
gsize 11 delim $$ define || ’ˆfwd 40 ˆ’

.

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

LAPACK Working Note #10

Installing and Testing the Initial Release of LAPACK

Unix and Non-Unix Versions

Edward Anderson and Jack Dongarra

Mathematics and Computer Science Division

Technical Memorandum No. MCS-TM-130

May 1989

Work supported in part by the National Science Foundation, under Contract NSF
ASC-8715728.

.

Installing and Testing the Initial Release of LAPACK

Unix and Non-Unix Versions

Edward Anderson and Jack Dongarra

—
This working note describes how to install and test the initial release

of LAPACK.

Introduction
This working note describes how to install and test the initial release

of LAPACK.
LAPACK is intended to provide a uniform

set of subroutines to solve the most common linear algebra problems and to
run efficiently on a wide range of architectures.

The routines presented at this time
are intended not for general distribution,

but only for initial testing. We expect the testing to rev eal weaknesses
in the design, and we plan to modify routines to correct any deficiencies.

The instructions for installing, testing, and timing are designed for a
person whose

responsibility is the maintenance of a mathematical software library.
Section 4 provides instructions for Unix users installing a
tar tape, and Section 5 contains instructions for non-Unix

users.
We assume the installer has experience in compiling and running

Fortran programs and in creating object libraries.
The installation process

involves reading a tape, creating a library from the Fortran source,
running the tests,

and sending the results to Argonne.
This release contains only a fraction of the routines that

will be part of LAPACK.
We hav e included routines to deal with solving systems of equations

for the following types of matrices and storage:
center;

l l l.
Data type Matrix type-

Storage type
_ __

S, D, C, Z General general,
banded

S, D Symmetric posi-
tive definitegeneral, packed, banded

S, D, C, Z Symmetric in-
definitegeneral, packed, banded

C, Z Hermitian posi-
tive definitegeneral, packed, banded

C, Z Hermitian indef-
initegeneral, packed, banded

S, D, C, Z Triangulargen-
eral, packed

In addition, we have pro vided routines to perform the QR factorization
of a general matrix.

We expect the next test release of LAPACK to include routines
for computing eigenvalues and eigenvectors.

We hope to have the next release ready in the late
summer or early fall of 1989.

Format
LAPACK is distributed in the form of a tape which contains

the Fortran source for LAPACK, as well as

the Basic Linear Algebra Subprograms
(the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing programs,

and the timing programs.
Unix Version

For Unix users, the software is distributed in the form of a
tar tape containing a number of directories structured as follows:

"LAPACK" at 3.25,5.0
line from 3.25,4.9 to 0.95,4.15
line from 3.25,4.9 to 2.65,4.15
line from 3.25,4.9 to 4.05,4.15
line from 3.25,4.9 to 5.6,4.15

"BLAS" at 0.9,4.0
line from 0.9,3.9 to 0.25,3.15
line from 0.9,3.9 to 1.35,3.15

"SRC" at 0.25,3.0
line from 0.25,2.9 to 0.25,2.15

"makefiles" at 1.35, 3.0
"input files" at 1.35, 2.85
"BLAS2 & 3 test" at 1.35,2.7

"routines" at 1.35,2.55
"BLAS2 & 3 timing" at 1.35,2.4

"routines" at 1.35,2.25
"makefile" at 0.25,2.0

"Level 1 BLAS" at 0.25,1.85
"Level 2 BLAS" at 0.25,1.7
"Level 3 BLAS" at 0.25,1.55

"SRC" at 2.65,4.0
line from 2.65,3.9 to 2.65,3.15

"makefile" at 2.65,3.0
"LAPACK routines" at 2.65,2.85
"LAPACK auxiliary" at 2.65,2.7

"routines" at 2.65,2.55
"TESTING" at 4.05,4.0

line from 4.05,3.9 to 3.65,3.15
line from 4.05,3.9 to 4.55,3.15

"SRC" at 3.65,3.0 line from 3.65,2.9 to 3.65,2.15"input files" at 4.55,3.0 "makefile" at 3.65,2.0 "LA-
PA CK test" at 3.65,1.85 "routines" at 3.65,1.7"TIMING" at 5.65,4.0 line from 5.65,3.9 to 5.25,3.15
line from 5.65,3.9 to 6.15,3.15 "SRC" at 5.25,3.0 line from 5.25,2.9 to 5.25,2.15"input files"
at 6.15,3.0 "makefile" at 5.25,2.0 "LAPACK timing" at 5.25,1.85 "routines" at 5.25,1.7

