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Stability of the Diagonal Pivoting Method

with Partial Pivoting

Nicholas J. Higham�

July 16, 1995

Abstract

LAPACK and LINPACK both solve symmetric inde�nite linear systems

using the diagonal pivoting method with the partial pivoting strategy of Bunch

and Kaufman (1977). No proof of the stability of this method has appeared

in the literature. It is tempting to argue that the diagonal pivoting method is

stable for a given pivoting strategy if the growth factor is small. We show that

this argument is false in general, and give a su�cient condition for stability.

This condition is not satis�ed by the partial pivoting strategy, because the

multipliers are unbounded. Nevertheless, using a more speci�c approach we

are able to prove the stability of partial pivoting, thereby �lling a gap in the

body of theory supporting LAPACK and LINPACK.

Key words. symmetric inde�nite matrix, diagonal pivoting method,

LDLT factorization, partial pivoting, growth factor, numerical stability, round-

ing error analysis, LAPACK, LINPACK.

AMS subject classi�cations. primary 65F05, 65G05

1 Introduction

LAPACK is renowned for the numerical reliability of the algorithms it employs. The

LAPACK Users' Guide [1] states that \almost all the algorithms in LAPACK (as

well as LINPACK and EISPACK) are [normwise backward] stable" [1, p. 74], and

the algorithms not covered by this statement are known to be stable in appropri-

ately weakened senses. The analyses to back up these claims of stability are spread

�Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(na.nhigham@na-net.ornl.gov). This work was supported by Engineering and Physical Sciences
Research Council grants GR/H5213 and GR/H/94528.
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throughout the research literature of the last 35 years. While writing the book Ac-

curacy and Stability of Numerical Algorithms [14] we realised that there is no proof

in the literature of the stability of the method used in LAPACK and LINPACK for

solving symmetric inde�nite linear systems. Furthermore, the stability is not a direct

consequence of existing results. The purpose of this paper is to prove the stability of

the method and thereby to �ll a gap in the body of theory supporting LAPACK and

LINPACK.

In the remainder of the introduction we brie
y describe the method to be anal-

ysed: the diagonal pivoting method with the partial pivoting strategy of Bunch and

Kaufman [5].

Let A 2 IR
n�n

be symmetric. If A is nonzero, we can �nd a permutation � and

an integer s = 1 or 2 so that

�A�T
=

� s n�s

s E CT

n�s C B

�
;

with E nonsingular. Then we can compute the factorization

�A�T
=

�
Is 0

CE�1 In�s

� �
E 0

0 B � CE�1CT

� �
Is E�1CT

0 In�s

�
: (1.1)

This process can be repeated recursively on the (n� s)� (n� s) Schur complement

S = B �CE�1CT :

The result is a factorization

PAP T
= LDLT ; (1.2)

where L is unit lower triangular and D is block diagonal with each diagonal block

having dimension 1 or 2. This factorization is essentially a symmetric block form

of Gaussian elimination, with pivoting, and it costs n3=3 
ops
1
(the same cost as

Cholesky factorization of a positive de�nite matrix) plus the cost of determining the

permutations �. This method for computing a block LDL
T
factorization is called the

diagonal pivoting method. Given the factorization (1.2) of a nonsingular A, a linear

system Ax = b is readily solved by substitution, and by solving 2 � 2 linear systems

corresponding to any 2� 2 diagonal blocks of D.

The strategy for choosing � is crucial for achieving stability. Bunch and Parlett

[7] proposed a complete pivoting strategy, which requires the whole active submatrix

to be searched on each stage of the factorization and therefore requires up to n3=6

comparisons. Bunch [3] proved that the diagonal pivoting method with complete piv-

oting satis�es a backward error bound almost as good as that for Gaussian elimination

with complete pivoting. Bunch and Kaufman [5] devised a partial pivoting strategy

1A 
op is a 
oating point addition, subtraction, multiplication or division.
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that searches only two columns at each stage and so requires only O(n2) comparisons.

The LAPACK driver routines xSYSV (simple) and xSYSVX (expert) and the LINPACK

routines xSIFA/xSISL all use the diagonal pivoting method with partial pivoting to

solve a linear system with a symmetric (inde�nite) coe�cient matrix.

