 : X2T22 = C2;

Update C3 : C3  C3 �X2T23:

It follows that if we resolve the block columns of X from left to right we can overwrite
C with X .
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In the present concept discussion we have omitted several issues that a�ect the
performance of a GEMM-based implementation. Examples include the placement of a
possible o�set diagonal block, which is determined by the values of uplo and trans,
and the size and orientation of blocks to be referenced and updated. More on this and
other design principles are discussed in the next section. The GEMM-based TRSM
algorithm for the model implementation is discussed in more detail in Section 5.5.

4 Design Principles for the Model Implementations

It is possible to implement GEMM-based level 3 routines in several ways. Performance
is often signi�cantly a�ected by di�erent design decisions, even if the underlying BLAS
routines ( GEMM and some lower level kernels) are well optimized and show high
performance. This section discusses design principles used in the GEMM-based level 3
BLAS model implementations.

4.1 Memory hierarchy model

The GEMM-based level 3 BLAS model implementations are based on a memory hier-
archy architecture model with certain characteristics:

� The CPU (or the processor) is connected to the main memory via a cache memory.
Data transfers between the CPU and main memory normally go through the
cache, where a copy of the data is kept. Accesses to data are handled by a
virtual memory system which is responsible for the correctness in handling the
data accesses but does not guarantee fast access times.

� The access time to data in the cache memory is constant and independent of
where in the cache data reside or in which order data are accessed. For example,
accesses to array data in cache are stride independent.

� Updates of data in memory, both reading and writing, are assumed to take more
time than just reading data.

� Data transfers between cache and main memory take place in lines of several
consecutive array elements, i.e., units of data larger than one element. The ele-
ments of a matrix column are assumed to be consecutively stored in memory (as
in Fortran). Accordingly, an arbitrary column of a 2-dimensional array requires
fewer lines to be transferred than the corresponding matrix row.

There are means to specify di�erent cache characteristics in terms of machine-
speci�c parameters, which are used by the auxiliary routine CLD (see sections 4.6 and
4.7).

Several of the current high-performance architectures fall within this logical mem-
ory hierarchy model. Examples include vector processors with local cache memory and
RISC processors with separate on-chip caches for data and instructions. Architectures
with multi-level caches can be interpreted within this framework in two di�erent ways:
(i) all cache memory is considered as a unit, (ii) only the top level is considered as the
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cache memory and the lower levels together with the main memory are regarded as
one unit of memory. Neither of these interpretations are completely satisfactory. The
solution we recommend is to impose that the few underlying routines called by the
GEMM-based model implementations utilize the machine characteristics of the target
architecture e�ciently (including a multi-level cache). Another (and complementary)
solution is to apply di�erent levels of blocking with respect to a multi-level memory.
However, to guarantee portability as well as high performance we have only imple-
mented blocking with respect to one level of cache memory (see below and Section
8.)

4.2 Blocking strategy

The blocking strategy of the GEMM-based routines should be adapted to the perfor-
mance characteristics of the underlying BLAS kernels that are called. If the underlying
BLAS kernels should have equal and uniform performance for all problems then any
GEMM-based implementation would be good enough, but in practice this is not the
case.

The performance of the underlying BLAS depend on the size and con�guration of
the problem, properties of the machine, and how e�cient these properties are utilized
in the BLAS kernels themselves, i.e., how well they are optimized for the machine.
A machine with a vector processor, for example, usually need long vectors or vectors
sized to �t in vector registers to perform at its best. Properties of the machine include,
for instance, possibilities for pipelining, chaining, use of compound instructions, reuse
of data in registers (and in cache for GEMM), parallelism, etc. For this reason, the
GEMM-based routines are designed to utilize the fastest underlying BLAS routines and
to supply them with appropriate subproblems.

We see four basic ways to block a GEMM-based level 3 BLAS routine involving a
triangular matrix, or a symmetric matrix stored as a triangular matrix. In Figure 1 we
illustrate these alternative ways by looking at GEMM-updates C  �CA + C within
the TRSM operation. In this case, side = 'R', uplo = 'U', and trans = 'N', i.e.,
at the outermost level we perform the operation C  CA�1, where A is triangular and
stored in upper triangular format. This operation is covered by the last case illustrated
in Section 3.

In each of the four alternatives in Figure 1, there are three GEMM-updates, each
illustrated with a di�erent pattern, , ���� , and . Notice that some of the blocks
involved in the di�erent GEMM-updates overlap and create mixed patterns.

We can identify the four ways by looking at the blocks of the triangular A. In all
alternatives, A is partitioned into three uniformly sized triangular diagonal blocks and
one smaller triangular diagonal block. This o�set block may be located in either the
lower right corner of the matrix, as in alternatives 1 and 3, or in the upper left corner,
as in alternatives 2 and 4. Additionally, three rectangular blocks are needed to cover
A.

The subproblems involving triangular diagonal blocks of A have the same dimen-
sions irrespective of in which corner of A the o�set block is placed. Therefore, the
location of the o�set block is not expected to have a signi�cant impact on the per-
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Figure 1: Four basic ways to block TRSM, side = 'R', uplo = 'U' and trans =

'N'.

formance of the subproblems involving triangular blocks. However, the subproblems
involving rectangular blocks of A have di�erent dimensions in all four alternatives. In
alternatives 1 and 2 the rectangular blocks of A have a �xed maximum width, and
in alternatives 3 and 4, they have a �xed maximum height. Computations involving
rectangular blocks of A can be performed by calls to GEMM. All four alternatives
present a di�erent set of problems for GEMM. Consequently, the performance of the
entire TRSM operation, is mostly determined by the performance of GEMM for these
sets of subproblems. Which of the four alternatives that gives the best performance
may be di�erent for di�erent architecture characteristics. Our approach is to choose a
blocking strategy that we expect to be the fastest on most modern memory hierarchy
machines. The following guidelines were used to decide which of the four alternatives
to select.

� Update policy. If data is brought from memory with a high amount of locality of
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reference, the data tra�c in the memory hierarchy is generally reduced. Locality
of reference (or data locality) means that for a sequence of operations, references
are kept local to limited portions of consecutive addresses in memory. With a
high amount of locality of reference, larger amounts of data can be reused at
di�erent levels of the memory hierarchy. In general, we expect that updating,
which involves both reading and writing of memory, generates more tra�c in the
memory hierarchy than just reading data. Since columns of matrices are stored
contiguously in Fortran 77, while elements of rows may have a large stride, a
higher amount of data locality can, in general, be obtained when accessing block
columns of matrices rather than block rows.

In our implementations we choose to update a block column or a block row of the
result matrix completely before the next block column or block row is processed.
The blocks are updated consecutively until the whole result matrix is completed.
This approach gives a su�cient amount of data locality.

� O�set block positioning. The o�set block is placed in the corner that causes
the adjoining rectangular block to be vertically oriented in memory, or stored as a
block column. The rectangular block will often become tall and narrow with fewer
and longer columns than rows, enabling a high amount of locality of reference.
The columns will always have a minimum height equal to the dimension of the
remaining triangular blocks.

If the matrix has an upper triangular storage format, uplo = 'U', then the o�set
block is placed in the lower right corner of the matrix and for a lower triangular
storage format, uplo = 'L', the o�set block is placed in the upper left corner.

In alternatives 1 and 2 of Figure 1 a block column of C is fully updated before the
next block of C is processed. In alternatives 1 and 3, the rectangular block adjoining
the o�set block of A is vertically oriented, i.e., a block column. Only the �rst blocking
strategy ful�lls both our criteria and was therefore chosen for our GEMM-based TRSM
implementation.

4.3 Local arrays for consecutive storage of submatrices

An unappropriate size of the leading dimension of a 2-dimensional array may cause par-
ticularly heavy tra�c in the memory hierarchy when the matrix is referenced repeatedly.
Further, only a small fraction of the cache may be utilized. Physical characteristics of
the memory hierarchy determines for which leading dimensions these problems will
occur.

Local arrays are used extensively in the model implementations to provide prop-
erly aligned consecutive storage for temporarily kept blocks of matrices, resulting in
improved data locality. The size of the local arrays are determined before compilation.
Provided that proper values for the dimensions of the local arrays are speci�ed, these
problems with \critical" leading dimensions are e�ectively avoided. The blocks may be
transposed while they are copied to local arrays, in order to possibly �t the succeeding
computations in the underlying BLAS routines better. Additionally, symmetric and
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hermitian blocks of matrices, where only the upper or lower triangular part is stored,
can be transformed to general form when they are copied to the local arrays. We get
rectangular blocks with long and uniformly sized vectors where the dimensions can be
sized to �t, for instance, both vector registers and cache at the same time. Moreover,
the general blocks make it possible to enhance the use of GEMV and GEMM which
are likely to be the fastest level 2 and level 3 routines available on most machines. This
generally works well with any type of processor, RISC, CISC, vector processors, etc.