Non-Unix Version For non-Unix users, the software is distributed on an unlabeled ASCII tape containing 73 files. All
files consist of 80-character fixed-length records, with a maximum block size of 8000. In the installation instructions
each file will be identified by the name given below, and we recommend that you assign these names to the files when
the tape is read (see Section 5.1). Files whose names end in ‘F’ contain Fortran source code; those whose names end in
‘D’ contain data for input to the test and timing programs. Most of the files occur in groups of four, corresponding to
the different versions of the routines (see Section 3). In the installation instructions we shall frequently refer to these
files generically, using ‘x’ in place of the first letter (for example, xLASRCF).

center; l l l n c l . File
number File nameDescription of
contents _ __
1 READMEThis file

2 ALLAUXFT{ LA-
PA CK auxiliary routines common to more than one version T}
3 SCLAUXF
4 DZLAUXF

5 SLASRCFLA-
PA CK routines and auxiliary routines
6 CLASRCF
7 DLASRCF
8 ZLASRCF

9 SBLAS1FLevel 1
BLAS routines
10 CBLAS1F
11 DBLAS1F
12 ZBLAS1F

13 ALLBLASFT{
Auxiliary routines for the Level 2 and 3 BLAS T}

14 SBLAS2FLevel 2
BLAS routines
15 CBLAS2F
16 DBLAS2F
17 ZBLAS2F

18 SBLAS3FLevel 3
BLAS routines
19 CBLAS3F
20 DBLAS3F
21 ZBLAS3F

22 SBLAT2FLevel 2
BLAS test programs
23 CBLAT2F
24 DBLAT2F
25 ZBLAT2F

26 SBLAT2DData
files for Level 2 BLAS test programs
27 CBLAT2D
28 DBLAT2D
29 ZBLAT2D

30 SBLAT3FLevel 3
BLAS test programs
31 CBLAT3F
32 DBLAT3F
33 ZBLAT3F

34 SBLAT3DData
files for Level 3 BLAS test programs
35 CBLAT3D
36 DBLAT3D
37 ZBLAT3D

38 SB2TIMFLevel 2
BLAS timing programs
39 CB2TIMF
40 DB2TIMF
41 ZB2TIMF

42 SB2TIMDData
files for Level 2 BLAS timing programs
43 CB2TIMD
44 DB2TIMD

45 ZB2TIMD

46 SB3TIMFLevel 3
BLAS timing programs
47 CB3TIMF
48 DB3TIMF
49 ZB3TIMF

50 SB3TIMDData
files for Level 3 BLAS timing programs
51 CB3TIMD
52 DB3TIMD
53 ZB3TIMD

54 SLATSTFLAPACK
test programs
55 CLATSTF
56 DLATSTF
57 ZLATSTF

58 SLATSTDSmall
data files for LAPACK test programs
59 CLATSTD
60 DLATSTD
61 ZLATSTD

62 SLATS2DLarge
data files for LAPACK test programs
63 CLATS2D
64 DLATS2D
65 ZLATS2D

66 SLATIMFLA-
PA CK timing programs
67 CLATIMF
68 DLATIMF
69 ZLATIMF

70 SLATIMDData
files for LAPACK timing programs
71 CLATIMD
72 DLATIMD
73 ZLATIMD

Overview of Tape Contents Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION, COM-
PLEX, and COMPLEX*16 (or DOUBLE COMPLEX). The first three versions (REAL, DOUBLE PRECISION, and
COMPLEX) are written in standard Fortran 77; the COMPLEX*16 version is provided for those compilers that allow
this data type. For convenience, we refer to routines by their single-precision names; the leading ‘S’ can be replaced by
a ‘D’ for double-precision, a ‘C’ for complex, or a ‘Z’ for double complex. For LAPACK use and testing you must de-
cide which version(s) of the package you intend to install at your site (for example, REAL and COMPLEX on a Cray
computer or DOUBLE PRECISION and COMPLEX*16 on an IBM computer). LAPACK Routines and Auxiliary
Routines The LAPACK routines and the auxiliary routines (except for the BLAS) called by the LAPACK routines are
contained in the directory LAPACK/SRC for the Unix version and in the files xLASRCF and xxLAUXF for the non-
Unix version. An LAPACK routine is one of the computational routines described in [1] to perform a distinct algorith-
mic task, such as performing an LU factorization or solving a system of equations given the LU factorization of
the coefficient matrix. An LAPACK auxiliary routine is a routine to perform a specific task which is called from one of
the LAPACK routines. The tasks performed by the auxiliary routines are more general and may be applicable in more
than one context. For a complete list of the LAPACK routines in this release, see Appendix A. For a complete list of
the LAPACK auxiliary routines, see Appendix B. More details on the scope of the LAPACK project are available in
[1]. Level 1, 2, and 3 BLAS LAPACK employs the Level 1, 2, and 3 BLAS to carry out basic operations. The key to
getting good performance from LAPACK lies in having an efficient version of the BLAS optimized for your particular
machine. If you already have a library of the BLAS on your machine, we recommend that, before using it, you first run
the BLAS tests provided on the tape to verify that the routines in your library are correct. For the Unix version, the di-
