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Abstract

This paper describes a proposal for a set of Parallel Basic Linear Algebra Subprograms

(PBLAS). The PBLAS are targeted at distributed vector-vector, matrix-vector and matrix-

matrix operations with the aim of simplifying the parallelization of linear algebra codes, espe-

cially when implemented on top of the sequential BLAS.

At �rst glance, because of the apparent simplicity of its sequential counterpart as well as the

regularity of the data structures involved in dense linear algebra computations, implementing

an equivalent set of parallel routines in terms of portability, e�ciency, and ease-of-use seems

relatively simple to achieve.

However, when these routines are actually coded, the problem becomes much more complex

due to di�culties which do not occur in serial computing. First, there are many di�erent

parallel computer architectures available. In view of this fact, it is natural to choose a virtual

machine topology that is convenient for dense linear algebra computations and map the virtual

machine onto existing topologies. Second, the selected data distribution scheme must ensure

good load-balance to guarantee performance and scalability. Finally, for ease-of-use and software

reusability reasons, the interface of the top-level routines must closely resemble the sequential

BLAS interface yet still be 
exible enough to take advantage of e�cient parallel algorithmic

techniques such as computation and communication overlapping and pipelining.

This paper presents a reasonable set of adoptable solutions to successfully design and im-

plement the Parallel Basic Linear Algebra Subprograms. These subprograms can in turn be

used to develop parallel libraries such as ScaLAPACK for a large variety of distributed memory

MIMD computers.
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1 Introduction

In 1987 Dongarra, Du Croz, Du� and Hammarling wrote an article in the ACM Trans. Math.

Soft. (Vol. 16, no. 1, page 1) de�ning and proposing a set of Level 3 Basic Linear Algebra

Subprograms. That proposal logically concluded a period of re
ection and discussion among the

mathematical software community [12, 21, 24] to de�ne a set of routines that would �nd wide

application in software for numerical linear algebra and provide a useful tool for implementors and

users. Because these subprograms and their predecessors { the Levels 1 and 2 BLAS { are an aid

to clarity, portability, modularity and maintenance of software, they have been embraced by the

community and have become a de facto standard for elementary linear algebra computations [11].

Many of the frequently used algorithms of numerical linear algebra can be implemented so that a

majority of the computation is performed by calls to the Level 2 and Level 3 BLAS. By relying on

these basic kernels, it is possible to develop portable and e�cient software across a wide range of

architectures, with emphasis on workstations, vector-processors and shared-memory computers, as

has been done in LAPACK [2].

As opposed to shared-memory systems, distributed-memory computers di�er signi�cantly from the

software point of view. The underlying interconnection network as well as the vendor supplied

communication library are usually machine speci�c. The ongoing Message Passing Interface (MPI)

standardization e�ort [17] will undoubtly be of great bene�t to the user community. Nevertheless,

a large variety of distributed-memory systems still exists and this motivated the development of a

set of portable communication subprograms well suited for linear algebra computations: the Basic

Linear Algebra Communication Subprograms (BLACS) [14, 27]. In addition to de�ning a portable

interface the BLACS also provide the correct level of abstraction. They allow the software writer

to focus on performing message passing on subsections of matrices rather than at low level byte

transfers.

There has been much interest recently in developing parallel versions of the BLAS for distributed

memory computers [1, 3, 15, 16]. Some of this research proposed parallelizing the BLAS, and some

implemented a few important BLAS routines, such as matrix-matrix multiplication. Almost ten

years after the very successful BLAS were proposed, we are in a position to de�ne and implement

a set of Basic Linear Algebra Subprograms for distributed-memory computers with similar func-

tionality as their sequential predecessors. The proposed set of routines that constitute the Parallel

Basic Linear Algebra Subprograms results from the adaptation to distributed memory computers

and reuse of the design decisions made for the BLAS. The local computations within a process are

performed by the BLAS, while the communication operations are handled by the BLACS.

In an e�ort to simplify the parallelization of serial codes implemented on top of the BLAS, the

PBLAS proposed here are targeted at vector-vector, matrix-vector and matrix-matrix operations.

The last section illustrates how some common algorithms can be implemented by calls to the

proposed routines. There is certainly considerable evidence for the e�ciency of such algorithms

on various machines [18]. Such implementations are portable and e�cient across a wide variety of

distributed memory MIMD computers, ranging from a heterogeneous network of workstations to a

statically connected set of identical processors, provided that e�cient machine-speci�c BLAS and

BLACS are available.
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The scope of this proposal is limited. First, the set of routines described in this paper constitutes an

extended proper subset of the BLAS. For instance, this proposal does not contain vector rotation

routines or dedicated subprograms for banded or packed matrices. A matrix transposition routine

has been added to the Level 3 subprograms since this operation is much more complex to perform

and implement on distributed-memory computers. Second, this proposal does not include routines

for matrix factorizations or reductions; these are covered by the ScaLAPACK (Scalable Linear

Algebra PACKage) project [6, 7]. A reference implementation version of the PBLAS is available on

netlib (http://www.netlib.org). Vendors can then supply system optimized versions of the BLAS,

the BLACS and eventually the PBLAS. It is our hope that this proposal will initiate discussions

among the computer science community so that this project will best re
ect its needs.

This proposal is intended primarily for software developers and to a lesser extent for experienced

applications programmers. The details of this proposal are concerned with de�ning a set of sub-

routines for use in FORTRAN 77 and C programs. However, the essential features of this standard

should be easily adaptable to other programming languages. We have attempted to pave the way

for such a future evolution by respecting the driving concepts of the HPF [23] and MPI [17] projects.

2 Scope of the PBLAS

The design of the software is as consistent as possible with that of the BLAS; thus, the experienced

linear algebra programmer will have the same basic tools available in both the sequential and

parallel programming worlds.

In real arithmetic the operations for the PBLAS have the following form:

� Level 1 - Vector-vector operations

� x$ y

� x �x

� y  x

� y  �x + y

� dot xT y

� nrm2 kxk2

� asum kre(x)k1+ kim(x)k1

� Index and value of the �rst maximal element in absolute value of a vector.

� Level 2 - Matrix-vector operations

{ Matrix-vector products

� y  �Ax + �y

� y  �ATx+ �y

{ Rank-1 update of a general matrix

� A �xyT + A
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{ Rank-1 and rank-2 updates of a symmetric matrix

� A �xxT + A

� A �xyT + �yxT + A

{ Multiplication by a triangular matrix

� x Tx

� x TTx

{ Solving a triangular system of equations

� x T�1x

� x T�Tx

� Level 3 - Matrix-matrix operations

{ Matrix-matrix products

� C  �AB + �C

� C  �ATB + �C

� C  �ABT + �C

� C  �ATBT + �C

{ Rank-k and rank-2k updates of a symmetric matrix

� C  �AAT + �C

� C  �ATA+ �C

� C  �ABT + �BAT + �C

� C  �ATB + �BTA+ �C

{ Multiplication by a triangular matrix

� B  �TB

� B  �TTB

� B  �BT

� B  �BTT

{ Solving multiple triangular systems of equations

� B  �T�1B

� B  �T�TB

� B  �BT�1

� B  �BT�T

{ Matrix transposition

� C  �C + �AT

Here � and � are scalars, x and y are vectors, A, B and C are rectangular matrices (in some

cases square and symmetric), and T is an upper or lower triangular matrix (and nonsingular

for the triangular solves).

Analogous operations are proposed in complex arithmetic. Conjugate transposition is speci-

�ed as well as simple transposition. Additional operations are provided for scaling a complex

vector by a real scalar and updates of a Hermitian matrix as follows:
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� x �x

� A �xxH + A

� C  �AAH + �C

� C  �AHA+ �C

with � and � real for the vector-vector and matrix-matrix operations, and

� A �xyH + y(�x)H +A

� C  �ABH + ��BAH + �C

� C  �AHB + ��BHA+ �C

with � real.