4.4 Underlying BLAS routines

Apart from the level 3 routine GEMM, the computations are focused on the level 2
routine GEMV since this is the fastest level 2 routine available, on most machines.
The number of di�erent BLAS routines called from the GEMM-based routines are
intentionally kept small, in order to reduce the number of necessary machine speci�c
implementations. The underlying BLAS routines are the level 3 routine GEMM, the
level 2 routines GEMV, SYR, TRMV, and TRSV [7], and the level 1 routines
AXPY, COPY, and SCAL [22]. The most signi�cant underlying routines in order
for the GEMM-based level 3 BLAS model implementations to achieve high performance
are GEMM and GEMV.

4.4.1 Level 3 performance obtained with level 2 BLAS

The level 2 BLAS [7] perform matrix-vector operations. For instance, the matrix vector
multiply and add operation GEMV, y  �Ax+ �y, where � and � are scalars, x and
y are vectors, and A is a general matrix. On a machine with vector registers, or a
su�cient number of scalar registers, it is possible to implement level 2 BLAS routines
that o�er register reuse of a vector. One of the vectors, x or y, is referenced repeatedly
and a part of it can be kept in registers between the references. Which vector depends
on whether the underlying instructions are arranged to perform dot or axpy oriented
operations, where dot denotes the operation dot  dot + xTy and axpy denotes the
operation y  �x+ y.

Cache reuse is usually not associated with the level 2 BLAS since the elements of
the matrix A are referenced only once. Cache reuse requires multiple references of a
matrix.

If, for instance, the underlying instructions perform dot products, it is possible to
keep a large section of the vector x in the cache and reuse it for each row of A. We
refer to this approach as vector register reuse using the cache as a large vector register,
rather than as cache reuse.

However, if the level 2 routine is called multiple times, it is sometimes possible
to attain \true" cache reuse for the level 2 computations. For instance, if GEMV
is called repeatedly with di�erent x and y vectors each time, but with the same A-
matrix, it is possible to reuse A in the cache between the calls, provided that A �ts
properly in the cache. For matrices that do not �t in cache, a blocked approach can
be applied. Notice that vector register reuse can still be implemented on top of this.
Apart from the overhead caused by multiple calls to GEMV (parameter checking,
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etc), this approach makes it possible to reach performance levels usually associated
with the level 3 BLAS. The computations of the GEMM-based level 3 BLAS model
implementations are structured to utilize this technique extensively in order to attain
high and uniform performance.

On machines with the possibility to get explicit control over which data that resides
in the cache, the programmer implementing GEMV may choose to use the cache as
a large vector register, for instance, for a large section of the x-vector. This e�ciently
spoils all chances to reuse the A-matrix and to attain level 3 performance over multiple
calls to GEMV. On machines having a LRU (least recently used) based replacement
policy, where the most recently referenced data always resides in the cache, this will
not be a problem. Notice that a level 2 implementation that explicitly uses the cache as
a large vector register may be faster for one or possibly a few repeated calls. However,
for more than just a few calls the approach to reuse a section of x in a vector register
and a block of A in the cache, or possibly both x and A in the cache, is likely to be
faster.

4.5 Alternative code sections

Alternative code sections performing the same task but calling di�erent underlying
BLAS routines are used conditionally to utilize the fastest underlying routine depending
on the problem con�guration. Mostly, the choice is between a code section that calls
the level 2 routine GEMV and a code section that calls some other level 2 BLAS
routine. The alternate code sections have di�erent performance characteristics and the
choice between them are controlled by intersection points (ipx) in each of the level 3
routines.

Alternative code sections are also used to avoid \critical" leading dimensions and
referencing matrices by row.

4.6 Auxiliary routines

The original Fortran 77 model implementations of the level 3 BLAS [9, 10] include two
auxiliary subprograms, LSAME and XERBLA. The GEMM-based level 3 BLAS model
implementations have two additional auxiliary subprograms, BIGP and CLD.

� BIGP determines which of two alternative code sections, in a GEMM-based
level 3 routine, that will be the fastest for a particular problem con�guration.

� CLD determines whether the size of the leading dimension of a 2-dimensional ar-
ray is appropriate for the target memory hierarchy. A \critical" size of the leading
dimension may cause a substantial increase in the amount of data movements in
the memory hierarchy, resulting in severe performance degradation. Particularly,
this may happen if the array is referenced by row.

For more information about the implementations of BIGP and CLD see Section
2 in the companion paper [20].
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4.7 Machine-speci�c parameters

Each of the GEMM-based routines has system dependent parameters which are assigned
values at compile time. The parameters specify internal block sizes, cache characteris-
tics, and intersection points for alternate code sections in the GEMM-based routines.
Blocking parameters and intersection points will appear in the description of the model
implementations (see Section 5). The parameters that specify characteristics of the
cache memory are described in [20], where also guidelines for assigning values to the
machine-speci�c parameters are given.

5 High Performance Model Implementations

The model implementations are written in Fortran 77 and are structured to e�ectively
reduce data tra�c in a memory hierarchy. A detailed description of the algorithms
used in our model implementations for the di�erent level 3 operations is presented
in [19]. These descriptions include block partitionings and associated GEMM-based
templates for di�erent options of the operations. Since these descriptions are very space-
demanding we only give a brief description of the GEMM-based implementations here.
This includes the characteristics of each complete GEMM-based level 3 BLAS algorithm
summarized in a table that shows the lower level BLAS operations, auxiliary routines,
and intrinsic functions used. Moreover, we display local arrays, intersection points (ipx)
for algorithm variants and blocking parameters associated with the partitionings of the
matrices involved. Finally, we discuss the complex case and point to some di�erences
between the real and complex model implementations.

5.1 Symmetric Matrix Multiply

SYMM performs the matrix multiply and add operation:

� C  �AB + �C, if side = 'L',

� C  �BA + �C, if side = 'R',

where C is a general m � n matrix, A (m�m or n� n) is symmetric (A = AT ), and
stored as an upper or lower triangular matrix.

The implementation consists of four sections of code corresponding to the di�erent
values of side and uplo. Each section consists of an outer sectioning (or blocking) loop
to partition the problem into subtasks. In each iteration of this outer sectioning loop
three di�erent subtasks are handled that involve:

� a diagonal block of the symmetric matrix A,

� an o�-diagonal block of A,

� the transpose of an o�-diagonal block of A.

The computations in each of these subtasks are performed by a single call to GEMM.
The blocking strategy for SYMM is chosen so that a horizontal or vertical block of C
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is updated in each iteration of the outer sectioning loop. The block is of size rc� n (if
side = 'L') or m� rc (if side = 'R').

Since A has triangular storage format some preparations are necessary before GEMM
is invoked in subtasks involving diagonal blocks of A. The triangular diagonal blocks of
A can not immediately be processed by GEMM. Full square diagonal blocks (rc� rc)
are created from the non-transpose and the transpose of A using COPY. The new
blocks are stored in a 2-dimensional local array T1 with general storage format and
used (instead of A) in the calls to GEMM.

T1, which may be large, is referenced by row when the transpose of A is copied to
T1. Since referencing by row, under certain circumstances may cause increased memory
tra�c and thereby longer access times, an additional level of blocking is implemented
for this suboperation, which reduces the length of the row vectors referenced from rc

to c. Vertical rc� c blocks of the square block T1 (rc� rc) are referenced as units. The
same approach is used to reference the local array in SYR2K (see Section 5.3).

The local array is only used to change the storage format in this routine. Since all
computations are performed by GEMM we do not need to be concerned with critical
leading dimensions and alignment for e�cient cache utilization, except for copying the
transpose of diagonal blocks of A to T1 above. We trust that GEMM handles the
memory hierarchy e�ciently. However, good performance may well be achieved with
local arrays that matches the size of the cache. Notice that no level 2 BLAS is involved
in this implementation.

Table 4: Characteristics of the SYMM implementation.

Level 1 routines called COPY

Level 2 routines called |

Level 3 routines called GEMM

Auxiliary routines called LSAME, XERBLA

Intrinsic functions called MAX, MIN

Local arrays T1 (rc� rc)

Intersection points |

Blocking parameters rc, c

The characteristics of the GEMM-based SYMM is summarized in Table 4.

5.2 Symmetric Rank{k Update

SYRK performs the rank-k update operation:

� C  �AAT + �C, if trans = 'N',

� C  �ATA+ �C, if trans = 'T',

where C is n � n, symmetric (C = CT ), and stored as an upper or lower triangular
matrix. The matrix A is n� k (if trans = 'N') or k � n (if trans = 'T').
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The implementation consists of four sections of code corresponding to the di�erent
values of uplo and trans. Each of these sections is further divided into two parts which
are used conditionally depending on the value of the dimension n. If n < ip41, then
the �rst part is used. Otherwise, the second part is used.