rectory LAPACK/BLAS/SRC contains the Level 1, 2, and 3 BLAS written in portable Fortran 77. Test routines and
their input files can be found in LAPACK/BLAS. Timing routines and their input files are also found in LA-
PA CK/BLAS. A quick reference to the BLAS is provided in Appendix C; more details are in [2, 4, 6]. For the non-
Unix version, the files xBLAS1F, xBLAS2F, and xBLAS3F contain the Level 1, 2, and 3 BLAS written in portable For-
tran 77. Test programs for the Level 2 and 3 BLAS can be found in the files xBLAT2F and xBLAT3F, with input files
xBLAT2D and xBLAT3D. Timing programs can be found in the files xB2TIMF and xB3TIMF, with input files
xB2TIMD and xB3TIMD.

LAPACK Test Routines The source code for all of the LAPACK test routines is in LAPACK/TESTING/SRC for the
Unix version and in the files xLATSTF for the non-Unix version. For the Unix version, the main program in the single-
precision case is in the fileslats1.f; for the non-Unix version, each file begins with the main program, which in the real
single-precision case is called SLATS1. The main program reads in the input file and directs the testing of each LA-
PA CK path (by a path we mean the set of routines associated with a particular type of matrix or type of operation). The
main procedure calls separate routines with names like SCHK01 to check each path. For example, SCHK01 tests the
SGE routines involving the LU decomposition of a general matrix. For each matrix order N and each matrix type in-
dicated in the input file, SCHK01 generates a test matrix, calls the LAPACK routines to factor, solve, invert, and com-
pute the condition number of this matrix, and computes certain test ratios after each operation to verify that it has been
successfully completed. The functions of generating a matrix and computing the test ratios are carried out in other test
subroutines. LAPACK Timing Routines The source code for all of the LAPACK timing routines is in LA-
PA CK/TIMING/SRC for the Unix version and in the files xLATIMF for the non-Unix version. For the Unix version,
the main program in the single-precision case is in the filestime.f; for the non-Unix version, each file begins with the
main program, which in the real single-precision case is called STIME. The main program reads in the input file and
directs the timing of the routines in each LAPACK path. The main procedure calls separate routines with names like
STIM01 to time each path. For example, STIM01 times the SGE routines involving the LU decomposition of a gen-
eral matrix. For each matrix order N and each SGE routine indicated in the input file, STIM01 generates a test matrix
and calls the LAPACK routine, repeating the operation if necessary until the time elapsed exceeds some minimum time.
Then STIM01 computes the number of operations performed and determines the megaflop rate for this run, dividing the
number of operations (in millions) by the time in seconds. The functions of generating a matrix and computing the
number of operations performed are carried out in other timing subroutines. Libraries and Test Programs For the Unix
version, the libraries and test programs are created using the makefiles in each directory. Target names are supplied for
each of the four precisions and are called
single double complex complex16 To create a library from one of the makefiles calledmakefile, you simply type
makefollowed by the precisions desired. Examples:
make single
make double complex16
make single double complex complex16 Alternatively,
make without any options creates a library of all four precisions. The make command can be run more than once to
add another precision to the library if necessary. The makefiles for the test routines create separate test programs for
each precision. These programs can be created one at a time:
make single
make double
. . . orall at once:
make single double complex complex16 As before, the last command is equivalent to typingmakeby itself. In cas-
es where the makefile has a name other thanmakefile, the −f option must be added to specify the file name, as in the
following example:
make −f makeblat2 single For the non-Unix implementation, each of the four versions of LAPACK (S, C, D, and Z),
together with the corresponding versions of the BLAS, can be installed and tested independently. The only files that are
common to more than one version are ALLBLASF, ALLAUXF, SCLAUXF, and DZLAUXF; their use is described in
Sections 5.2 and 5.4.