3 Conventions of the PBLAS

3.1 Naming Conventions

The name of a PBLAS routine follows the conventions of the BLAS with the exception that the

�rst character in the name is always a `P', which stands for Parallel. The second character (cor-

responding to the �rst character in BLAS names) denotes the FORTRAN data type of the matrix

or vector as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 or DOUBLE COMPLEX (if available)

The last characters in the name of the Level 1 routines are abbreviations of the performed operations

as indicated in Table 1. For example PSCOPY is the single precision real vector-vector copy routine

name. The third and fourth characters in the name of the Levels 2 and 3 routines refer to the kind

of matrix involved as follows:

GE All matrix operands are GEneral rectangular;

HE One of the matrix operands is HErmitian;

SY One of the matrix operands is SYmmetric;

TR One of the matrix operands is TRiangular.
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Name Function Pre�xes

P2SWAP Swap x and y S, C, D, Z

P2SCAL Constant times a vector S, C, D, Z, CS, ZD

P2COPY Copy x into y S, C, D, Z

P2AXPY Constant times a vector plus a vector S, C, D, Z

P2DOT Dot product S, D

P2DOTU Dot product C, Z

P2DOTC Dot product C, Z

P2NRM2 2-norm (Euclidean length) S, D, SC, DZ

P2ASUM Sum of absolute values (*) S, D, SC, DZ

P2AMAX Index and value of element having S, C, D, Z

maximum absolute value (*)

(*) For complex components zj = xj + iyj these subprograms compute jxj j+ jyj j

instead of (x2j + y2j )
1=2.

Table 1: Summary of proposed Level 1 PBLAS routines

The �fth and sixth characters in the name of the Levels 2 and 3 routines denote the type of operation

as follows:

MM Matrix-matrix product;

MV Matrix-vector product;

R Rank-1 update of a matrix;

R2 Rank-2 update of a matrix;

RK Rank-k update of a symmetric or Hermitian matrix;

R2K Rank-2k update of a symmetric or Hermitian matrix;

SM Solves a system of linear equations for a matrix of right-hand sides;

SV Solves a system of linear equations for a right-hand side vector.

The suggested combinations are indicated in Table 2. Note, however, that rank-k updates of general

matrices are provided by the GEMM routines. In the �rst column, under real the second character

S may be replaced by D. In the second column, under complex, the second character C may be

replaced by Z. See appendix C for the complete subroutine calling sequences.

In our model implementation, however, the matrix transposition routine is an exception and is

called P2TRAN2.

The collection of routines can be thought of as being divided into four separate parts, real, double

precision, complex and complex*16. These routines can be written in C or FORTRAN 90 for
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Real Complex MM MV R R2 RK R2K SM SV

PSGE PCGE * * * *

PSSY PCSY * * * * * *

PCHE * * * * * *

PSTR PCTR * * * *

Matrix transposition: PSTRAN, PCTRANU and PCTRANC.

Table 2: Summary of proposed Level 2 and 3 PBLAS routines

example; their implementation takes advantage of dynamic memory management features present

in these programming languages. However, as we will see later, the local storage convention of

the distributed matrix operands in every process's memory is assumed to be FORTRAN like, i.e.,

\column major" as it is speci�ed for the BLAS. Thus, it is possible to rely on the BLAS to perform

the local computations within a process.

3.2 Storage Conventions

The current model implementation of the PBLAS assumes the matrix operands to be distributed

according to the block-cyclic decomposition scheme. This allows the routines to achieve scalability,

well balanced computations and to minimize synchronization costs. It is not the object of this

paper to describe in detail the data mapping onto the processes, for further details see [7, 13]. Let

us simply say that the set of processes is mapped to a virtual mesh, where every process is naturally

identi�ed by its coordinates in this P � Q grid. This virtual machine is in fact part of a larger

object de�ned by the BLACS and called a context [14].

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a35a34a33a32a31

a41 a42 a43 a44 a45

a55a54a53a52a51
5 x 5 matrix partitioned in 2 x 2 blocks

a11

a21

a51a52

a22

a12a15

a25

a55

a31a32

a42a41

a35

a45

a33a34

a43a44

a13a14

a23a24

a53a54

0

0 1

1

2 x 2 process grid point of view

Figure 1: A 5� 5 matrix decomposed into 2� 2 blocks mapped onto a 2� 2 process grid.

An M by N matrix operand is �rst decomposed into MB by NB blocks starting at its upper left

corner. These blocks are then uniformly distributed across the process mesh. Thus every process

owns a collection of blocks, which are locally and contiguously stored in a two dimensional \column

major" array. We present in Fig. 1 the mapping of a 5 � 5 matrix partitioned into 2 � 2 blocks
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mapped onto a 2 � 2 process grid, i.e M =N =5 and MB =NB = 2. The local entries of every matrix

column are contiguously stored in the processes' memories.

It follows that a general M by N distributed matrix is de�ned by its dimensions, the size of the

elementary MB by NB block used for its decomposition, the coordinates of the process having in

its local memory the �rst matrix entry fRSRC ,CSRC g, and the BLACS context (CTXT ) in which

this matrix is de�ned. Finally, a local leading dimension LLD is associated with the local memory

address pointing to the data structure used for the local storage of this distributed matrix. In

Fig. 1, we choose for illustration purposes RSRC =CSRC =0. In addition, the local arrays in process

row 0 must have a leading dimension LLD greater than or equal to 3, and greater than or equal

to 2 in the process row 1.

These pieces of information are grouped together into a single 8 element integer array, called the

descriptor, DESC . Such a descriptor is associated with each distributed matrix. The entries of

the descriptor uniquely determine the mapping of the matrix entries onto the local processes'

memories. Moreover, with the exception of the local leading dimension, the descriptor entries are

global values characterizing the distributed matrix operand. Since vectors may be seen as a special

case of distributed matrices or proper submatrices, the larger scheme just de�ned encompasses their

description as well.

For distributed symmetric and Hermitian matrices, only the upper (UPLO='U') triangle or the

lower (UPLO='L') triangle is stored. For triangular distributed matrices, the argument UPLO serves

to de�ne whether the matrix is upper (UPLO='U') or lower (UPLO='L') triangular.

For a distributed Hermitian matrix the imaginary parts of the diagonal elements are zero and thus

the imaginary parts of the corresponding FORTRAN or C local arrays need not be set, but are

assumed to be zero. In the P2HER and P2HER2 routines, these imaginary parts will be set to zero

on return, except when � is equal to zero, in which case the routines exit immediately. Similarly,

in the P2HERK and P2HER2K routines the imaginary parts of the diagonal elements will also be set

to zero on return, except when � is equal to one and � or K is equal to zero, in which case the

routines exit immediately.

3.3 Argument Conventions

The order of the arguments of a PBLAS routine is as follows:

1. Arguments specifying matrix options

2. Arguments de�ning the sizes of the distributed matrix or vector operands

3. Input-Output scalars

4. Description of the input distributed vector or matrix operands

5. Input scalar (associated with the input-output distributed matrix or vector operand)

6. Description of the input-output distributed vector or matrix operands
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Note that every category is not present in each of the routines. The arguments that specify options

are character arguments with the names SIDE, TRANS, TRANSA, TRANSB, UPLO and DIAG.

SIDE is used by the routines as follows:

Value Meaning

`L' Multiply general distributed matrix by symmetric or triangular

distributed matrix on the left.

`R' Multiply general distributed matrix by symmetric or triangular

distributed matrix on the right.

TRANS, TRANSA and TRANSB are used by the routines as follows:

Value Meaning

`N' Operate with the distributed matrix.

`T' Operate with the transpose of the distributed matrix.

`C' Operate with the conjugate transpose of the distributed matrix.

In the real case the values `T' and `C' have the same meaning, and in the complex case the value

`T' is not allowed.

UPLO is used by the Hermitian, symmetric, and triangular distributed matrix routines to specify

whether the upper or lower triangle is being referenced as follows:

Value Meaning

`U' Upper triangle.

`L' Lower triangle.