The �rst part uses the level 1 routines COPY and SCAL, and the level 2 routine
SYR for computations involving diagonal blocks of C. A square diagonal block of C
(rc � rc and stored in upper or lower triangular format) is copied to the local array
T2 (using COPY) and if necessary scaled by � (using SCAL). The block is then
rank-1 updated n times (using SYR) and copied back to C from T2 (using COPY)
again. If trans = 'T' an additional local array T3 is used for blocks of AT so that
multiple rank�1 updates on diagonal blocks of C(ATA) can be performed as T3T

T

3 to
provide stride one references for SYR. For small values of k (determined by a second
intersection point, ip42) the computations are performed directly on the blocks of C,
not using T2 or T3. Copying blocks to and from T2 and T3 imply too much overhead
compared to the number of times the blocks are referenced, since k is small. However, if
the leading dimension of C is critical then the data tra�c in the memory hierarchy may
increase substantially when the block of C is referenced. In that case it is important
to use T2, which should be sized to �t safely in the cache. Typically, this is the case if
the storage requirements of T2 is limited to 50{75% of the size of the cache memory.

The second part uses COPY and GEMV for computations involving diagonal
blocks of C. A rectangular block of A or AT , depending on the value of trans is copied
to T1 (r � c) (using COPY). Then a square (r � r) diagonal block of C (stored in
upper or lower triangular matrix format) is updated by � and T1T

T

1 (using GEMV).
The block in T1 is then repeatedly replaced by subsequent blocks of A or AT , and the
block of C is repeatedly updated by T1T

T

1 (using GEMV). A local temporary � is used
to facilitate the scaling of the block of C with � the �rst time it is referenced. T1 is
reused heavily and should also be sized to �t safely in the cache.

In both parts, the rectangular o�-diagonal blocks of C are computed using GEMM.
The sizes of the o�-diagonal blocks of C are di�erent in the two parts.

Table 5: Characteristics of the SYRK implementation.

Level 1 routines called COPY, SCAL

Level 2 routines called GEMV, SYR

Level 3 routines called GEMM

Auxiliary routines called CLD, BIGP, LSAME, XERBLA

Intrinsic functions called MAX, MIN

Local arrays T1 (r � c), T2 and T3 (rc� rc)

Intersection points ip41 for n, ip42 for k

Blocking parameters r, c, rc

The characteristics of the GEMM-based SYRK is summarized in Table 5.
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5.3 Symmetric Rank{2k Update

SYR2K performs the rank-2k update operation:

� C  �ABT + �BAT + �C, if trans = 'N',

� C  �ATB + �BTA+ �C, if trans = 'T',

where C is n � n, symmetric (C = CT ), and stored as an upper or lower triangular
matrix. The matrices A and B are n� k (if trans = 'N') or k � n (if trans = 'T').

The implementation consists of four sections of code corresponding to the di�erent
values of uplo and trans. Each section consists of an outer sectioning (or blocking)
loop to partition the problem into subtaks. In each iteration of this outer sectioning
loop three di�erent subtasks are handled that involve:

� a diagonal block of the symmetric matrix C,

� an o�-diagonal block of C,

� the transpose of an o�-diagonal block of C.

The computations involving o�-diagonal blocks of C are performed by calls to GEMM.
The subtask involving diagonal blocks of C consists of the following three steps:

� Conceptually, one of the operations T1  �ABT and T1 �ATB, depending on
the value of trans, is performed on rectangular blocks of A and B using GEMM.
T1 is a local array of size rc� rc.

� The stored upper or lower triangular part (depending on uplo) of Cii, a diagonal
block of the symmetric C is updated by � times itself (using SCAL) and by the
upper or lower part of T1 (using AXPY), so that Cii  T1 + �Cii.

Notice that we have to use both SCAL and AXPY to perform this fairly simple
operation. We lack a level 1 BLAS routine performing the operation y  x+ �y

or y  �x+ �y.

� Cii is then further updated with the appropriate upper or lower part of the trans-
pose of T1 (using AXPY), so that Cii  TT

1 + Cii.

Notice that T1, which may be large, is referenced by row in this operation. As in
SYMM an additional level of blocking is implemented which reduces the length
of the row vectors referenced, from rc to c. Vertical blocks (rc� c) of the square
block T1 (rc� rc) are referenced as units.

The result of these three steps is a complete rank-2k update for a diagonal block of C.
Notice that the local array T1 is needed only to provide a general storage format

for the matrix multiply operation. T1 does not need to �t in the cache. With this
approach for SYR2K all handling of the memory hierarchy becomes local to GEMM.
This approach was �rst used in [23]. Notice also that no level 2 BLAS is used in this
implementation.

The characteristics of the GEMM-based SYR2K is summarized in Table 6.
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Table 6: Characteristics of the SYR2K implementation.

Level 1 routines called SCAL, AXPY

Level 2 routines called |

Level 3 routines called GEMM

Auxiliary routines called LSAME, XERBLA

Intrinsic functions called MAX, MIN

Local arrays T1 (rc � rc)

Intersection points |

Blocking parameters rc, c

5.4 Triangular Matrix Multiply

TRMM performs the matrix multiply operation:

� C  � op(A) C, if side = 'L',

� C  � C op(A), if side = 'R',

where C is an m � n general matrix, op(A) (m � m or n � n) is a unit or non-unit
upper or lower triangular matrix, and op(A) = A or AT .

The implementation consists of eight sections of code corresponding to the di�erent
values of side, uplo, and trans. Each of these sections are further divided into two
parts which are used conditionally depending on the values of m and n. If side = 'L'

and n < ip81 or if side = 'R' and m < ip83, then the �rst part is used. Otherwise,
the second part is used.

The �rst part uses the level 1 routine COPY and the level 2 routine TRMV for
computations involving triangular diagonal blocks of A. If side = 'L' and n � ip82,
then T3 (rc�rc) is used to hold the triangular diagonal blocks of A during the TRMV
computations. This guarantees that the blocks of A will reside properly in cache during
the calls to TRMV that follows. The result is e�cient cache reuse. If n < ip82,
the blocks of A are referenced without using T3 in TRMV. In this case, using T3 is
considered to represent too much overhead in relation to the number of calls to TRMV.

If side = 'R', the blocks of C are referenced by row in the calls to TRMV. This
may be very costly if more than one or two calls are made. So, if m � ip83, the second
part is used (see below).

The second part uses COPY and GEMV for computations involving triangular
diagonal blocks of A. If side = 'L', the following steps are performed repeatedly in a
blocked fashion.

� If trans = 'N', the transpose of a triangular diagonal block Aii of A (c� c) is
copied to the local array T2, using COPY (T2  AT

ii
).

� The transpose of a rectangular block Cij of C is copied to T1 (r�c) using COPY
(T1 CT

ij
).
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Figure 2: Sample use of GEMV for triangular diagonal blocks in GEMM-based
TRMM (side = 'L', uplo = 'U' and trans = 'N').

� The blocks of C stored in T1, the blocks of A possibly stored in T2, and the
scalar � are multiplied together using GEMV, T1  � � T1�(T2 or a block of
A). The local array T1 will be heavily referenced and if properly sized, it will
remain in cache between the calls to GEMV and provide for e�cient cache reuse
(see Section 4.4). For example, if side = 'L', trans = 'N' and uplo = 'U',
the operation

T1(1 : ni; i) T1(1 : ni; i+ 1 : r0) � T2(i+ 1 : r0; i) + �T1(1 : ni; i);

where  is assigned the value �, � is assigned the value � (if diag = 'U') or
�T2(i; i) (if diag = 'N'), is performed with repeated calls to GEMV.

In Figure 2 we illustrate one such GEMV operation. The values for  and r0 (the
second dimension of the matrix block T1which varies) are also used to overcome a
\de�ciency" in GEMV that appears if the second dimension of the block is zero.
Whenever r0 is zero, it is changed to 1:0 and  is changed to 0:0, before GEMV
is called. Otherwise, if these changes were omitted, GEMV would just perform
a \quick return" instead of scaling T1 with � when r0 = 0 . If trans = 'T', the
blocks of A are referenced directly without using the local array T2.

� The result of the multiplication stored in T1 is copied back to the matrix C using
COPY (Cij  TT

1 ).

A similar approach is used if side = 'R'. The di�erences are (i) the blocks of C
are not transposed when they are copied to the local array T1, (ii) the results are stored
back directly to C instead of via T1. The diagonal blocks of A are copied to T2 and
transposed when trans = 'T' instead of when trans = 'N'.

In both parts, the computations involving rectangular o�-diagonal blocks of A are
performed using GEMM. In the �rst part, GEMM performs the scaling of C (C  
�C) before the computation involving a triangular block starts, and the operation
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C  �op(A)C+C or C  �Cop(A)+C, is performed after completion of the triangular
computation. In the second part the scaling of C is performed in the calls to GEMV.
Notice that the sizes of the blocks involved are di�erent between the two parts.

If side = 'L', a horizontal block of C is updated in each iteration of the outermost
loop. Otherwise, if side = 'R', a vertical block of C is updated in each iteration.

Table 7: Characteristics of the TRMM implementation.

Level 1 routines called COPY

Level 2 routines called GEMV, TRMV

Level 3 routines called GEMM

Auxiliary routines called CLD, BIGP, LSAME, XERBLA

Intrinsic functions called MAX, MIN, MOD

Local arrays T1 (r � c), T2 (c� c), T3 (rc� rc)

Intersection points ip81 and ip82 for n, ip83 for m

Blocking parameters r, c, rc

The characteristics of the GEMM-based TRMM is summarized in Table 7.