Instructions to Unix Installers of LAPACK Installing and testing the Unix version of LAPACK inv olves the following
steps: Read the tape. If you do not have all the Level 1, 2, and 3 BLAS on your system, make the BLAS library. Make
the Level 2 and 3 BLAS test programs. Run the Level 2 and 3 BLAS test programs. Make the LAPACK library. Make
the LAPACK test programs. Run the LAPACK test programs. Make the LAPACK timing programs. Run the LA-
PA CK timing programs. Make the BLAS timing programs. Run the BLAS timing programs. Results from steps 7, 9,
and 11 should be sent to Argonne. Read the Tape To unload the tape, type one of the commands

tar xvf /dev/rst0 (cartridge tape), or

tar xvf /dev/rmt8 (9-track tape)

This will create a top-level directory called LAPACK. You will need about 7.1 megabytes to unload the complete tape,
plus room for the libraries and executable files. On a Sun 3/260, the libraries used 1.4 MB and the executables used 7.9
MB. In addition, the object files used 3.8 MB, but the object files can be deleted after creating the libraries and ex-
ecutable files. The total space requirement including the object files is approximately 20 MB. Make the BLAS Library
In an ideal world, a highly optimized version of this library already exists on your machine. In this case you can go
straight to Section 4.3 to make the BLAS test programs. If you have some of the BLAS, but not all (Level 1 and 2, but
not 3, for example), you can edit out the BLAS you do not need in the makefile. Go to the directory LA-
PA CK/BLAS/SRC and edit the makefile. Define FORTRAN and OPTS to refer to the compiler and desired compiler
options for your machine. If you already have some of the BLAS, comment out the lines defining the BLAS you have.
Typemakefollowed by the precisions desired, as in the examples in Section 3.5. The make command can be run more
than once to add another precision to the library if necessary. Move the libraryblas.ato the directory LAPACK/BLAS
with the command mv blas.a .. Make the BLAS Test Programs It is not uncommon to find bugs in the system-
supported BLAS library or in the Fortran compiler if you compile the BLAS from the Fortran source code. Before pro-
ceeding to the testing of LAPACK, you should get some assurance that the BLAS are functioning correctly. To make
the BLAS 2 test programs, go to the directory LAPACK/BLAS and edit the makefile calledmakeblat2. Define FOR-
TRAN and OPTS to refer to the compiler and desired compiler options for your machine, and define LOADER and
LOADOPTS to refer to the loader and desired load options for your machine. Also define BLAS to point to your sys-
tem’s BLAS library or to the libraryblas.acreated in Section 4.2. Typemake −f makeblat2followed by the precisions
desired, as in the examples in Section 3.5. The test programs are calledxblat2s, xblat2c, xblat2d,andxblat2z. Repeat
steps a) and b) for the makefilemakeblat3to make the BLAS 3 test programs. These programs are calledxblat3s,
xblat3c, xblat3d, andxblat3z. Run the Level 2 and 3 BLAS Test Programs Go to the directory LAPACK/BLAS and run
the Level 2 BLAS tests: xblat2s <sblat2.in xblat2c <cblat2.in xblat2d <dblat2.in xblat2z <zblat2.in The name of the
output file is indicated on the first line of each input file and is currently defined to be SBLAT2.SUMM in the single-
precision case, with similar names for the other precisions. If the runs have been successful and the tests have passed,
each run should produce a couple pages of output; see [5] for more details. From the directory LAPACK/BLAS, run
the Level 3 BLAS tests: xblat3s <sblat3.in xblat3c <cblat3.in xblat3d <dblat3.in xblat3z <zblat3.in The name of the
output file is indicated on the first line of each input file and is currently defined to be SBLAT3.SUMM in the single-
precision case, with similar names for the other precisions. If the runs have been successful and the tests have passed,
each run should produce a couple pages of output; see [3] for more details. Make the LAPACK Library Go to the di-
rectory LAPACK/SRC and edit the makefile. Define FORTRAN and OPTS to refer to the compiler and desired com-
piler options for your machine. Typemakefollowed by the precisions desired, as in the examples in Section 3.5. The
make command can be run more than once to add another precision to the library if necessary. Move the library la-
pack.ato the LAPACK directory with the command mv lapack.a .. Make the LAPACK Test Programs Go to the direc-
tory LAPACK/TESTING/SRC and edit the makefile. Define FORTRAN and OPTS to refer to the compiler and desired
compiler options for your machine, and define LOADER and LOADOPTS to refer to the loader and desired load op-
tions for your machine. Also define BLAS to point to your system’s BLAS library or to the libraryblas.acreated in
Section 4.2, and define LAPACK to point to the librarylapack.acreated in Section 4.5. Typemakefollowed by the
precisions desired, as in the examples in Section 3.5. Move the executable files up a level with the command mv x* ..
The test programs are calledxchks, xchkc, xchkd,andxchkzand should reside in the directory LAPACK/TESTING.
Run the LAPACK Test Programs We hav e provided two sets of input files for the LAPACK test programs, a small set
containing matrices up to order 10 and another larger set that includes matrices up to order 129. The small test set is in-
cluded to provide a quick check of the software; it should run for at most a few minutes on a typical workstation. The
larger test set includes all of the test cases in the smaller set plus some larger matrices, at least one of which should be
larger than the vector register length. We would like you to send the results from only the larger test set to Argonne.
We also encourage you to conduct other tests of your own and inform us of any unusual results or areas for im-
provement. For more information on the test programs, see Section 6.