DIAG is used by the triangular distributed matrix routines to specify whether or not the distributed

matrix is unit triangular, as follows:

Value Meaning

`U' Unit triangular.

`R' Non-unit triangular.

When DIAG is supplied as `U' the diagonal elements are not referenced.

Thus, these arguments have similar values and meanings as for the BLAS; TRANSA and TRANSB

have the same values and meanings as TRANS, where TRANSA and TRANSB apply to the distributed

matrix operands A and B respectively. We recommend that the equivalent lower case characters be

accepted with the same meaning.

The distributed submatrix operands of the Level 3 PBLAS are determined by the arguments M,

N and K, which specify their size. These numbers may di�er from the two �rst entries of the

descriptor (M and N ), which speci�es the size of the distributed matrix containing the submatrix

operand. Also required are the global starting indices IA, JA, IB, JB, IC and JC. It is permissible
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to call a routine with M or N equal to zero, in which case the routine exits immediately without

referencing its distributed matrix arguments. If M and N are greater than zero, but K is equal to

zero, the operation reduces to C(IC:*,JC:*) �C(IC:*,JC:*) (this applies to the GEMM, SYRK,

SYR2K, HERK and HER2K routines). The input-output distributed submatrix (B(IB:*,JB:*) for the

TR-routines, C(IC:*,JC:*) otherwise) is always M � N if rectangular, or N � N if square.

The description of the distributed matrix operands consists of

� a pointer in every process to the local array (A, B or C) containing the local pieces of the

corresponding distributed matrix,

� the global starting indices in row column order f (IA, JA), (IB, JB), (IC, JC) g,

� the descriptor of the distributed matrix as declared in the calling (sub)program (DESCA, DESCB

or DESCC).

The description of a distributed vector operand is similar to the description of a distributed matrix

(X, IX, JX, DESCX) followed by a global increment INCX, which allows the selection of a matrix

row or a matrix column as a vector operand. Only two increment values are currently supported

by our model implementation, namely 1 to select a matrix column and DESCX(1) (i.e INCX=MX)

specifying a matrix row.

The input scalars always have the dummy argument names ALPHA and BETA. Output scalars are

only present in the Level 1 PBLAS and are called AMAX, ASUM, DOT, INDX and NORM2.

We use the description of two distributed matrix operands X and Y to describe the invalid values

of the arguments:

� Any value of the character arguments SIDE, TRANS, TRANSA, TRANSB, UPLO, or DIAG, whose

meaning is not speci�ed,

� M < 0 or N < 0 or K < 0,

� IX < 1 or IX+M-1 > M (= DESCX(1)) (assuming X(IX:IX+M-1,�) is to be operated on),

� JX < 1 or JX+N-1 > N (= DESCX(2)), (assuming X(�,JX:JX+N-1) is to be operated on),

� MB (=DESCX(3)) < 1 or NB (=DESCX(4)) < 1,

� RSRC (=DESCX(5)) < 0 or RSRC � P (number of process rows),

� CSRC (=DESCX(6)) < 0 or CSRC � Q (number of process columns),

� LLD (=DESCX(8)) < the local number of rows in the array pointed to by X,

� INCX 6= 1 and INCX 6= M (= DESCX(1)) (Only for vector operands),

� CTXT X (=DESCX(7)) 6= CTXT Y (=DESCY(7)) with X and Y distributed matrix operands.
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If a routine is called with an invalid value for any of its arguments, then it must report the fact and

terminate the execution of the program. In the model implementation, each routine, on detecting an

error, calls a common error-handling routine PBERROR(), passing to it the current BLACS context,

the name of the routine and the number of the �rst argument that is in error. If an error is detected

in the j-th entry of a descriptor array, which is the i-th argument in the parameter list, the number

passed to PBERROR() has been arbitrarily chosen to be 100�i+j. This allows the user to distinguish

an error on a descriptor entry from an error on a scalar argument. For e�ciency purposes, the

PBLAS routines only perform a local validity check of their argument list. If an error is detected

in at least one process of the current context, the program execution is stopped.

A global validity check of the input arguments passed to a PBLAS routine must be performed in

the higher-level calling procedure. To demonstrate the need and cost of global checking, as well

as the reason why this type of checking is not performed in the PBLAS, consider the following

example: the value of a global input argument is legal but di�ers from one process to another. The

results are unpredictable. In order to detect this kind of error situation, a synchronization point

would be necessary, which may result in a signi�cant performance degradation. Since every process

must call the same routine to perform the desired operation successfully, it is natural and safe to

restrict somewhat the amount of checking operations performed in the PBLAS routines.

Specialized implementations may call system-speci�c exception-handling facilities, either via an

auxiliary routine PBERROR or directly from the routine. In addition, the testing programs can take

advantage of this exception-handling mechanism by simulating speci�c erroneous input argument

lists and then verifying that particular errors are correctly detected.

4 Speci�cations of the PBLAS

4.1 Argument Declarations

Type, dimension and description for variables occurring in the subroutine speci�cations are as

follows:

CHARACTER*1 SIDE, UPLO, TRANS, TRANSA, TRANSB, DIAG

INTEGER IA, IB, IC, INCX, INCY, INDX, IX, IY

INTEGER JA, JB, JC, JX, JY, M, N, K

INTEGER DESCA( 8 ), DESCB( 8 ), DESCC( 8 )

INTEGER DESCX( 8 ), DESCY( 8 )

For routines whose second letter is a S:

REAL ALPHA, AMAX, ASUM, BETA, DOT, NRM2

REAL A( * ), B( * ), C( * ), X( * ), Y ( * )

For routines whose second letter is a D:
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DOUBLE PRECISION ALPHA, AMAX, ASUM, BETA, DOT, NRM2

DOUBLE PRECISION A( * ), B( * ), C( * ), X( * ), Y ( * )

For routines whose second letter is a C:

REAL AMAX, ASUM, DOTC, DOTU, NRM2

COMPLEX ALPHA, BETA

COMPLEX A( * ), B( * ), C( * ), X( * ), Y ( * )

except for PCHER and PCHERK where the scalars � and � are real so that the �rst declaration above

is replaced by:

REAL ALPHA, BETA

and for PCHER2K � is complex and � is real, so this is replaced by:

COMPLEX ALPHA

REAL BETA

For routines whose second letter is a Z:

DOUBLE PRECISION AMAX, ASUM, DOTC, DOTU, NRM2

COMPLEX*16 ALPHA, BETA

COMPLEX*16 A( * ), B( * ), C( * ), X( * ), Y( * )

or equivalently,

DOUBLE PRECISION AMAX, ASUM, DOTC, DOTU, NRM2

DOUBLE COMPLEX ALPHA, BETA

DOUBLE COMPLEX A( * ), B( * ), C( * ), X( * ), Y( * )

except for PZHER and PZHERK where the scalars � and � are real so that the �rst declaration above

is replaced by:

DOUBLE PRECISION ALPHA, BETA

and for PCHER2K where � is complex and � is real, so this is replaced by:

COMPLEX*16 ALPHA

DOUBLE PRECISION BETA

or equivalently,

DOUBLE COMPLEX ALPHA

DOUBLE PRECISION BETA

14



4.2 Vector-Vector Operations

In the following sections, no distinction is made between a column or a row of a matrix. Both are

denoted by the word \vector". We de�ne vecN(X) by

vecN (X) =

(
X(IX; JX : JX+ N� 1) if INCX = DESCX(1) and

X(IX : IX+ N� 1; JX) if INCX = 1:

1. Vector swap:

P2SWAP( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )

Operation:

vecN(X)$ vecN(Y )

2. Vector scaling:

P2SCAL( N, ALPHA, X, IX, JX, DESCX, INCX )

Operation:

vecN(X) � vecN(X)

3. Vector copy:

P2COPY( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )

Operation:

vecN(Y ) vecN(X)

4. Vector addition:

P2AXPY( N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )

Operation:

vecN(Y ) � vecN(X) + vecN (Y )

5. Dot products:

P2DOT2( N, DOT, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )

Operation: for the PSDOT, PDDOT, PCDOTU or PZDOTU routines,
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DOT  vecN(X)TvecN(Y )

For the PCDOTC or PZDOTC routines,

DOT  vecN(X)HvecN (Y )

6. Vector 2-norm:

P2NRM2( N, NORM2, X, IX, JX, DESCX, INCX )

Operation:

NORM2  kvecN(X)k2

7. Sum of absolute value of vector entries:

P2ASUM( N, ASUM, X, IX, JX, DESCX, INCX )

Operation:

ASUM  kre(vecN(X))k1+ kim(vecN(X))k1

8. Index and value of vector entry having maximum absolute value:

P2AMAX( N, AMAX, INDX, X, IX, JX, DESCX, INCX )

Operation:

8><
>:

INDX 1st k 3 jre(vecN(X)k)j+ jim(vecN(X)k)j

= max(jre(vecN(X)i)j+ jim(vecN(X)i)j)

AMAX vecN(X)k

4.3 Matrix-Vector Operations

In the following sections, subM;N(A) denotes the submatrix A(IA:IA+M-1,JA:JA+N-1).