To describe the partial pivoting strategy it su�ces to de�ne the pivot choice for

the �rst stage of the factorization. Recall that s denotes the size of the pivot block.

Algorithm 1 (Bunch{Kaufman Partial Pivoting Strategy) This algorithm de-

termines the pivot for the �rst stage of the diagonal pivoting method with partial

pivoting applied to a symmetric matrix A 2 IR
n�n

.

�: = (1 +

p
17)=8 (� 0:64)

� := kA(2:n; 1)k1
If � = 0 there is nothing to do on this stage of the elimination.

r := minfi � 2: jai1j = �g
if ja11j � ��

(1) s = 1, � = I

else

�: =





�A(1: r � 1; r)

A(r + 1:n; r)

�




1

if ja11j� � ��2

(2) s = 1, � = I

else if jarrj � ��

(3) s = 1 and choose � to swap rows and columns 1 and r.

else

(4) s = 2 and choose � to swap rows and columns 2 and r,

so that j(�A�T
)21j = �.

end

end

To understand the partial pivoting strategy it helps to consider the matrix266666664

a11 : : : � : : : : : : : : :
.
.
.

.

.

.

� : : : arr : : : � : : :
.
.
.

.

.

.

.

.

. �

.

.

.

.

.

.

377777775
;

and to note that the pivot is one of a11, arr and
�
a11
�

�

arr

�
(or, rather, since � = jar1j,

this matrix with � replaced by ar1).

The value of the constant � = (1+

p
17)=8 is determined by regarding � as a free

parameter and equating a bound for the element growth over two s = 1 stages to a

bound for the element growth over one s = 2 stage; see [5] or [14] for the details.
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A growth factor can be de�ned for the diagonal pivoting method in just the same

way as for Gaussian elimination:

�n =
maxi;j;k ja(k)ij j
maxi;j jaijj ;

where the a
(k)

ij are the elements of the Schur complements arising in the course of

the factorization. From the derivation of the constant � it is easy to show that

�n � (1 + 1=�)n�1 = (2:57)n�1 for partial pivoting, which is larger than the bound

2
n�1

for Gaussian elimination with partial pivoting (GEPP). But, it seems that as

for GEPP, large element growth is rare in practice [5], [9].

2 Stability of the Diagonal Pivoting Method

Since the growth factor for the diagonal pivoting method with partial pivoting is

bounded, and is usually small in practice, does it not follow that the method is stable

in the same sense as for GEPP? This is a tempting argument, and one that is neither

used nor warned against in the existing literature. However, it is easy to show that

the argument is false, by exhibiting an example where the diagonal pivoting method

has a small growth factor but is unstable. An example (not produced by partial

pivoting) is, with n = 3 and with a 2 � 2 pivot followed by a 1� 1 pivot,

A =

24 1 �(1 + �2) ��
�(1 + �2) 1 ��

�� �� �1

35
=

24 1

0 1

��1 ��1 1

3524 1 �(1 + �2)

�(1 + �2) 1

1

3524 1 0 ��1

1 ��1

1

35 = LDLT ; (2.1)

where � > 0. The growth factor �n is 1, yet kLk1=kAk1 is unbounded as �! 0, which

suggests that the factorization, however it is computed, may not provide a stable

way to solve linear systems Ax = b in �nite precision arithmetic. The instability is

con�rmed by a Matlab experiment, in which the unit roundo� u = 2
�53 � 1:1 �

10
�16

. We solved a linear system Ax = b, where b = A [1 2 3]
T
, in two di�erent ways.

First, we computed the factorization in (2.1) using the diagonal pivoting method, as

speci�ed in (1.1) (with � = I), taking a 2�2 pivot on the �rst step and using GEPP

to solve linear systems involving this pivot. For comparison, we evaluated the explicit

formulae for the LDL
T
factors in (2.1), and used the explicit inverse of D(1: 2; 1: 2)

when solving the linear system involving D. Table 2.1 shows the normwise relative

backward error of the computed solution bx,
�1(bx) := minf � : (A+�A)bx = b+�b; k�Ak1 � �kAk1; k�bk1 � �kbk1 g

=

kb�Abxk1
kAk1kbxk1 + kbk1

4



Diagonal Explicit

� pivoting factors

10
�1

9e-17 6e-16

10
�2

5e-17 2e-14

10
�3

3e-15 5e-11

10
�4

7e-14 4e-9

10
�5

6e-13 6e-8

10
�6

1e-13 1e-6

10
�7

4e-11 1e-7

Table 2.1: Backward error for computed solution of inde�nite system of order 3.