To run the small set of tests (optional): Go to the directory LAPACK/TESTING and execute the commands xchks
<slats.in xchkc <clats.in xchkd <dlats.in xchkz <zlats.in On a Sun 3/260, these tests took from 30 seconds to 4 min-
utes to run. The results appear in the files slats.out clats.out dlats.out zlats.out To run the large set of tests: If you are
running on a non-vector machine, edit the input files, such asslats.in2, and use only the first 10 values of N and the first
2 values of NB. See Section 6.2 for more information on the test program input file. Execute the commands xchks
<slats.in2 xchkc <clats.in2 xchkd <dlats.in2 xchkz <zlats.in2 On a Sun 3/260, using the first 10 values of N and the
first 2 values of NB, the running time of these tests varied from 10 minutes forxchksto nearly 3 hours forxchkz. Send
the files slats.chk clats.chk dlats.chk zlats.chk by e-mail to andersn@mcs.anl.gov Please tell us the type of machine
on which the tests were run and the compiler options that were used. Make the LAPACK Timing Programs All of the
timing programs call a REAL function SECOND with no arguments, which is assumed to return the central processor
time in seconds from some fixed starting time. We hav e not supplied this routine and you must provide the correct in-
terface on your machine. (This may be simply a call to some other timing function on your machine.) See Appendix E
for a Unix version of SECOND. Go to the directory LAPACK/TIMING/SRC and edit the makefile. Define FOR-
TRAN and OPTS to refer to the compiler and desired compiler options for your machine, and define LOADER and
LOADOPTS to refer to the loader and desired load options for your machine. Also define BLAS to point to your sys-
tem’s BLAS library or to the libraryblas.acreated in Section 4.2, and define LAPACK to point to the librarylapack.a
created in Section 4.5. Define a REAL function called SECOND that returns the time from a fixed starting time. If
SECOND is an intrinsic function on your machine, remove the reference to the filesecond.oin the makefile. Type
makefollowed by the precisions desired, as in the previous examples. Move the executable files up a level with the
command mv x* .. The timing programs are calledxtims, xtimc, xtimd,andxtimzand should reside in the directory
LAPACK/TIMING. Run the LAPACK Timing Routines We hav e set up the timing programs to produce benchmark re-
sults suitable for a supercomputer. This means that the timing programs may use too much memory to run on your ma-
chine. If this is the case, you will need to decrease the declared size of the matrices (set in the parameter NMAX) and
eliminate any values of N or LDA in the input file that exceed the new maximums. For more information on the timing
programs, see Section 7. Go to the directory LAPACK/TIMING and, if necessary, edit the input files. In particular,
you may find it necessary to change the minimum time a subroutine will be timed, currently set at 0.1 seconds, or the
values of N, currently consisting of powers of 2 from 32 to 512. For a description of the input file and how to modify
it, see Section 7.2. Run the timing programs by executing the commands xtims <stime.in >stime.out xtimc <ctime.in
>ctime.out xtimd <dtime.in >dtime.out xtimz <ztime.in >ztime.out By default, the results appear on standard output;
these commands will redirect them to a file. Send the results to andersn@mcs.anl.gov along with any comments you
may have. Please tell us the type of machine on which the tests were run and the compiler options that were used.
Make the BLAS Timing Programs The BLAS timing programs are also included to provide a standard of comparison
for the LAPACK timing results. Most of the directions for making the BLAS timing programs are the same as for mak-
ing the LAPACK timing programs (Section 4.8). Go to the directory LAPACK/BLAS and edit the makefile called
makeblas2time. Define FORTRAN and OPTS to refer to the compiler and desired compiler options for your machine,
and define LOADER and LOADOPTS to refer to the loader and desired load options for your machine. Also define
BLAS to point to your system’s BLAS library or to the libraryblas.acreated in Section 4.2. Define a REAL function
called SECOND that returns the time from a fixed starting time. Typemake −f makeblas2timefollowed by the preci-
sions desired, as in the previous examples. Repeat steps a-c for the makefilemakeblas3time. Run the BLAS Timing
Programs Go to the directory LAPACK/BLAS and, if necessary, edit the input files to include only the matrix sizes
your machine is capable of running. Run the timing programs by executing the commands xb2times <sb2tim.in
>sb2tim.out xb2timec <cb2tim.in >cb2tim.out xb2timed <db2tim.in >db2tim.out xb2timez <zb2tim.in >zb2tim.out
xb3times <sb3tim.in >sb3tim.out xb3timec <cb3tim.in >cb3tim.out xb3timed <db3tim.in >db3tim.out xb3timez
<zb3tim.in >zb3tim.out The results are printed on standard output; these command redirect them to a file. Send the
output files to andersn@mcs.anl.gov Please tell us the type of machine on which the tests were run, the compiler op-
tions that were used, and details of the BLAS library or libraries that you used.