1. General matrix-vector products:

P2GEMV( TRANS, M, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,

BETA, Y, IY, JY, DESCY, INCY )

Operation:
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TRANS = `N' vecM(Y ) � subM;N(A)vecN(X) + � vecM(Y )

TRANS = `T' vecN(Y ) � subM;N(A)
TvecM(X) + � vecN (Y )

TRANS = `C' vecN(Y ) � subM;N(A)
HvecM(X) + � vecN(Y )

2. Matrix-vector products where the matrix is real or complex symmetric or complex Hermitian:

P2SYMV( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,

BETA, Y, IY, JY, DESCY, INCY )

P2HEMV( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,

BETA, Y, IY, JY, DESCY, INCY )

Operation: subN;N(A) is symmetric for the P2SYMV routines and Hermitian for the P2HEMV

routines:

vecN(Y ) � subN;N(A)vecN(X) + � vecN(Y )

3. Triangular matrix-vector products:

P2TRMV( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX )

Operation: subN;N(A) denotes a triangular submatrix:

TRANS = `N' vecN(X) subN;N(A)vecN(X)

TRANS = `T' vecN (X) subN;N(A)
TvecN(X)

TRANS = `C' vecN(X) subN;N(A)
HvecN(X)

4. Solution of triangular system of equations:

P2TRSV( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX )

Operation: subN;N(A) denotes a triangular submatrix:

TRANS = `N' vecN(Y ) subN;N(A)
�1subN(X)

TRANS = `T' vecN(Y ) subN;N(A)
�T subN(X)

TRANS = `C' vecN(Y ) subN;N(A)
�HsubN(X)

5. Rank-1 updates of a general matrix:
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P2GER2( M, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,

A, IA, JA, DESCA )

Operation: for the PSGER, PDGER, PCGERU or PZGERU routines,

subM;N(A) � vecM(X)vecN(Y )
T + subM;N(A)

For the PCGERC or PZGERC routines,

subM;N(A) � vecM(X)vecN(Y )
H + subM;N(A)

6. Rank-1 updates of a real or complex symmetric or complex Hermitian matrix:

P2SYR( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )

P2HER( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )

Operation: for the P2SYR routines, subN;N(A) is symmetric:

subN;N(A) � vecN(X)vecN(X)T + subN;N(A)

For the P2HER routines, subN;N(A) is Hermitian,

subN;N(A) � vecN(X)vecN(X)H + subN;N(A)

7. Rank-2 updates of a real or complex symmetric or complex Hermitian matrix:

P2SYR2( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,

A, IA, JA, DESCA )

P2HER2( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,

A, IA, JA, DESCA )

Operation: for the P2SYR2 routines, subN;N(A) is symmetric,

subN;N(A) � vecN (X)vecN(Y )
T + � vecN(Y )vecN(X)T + subN;N(A)

For the P2HER2 routines, subN;N(A) is Hermitian,

subN;N(A) � vecN(X)vecN(Y )
H + � vecN(Y )vecN(X)H + subN;N(A)
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4.4 Matrix-Matrix Operations

1. General matrix-matrix products:

P2GEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )

Operation: in the following table sub(C) denotes subM;N(C), sub(A) denotes subM;K(A) when

TRANSA=`N' and subK;M (A) otherwise, �nally sub(B) denotes subK;N (B) when TRANSB=`N'

and subN;K(B) otherwise.

TRANSA = `N' TRANSA = `T' TRANSA = `C'

TRANSB = `N' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)

+ � sub(A)sub(B) + � sub(A)Tsub(B) + � sub(A)Hsub(B)

TRANSB = `T' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)

+ � sub(A)sub(B)T + � sub(A)Tsub(B)T + � sub(A)Hsub(B)T

TRANSB = `C' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)

+ � sub(A)sub(B)H + � sub(A)Tsub(B)H + � sub(A)Hsub(B)H

(In the real case the values `T' and `C' have the same meaning).

2. Matrix-matrix products where one matrix is real or complex symmetric or complex Hermitian:

P2SYMM( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )

P2HEMM( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )

Operation: subM;M(A) when SIDE=`L' and subN;N(A) when SIDE=`R' is symmetric for the

P2SYMM routines, Hermitian for the P2HEMM routines:

SIDE = `L' subM;N(C) � subM;M(A)subM;N(B) + � subM;N(C)

SIDE = `R' subM;N(C) � subM;N(B)subN;N(A) + � subM;N(C)

3. Rank-k updates of a real or complex symmetric or complex Hermitian matrix:

P2SYRK( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )

P2HERK( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )

Operation: for the P2SYRK routines, subN;N(C) is symmetric,
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TRANS = `N' subN;N(C) � subN;K(A)subN;K(A)
T + � subN;N(C)

TRANS = `T' subN;N(C) � subK;N (A)
TsubK;N(A) + � subN;N(C)

For the P2HERK routines, subN;N(C) is Hermitian,

TRANS = `N' subN;N(C) � subN;K(A)subN;K(A)
H + � subN;N(C)

TRANS = `C' subN;N(C) � subK;N (A)
HsubK;N(A) + � subN;N(C)

(In the real cases the values `T' and `C' have the same meaning. In the complex case

TRANS=`C' is not allowed in P2SYRK, and TRANS=`T' is not allowed in P2HERK).

4. Rank-2k updates of a real or complex symmetric or complex Hermitian matrix:

P2SYR2K( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )

P2HER2K( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )

Operation: for the P2SYR2K routines, subN;N(C) is symmetric,

TRANS = `N' subN;N(C) � subN;K(A)subN;K(B)
T + � subN;K(B)subN;K(A)

T

+� subN;N(C)

TRANS = `T' subN;N(C) � subK;N(A)
TsubK;N(B) + � subK;N (B)

TsubK;N (A)

+� subN;N(C)

For the P2HER2K routines, sub(C) is Hermitian,

TRANS = `N' subN;N(C) � subN;K(A)subN;K(B)
H + � subN;K(B)subN;K(A)

H

+� subN;N(C)

TRANS = `C' subN;N(C) � subK;N(A)
HsubK;N(B) + � subK;N (B)

HsubK;N(A)

+� subN;N(C)

(In the real cases the values `T' and `C' have the same meaning. In the complex case

TRANS=`C' is not allowed in P2SYR2K, and TRANS=`T' is not allowed in P2HER2K).

5. Matrix transposition

P2TRAN2( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )
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Operation: for the PSTRAN, PDTRAN, PCTRANU or PZTRANU routines,

subM;N(C) � subM;N(C) + � subN;M(A)T

For the PCTRANC or PZTRANC routines,

subM;N(C) � subM;N(C) + � subN;M(A)H

6. Triangular matrix-matrix products:

P2TRMM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB )

Operation: in the following table, sub(B) denotes subM;N(B), sub(A) denotes the subM;M(A)

when SIDE=`L' and subN;N(A) when SIDE=`R'. sub(A) is triangular:

SIDE = `L' SIDE = `R'

TRANSA = `N' sub(B) � sub(A)sub(B) sub(B) � sub(B)sub(A)

TRANSA = `T' sub(B) � sub(A)Tsub(B) sub(B) � sub(B)sub(A)T

TRANSA = `C' sub(B) � sub(A)Hsub(B) sub(B) � sub(B)sub(A)H

(In the real case the values `T' and `C' have the same meaning.)