(see [16] or [14, Th. 7.1] for a proof of the latter equality), which would be of order

u for a stable solution method. As � decreases the computations become unstable.

We note that stability is obtained if, in (1.1), we take the natural 1 � 1 pivot a11
instead of the ill conditioned 2� 2 pivot A(1: 2; 1: 2); interestingly, though, the 2� 2

pivot shares with those chosen by the Bunch{Kaufman partial pivoting strategy the

property that it is inde�nite. Partial pivoting is stable on this example.

We conclude that a small growth factor is not, by itself, enough to guarantee

stability of the diagonal pivoting method. A su�cient condition for stability can

be obtained by regarding the block LDL
T
factorization computed by the diagonal

pivoting method as a special case of a block LU factorization. Error analysis for

block LU factorization is given by Demmel, Higham and Schreiber [8], and a suitable

modi�cation of this analysis gives the following result: if linear systems involving 2�2

pivots are solved in a normwise backward stable fashion then the condition

kLk1kDk1kLTk1 � cnkAk1; (2.2)

for a modest constant cn, is su�cient to ensure that the diagonal pivoting method pro-

duces a factorization with a small relative residual and provides computed solutions

to linear systems that have a small backward error. Unfortunately, condition (2.2)

does not hold for the partial pivoting strategy of Bunch and Kaufman, as is shown by

the following example. For � > 0, the diagonal pivoting method with partial pivoting

produces the factorization, with P = I,

A =

24 0 � 0

� 0 1

0 1 1

35 =

24 1

0 1

1=� 0 1

3524 0 �

� 0

1

3524 1 0 1=�

1 0

1

35 = LDLT :

As �! 0, kLk1kDk1kLTk1=kAk1 !1, and indeed the multipliers are unbounded.

Even 1�1 pivots can lead to arbitrarily large elements in L, as the following example

5



with 0 < � < � shows (again, partial pivoting selects P = I):

A =

24 �2 � �

� 0 1

� 1 0

35 =

24 1

1=� 1

1=� 0 1

3524 �2 �1
�1

3524 1 1=� 1=�

1 0

1

35 = LDLT :

It is worth emphasizing that large elements in a factor of a matrix do not nec-

essarily imply that the factorization is unstable. For example, in the (point) LDL
T

factorization of a symmetric positive de�nite matrix A with D = diag(dii), dii > 0,

the ratio kLk1=kAk1 can be arbitrarily large, yet the factorization is guaranteed to

be stable. One such example is, with � > 0,

A =

�
�2 �

� 2

�
=

�
1 0

��1 1

� �
�2 0

0 1

� �
1 ��1

0 1

�
:

Our conclusion is that existing results for LU factorization and block LU factoriza-

tion do not directly imply the stability of the diagonal pivoting method with partial

pivoting. Any proof of stability must make use of the particular properties of the

partial pivoting strategy.

The only claims of stability that we have found in the literature are in the paper

by Bunch, Kaufman and Parlett [6] and in the LINPACK Users' Guide [9, p. 5.19];

in both cases, residual bounds of the form kA� bL bDbLTk1 � p(n)�nkAk1u are stated

without proof, where p is a polynomial; we prove a result of this form and, in The-

orem 4.2, a backward error result for the computed solution of Ax = b. We note

that much of Bunch's analysis of the diagonal pivoting method in [3] is speci�c to

complete pivoting, so his analysis does not readily yield results for partial pivoting.

In the rest of the paper we present a new analysis to show that partial pivoting is

indeed a stable pivoting strategy for the diagonal pivoting method.

3 Background Results from Error Analysis

We collect in this section some standard error analysis results that will be needed

later. For our model of 
oating point arithmetic we take

fl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =; (3.1)

where u is the unit roundo�. All the results we quote remain true under a weaker

model that accommodates machines without a guard digit [14, x2.4], provided some

of the constants are increased slightly.