5.5 Triangular System Solve

TRSM solves for X in the matrix equation:

� op(A) X = �C, if side = 'L',

� X op(A) = �C, if side = 'R',

where C is an m � n general matrix, op(A) (m � m or n � n) is a unit or non-unit
upper or lower triangular matrix, and op(A) = A or AT . The solution X overwrites C
(C  X).

The implementation is very similar to TRMM and consists of eight sections of code
corresponding to the di�erent values of side, uplo, and trans. The di�erences in these
code sections compared to TRMM are:

� The direction of some of the blocking loops are reversed, so that the blocks and
columns of blocks of C are read (operand) and updated (result) in the reversed
order compared to TRMM.

� Only one call to GEMM is needed in each part of the eight code sections. This
call is placed before the computations involving triangular blocks of A and per-
forms both the scalar update of blocks of C and the blocked matrix multiply.
Conceptually, the operation is C  �op(A)C + �C or C  �Cop(A) + �C.

� The values assigned to the variables  and � in TRSM are di�erent from those
assigned in TRMM. Scalar division is involved if diag = 'N' (for dividing by
the diagonal elements of A).
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� If side = 'R', T1 also keeps the result vectors from GEMV until the block is
complete. Then T1 is copied back to C. This is necessary since, in TRSM, blocks
of C are also read after they have been updated. The operand C (T1) needs to
be the same as the result block C (T1) in calls to GEMV. This is not the case in
TRMM where C is not read after being updated.

� The intersection points ip81, ip82, and ip83 in TRMM correspond to ip91, ip92,
and ip93, respectively, in TRSM.

Table 8: Characteristics of the TRSM implementation.

Level 1 routines called COPY

Level 2 routines called GEMV, TRSV

Level 3 routines called GEMM

Auxiliary routines called CLD, BIGP, LSAME, XERBLA

Intrinsic functions called MAX, MIN, MOD

Local arrays T1 (r � c), T2 (c� c), T3 (rc� rc)

Intersection points ip91 and ip92 for n, ip93 for m

Blocking parameters r, c, rc

The characteristics of the GEMM-based TRSM is summarized in Table 8.

5.6 The Complex Case

The de�nitions of level 3 BLAS for single complex and double complex data di�er from
the real counterparts in some aspects. First of all, we have the additional routines for
hermitian matrices, HEMM, HERK, and HER2K. Apart from the complex routine
SYMM which is a direct translation of the real SYMM, the remaining routines also
have other di�erences than just the type. The symmetric rank updates SYRK and
SYR2K do not allow, trans = 'C', in the complex versions as opposed to the real
versions where 'C' is interpreted as 'T'. In the complex TRMM and TRSM, trans
= 'C', means the conjugated transpose whereas in the real cases 'C' is treated like
'T'. The conjugated transpose cases obviously bring additional code into the complex
versions of TRMM and TRSM.

For the GEMM-based level 3 BLAS the di�erences between the real and the com-
plex routines are greater than in the original Fortran 77 model implementations [10].
This is, to a great extent, due to the use of underlying level 1 and level 2 BLAS rou-
tines. These routines have di�erences between the real and complex versions, which
need to be handled by the GEMM-based routines. For example, the real SYRK calls
the underlying level 2 symmetric rank-1 update SYR, which has no complex counter-
part. In the complex SYRK we use the complex level 1 routine AXPY to perform
symmetric rank-1 updates. Moreover, we have extended the use of local arrays to store
the conjugated transpose of subarrays and in general to facilitate the preparation of
subproblems to �t the underlying routines well. Code sections that copy the conju-
gated transpose of blocks to local arrays are implemented with inline code using the
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intrinsic functions CONJG/DCONJG, since no convenient BLAS routine exists. The
hermitian routines HEMM, HERK, and HER2K are developed from their symmetric
counterparts SYMM, SYRK, and SYR2K. They contain inline code and use local
arrays more frequently. The intrinsic routines REAL/DBLE, CMPLX/DCMPLX, and
CONJG/DCONJG, are used for appropriate data conversion. We assume the same
de�nitions as in the original BLAS and LAPACK for all intrinsic functions. Notice
that the scalars � and � in HERK and � in HER2K are de�ned to be real and not
complex.

6 GEMM{Based Level 3 BLAS Benchmark

Many people have put a lot of e�ort into developing fast level 3 BLAS since the speci�-
cation was published in 1990 [9, 10]. Some vendors provide highly optimized BLAS for
their machines, see for example [2, 1, 16, 4, 24], while others provide optimized versions
of some or none of the routines. Vendor-independent groups have also developed tuned
level 3 kernels for di�erent machines, for example [23, 17, 13, 6, 14], where some are
based on the GEMM-based concept [17, 6, 14].

Today di�erent implementations with di�erent performance characteristics coexist
and it is becoming more important to evaluate di�erent implementations thoroughly.

The GEMM-based benchmark measures the performance of an arbitrary set of
level 3 BLAS implementations, speci�ed by the user, and compares it with the perfor-
mance of the GEMM-based level 3 BLAS model implementations, permanently included
in the benchmark. The level 3 BLAS implementations speci�ed by the user are linked
with the benchmark program. When the benchmark executes, timings are performed
according to speci�cations given in an input �le. The user may design her/his own
tests or use the enclosed input �les (see [20]). The following output results are eligible
for presentation:

� A collected \mean value" statistic, calculated from the performance results of the
user-speci�ed level 3 BLAS routines for the problem con�gurations speci�ed in
the input �le.

� Tables, that show measured performance results in Mops for each routine and
choice of parameters. Both the user-speci�ed and the GEMM-based level 3 BLAS
routines are timed and their performances are compared.

The tables are intended for program developers and others who require detailed per-
formance information. It is possible to choose which of the following results that are
to be presented:

� Performance of the GEMM-based level 3 BLAS routines in Mops.

� Performance of the user-speci�ed level 3 BLAS routines in Mops.

� Performance of the user-speci�ed GEMM routine in Mops.

� GEMM-e�ciency of the user-speci�ed level 3 BLAS routines.
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� GEMM-ratio.

Results are presented for each routine and problem con�guration speci�ed in the input
�le. Each item in the listing above corresponds to a column of the output tables (see [20]
for more information). The last two items are de�ned as follows. The GEMM-e�ciency
is intended to illustrate how close to the \practical" peak performance a routine reaches,
which is de�ned as the performance of the highly optimized GEMM routine speci�ed
by the user for the given problem con�guration. Notice that the \practical" peak
performance can be considerably lower than the maximal theoretical performance of
the architecture considered. The performance of the user-speci�ed level 3 BLAS routine
is compared with the performance of the user-speci�ed GEMM routine. Let Perf (x)
denote the the performance in Mops of x. Then

GEMM-e�ciency =
Perf (user-speci�ed level 3 routine)

Perf (user-speci�ed GEMM routine)
:

The GEMM-e�ciency is measured using a choice of parameters for GEMM which, in
this respect, \corresponds" to the problem con�guration for the level 3 routine it is
compared with.

The GEMM-ratio is the performance of a GEMM-based level 3 BLAS routine com-
pared with the user-speci�ed implementation of the same routine, i.e.,

GEMM-ratio =
Perf (GEMM-based routine)

Perf (user-speci�ed level 3 routine)
:

For a vendor-supplied level 3 BLAS library we would expect to have all GEMM-ratios
less than 1. However, this is not always the case (e.g., see results in [17, 18] and Section
7). A value greater than one implies that the GEMM-based implementation is faster
than the user-speci�ed implementation for the given problem con�guration.

The collected \mean value" statistic provides a comprehensive performance result of
the user-speci�ed routines that is easy to compare with other level 3 BLAS implemen-
tations, and between di�erent machines. This result consists of a tuple (x; y), where x
is the mean value of the GEMM-e�ciency and y is the mean value of the performance
of GEMM. The GEMM-e�ciency is measured for the routines and choice of param-
eters that are speci�ed in the input �le and the performance of GEMM is measured
for corresponding problem con�gurations. Provided that GEMM is well implemented,
y represents the average \practical" peak performance of the target computer system,
for the speci�ed problem con�gurations. The average performance of the remaning
user-speci�ed implementations can be approximated as x � 100 percent of the average
\practical" peak performance y.

To further standardize the result we have included a pair of \canonical" input �les
called MARK01 and MARK02, which are explained in [20]. The user can also use
\customized" input �les to obtain results for problem con�gurations of interest.

7 Performance and Benchmark Results

We have tested our GEMM-based model implementations and performance evalua-
tion benchmark on several platforms (vector as well as RISC-based), including Al-
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liant FX/2800, IBM 3090 VF, IBM RS6000, IBM SP2, Intel PARAGON, NEC SX-3,
Parsytec GC/PowerPlus and Silicon Graphics (SGI) Indy. In this section we report
some of these results, focusing on modern high-performance architectures. Sample per-
formance results for the vector machine IBM 3090 VF can be found in [17, 18]. The
correctness of the GEMM-based model implementations were veri�ed by the testing
program accompanying the original model implementations. The measured perfor-
mance results presented here are all for double precision real data (64 bits oating
point numbers) and were obtained by using the GEMM-based performance evaluation
benchmark. The exception is the results for NEC SX-3 for which single precision real
data corresponds to 64 bits oating point arithmetic. Corresponding results for double
precision complex data are very similar.