7. Solution of triangular systems of equations:

P2TRSM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA,

B, IB, JB, DESCB )

Operation: in the following table, sub(B) denotes subM;N(B), sub(A) denotes the subM;M(A)

when SIDE=`L' and subN;N(A) when SIDE=`R'. sub(A) is triangular:

SIDE = `L' SIDE = `R'

TRANSA = `N' sub(B) � sub(A)�1sub(B) sub(B) � sub(B)sub(A)�1

TRANSA = `T' sub(B) � sub(A)�Tsub(B) sub(B) � sub(B)sub(A)�T

TRANSA = `C' sub(B) � sub(A)�Hsub(B) sub(B) � sub(B)sub(A)�H

(In the real case the values `T' and `C' have the same meaning.)
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5 Implementation

To support and encourage the use of the PBLAS, we describe here two software components of this

package which emphasize the software quality aspects used during the development phase, as well

as explain our reasons to believe in the reliability and robustness of these routines:

1. A model implementation of the subprograms has been written in ANSI C [25], mainly for its

dynamic memory allocation management features, and FORTRAN 77. The FORTRAN 77

BLAS enable the PBLAS to be used on any machine for which the BLACS are available.

2. Testing and timing programs have been designed to ensure that implementations conform to

the speci�cations and have been correctly installed.

5.1 The Model Implementation

While most of the local computations are performed by the BLAS and the communication is handled

by the BLACS, the PBLAS is in fact only responsible for organizing the distributed computations.

A typical PBLAS subroutine locally checks the coherency and the validity of its input arguments,

translates these global parameters into their local equivalents and performs the basic operations

using an optimally shaped adaptive procedure. Note that most of the PBLAS routines currently

assume the data to be aligned. Various routines have di�erent alignment restrictions. For instance,

some routines will require that two matrices start at the same process row or column, while others

may require only the block size to be the same. In the next version of the PBLAS, some of these

restrictions have been removed and the remaining restrictions will be evaluated by user feedback.

5.1.1 E�ciency.

At the lowest level, the e�ciency of the PBLAS is determined by the local performance of the BLAS

and the BLACS. In addition, depending on the shape of its input and output distributed matrix

operands, the PBLAS select the best algorithm in terms of data transfer across the process grid.

Transparent to the user, this relatively simple selection process ensures high e�ciency independent

from the actual computation performed.

For example, there are algorithms [10, 19, 22], for matrix-matrix products like PUMMA which are

much more e�cient for equally sized input/output matrices. Some of these algorithms require a

very large amount of workspace making them impractical for library purposes. However, a simple

implementation of common matrix multiplication operations has recently been proven to be highly

e�cient and scalable [26]. These algorithms, called SUMMA, have the advantage of requiring much

less workspace than PUMMA. These algorithms have, in some sense, already been implemented

in terms of internal routines to the PBLAS [9]. Therefore, this work [26] will allow us to improve

and generalize the model implementation. However, when one of the matrix operands is \thin"

or \fat", the current model implementation employs di�erent algorithms which are more e�cient

in the overall number of messages exchanged on the network, and are also usually much more

economical in terms of workspace.
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The current model implementation of the Level 3 PBLAS decides which algorithm to use depending

on the shape of the matrix operands. This decision, however, could also be based on the amount of

memory available during the execution, the local BLAS performance, and machine constants such

as the latency and bandwidth of the network [4].

Internally, the PBLAS currently rely on routines requiring certain alignment properties to be sat-

is�ed [9]. These properties have been chosen so that maximum e�ciency can be obtained on these

restricted operations. Consequently, when redistribution or re-alignment of input or output data

has to be performed some performance will be lost. So far, the PBLAS do not perform such redis-

tribution or alignment of the input/output matrix or vector operands when necessary. However,

the PBLAS routines would provide greater 
exibility and would be more similar in functionality

to the BLAS if these operations where provided. The question of making the PBLAS more 
exible

remains open and its answer largely depends on the needs of the user community.

5.1.2 Auxiliary Subprograms.

It is well known [4, 13, 26] that certain algorithms based on a two-dimensional block-cyclic data

distribution scheme become more e�cient and scalable when appropriate communication topologies

are used for the broadcast and global combine operations [4, 13, 26]. For example, pipelining the

broadcast operation along the rows of the process grid improves the e�ciency and scalability of the

LU factorization algorithm [4, 13]. The BLACS topologies allow the user to optimize communication

patterns for these particular operations. A default topology can also be selected. The list of BLACS

topologies as well as the di�erent possible scopes are documented in [14]. In order to set this low

level information, the PBLAS provide two routines having the following FORTRAN 77 interface:

SUBROUTINE PTOPSET( ICTXT, OP, SCOPE, TOP )

SUBROUTINE PTOPGET( ICTXT, OP, SCOPE, TOP )

INTEGER ICTXT

CHARACTER*1 OP, SCOPE, TOP

PTOPSET assigns the BLACS topology [14] TOP to be used in the communication operations OP along

the scope speci�ed by SCOPE. PTOPGET returns the BLACS topology TOP used in the communication

operations OP along the scope speci�ed by SCOPE. Application examples of these routines are given

in appendix B. The BLACS provide broadcast (OP=`B') and global combine (OP=`C') operations

to which di�erent topologies are associated. The scope refers to the group of processes involved

in such a BLACS operation. It indicates whether a process row (SCOPE=`R'), process column

(SCOPE=`C'), or the entire grid (SCOPE=`A') will participate in these operations.

In addition, the PBLAS provide a subroutine to dispose of the PBLAS bu�er allocated in every

process's dynamic memory. Its FORTRAN 77 interface is:

SUBROUTINE PBFREEBUF()
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5.2 Testing

Master test programs have been designed, developed and included with the submitted code. This

package consists of several main programs and a set of subprograms generating test data and

comparing the results with data obtained by element-wise computations or the sequential BLAS.

These testing programs assume the correctness of the BLAS and the BLACS routines; it is therefore

highly recommended to run the testing programs provided with both of these packages before

performing any PBLAS test. A separate test program exists for each of the four data types (

real, complex, double precision and complex�16 ) as well as each PBLAS level. All test programs

conform to the same pattern with only the minimum necessary changes. These programs have been

designed not merely to check whether the model implementation has been correctly installed, but

also to serve as a validation tool and a modest debugging aid for any specialized implementation.

These programs have the following features:

� the parameters of the test problems and the names of the subprogram to be tested are speci�ed

by means of an input data �le, which can easily be modi�ed for debugging,

� the data for the test problems are generated internally and the results are checked internally,

� the programs check that no arguments are changed by the routines except the designated

output scalar, vector or matrix. All input error exits (caused by illegal parameter values) are

tested,

� the programs generate a concise summary report of the tests as well as pertinent error mes-

sages when needed.

Input data �les are supplied with every test program, but installers and implementors must be

alert to the possible need to extend or modify them. Values of the elements of the matrix operands

are uniformly distributed over (�1:0; 1:0). Care is taken to ensure that the data have full working

accuracy. Elements in the distributed matrices that are not to be referenced by a subprogram are

either checked after exiting the routine or set to a \rogue" value (�10:010) to increase the likelihood

that a reference to them will be detected. If a computational error is reported and an element of

the computed result is of order 10:010, then the routine has almost certainly referenced the wrong

element of the array.