We introduce the constant


n =
nu

1 � nu
;

which carries with it the implicit assumption that nu < 1. Useful properties are (a)


m + 
n + 
m
n � 
m+n and (b) if c � 1 then c
n � 
cn.
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Proofs of the following results can be found in [14]. First, for matrix multiplication,

fl(AB) = AB +�; j�j � 
njAjjBj; A 2 IR
m�n; B 2 IR

n�p:

Second, if T 2 IR
n�n

is a nonsingular triangular matrix and the system Tx = b is

solved by substitution then

(T +�T )bx = b; j�T j � 
njT j: (3.2)

Third, if a linear system Ax = b, where A 2 IR
n�n

, is solved without breakdown by

Gaussian elimination without pivoting, then the computed solution satis�es

(A+�A)bx = b; j�Aj � 2
njbLjjbU j; (3.3)

where bL and bU are the computed LU factors.

We will use the norm de�ned by

kAkM = max
i;j

jaijj

(for which kABkM � nkAkMkBkM is the best bound of this form that holds for all

A 2 IR
m�n

and B 2 IR
n�p

).

4 Error Analysis

4.1 2� 2 Linear Systems

Crucial to the error analysis that follows is a backward error result for the solution

of linear systems involving 2 � 2 pivots. Note that, in the notation of Algorithm 1,

the pivot is

E =

�
a11 ar1
ar1 arr

�
; jar1j = �:

For this subsection and the later analysis, it is convenient to tabulate the condi-

tions that must hold for a 2� 2 pivot to be selected:

ja11j < ��; (4.1a)

ja11j� < ��2; (4.1b)

jarrj < ��; (4.1c)

ja11jjarrj < �2�2; (4.1d)

where the fourth inequality is a consequence of the previous two (note that (4.1c)

implies � 6= 0).
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Suppose, �rst, that linear systems Ex = b are solved by GEPP. By (4.1a),

ja11j < �jar1j < jar1j, so GEPP interchanges rows 1 and 2 of E and computes the LU

factorization

PE =

�
ar1 arr
a11 ar1

�
=

24 1 0

a11

ar1
1

3524 ar1 arr

0 ar1 � a11arr

ar1

35 = LU:

From (3.3), we have the backward error result

(PE +�E)bx = Pb; j�Ej � 2
2jbLjjbU j:
Now

jLjjU j �
24 jar1j jarrj
ja11j

����a11arrar1

����+ ����ar1 � a11arr

ar1

����
35 � � jar1j jarrj

ja11j (2�2
+ 1)jar1j

�
;

using (4.1d). It follows that

(E +g�E)bx = b; jg�Ej � 2
2

� ja11j 2jar1j
jar1j jarrj

�
� 4
2jEj; (4.2)

using the numerical value of � speci�ed in Algorithm 1. Strictly, we should append

\+O(u2)" to this bound, to account for replacing jbLjjbU j by a bound for jLjjU j; we
omit the second order term for the moment and reinstate it later. Note that the result

(4.2) holds trivially for a 1� 1 pivot E.

The main alternative to using GEPP to solve the systems Ex = b is to use the

explicit inverse of E, as is done in the implementations of the diagonal pivoting

method with partial pivoting in LAPACK and LINPACK (see the auxiliary routine

xLASYF in LAPACK and xSIFA in LINPACK). In both LAPACK and LINPACK,

Ex = b is solved by evaluating

x =

1

ar1

�
a11

ar1
� arr
ar1

� 1

�
24 arr

ar1
�1

�1 a11

ar1

35 b; (4.3)

which corresponds to using an explicit formula for the inverse of a 2 � 2 matrix (or,

equivalently, Cramer's rule), with scaling to avoid over
ow. The term

� =

a11

ar1
� arr
ar1

� 1

appears to be a potential source of instability, since for arbitrary a11, ar1 and arr the

relative error in the computed b� is unbounded. However, by exploiting the condition

(4.1d) for a 2� 2 pivot, which we rewrite as

ja11jjarrj
a2r1

� �2;