7.1 Performance results of the GEMM-based model implementations

In the �rst set of tables we compare the performance of the GEMM-based routines with
optimized vendor-supplied level 3 BLAS.

Tables 9 and 10 show GEMM-ratios for level 3 BLAS provided in the IBM ESSL
library [16]. The results are obtained on IBM RS6000 250 and IBM RS6000 530H (Table
9) and on a thin and wide node, respectively, of the scalable IBM SP2 system (Table
10). The underlying routines of the GEMM-based library are from ESSL, except for the
results on IBM RS6000, where we used our own developed Fortran 77 implementation
of DGEMV (denoted POL-DGEMV in the tables). We decided to implement POL-
DGEMV when we discovered that ESSL DGEMV did not perform satisfactory when
the matrix already redsides in cache. We could not get level 3 performance from
the computations as described in Section 4.4.1. The problem was an eight cycle halt
occurring in ESSL DGEMV whenever elements from a new line of data are loaded [2].
POL-DGEMV is implemented with unrolling and data fetching in advance similar to
algorithmic prefetching as described in [2].

The corresponding results for the Paragon Basic Math Library (lkmath) on a single
node of the Intel PARAGON are displayed in Table 11. The underlying routines of
the GEMM-based library are from lkmath, except for DGEMV for which we use an
optimized assembler version (denoted KD-DGEMV in the tables) [5]. This routine
stores parts of A in cache memory and thereby makes it possible to attain level 3
performance of consecutive GEMV operations where the A-block is kept �x but x is
varied (see Section 4.4.1).

Table 12 shows similar results for the vendor-supplied level 3 BLAS (libblas) on
SGI Indy equipped with MIPS R4000 and R4400 processors. The underlying routines
of the GEMM-based library used come from the SGI library libblas.

The level 3 libraries provided by the vendors are considered to be highly optimized
and perform well on the respective target architectures. Our results clearly demonstrate
that the portable GEMM-based model implementations are competetive with all three
and that they all can be improved further. When level 2 BLAS operations are imper-
ative as in DSYRK, DTRMM and DTRSM, the corresponding GEMM-based routines
do not fully match the best results. However, if the portability claim is dropped, inline
source code implementing consecutive level 2 operations adapted to a speci�c target
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machine can resolve this problem (see Section 8). On the other hand, when no level 2
BLAS operations are required as in DSYMM and DSYR2K even the best-performed
vendor-manufactured routines can gain from the GEMM-concept.

Extensions and modi�cations of high-performance architectures are introduced reg-
ularly. Now and then, we also see new architectures appear on the market. These
circumstances show the bene�ts of our GEMM-approach, since we only require a few
routines to be optimized for the target architecture (see Section 4.4). One example of
a recent scalable high-performace architecture is the Parsytec GC/PowerPlus, based
on the PowerPC microprocessor as computing nodes. Presently, Parsytec does not
o�er an optimized level 3 BLAS for this architecture. Fortunately, there exists an
optimized DGEMM routine for the machine (developed by Bernhard Przywara and
denoted BP-DGEMM in the tables) which enabled us to try out the GEMM-based
model implementations. BP-DGEMM builds on the work in [8]. The remaining under-
lying routines of the GEMM-based library are from the original level 1 and 2 BLAS
model implementations. In Table 13 we show the GEMM-ratios from a single node of
Parsytec GC/PowerPlus. The comparison is here with the original level 3 BLAS model
implementations from netlib. In the right-most part of Table 13 we show results where
the original DGEMV has been replaced by POL-DGEMV. These clearly demonstrates
the bene�ts of using an optimized level 2 GEMV routine as well.

One way to invoke parallelism in the GEMM-based level 3 BLAS is to use parallel
versions of the underlying BLAS kernels. At minimum this implicit approach requires
a well-optimized parallel version of GEMM. In Table 14 we display multiprocessor per-
formance results of the GEMM-based DSYR2K executing on an ALLIANT FX/2816
(one-processor peak performance in double precision real arithmetic is 40 Mops), only
using a parallel DGEMM. We show the performance in Mops, the parallel speedup Sp
on p processors, and the parallel e�ciency Ep for DSYR2K. Moreover, we show the cor-
responding Mops results for the parallel DGEMM routine from the ALLIANT library
libalgebra, and the GEMM-e�ciency de�ned as the ratio between the performance in
Mops of DSYR2K and DGEMM for the same problem sizes. A number close to 1 indi-
cates that DSYR2K performs as well as the parallel DGEMM. Our results demonstrate
that the GEMM-based approach can also be appropriate for parallel processing (espe-
cially in a shared memory environment). Notably, the parallel DGEMM in libalgebra

and the GEMM-based level 3 BLAS make it possible to create a multiprocessor version
of LAPACK on ALLIANT FX/2800 systems.

Finally, we are able to show some results of NEC SX-3, a top of the line high-
performance computer. In Tables 15 and 16 we display one-processor performance
results from NEC SX-3 Model 22. The theoretical peak performance of a single pro-
cessor is 2.75 Gops. According to NEC System Laboratory, the performance results
from initial testings of the GEMM-based model implementations on NEC SX-3 are very
impressive, and they are currently implementing them on both NEC SX-3 and NEC
SX-4.
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7.2 Benchmark results

We are collecting results from the GEMM-based level 3 BLAS performance evaluation
benchmark. In tables 17 and 18 we present some benchmark results for the architectures
considered in Section 7.1, using the canonical input �les DMARK01 and DMARK02.
Columns 2{4 of the tables display the GEMM-e�ciency of the GEMM-based model
implementations, the original Fortran model implementations [9, 10] and the vendor-
supplied level 3 BLAS, respectively. Column 5 shows the mean value of the performance
(measured in Mops) of the user-speci�ed DGEMM. For IBM RS6000 we provide two
GEMM-e�ciency numbers for the GEMM-based model implementations. One where
all underlying routines are from the ESSL library, and one where all routines except
DGEMV (for which we use POL-DGEMV) are from ESSL. As before, all underlying
routines for IBM SP2 are from ESSL. We also provide two numbers for the GEMM-
based model implementations on Intel PARAGON. One where all underlying routines
are from the lkmath library. In the other case we replaced DGEMV in lkmath with
KD-DGEMV. Presently, Parsytec does not provide an optimized level 3 BLAS library.
For the benchmark results of the GEMM-based model implementations we use POL-
DGEMV and BP-DGEMM. For SGI Indy all underlying routines are from the library
provided by the vendor.

The GEMM-e�ciency is an overall performance number that measures how much
of the computations are performed in terms of GEMM operations. A number close to
one means that the level 3 computations (speci�ed by the user in an input �le) are
executed with almost the same performance as the user-speci�ed GEMM routine for
similar problem con�gurations. Notice that it is not always possible to obtain a GEMM-
e�ciency equal to one, since some operations by default cannot be expressed in terms
of GEMM. From the benchmark results in tables 17 and 18 we see that the GEMM-
based model implementations show a factor 2-3 times better performance (measured
in terms of the GEMM-e�ciency) than the original Fortran 77 model implementations
[9, 10]. When collecting the results for the original Fortran 77 model implementations
we imposed all kinds of optimizations that were provided by the Fortran compilers. We
selected the ones that gave the best performance. Without these compiler optimiza-
tions, the di�erences between the two Fortran 77 libraries would have been even larger.
In this context, we also mention that we do not recommend any \fancy" optimization
ags to be set when compiling the GEMM-based model implementations. (More on
this in Section 3.4 of the companion paper [20].) Moreover, we see that GEMM-based
model implementations also compete well with the vendor-manufactured level 3 BLAS
libraries, and show in some cases even better results.

8 Additional Techniques for E�ective Use of a Memory

Hierarchy

With the model implementations we provide a high performance GEMM-based level 3
BLAS library which is portable between di�erent memory hierarchy machines. If we
focus on a speci�c target architecture it might be possible to gain performance even
after tuning the machine speci�c parameters of the model implementations. Here we
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discuss two common techniques that are useful for targeted optimization.

Our motto is that the machine characteristics of a target architecture should as
much as possible be hidden and utilized in the underlying BLAS. Therefore, we �rst of
all recommend further optimization e�orts to be focused on GEMMand the underlying
level 1 and 2 BLAS routines. The optimization techniques described in this section and
Section 4 are likely to be applicable to the underlying routines.

8.1 A second level of blocking

The model implementations have no speci�c blocking for a possible translation look-
aside bu�er (TLB) or a second level cache. A TLB holds real addresses to a certain
number of pages in the main memory. Usually the most recently touched pages. Ref-
erences to pages in main memory whose addresses are missing in the TLB need to be
translated from virtual addresses to real addresses which may take considerable time.
An additional level of blocking for a second level of cache memory or to make refer-
ences local to the pages currently pointed to by the TLB, could possibly increase the
performance. TLB blocking is, for instance, implemented in the IBM ESSL library
[1]. However, if TLB blocking is already implemented in the underlying GEMM rou-
tine, then to implement TLB blocking in the GEMM-based routines would only cause
marginal performance improvements.