After each call to a subprogram being tested, its operation is checked in two ways. First, each

of its input arguments, including all elements of the distributed operands, is checked to see if it

has been altered by the subprogram. If any argument, other than the speci�ed elements of the

result scalar, vector or matrix, has been modi�ed, an error is reported. This check includes the

supposedly unreferenced elements of the distributed matrices. Second, the resulting scalar, vector

or matrix computed by the subprogram is compared with the corresponding result obtained by the

sequential BLAS or by simple Fortran code. We do not expect exact agreement because the two

results are not necessarily computed by the same sequences of 
oating point operations. We do,

however, expect the di�erences to be small relative to working precision. The error bounds are

then the same as the ones used in the BLAS testers. A more detailed description of those tests can

be found in [11, 12]. The test ratio is determined by scaling these error bounds by the inverse of
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machine epsilon ��1. This ratio is compared with a constant threshold value de�ned in the input

data �le. Test ratios greater than the threshold are 
agged as \suspect". On the basis of the BLAS

experience a threshold value of 16 is recommended. The precise value is not critical. Errors in

the routines are most likely to be errors in array indexing, which will almost certainly lead to a

totally wrong result. A more subtle potential error is the use of a single precision variable in a

double precision computation. This is likely to lead to a loss of half the machine epsilon. The test

programs regard a test ratio greater than ��
1

2 as an error.

The PBLAS testing programs are thus very similar to what has been done for the BLAS. However,

it was necessary to slightly depart from the way the BLAS testing programs operate due to the

di�culties inherent to the testing of programs written for distributed-memory computers.

The �rst obstacle is due to the signi�cant increase of testing parameters. Indeed, programs for

distributed-memory computers need to be tested for virtually any number of processes. Moreover,

it should also be possible to vary the data distribution parameters such as the block sizes de�ned

in Sect. 3.2. These facts motivated the decision to permit a user con�gurable set of tests for every

routine. Consequently, one can test the PBLAS with any possible machine con�guration as well as

data layout.

The second more subtle di�culty is due to the routines producing an output scalar such as P2NRM2.

Because of the block-cyclic decomposition properties and the fact that vector operands are so far

restricted to a matrix row or column, it follows that only one process row or column will own the

input vector. This process row or column is subsequently called the vector scope by analogy with

the BLACS terminology. The question becomes: which processes should get the correct result ?

It experimentally appeared convenient to broadcast the result to every process in the vector scope

only and set it to zero elsewhere. If this scalar is needed by every process in the grid, it is the

user's responsibility to broadcast it. Consequently, such routines need only to be called by the

processes in the vector scope. Moreover, this appropriate speci�cation to what is needed by the

ScaLAPACK routines introduces a slight ambiguity when one wants to compute for example the

norm of a column of a 1-by-N distributed matrix. Indeed, this 1-column can equivalently be seen

as a row subsection containing one entry. In practice, this case rarely occurs. Should it happen,

the PBLAS routines return the correct result only in the process owning the input vector operand

and zero in every other grid process.

Finally, there are special challenges associated with writing and testing numerical software to

be executed on networks containing heterogeneous processors [4], i.e., processors which perform


oating point arithmetic di�erently. This includes not just machines with di�erent 
oating point

formats and semantics such as Cray computers and workstations performing IEEE standard 
oating

point arithmetic, but even supposedly identical machines running di�erent compilers or even just

di�erent compiler options. Moreover, on such networks, 
oating point data transfers between two

processes may require a data conversion phase and thus a possible loss of accuracy. It is therefore

impractical, error-prone and di�cult to compare supposedly identical computed scalars on such

heterogeneous networks. As a consequence, the validity and correctness of the tests performed can

only be guaranteed for networks of processors with identical 
oating point formats.
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6 Rationale

In the design of all levels of the PBLAS, as with the BLAS, one of the main concerns is to keep

both the calling sequences and the range of options limited, while at the same time maintaining

su�cient functionality. This clearly implies a compromise, and a good judgement is vital if the

PBLAS are to be accepted as a useful standard. In this section we discuss some of the reasoning

behind the decisions we have made.

A large amount of sequential linear algebra software relies on the BLAS. Because software reusability

is one of our major concerns, we wanted the BLAS and PBLAS interfaces to be as similar as possible.

Consequently, only one routine, the matrix transposition, has been added to the PBLAS, since this

operation is much more complex to perform in a distributed-memory environment [8].

One of the major di�erences between the BLAS and the PBLAS is likely to be found in the Level 1

routines. Indeed, the functions of the former have been replaced by subroutines in the latter. In our

model implementation, the top-level routines are written in C, thus it was not possible to return a

scalar anywhere else than in the argument list and at the same time to have the routines callable

by C or FORTRAN programs. Moreover, it is useful for the P2AMAX routines to return not only

the value of the element of maximum absolute value but also its global index. This contradicts the

principle that a function only returns a single value, thus the function became a subroutine.

The scalar values returned by the Level 1 PBLAS routines P2DOT2, P2NRM2, P2ASUM and P2AMAX

are only correct in the scope of their operands and zero elsewhere. For example, when INCX is

equal to one, only the column of processes having part of the vector operands gets the correct

results. This decision was made for e�ciency purposes. It is, however, very easy to have this

information broadcast across the process mesh by directly calling the appropriate BLACS routine.

Consequently, these particular routines do not need to be called by any other processes other than

the ones in the scope of their operands. With this exception in mind, the PBLAS follow an SPMD

programming model and need to be called by every process in the current BLACS context to work

correctly.

Nevertheless, there are a few more exceptions in the current model implementation, where some

computations local to a process row or column can be performed by the PBLAS, without having

every process in the grid calling the routine. For example, the rank-1 update performed in the LU

factorization presented in the next section, involves data which is contained by only one process

column. In this case, to maintain the e�ciency of the factorization it is important to have this

particular operation performed only within one process column. In other words, when a PBLAS

routine is called by every process in the grid, it is required that the code operates successfully as

speci�ed by the SPMD programming model. However, it is also necessary that the PBLAS routines

recognize the scope of their operands in order to save useless communication and synchronization

costs when possible. This speci�c part of the PBLAS speci�cations remains an open question.

A few features supported by the PBLAS underlying tools [9] have been intentionally hidden. For

instance, a block of identical vectors operands are sometimes replicated across process rows or

columns. When such a situation occurs, it is possible to save some communication and computation

operations. The PBLAS interface could provide such operations, for example, by setting the origin

process coordinate in the array descriptor to -1 (see Sect. 3.2). Such features, for example, would
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be useful in the ScaLAPACK routines responsible for applying a block of Householder vectors to

a matrix. Indeed, these Householder vectors need to be broadcast to every process row or column

before being applied. Whether or not this feature should be supported by the PBLAS is still an

open question.

We have adhered to the conventions of the BLAS in allowing an increment argument to be associated

with each distributed vector so that a vector could, for example, be a row of a matrix. However,

negative increments or any value other than 1 or DESC (1) are not supported by our current

model implementation. The negative increments �1 and �DESC (1) should be relatively easy to

support. It is still unclear how it would be possible to take advantage of this added complexity and

if other increment values should be supported.

The presence of BLACS contexts associated with every distributed matrix provides the ability

to have separate \universes" of message passing. The use of separate communication contexts

by distinct libraries (or distinct library invocations) such as the PBLAS insulates communication

internal to the library execution from external communication. When more than one descriptor

array is present in the argument list of a routine in the PBLAS, it is required that the BLACS

context entries must be equal (see Sect. 3.3). In other words, the PBLAS do not perform \intra-

context" operations.

We have not included specialized routines to take advantage of packed storage schemes for sym-

metric, Hermitian, or triangular matrices, nor of compact storage schemes for banded matrices. As

with the BLAS no check has been included for singularity, or near singularity, in the routines for

solving triangular systems of equations. The requirements for such a test depend on the applica-

tion and so we felt that this should not be included, but should instead be performed outside the

triangular solve.

For obvious software reusability reasons we have tried to adhere to the conventions of, and maintain

consistency with, the sequential BLAS. However, we have deliberately departed from this approach

by explicitly passing the global indices and using array descriptors. Indeed, it is our experience that

using a \local indexing" scheme for the interface makes the use of these routines much more complex

from the user's point of view. Our implementation of the PBLAS emphasizes the mathematical view

of a matrix over its storage. In fact, other block distributions may be able to reuse both the interface

and the descriptor described in this paper without change. Fundamentally di�erent distributions

may require modi�cations of the descriptor, but the interface should remain unchanged.