8



we can obtain a very satisfactory error bound for b�. Using the model (3.1) we have

b� =

�
a11

ar1
� arr
ar1

(1 + �1)(1 + �2)(1 + �3)� 1

�
(1 + �4);

where j�ij � u, i = 1: 4, which implies [14, Lemma 3.1]

b� =

a11

ar1
� arr
ar1

(1 + �4)� (1 + �4); j�4j � 
4:

Hence

j�� b�j � 
4

� ja11arrj
a2r1

+ 1

�
� 
4(�

2
+ 1)

� 
4

�
1 + �2

1� �2

�
j�j < 3
4j�j:

It is then straightforward to show that, denoting the matrix in (4.3) by Z,

bx = (ar1�)
�1
(Z +�Z)b; j�Zj � 
30jZj:

Thus b� Ebx = �E((ar1�)�1�Z)b, so that

jb� Ebxj � 
30jEjjE�1jjbj
� 
30jEjjE�1jjEjjxj
� 
180jEjjxj; (4.4)

using (A.3). The Oettli{Prager theorem [15], [14, Th. 7.3] then implies that

(E +�E)bx = b; j�Ej � 
180jEj:

Again, strictly a second order term should be added to the bound, this time to account

for the fact that jxj rather than jbxj appears on the right-hand side of (4.4).

The conclusion is that whether the linear system Ex = b involving the 2�2 pivot

is solved by GEPP or by using the explicit inverse, we have

(E +�E)bx = b; j�Ej � 
cjEj; (4.5)

for an integer constant c. It is worth stressing that such a result does not hold for an

arbitrary 2�2 (symmetric) matrix E|we have fully exploited the pivoting conditions

in the derivation.
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4.2 Componentwise Backward Error Analysis

Now we carry out a componentwise backward error analysis of the diagonal pivoting

method. We make only one assumption about the pivoting strategy: that (4.5) holds

for the 2� 2 pivots. For convenience, we assume, without loss of generality, that no

interchanges are needed, which amounts to rede�ning A := PAP T
in (1.2).

To begin, we consider the �rst stage of the factorization, using the notation of

(1.1). The submatrix L21 = CE�1 2 IR
(n�s)�s

satis�es L21E = C or ELT
21 = CT

. If

lj is the jth column of LT
21 and cj is the jth column of CT

, then, from (4.5),

(E +�Ej)
blj = cj; j�Ejj � 
cjEj:

Hence, overall, bL21E = C +�C; j�Cj � 
cjbL21jjEj: (4.6)

We assume that the Schur complement is computed as S = B � L21C
T
, so that

2

bS = B � bL21C
T
+�S; j�Sj � 
s+1

�jBj+ jbL21jjCT j�: (4.7)

The remaining stages of the diagonal pivoting method factorize the Schur com-

plement as S = LSDSL
T
S , and we assume, inductively, that the computed factors

satisfy bLS
bDS
bLT
S = bS +�S; j�Sj � d(n� s; u)

�jbSj+ jbLSjj bDS jjbLT
S j
�
;

where d(n�s; u) is a constant depending on n�s and u. We therefore have computed

factors bL and bD of A that satisfy

bL bDbLT
:=

�
I 0bL21

bLS

� �
E 0

0 bDS

� �
I bLT

21

0 bLT
S

�

=

�
E EbLT

21bL21E bL21E
bLT
21 +

bLS
bDS
bLT
S

�

=

�
E (C +�C)T

C +�C bL21E
bLT
21 +

bS +�S

�

=

�
E (C +�C)T

C +�C B + (bL21E
bLT
21 � bL21C

T
) +�S +�S

�
:

Now, from (4.6) we have the inequalities

jbL21E
bLT
21 � bL21C

T j � 
cjbL21jjEjjbLT
21j

and

jbL21jjCT j � (1 + 
c)jbL21jjEjjbLT
21j: (4.8)

2If the Schur complement is computed as S = B � L
21
EL

T
21

then the same bound (4.9) ensues.
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Using (4.7) and (4.8) we have

jbSj � (1 + 
s+1)(jBj+ (1 + 
c)jbL21jjEjjbLT
21j):