8.2 Inlining source code and register blocking

Even if the underlying routines are highly optimized and we get level 3 performance
for some of the level 2 computations (see Section 4.4.1), it is sometimes possible to
achieve even higher performance with well-tuned inline code than with multiple calls
to level 2 BLAS. This is due to limitations in the BLAS operations themselves. Inline
code makes it possible to improve the ratio between the number of computations and
the number of loads and stores. This is illustrated by the following example.

Assume that we wish to multiply a block Aij of a matrix A with two vectors, x
and y, which all reside in cache. We may accomplish the operation by calling GEMV
twice to perform two matrix-vector multiplications, Aijx and Aijy. On machines where
the arithmetic instructions operate solely on data in registers, the elements of Aij are
necessarily loaded into registers twice, and the elements of x and y once for each vector.
If we instead perform a matrix-matrix multiplication, Aij [x,y], where the vectors are
treated as a matrix with two columns and if there are su�cient number of registers
available, it is only necessary to load the elements of Aij into registers once. The
elements of x and y still only need to be loaded once. The matrix multiply operation
could be accomplished by a single call to GEMM or by using e�cient inline code. Now,
assume that there are more than two vectors involved and that the vectors have di�erent
lengths. Perhaps they constitute a triangular block (as in TRMM and TRSM). In
this case, using GEMM would be a poor solution since GEMM only operates on
rectangular blocks. Therefore, inline code is appropriate in order to avoid loading the
elements of A twice.

Since the number of registers usually are not su�cient to keep the entire operands,
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it is necessary to use some sort of register blocking to minimize the number of loads
and stores and attain e�cient register reuse. One way to implement register blocking
is similar to cache blocking but in this case the blocks are small enough to �t in the
registers. At the source code level this may be implemented with a technique called loop
unrolling [1]. The technique unwinds some of the iterations in a loop and perform them
in a single iteration. Loop unrolling can often be applied to several nested loops and the
technique can operate on di�erent matrix dimensions simultaneously. The statements
inside the innermost loop form a tiny blocked subproblem, where the reusable data �t
in the registers and the amount of non-reusable data is minimized. Additionally, there
must be some \clean-up" code for the remaining iterations that are not handled by the
unrolled code.

For the GEMM-based routines, it may be possible to gain some performance by
replacing calls to the level 1 and 2 BLAS with proper inline source code. However, it
would not be possible to maintain high performance across a wide range of processors.
Vector and RISC processors, for example, require quite di�erent source code to perform
well. Moreover, the routines would become much more dependent on di�erent compil-
ers. Even for the limited class of RISC-based machines, it is not su�cient with a single
unrolled Fortran code. Our tests show that the GEMM-based routines often reach
better performance with calls to vendor-supplied level 2 routines than with common
portable inline code. One explanation can be found in vendor-supplied level 2 routines
that also use other more or less machine- and/or compiler-speci�c techniques to gain
performance. For example, the IBM ESSL library uses a technique called algorithmic
prefetching [2], in order to continuously feed the processor with useful data and avoid
delays caused by memory accesses.

9 Conclusions

The objective of the GEMM-based approach is to express the structured matrix mul-
tiplications problems handled by the level 3 BLAS (including triangular solve with
multiple right hand sides) in terms of general matrix multiply and add (GEMM) oper-
ations and a small amount of level 2 and level 1 operations. Since the GEMM operation
delivers the best performance (measured in Mops) of all level 1, level 2 and level 3
BLAS operations, the goal is to perform as much as possible of the computations in
terms of GEMM. This is e�ected by appropriate partitionings of the matrices involved
in the level 3 operation. If the underlying routines, i.e., GEMM and some level 1 and
level 2 BLAS kernels are e�ciently optimized for the target machine, the GEMM-based
level 3 BLAS model implementations provide:

� E�cient use of vector instructions (compound instructions, chaining, etc.), through
GEMM, level 1 and level 2 BLAS routines.

� Register and vector register reuse, through GEMM and level 2 BLAS routines.

� E�cient cache reuse, through internal blocking, use of local arrays, and through
GEMM.
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� Column-wise referencing, for problems that would cause severe performance degra-
dation with row-wise referencing (except for reference patterns in underlying
BLAS routines).

� Parallelism, through automatic parallelization by a compiler, or by using parallel
underlying BLAS kernels.

� A level 3 BLAS library based on unconventional underlying matrix multiply al-
gorithms like, for example, Strassen's or Winograd's algorithms (e.g., see [25, 26,
15, 11]).

We have also contributed with the GEMM-based level 3 BLAS performance eval-
uation benchmark. This program package facilitates the evaluation and comparison
between di�erent level 3 BLAS libraries. The benchmark compares a user-speci�ed
level 3 BLAS library (e.g., a vendor-supplied library) with the GEMM-based model
implementations. Besides performance results (measured in Mops) the benchmark
evaluates the user-speci�ed library in terms of GEMM-ratios and the GEMM-e�ciency.
The GEMM-e�ciency measures how much of the computations are performed in terms
of GEMM operations. A number close to one means that almost all computations are
GEMM operations. The GEMM-ratio measures the relative performance of a user-
speci�ed routine with resepct to the corresponding GEMM-based routine.

Performance results from extensive testings show that the GEMM-based model
implementations in Fortran 77 is a high performance level 3 BLAS library that is
portable over a wide spectrum of di�erent memory hierarchy architectures. The model
implementatons are competetive with vendor-manufactured level 3 BLAS libraries, and
in some cases even better. Perhaps, more importantly, the GEMM-based approach
only requires a few underlying routines to be optimized when new or extensions and
modi�cations of high-performance architectures are introduced on the market.

To conclude, our GEMM-based concept is the correct level of abstraction for de-
veloping a level 3 BLAS library which is both portable over a spectrum of memory
hierarchy arctitectures and can deliver near to practical peak performance.
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Table 9: GEMM-ratios for the IBM ESSL library on IBM RS/6000 250 and IBM
RS/6000 530H. Underlying routines: ESSL and POL-DGEMV.

Routine Dimensions IBM RS/6000 250 IBM RS/6000 530H

DSYMM M N SIDE, UPLO SIDE, UPLO

'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'

32 256 1.00 1.00 0.98 0.97 1.00 1.00 1.01 1.01

64 256 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00

96 256 0.96 0.95 0.98 0.98 1.09 1.08 0.99 0.99

256 32 0.90 0.89 1.00 1.00 0.97 0.96 1.00 1.00

256 64 0.94 0.94 1.01 1.00 0.99 0.99 1.00 1.00

256 96 0.96 0.96 1.02 1.05 1.00 1.00 1.00 1.00

256 256 0.98 0.98 1.02 1.02 1.01 1.01 0.99 0.99

DSYRK N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 0.74 0.78 0.74 0.79 0.58 0.55 0.58 0.54

64 256 0.64 0.71 0.64 0.71 0.64 0.65 0.63 0.64

96 256 0.73 0.81 0.72 0.81 0.68 0.72 0.67 0.71

256 32 0.80 0.83 0.80 0.83 0.76 0.79 0.76 0.78

256 64 0.83 0.82 0.82 0.81 0.81 0.84 0.82 0.84

256 96 0.80 0.87 0.79 0.86 0.79 0.82 0.78 0.82

256 256 0.79 0.85 0.79 0.85 0.81 0.84 0.80 0.84

DSYR2K N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 0.98 0.98 0.97 0.98 0.96 0.96 0.96 0.96

64 256 1.06 1.08 1.06 1.08 1.06 1.06 1.07 1.06

96 256 1.02 1.00 1.01 1.01 1.03 1.01 1.02 1.01

256 32 0.84 0.86 0.83 0.86 0.92 0.94 0.92 0.94

256 64 0.91 0.94 0.90 0.93 1.01 0.96 1.02 0.96

256 96 0.93 0.98 0.93 0.97 1.00 0.97 1.00 0.97

256 256 1.00 0.98 1.00 0.97 1.02 1.00 1.02 1.00

DTRMM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.64 0.67 0.88 0.92 0.69 0.70 0.83 0.84

64 256 0.64 0.67 0.88 0.88 0.71 0.72 0.89 0.88

96 256 0.76 0.79 0.88 0.89 0.74 0.76 0.87 0.87

256 32 0.88 0.92 0.74 0.69 0.82 0.87 0.69 0.68

256 64 0.87 0.89 0.71 0.72 0.88 0.90 0.77 0.75

256 96 0.86 0.89 0.86 0.86 0.86 0.88 0.80 0.78

256 256 0.87 0.88 0.89 0.88 0.88 0.89 0.89 0.88

DTRSM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.59 0.61 0.84 0.88 0.62 0.66 0.81 0.81

64 256 0.61 0.63 0.84 0.85 0.65 0.69 0.87 0.86

96 256 0.73 0.76 0.84 0.85 0.69 0.73 0.84 0.84

256 32 0.85 0.90 0.62 0.63 0.79 0.87 0.65 0.65

256 64 0.85 0.88 0.63 0.66 0.85 0.89 0.72 0.70

256 96 0.85 0.87 0.78 0.80 0.83 0.86 0.76 0.75

256 256 0.86 0.86 0.84 0.85 0.85 0.87 0.86 0.85
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Table 10: GEMM-ratios for the IBM ESSL library on IBM SP2 thin node and wide
node. Underlying routines: ESSL.