The model implementation in its current state provides su�cient functionality for the use of the

PBLAS modules in the ScaLAPACK library. However, as we mentioned earlier in this paper, there

are still a few details that remain open questions and may easily be accommodated as soon as

more experience with these codes is reported. Hopefully, the comments and suggestions of the

user community will help us to make these last decisions so that this proposal can be made more

rigorous and adequate to the user's needs.

Finally, it is our experience that porting sequential code built on the top of the BLAS to distributed

memory machines using the PBLAS is much simpler than writing the parallel code from scratch

(see Sect. 7). Taking the BLAS proposals as our model for software design was in our opinion a

way to ensure the same level of software quality for the PBLAS.
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7 Applications and Use of the PBLAS

The PBLAS is a component of the ScaLAPACK library. As such, installing the PBLAS library

is part of the ScaLAPACK installation procedure. This process is described in [5]. However, the

PBLAS will likely become a stand-alone package in the near future, similar to what has been done

for the BLAS and LAPACK libraries [2]. In which case, the installation procedure of the stand-

alone PBLAS library will be very close to what has been done for the ScaLAPACK library. This

section contains code fragments that demonstrate what needs to be done in order to call a PBLAS

routine. Then, we show how the PBLAS routines can be used in order to write a parallel linear

system solver for distributed memory MIMD computers. This code is in fact a slightly simpli�ed

version of the ScaLAPACK code.

7.1 Use of the PBLAS

In order to call a PBLAS routine, it is necessary to initialize the BLACS and create the process

grid. This can be done by calling the routine BLACS GRIDINIT (see [14] for more details). The

following segment of code will arrange four processes into a 2 � 2 process grid. When running

on platforms such as PVM [20], where the number of computational nodes available is unknown a

priori, it is necessary to call the routine BLACS SETUP, so that copies (3 in our example) of the main

program can be spawned on the virtual machine. Finally, in order to ensure a safe coexistence with

other parallel libraries using a distinct message passing layer, such as MPI [17], the BLACS routine

BLACS GET queries for an eventual system context (see [14] for more details).

INTEGER IAM, ICTXT, NPROCS

*

* (...)

*

CALL BLACS_PINFO( IAM, NPROCS )

*

IF( NPROCS.LT.1 ) THEN

NPROCS = 4

CALL BLACS_SETUP( IAM, NPROCS )

END IF

*

CALL BLACS_GET( -1, 0, ICTXT )

CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 2, 2 )

*

* (...)

*

Moreover, to convey the data distribution information to the PBLAS, the descriptor of the matrix

operands should be set. The ScaLAPACK library contains a tool routine called DESCINIT for that

purpose. This routine takes as arguments the 8-integer (descriptor) array to be initialized, as well as
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the 8 entries to be used. Finally, an error 
ag is set on output to detect if an incoherent descriptor

entry is passed to this routine. DESCINIT should be called by every process in the grid.

We present in the following code fragment the descriptor initialization phase as well as a call to a

PBLAS routine. This sample program performs the matrix multiplication:

C(1 : 4; 1 : 4) A(1 : 4; 1 : 4) � B(1 : 4; 1 : 4).

This example program is to be run on four processes arranged in a 2 � 2 process grid. The matrices

A;B and C are 5 � 5 matrices partitioned into 2 � 2 blocks. We choose the process of coordinates

(0; 0) to be the owner of the �rst entries of the matrices A;B and C. The mapping of these matrices

is identical to the example of Fig. 1 given in Sect. 3.2.

INTEGER INFO, NMAX, LDA, LDB, LDC, NMAX

PARAMETER ( NMAX = 3, LDA = NMAX, LDB = NMAX, LDC = NMAX )

*

INTEGER DESCA( 8 ), DESCB( 8 ), DESCC( 8 )

DOUBLE PRECISION A( NMAX, NMAX ), B( NMAX, NMAX ), C( NMAX, NMAX )

*

* (...)

*

* Initialize the array descriptors for the matrices A, B and C

*

CALL DESCINIT( DESCA, 5, 5, 2, 2, 0, 0, ICTXT, LDA, INFO )

CALL DESCINIT( DESCB, 5, 5, 2, 2, 0, 0, ICTXT, LDB, INFO )

CALL DESCINIT( DESCC, 5, 5, 2, 2, 0, 0, ICTXT, LDC, INFO )

*

* (...)

*

CALL PDGEMM( 'No transpose', 'No transpose', 4, 4, 4, 1.0D+0,

$ A, 1, 1, DESCA, B, 1, 1, DESCB, 0.0D+0,

$ C, 1, 1, DESCC )

*

* (...)

*

Finally, it is recommended to release the resources allocated by the BLACS and the PBLAS just

before ending the program segment using the BLACS and the PBLAS. Note that the routine

BLACS GRIDEXIT will free the resources associated with a particular context, while the routine

BLACS EXIT will free all BLACS resources (see [14] for more details).

CALL PBFREEBUF()

*

CALL BLACS_GRIDEXIT( ICTXT )

*

CALL BLACS_EXIT( 0 )
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7.2 Solving Linear Systems via LU Factorization

The primary applications of the PBLAS are in implementing algorithms of numerical linear algebra

in terms of operations on submatrices (or blocks). Therefore, provisions have been made to easily

port sequential programs built on top of the BLAS onto distributed memory computers. Note that

the ScaLAPACK library provides a set of tool routines, which the user might �nd useful for this

purpose.

In the following diagram we illustrate how the PBLAS routines can be used to port a simple algo-

rithm of numerical linear algebra, namely solving systems of linear equations via LU factorization.

Note that more examples may be found in the ScaLAPACK library.

L C
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r

N

N

r

B2

B1

(Matrix size)

(Block size)

To obtain a parallel implementation of the LU factorization of a N -by-N matrix, we started with

a variant of the right-looking LAPACK LU factorization routine given in appendix B.1. This

algorithm proceeds along the diagonal of the matrix by �rst factorizing a block B of r columns at

a time, with pivoting if necessary. Then a triangular solve and a rank-r update are performed on

the rest of the matrix. This process continues recursively with the updated matrix.

For k = 1 to N=r do

Factor panel B with pivoting, (P2AMAX, P2SWAP, P2GER2)

Apply pivots to the remainder of the matrix, (P2SWAP)

Solve C := B1�1C, (Triangular solve, P2TRSM)

Update E := E �B2 � C, (Rank-r update, P2GEMM)

End for;
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From the application programmer's point of view, it is conceptually simple to translate the serial

version of the code into its parallel equivalent. Translating BLAS calls to PBLAS calls primarily

consists of the following steps: a `P' has to be inserted in front of the routine name, the leading

dimensions should be replaced by the global array descriptors, and the global indices into the

distributed matrices should be inserted as separate parameters in the calling sequence:

CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, N-J-JB+1,

$ JB, -ONE, A( J+JB, J ), LDA, A( J, J+JB ), LDA, ONE,

$ A( J+JB, J+JB ), LDA )

#

CALL PDGEMM( 'No transpose', 'No transpose', M-J-JB+JA, N-J-JB+JA,

$ JB, -ONE, A, I+JB, J, DESCA, A, I, J+JB, DESCA, ONE,

$ A, I+JB, J+JB, DESCA )

This simple translation process considerably simpli�es the implementing phase of linear algebra

codes built on top of the BLAS. Moreover, the global view of the matrix operands allows the

user to be concerned only with the numerical details of the algorithms and a minimum number of

important details necessary to programs written for distributed-memory computers.

The resulting parallel code is given in appendix B along with the serial code. These codes are

very similar as most of the details of the parallel implementation such as communication and

synchronization have been hidden at lower levels of the software.