Overall, then, we have bL bDbLT
= A+�A;

where �A11 = 0, j�A21j � 
cjbL21jjEj, and

j�A22j � 
cjbL21jjEjjbLT
21j+ 
s+1

�jBj+ (1 + 
c)jbL21jjEjjbLT
21j
�

+ d(n � s; u)
�
(1 + 
s+1)(jBj+ (1 + 
c)jbL21jjEjjbLT

21j) + jbLSjj bDS jjbLT
S j
�

� (
c + d(n � s; u)(1 + 
c))jBj+
�

c(2 + 
c) + d(n � s; u)(1 + 
c)

2
�jbL21jjEjjbLT

21j
+ d(n � s; u)jbLSjj bDSjjbLT

S j
� (
c(2 + 
c) + d(n � s; u)(1 + 
c)

2
)

�jBj+ jbL21jjEjjbLT
21j+ jbLS jj bDSjjbLT

S j
�
:

Hence bL bDbLT
= A+�A; j�Aj � d(n; u)

�jAj+ jbLjj bDjjbLT j�; (4.9)

where d(n; u) is clearly of the form p(n)u+O(u2), where p is a linear polynomial.

Now we analyse the substitution stages when the LDL
T
factorization is used to

solve a linear system Ax = b. From (3.2) and (4.5), the computed solutions to the

three systems Ly1 = b, Dy2 = y1, L
Tx = y2 satisfy

(bL+�L1)by1 = b; j�L1j � 
njbLj;
( bD +�D)by2 = by1; j�Dj � 
cj bDj;
(bL +�L2)

Tbx = by2:
Thus

b = (bL+�L1)(
bD +�D)(bL +�L2)

Tbx = (A+�A+�A2)bx;
where j�Aj is bounded in (4.9) and

j�A2j � 
2n+c jbLjj bDjjbLT j+O(u2):

On bringing back into account the row and column interchanges, we obtain the fol-

lowing result.

Theorem 4.1 Let A 2 IR
n�n be symmetric and let bx be a computed solution to the

linear system Ax = b produced by the diagonal pivoting method with any pivoting

strategy. If for all linear systems involving 2� 2 pivots (4.5) holds, then

(A+�A)bx = b; j�Aj � p(n)u
�jAj+ P T jbLjj bDjjbLT jP �+O(u2); (4.10)

where p is a linear polynomial and PAP T � bL bDbLT is the factorization computed by

the diagonal pivoting method.
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The bound in (4.10) is analogous to the bound in (3.3) that holds for Gaussian

elimination. We have already seen that the assumption (4.5) in Theorem 4.1 holds

for the partial pivoting strategy of Bunch and Kaufman, provided linear systems

Ex = b are solved by GEPP or by using the explicit inverse. It is easy to show that

this assumption also holds for the complete pivoting strategy of Bunch and Parlett

[7] under the same conditions (interestingly, for the 2 � 2 pivots E that arise with

the Bunch{Parlett strategy, GEPP applied to a Ex = b is identical to Gaussian

elimination with complete pivoting).

4.3 Normwise Analysis for Partial Pivoting

To show that the diagonal pivoting method is stable for a particular pivoting strategy,

we need to show that the matrix jbLjj bDjjbLT j is suitably bounded. We now specialise

to partial pivoting. For partial pivoting, bL can be arbitrarily large, so stability is not

an immediate consequence of Theorem 4.1. We therefore need to look closely at the

elements of the matrix jbLjj bDjjbLT j. For simplicity, we bound the matrix jLjjDjjLT j
containing the exact factors, which makes only a second order change to the overall

bounds, since jbLjj bDjjbLT j = jLjjDjjLT j.
Initially, we examine the contribution from the blocks of L and D produced by

the �rst stage of the factorization. For this more delicate part of the analysis we take

full account of the interchanges in our notation. Note that

jLjjDjjLT j =
�

I

jL21j jLSj
� � jEj

jDS j
� �

I jLT
21j

jLT
S j
�

=

� jEj jEjjLT
21j

jL21jjEj jL21jjEjjLT
21j+ jLSjjDS jjLT

S j
�
: (4.11)

We �rst bound

F := jL21jjEj = jCE�1jjEj 2 IR
(n�s)�s:

For a 1 � 1 pivot, F is a vector with elements jcie�111 jje11j, each of which is trivially

bounded by maxi;j jaijj.
Now consider a 2� 2 pivot. Algorithm 1 dictates that � in (1.1) swaps rows and

columns 2 and r so that, as noted earlier,

E =

�
a11 ar1
ar1 arr

�
; jar1j = �:

Using (A.1) and (4.1a), we have

eTi F � (eTi jCj)jE�1jjEj

12



� 1

1� �2
[� � ]

264 1 + �2
2jarrj
�

2ja11j
�

1 + �2

375
� 1

1� �2
[ (1 + �2

)�+ 2�� 2jarrj+ (1 + �2
)� ]

� maxi;j jaijj
1� �2

[�2
+ 2� + 1 �2

+ 3 ]

� max
i;j

jaijj [ 5 6 ] : (4.12)

Next, we need to bound

G := jL21jjEjjLT
21j = jCE�1jjEjjE�1CT j:

First, consider a 1� 1 pivot. In cases (1) and (2) of Algorithm 1 we have

gij = jcie�111 jje11jje�111 cj j =
jai+1;1jjaj+1;1j

ja11j � �2

ja11j �

8><>:
�

�
; case (1),

�

�
; case (2).

In case (3),

jgijj = jalrjjamrj
jarrj (l;m 6= r)

� �2

jarrj �
�

�
:

For a 1� 1 pivot, then, jgijj � ��1maxi;j jaijj < 2maxi;j jaijj.
For a 2 � 2 pivot (case (4) of Algorithm 1), using (A.2) we have

jgijj � (eTi jCj)
�jE�1jjEjjE�1j�jCT jej

� 3 + �2

(1 � �2
)
2�2

[� � ]

"
jarrj �

� ja11j

# �
�

�

�

=

3 + �2

(1 � �2
)
2�2

�
�2(jarrj+ �) + �(�2 + ja11j�)

�
=

3 + �2

(1 � �2
)
2

�
jarrj+ 2� +

�2ja11j
�2

�
� 3 + �2

(1 � �2
)
2
(3 + �)max

i;j
jaijj (using (4.1b))

= 36max
i;j

jaijj: (4.13)
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The remaining blocks of jLjjDjjLT j are composed of blocks of L and D that make

up LDL
T
factors of Schur complements of A. But every Schur complement satis�es

kSkM � �nkAkM ;
where �n is the growth factor. Hence, applying the bounds above recursively to the

(2; 2) block in (4.11), we deduce the (pessimistic) bound

k jLjjDjjLT j kM � 36n�nkAkM : (4.14)

We mention in passing that in early drafts of this paper we had a weaker version

of (4.5) in which jEj in the bound was replaced by jEj+ jar1je2eT2 . We were still able

to obtain a satisfactory bound for k jLjjDjjLT j kM , indicating that partial pivoting is

somewhat more tolerant of how the 2 � 2 systems are solved than might be thought

from the analysis above.

Using the bound (4.14) in Theorem 4.1 we obtain the following normwise backward

stability result for partial pivoting.

Theorem 4.2 Let A 2 IR
n�n be symmetric and let bx be a computed solution to

the linear system Ax = b produced by the diagonal pivoting method with the partial

pivoting strategy of Bunch and Kaufman, where linear systems involving 2� 2 pivots

are solved by GEPP or by use of the explicit inverse. Then

(A+�A)bx = b; k�AkM � p(n)�nukAkM +O(u2); (4.15)

where p is a quadratic.

Theorem 4.2 has the same form as Wilkinson's result for GEPP applied to a

nonsymmetric system (see, e.g., [14, x9.2]), though of course the numerical value of

�n is usually di�erent for the two methods.

5 Discussion

The backward error matrix �A in (4.9) is necessarily symmetric, but that in (4.15)

is not, in general. However, we can take �A in (4.15) to be symmetric, at the cost of

increasing the bound by a factor n, because of the following result of Bunch, Demmel

and Van Loan [4]: if (A+G)y = b then there exists H = HT
such that (A+H)y = b

with kHk2 � kGk2 and kHkF �
p
2kGkF .

Sorensen and Van Loan [10, x5.3.2] modify the Bunch{Kaufman partial pivoting

strategy by rede�ning, in Algorithm 1,

� = kA(:; r)k1
This small change has the pleasing e�ect of ensuring that for a positive de�nite matrix

no interchanges are done (and that, as for the Bunch{Kaufman strategy, only 1 � 1

14



pivots are used in this case). At the same time it leaves the growth factor bound

unchanged, and all our analysis remains valid for this variant.