Routine Dimensions IBM SP2 thin node IBM SP2 wide node

DSYMM M N SIDE, UPLO SIDE, UPLO

'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'

32 256 0.99 0.99 0.66 0.67 0.99 0.99 0.79 0.78

64 256 0.96 0.96 0.82 0.83 0.99 0.99 0.89 0.89

96 256 0.95 0.95 0.88 0.88 1.04 1.02 0.92 0.92

256 32 0.67 0.67 0.96 0.99 0.74 0.73 0.99 0.99

256 64 0.79 0.79 0.99 0.96 0.85 0.85 0.99 0.99

256 96 0.85 0.86 0.96 0.94 0.91 0.90 0.99 0.99

256 256 0.95 0.95 0.96 0.96 0.98 0.98 0.97 0.97

DSYRK N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 1.07 1.22 1.10 1.21 0.42 0.38 0.41 0.37

64 256 1.22 1.30 1.20 1.28 0.51 0.49 0.50 0.49

96 256 0.85 0.87 0.82 0.83 0.58 0.57 0.58 0.57

256 32 1.03 1.03 1.02 1.02 0.71 0.72 0.71 0.71

256 64 1.06 1.04 1.04 1.05 0.74 0.75 0.75 0.75

256 96 0.86 0.84 0.84 0.82 0.76 0.76 0.76 0.77

256 256 0.89 0.87 0.87 0.86 0.76 0.76 0.76 0.76

DSYR2K N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 0.99 1.00 1.01 0.99 0.96 0.96 0.96 0.95

64 256 0.99 0.99 0.99 0.99 1.07 1.05 1.07 1.05

96 256 0.99 0.98 0.98 0.98 1.02 0.99 1.02 0.99

256 32 0.76 0.74 0.77 0.74 0.72 0.74 0.71 0.73

256 64 0.87 0.84 0.87 0.84 0.89 0.84 0.88 0.84

256 96 0.92 0.88 0.92 0.88 0.91 0.87 0.90 0.87

256 256 1.01 0.96 0.92 0.96 1.00 0.96 1.00 0.96

DTRMM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 1.18 1.12 0.98 0.93 0.61 0.63 0.61 0.61

64 256 1.13 1.09 1.17 1.15 0.64 0.65 0.82 0.81

96 256 0.84 0.82 1.07 1.07 0.70 0.72 0.76 0.75

256 32 0.92 1.01 1.15 1.15 0.56 0.59 0.68 0.68

256 64 1.06 1.11 1.15 1.12 0.76 0.79 0.70 0.71

256 96 0.98 1.02 0.84 0.84 0.71 0.73 0.76 0.76

256 256 0.94 0.93 0.96 0.96 0.82 0.83 0.86 0.84

DTRSM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 1.13 1.09 0.97 1.00 0.59 0.61 0.61 0.60

64 256 1.12 1.07 1.14 1.23 0.62 0.64 0.82 0.80

96 256 0.84 0.82 1.07 1.16 0.67 0.72 0.76 0.75

256 32 1.04 1.11 1.14 1.14 0.57 0.61 0.68 0.69

256 64 1.19 1.21 1.08 1.10 0.76 0.79 0.70 0.71

256 96 1.11 1.11 0.82 0.84 0.71 0.73 0.75 0.75

256 256 0.93 0.92 0.94 0.95 0.80 0.82 0.85 0.84
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Table 11: GEMM-ratios on a single node of the Intel PARAGON. Underlying routines:
Paragon Basic Math Library and KD-GEMV.

Routine Dimensions Intel PARAGON

DSYMM M N SIDE, UPLO

'L','U' 'L','L' 'R','U' 'R','L'

32 256 1.84 1.86 1.12 1.13

64 256 1.54 1.56 1.09 1.09

96 256 1.39 1.40 1.08 1.08

256 32 1.05 1.05 1.24 1.26

256 64 1.10 1.10 1.16 1.16

256 96 1.12 1.12 1.11 1.11

256 256 1.12 1.12 1.06 1.06

DSYRK N K UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T'

32 256 1.16 0.61 1.17 0.62

64 256 0.99 0.70 1.04 0.71

96 256 0.99 0.73 1.07 0.75

256 32 1.04 1.08 1.09 1.12

256 64 0.98 0.91 1.56 0.97

256 96 0.99 0.89 1.38 0.93

256 256 0.99 0.87 1.15 0.88

DSYR2K N K UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T'

32 256 2.86 1.33 2.90 1.33

64 256 2.04 1.15 2.13 1.16

96 256 1.72 1.08 1.84 1.10

256 32 1.11 0.98 2.30 1.08

256 64 1.21 1.00 1.87 1.06

256 96 1.24 1.01 1.69 1.06

256 256 1.26 1.03 1.44 1.04

DTRMM M N SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.76 0.98 1.08 1.28

64 256 0.69 0.89 0.98 1.07

96 256 0.72 0.86 0.93 0.99

256 32 0.80 0.88 0.60 0.61

256 64 0.81 0.91 0.69 0.68

256 96 0.80 0.91 0.75 0.74

256 256 0.80 0.92 0.89 0.90

DTRSM M N SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.77 0.76 1.12 1.28

64 256 0.71 0.78 0.99 1.07

96 256 0.72 0.78 0.93 0.98

256 32 0.79 0.85 0.61 0.61

256 64 0.80 0.87 0.69 0.67

256 96 0.79 0.87 0.74 0.73

256 256 0.79 0.88 0.88 0.89
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Table 12: GEMM-ratios for machine speci�c libraries on SGI Indy with MIPS R4000
and R4400 processor. Underlying routines: SGI library libblas.

Routine Dimensions SGI Indy (R4000) SGI Indy (R4400)

DSYMM M N SIDE, UPLO SIDE, UPLO

'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'

32 256 1.21 1.24 1.10 1.06 1.27 1.29 1.06 1.07

64 256 1.25 1.28 1.14 1.16 1.27 1.31 1.09 1.11

96 256 1.26 1.30 1.16 1.18 1.26 1.31 1.12 1.13

256 32 1.01 1.03 1.44 1.45 1.02 0.99 1.39 1.35

256 64 1.14 1.13 1.34 1.32 1.16 1.15 1.29 1.29

256 96 1.16 1.18 1.30 1.28 1.18 1.18 1.27 1.26

256 256 1.20 1.22 1.21 1.23 1.22 1.24 1.19 1.20

DSYRK N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 1.42 1.43 1.34 1.43 1.46 1.55 1.45 1.49

64 256 1.24 1.23 1.20 1.23 1.24 1.26 1.25 1.27

96 256 1.16 1.16 1.14 1.17 1.21 1.23 1.20 1.23

256 32 1.12 1.01 1.11 0.96 1.13 1.07 1.12 1.06

256 64 1.06 1.05 1.05 1.08 1.12 1.11 1.11 1.11

256 96 1.05 1.09 1.03 1.08 1.12 1.11 1.11 1.11

256 256 1.03 1.08 1.01 1.08 1.10 1.12 1.10 1.11

DSYR2K N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 1.83 1.89 1.82 1.86 1.69 1.88 1.69 1.87

64 256 1.54 1.57 1.50 1.56 1.43 1.58 1.44 1.59

96 256 1.41 1.41 1.41 1.42 1.36 1.44 1.36 1.44

256 32 1.11 1.06 1.11 1.04 1.09 1.05 1.09 1.04

256 64 1.15 1.13 1.15 1.12 1.15 1.15 1.15 1.15

256 96 1.17 1.15 1.18 1.16 1.17 1.18 1.17 1.18

256 256 1.17 1.20 1.23 1.21 1.21 1.22 1.21 1.22

DTRMM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.68 0.69 0.96 0.95 0.78 0.79 0.95 0.94

64 256 0.81 0.76 0.99 0.96 0.88 0.85 0.94 0.94

96 256 0.81 0.80 0.99 0.98 0.92 0.86 0.96 0.97

256 32 0.89 0.86 1.02 0.98 0.95 0.91 0.95 0.81

256 64 0.85 0.85 1.01 1.00 0.93 0.90 0.95 0.88

256 96 0.86 0.87 1.01 1.00 0.94 0.91 0.98 0.93

256 256 0.85 0.85 1.00 1.00 0.94 0.90 0.99 0.98

DTRSM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.77 0.85 1.02 0.96 0.90 0.91 0.91 0.88

64 256 0.86 0.88 1.01 0.95 0.96 0.95 0.92 0.89

96 256 0.88 0.89 1.00 0.95 0.98 0.93 0.96 0.91

256 32 0.91 0.91 1.01 0.99 0.97 0.91 1.03 0.97

256 64 0.87 0.91 1.01 1.00 0.94 0.91 1.00 0.97

256 96 0.88 0.92 0.99 0.98 0.96 0.92 1.01 0.94

256 256 0.86 0.88 0.99 0.94 0.96 0.90 0.99 0.92
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Table 13: GEMM-ratios on a single node of the Parsytec GC/PP for the original level
3 BLAS model implementations from netlib. Underlying routines: BP-DGEMM and
original netlib BLAS (second column), BP-DGEMM, POL-DGEMV and original netlib
BLAS (third column).