In addition, the underlying block-cyclic decomposition scheme ensures good load-balance, and thus

performance and scalability. In the particular example of the LU factorization, it is possible to

take advantage of other parallel algorithmic techniques such as pipelining and the overlapping

of computation and communication operations. Because the factorization and pivoting phases of

the algorithm described above are much less computational intensive than its update phase, it is

intuitively suitable to communicate the pivot indices as soon as possible to all processes in the

grid, especially to those who possess the next block of columns to be factorized. In this way the

update phase can be started as early as possible [13]. Such a pipelining e�ect can easily be achieved

within PBLAS based codes by using ring topologies along process rows for the broadcast operations.

These particular algorithmic techniques are enabled by the PBLAS auxiliary routines PTOPGET and

PTOPSET (see Sect. 5.1.2). They notably improve the performance and the scalability of the parallel

implementation.
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A Questions for the Community

For convenience we summarize here those questions on which we would particularly welcome feed-

back:

� Should the alignment restrictions in the current implementation be removed, or do the PBLAS

provide su�cient functionality the way they are ? (see Sect. 5.1)

� When a PBLAS routine is called by every process in the grid, it is required that the code oper-

ates successfully accordingly to the SPMD programming model. However, it is also necessary

that the PBLAS routines recognize the scope of their operands for e�ciency purposes. Is it

reasonable to slightly depart from the SPMD programming model for e�ciency purposes ?

(see Sect. 6)

� Should the PBLAS be able to recognize and take advantage of replicated operands across

process rows or columns ? For example, a column replicated vector is a vector distributed

over the rows of a process column, and every other column owns an aligned copy of that vector.

If such an operand is to be set on output, should all the distinct copies of the replicated array

be updated ? (see Sect. 6)

� Should other vector increment values (e.g INCX) be supported beside 1 and DESCX(1) ? (see

Sect. 6)

� Is the current set of PBLAS routines su�cient or should we consider adding more routines

and increase the PBLAS functionality and usefulness ? (see Sect. 6)
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B Code Examples

B.1 Sequential LU Factorization

SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )

*

* LU factorization of a M-by-N matrix A using partial pivoting with

* row interchanges.

*

INTEGER INFO, LDA, M, N, IPIV( * )

DOUBLE PRECISION A( LDA, * )

*

INTEGER I, IINFO, J, JB, NB

PARAMETER ( NB = 64 )

EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM

INTRINSIC MIN

*

DO 20 J = 1, MIN(M,N), NB

JB = MIN( MIN(M,N)-J+1, NB )

*

* Factor diagonal block and test for exact singularity.

*

CALL DGETF2( M-J+1, JB, A(J,J), LDA, IPIV(J), IINFO )

*

* Adjust INFO and the pivot indices.

*

IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - 1

DO 10 I = J, MIN(M,J+JB-1)

IPIV(I) = J - 1 + IPIV(I)

10 CONTINUE

*

* Apply interchanges to columns 1:J-1 and J+JB:N.

*

CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )

IF( J+JB.LE.N ) THEN

CALL DLASWP( N-J-JB+1, A(1,J+JB), LDA, J, J+JB-1, IPIV, 1 )

*

* Compute block row of U and update trailing submatrix.

*

CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,

$ N-J-JB+1, 1.0D+0, A(J,J), LDA, A(J,J+JB), LDA )

IF( J+JB.LE.M )

$ CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,

$ N-J-JB+1, JB, -1.0D+0, A(J+JB,J), LDA,

$ A(J,J+JB), LDA, 1.0D+0, A(J+JB,J+JB), LDA )

END IF

20 CONTINUE

RETURN

*

END
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B.2 Parallel LU Factorization

SUBROUTINE PDGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )

*

INTEGER IA, INFO, JA, M, N, DESCA( 8 ), IPIV( * )

DOUBLE PRECISION A( * )

*

* LU factorization of a M-by-N distributed matrix A(IA:IA+M-1,JA:JA+N-1)

* using partial pivoting with row interchanges.

*

INTEGER I, IINFO, J, JB

EXTERNAL IGAMN2D, PTOPSET, PDGEMM, PDGETF2, PDLASWP, PDTRSM

INTRINSIC MIN

*

CALL PTOPSET( 'Broadcast', 'Row', 'S-ring' )

DO 10 J = JA, JA+MIN(M,N)-1, DESCA( 4 )

JB = MIN( MIN(M,N)-J+JA, DESCA( 4 ) )

I = IA + J - JA

*

* Factor diagonal block and test for exact singularity.

*

CALL PDGETF2( M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO )

IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - JA

*

* Apply interchanges to columns JA:J-JA and J+JB:JA+N-1.

*

CALL PDLASWP( 'Forward', 'Rows', J-JA, A, IA, JA, DESCA,

$ I, I+JB-1, IPIV )

IF( J-JA+JB+1.LE.N ) THEN

CALL PDLASWP( 'Forward', 'Rows', N-J-JB+JA, A, IA, J+JB,

$ DESCA, I, I+JB-1, IPIV )

*

* Compute block row of U and update trailing submatrix.

*

CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,

$ N-J-JB+JA, 1.0D+0, A, I, J, DESCA, A, I, J+JB,

$ DESCA )

IF( J-JA+JB+1.LE.M ) THEN

$ CALL PDGEMM( 'No transpose', 'No transpose', M-J-JB+JA,

$ N-J-JB+JA, JB, -1.0D+0, A, I+JB, J, DESCA, A,

$ I, J+JB, DESCA, 1.0D+0, A, I+JB, J+JB, DESCA )

END IF

10 CONTINUE

IF( INFO.EQ.0 ) INFO = MIN(M,N) + 1

CALL IGAMN2D( ICTXT, 'Row', ' ', 1, 1, INFO, 1, I, J, -1, -1, MYCOL )

IF( INFO.EQ.MIN(M,N)+1 ) INFO = 0

CALL PTOPSET( 'Broadcast', 'Row', ' ' )

*

RETURN

*

END
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B.3 Parallel General Linear System Solve

SUBROUTINE PDGETRS( TRANS, N, NRHS, A, IA, JA, DESCA, IPIV, B,

$ IB, JB, DESCB )

*

CHARACTER TRANS

INTEGER IA, IB, IDUM1, JA, JB, N, NRHS

INTEGER DESCA( * ), DESCB( * ), DESCIP( 8 ), IPIV( * )

DOUBLE PRECISION A( * ), B( * )

*

LOGICAL LSAME

INTEGER NUMROC

EXTERNAL DESCSET, LSAME, NUMROC, PDLAPIV, PDTRSM

*

IF( N.EQ.0 .OR. NRHS.EQ.0 ) RETURN

CALL DESCSET( DESCIP, DESCA( 1 ) + DESCA( 3 )*NPROW, 1, DESCA( 3 ),

$ 1, DESCA( 5 ), MYCOL, ICTXT, DESCA( 3 ) +

$ NUMROC( DESCA( 1 ), DESCA( 3 ), MYROW, DESCA( 5 ), NPROW ) )

*

IF( LSAME( TRANS, 'N' ) ) THEN

*

* Solve A * X = B. Apply row interchanges to the right hand sides.

* Solve L*X = B, overwriting B with X.

* Solve U*X = B, overwriting B with X.

*

CALL PDLAPIV( 'Forward', 'Row', 'Col', N, NRHS, B, IB, JB,

$ DESCB, IPIV, IA, 1, DESCIP, IDUM1 )

CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,

$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )

CALL PDTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,

$ NRHS, 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )

ELSE

*

* Solve A' * X = B. Solve U'*X = B, overwriting B with X.

* Solve L'*X = B, overwriting B with X.

* Apply row interchanges to the solution vectors.

*

CALL PDTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,

$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )

CALL PDTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS,

$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )

CALL PDLAPIV( 'Backward', 'Row', 'Col', N, NRHS, B, IB, JB,

$ DESCB, IPIV, IA, 1, DESCIP, IDUM1 )

END IF

*

RETURN

*

END
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C Quick Reference to the PBLAS
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