For sparse symmetric matrices, Du�, Reid and co-authors compute the block

LDL
T
factorization using a pivoting strategy very di�erent from that of Bunch and

Kaufman [11], [12], [13]. We describe the strategy in [13] as it applies to the �rst

stage of the factorization: a11 is de�ned to be an acceptable 1 � 1 pivot, from the

point of view of numerical stability, if

ja11j � �max
i>1

jai1j; (5.1)

where � 2 (0; 1=2] is a tolerance; the matrix

D1 =

�
a11 ar1
ar1 arr

�
is an acceptable 2 � 2 pivot if

kD�1k k1maxf jaijj : i 6= 1; r; j = 1; r g � ��1: (5.2)

From among the acceptable pivots one is chosen that best preserves sparsity, according

to some particular sparsity criterion. The conditions (5.1) and (5.2) ensure that kLk1
is bounded by a multiple of ��1, which then implies bounds on the growth factor,

and hence on kDk1. The stability of this pivoting strategy is therefore immediate,

since (2.2) is satis�ed. An interesting contrast is that the Bunch{Kaufman strategy

involves a �xed amount of searching for a pivot, and the reasons for its stability are

subtle, whereas the Du� et al. strategy more directly forces stability by bounding

the multipliers, but gives up the �xed amount of searching of the Bunch{Kaufman

strategy.

Finally, we emphasize that the aim of this work was to obtain a rigorous back-

ward error bound for the diagonal pivoting method with partial pivoting. The actual

performance of the method is a�ected by the size of the growth factor. More work is

needed to investigate the behaviour of the growth factor, about which less is known

than the growth factor for Gaussian elimination with partial pivoting. Although the

unboundedness of kLk1 does not preclude backward stability, it does have implica-

tions for the practical behaviour of the method; see Ashcraft, Grimes and Lewis [2]

for a thorough study for both dense and sparse matrices.

A Appendix

In this appendix we bound three matrix expressions involving a 2 � 2 pivot from

partial pivoting,

E =

�
a11 ar1
ar1 arr

�
jar1j = �:

15



First, we note that

jdet(E)j = ja2r1 � a11arrj � �2 � �2�2 = (1� �2
)�2;

using (4.1d). Hence

jE�1jjEj � 1

(1 � �2
)�2

� jarrj �

� ja11j
� � ja11j �

� jarrj
�

=

1

1 � �2

264 ja11jjarrj
�2

+ 1

2jarrj
�

2ja11j
�

ja11jjarrj
�2

+ 1

375

� 1

1 � �2

264 1 + �2
2

jarrj
�

2

ja11j
�

1 + �2

375 ; (A.1)

using (4.1d) again. Next,

jE�1jjEjjE�1j � 1

(1 � �2
)
2�2

264 1 + �2
2

jarrj
�

2

ja11j
�

1 + �2

375� jarrj �

� ja11j
�

=

1

(1 � �2
)
2�2

264 (3 + �2
)jarrj (1 + �2

)�+ 2

ja11jjarrj
�

2

ja11jjarrj
�

+ (1 + �2
)� (3 + �2

)ja11j

375
� 1

(1 � �2
)
2�2

�
(3 + �2

)jarrj (1 + 3�2
)�

(1 + 3�2
)� (3 + �2

)ja11j
�

� 3 + �2

(1 � �2
)
2�2

� jarrj �

� ja11

�
: (A.2)

Finally,

jEjjE�1jjEj � 1

1� �2

� ja11j �

� jarrj
�264 1 + �2

2

jarrj
�

2

ja11j
�

1 + �2

375

=

1

1� �2

264 (3 + �2
)ja11j 2

ja11jjarrj
�

+ (1 + �2
)�

(1 + �2
)�+ 2

ja11jjarrj
�

(3 + �2
)jarrj

375
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� 1

1� �2

�
(3 + �2

)ja11j (1 + 3�2
)�

(1 + 3�2
)� (3 + �2

)jarrj
�

�
�
3 + �2

1 � �2

�
jEj � 6jEj: (A.3)
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