Routine Dimensions Parsytec (DGEMV) Parsytec (POL-DGEMV)

DSYMM M N SIDE, UPLO SIDE, UPLO

'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'

32 256 1.98 1.99 4.62 4.64 2.09 2.10 4.57 4.57

64 256 2.05 2.06 4.23 4.22 2.06 2.06 4.21 4.18

96 256 2.84 2.82 4.17 4.15 2.85 2.83 4.14 4.12

256 32 2.26 2.25 3.20 3.20 2.27 2.26 3.02 3.01

256 64 2.56 2.54 3.52 3.51 2.58 2.57 3.50 3.50

256 96 2.68 2.67 3.85 3.85 2.70 2.69 3.82 3.82

256 256 2.80 2.80 4.02 4.01 2.82 2.82 3.98 3.97

DSYRK N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 1.24 0.76 1.27 0.77 1.93 1.15 1.98 1.12

64 256 1.57 1.08 1.62 1.11 2.20 1.52 2.31 1.45

96 256 1.81 1.33 1.85 1.36 2.40 1.79 2.49 1.79

256 32 2.24 2.04 2.29 2.08 2.58 2.38 2.71 2.38

256 64 2.41 1.98 2.48 2.04 2.75 2.30 2.88 2.27

256 96 2.55 2.05 2.61 2.11 2.97 2.42 3.09 2.41

256 256 2.58 1.98 2.63 2.05 2.99 2.32 3.11 2.34

DSYR2K N K UPLO, TRANS UPLO, TRANS

'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'

32 256 4.17 2.33 4.12 2.36 4.14 2.41 4.07 2.36

64 256 3.34 2.37 3.31 2.41 3.31 2.45 3.28 2.41

96 256 3.19 2.46 3.16 2.51 3.17 2.54 3.15 2.51

256 32 2.26 2.72 2.26 2.76 2.26 2.79 2.27 2.76

256 64 2.48 2.59 2.47 2.63 2.46 2.67 2.48 2.63

256 96 2.64 2.68 2.64 2.71 2.62 2.76 2.63 2.72

256 256 2.84 2.57 2.84 2.63 2.82 2.66 2.83 2.64

DTRMM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 0.87 0.65 2.80 2.50 1.10 0.86 3.16 2.74

64 256 1.15 0.89 2.69 2.59 1.43 1.13 3.01 2.90

96 256 1.87 1.53 2.73 2.70 2.37 1.98 3.08 3.03

256 32 2.54 2.15 1.10 1.12 2.84 2.45 1.37 1.42

256 64 2.72 2.26 1.48 1.51 3.06 2.59 1.90 1.93

256 96 2.85 2.36 1.79 1.80 3.23 2.73 2.28 2.29

256 256 2.92 2.40 2.66 2.69 3.32 2.76 3.00 3.03

DTRSM M N SIDE, TRANS SIDE, TRANS

'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'

32 256 1.10 0.74 2.73 2.46 1.41 0.91 3.07 2.67

64 256 1.37 0.95 2.60 2.53 1.69 1.19 2.89 2.79

96 256 2.09 1.55 2.64 2.63 2.63 1.94 2.95 2.91

256 32 2.78 2.14 0.99 0.98 3.11 2.44 1.21 1.25

256 64 2.97 2.25 1.38 1.40 3.34 2.56 1.70 1.72

256 96 3.11 2.34 1.68 1.69 3.52 2.68 2.08 2.09

256 256 3.18 2.38 2.56 2.61 3.61 2.72 2.87 2.90
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Table 14: Multiprocessor performance of the GEMM-Based DSYR2K on the ALLIANT
FX/2816.

Dimensions DSYR2K DGEMM

K N p Mops Sp Ep Mops EGEMM
512 512 1 34.76 1.0 1.0 36.81 0.94

2 62.50 1.8 0.9 70.48 0.82

4 106.11 3.0 0.8 129.93 0.82

6 129.81 3.7 0.6 179.13 0.73

32 512 1 25.72 1.0 1.0 28.11 0.92

2 38.89 1.5 0.8 51.82 0.75

4 53.03 2.1 0.5 87.93 0.60

6 55.60 2.2 0.4 108.98 0.51

512 32 1 23.29 1.0 1.0 28.11 0.92

2 33.82 1.5 0.7 33.70 1.00

4 43.30 1.9 0.5 40.76 1.06

6 42.67 1.8 0.3 42.41 1.00

128 128 1 27.71 1.0 1.0 32.99 0.84

2 43.51 1.6 0.8 58.94 0.73

4 61.38 2.2 0.6 97.44 0.63

6 64.12 2.3 0.4 126.88 0.50

Table 15: Performance in Mops for NEC SX-3. Leading dimension of arrays is 512.

Dimensions SSYMM SSYRK SSYR2K STRMM STRSM

M(N) N(K) 'L','U' 'U','N' 'U','N' 'L','N' 'L','N'

16 512 266.3 85.3 105.5 142.4 125.3

32 512 643.9 192.7 207.3 406.3 368.4

64 512 1416.8 409.5 410.6 864.1 808.4

128 256 2229.8 824.1 813.1 1101.0 1236.7

512 16 716.9 1090.1 1254.6 652.3 536.1

512 32 1109.1 767.2 729.7 935.4 913.1

512 64 1527.6 817.6 779.9 1194.2 1404.6

512 128 1883.0 825.3 803.2 1384.7 1880.0

512 512 2284.5 829.3 825.0 1428.5 2008.9
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Table 16: Performance in Mops for NEC SX-3. Leading dimension of arrays are 530.

Dimensions SSYMM SSYRK SSYR2K STRMM STRSM

M(N) N(K) 'L','U' 'U','N' 'U','N' 'L','N' 'L','N'

16 512 271.5 85.0 335.5 142.0 124.8

32 512 646.6 192.0 711.8 405.4 366.2

64 512 1417.0 409.3 1463.2 862.2 807.6

128 256 2234.2 824.0 2251.7 1102.9 1240.5

512 16 1048.5 1107.7 1279.8 655.2 533.8

512 32 1468.0 1383.8 1696.8 948.1 908.0

512 64 1838.1 1579.4 2031.2 1210.2 1393.6

512 128 2106.0 1607.7 2210.8 1392.9 1865.7

512 512 2363.3 1628.4 2373.0 1429.5 1986.9

Table 17: Benchmark results for canonical input �le DMARK01

Machines GEMM- Original Vendor DGEMM Comments

based netlib supplied Mops

IBM RS6K 530H 0.73 0.34 0.92 51.2 ESSL underlying routines

IBM RS6K 530H 0.78 0.34 0.92 51.2 ESSL under. except POL DGEMV

IBM RS6K 250 0.77 0.30 0.91 42.2 ESSL underlying routines

IBM RS6K 250 0.80 0.30 0.91 42.2 ESSL under. except POL DGEMV

IBM SP2 0.67 0.27 0.87 163.8 single thin node

IBM SP2 0.70 0.33 0.90 197.6 single wide node

Intel PARAGON 0.72 0.20 0.71 38.5 Underlying from -lkmath

Intel PARAGON 0.75 0.20 0.71 38.5 U. f. -lkmath except KD DGEMV

Parsytec GC/PP 0.75 0.32 | 46.5 1 proc. POL DGEMV, B.P. DGEMM

SGI Indy 0.82 0.39 0.80 26.0 R4000 processor

SGI Indy 0.86 0.38 0.81 40.5 R4400 processor
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Table 18: Benchmark results for canonical input �le DMARK02

Machines GEMM- Original Vendor DGEMM Comments

based netlib supplied Mops

IBM RS6K 530H 0.83 0.31 0.95 58.8 ESSL underlying routines

IBM RS6K 530H 0.87 0.31 0.95 58.8 ESSL under. except POL DGEMV

IBM RS6K 250 0.81 0.28 0.95 48.8 ESSL underlying routines

IBM RS6K 250 0.85 0.28 0.95 48.8 ESSL under. except POL DGEMV

IBM SP2 0.74 0.22 0.92 197.1 single thin node

IBM SP2 0.83 0.30 0.95 227.6 single wide node

Intel PARAGON 0.79 0.18 0.84 44.6 Underlying from -lkmath

Intel PARAGON 0.82 0.18 0.84 44.6 U. f. -lkmath except KD DGEMV

Parsytec GC/PP 0.81 0.29 | 53.1 1 proc. POL DGEMV, B.P. DGEMM

SGI Indy 0.81 0.34 0.78 30.9 R4000 processor

SGI Indy 0.85 0.33 0.79 48.1 R4400 processor
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