Instructions to Non-Unix Installers of LAPACK Installing and testing the non-Unix version of LAPACK inv olves the
following steps: Read the tape. If you do not have all the Level 1, 2, and 3 BLAS on your system, create a BLAS li-
brary. Run the Level 2 and 3 BLAS test programs. Create the LAPACK library. Run the LAPACK test programs. Run
the LAPACK timing programs. Run the BLAS timing programs. Results from steps 5, 6, and 7 should be sent to Ar-
gonne. Read the Tape Read the tape and assign names to the files, preferably as indicated in Section 2. The first file
(named README) is a machine-readable copy of these directions, and you may be able to use the list of files and file
names from Section 2 to name the files as the tape is read. You will need about 7.3 megabytes to read the complete
tape, plus room for the libraries and executable files. If you do not wish to install all four versions of LAPACK, you
may elect to read only those files which correspond to the version(s) you have chosen. On a Sun 3/260, the libraries
used 1.4 MB and the executables used 7.9 MB. In addition, the object files used 3.8 MB, but the object files can be
deleted after creating the libraries and executable files. The total space requirement for all four versions, including the
object files, is therefore approximately 20 MB. Create a BLAS Library In an ideal world, a highly optimized version of
this library already exists on your machine. In this case you can go straight to Section 5.3 to run the BLAS test pro-
grams. Otherwise you must create a library, using the files xBLAS1F, xBLAS2F, xBLAS3F, and ALLBLASF. You
may already have a library containing some of the BLAS, but not all (Level 1 and 2, but not Level 3, for example). If
so, you should use your local version of the BLAS wherever possible and, if necessary, delete the BLAS you already
have from the provided files. The file ALLBLASF must be included if any part of xBLAS2F or xBLAS3F is used.
Compile these files and create an object library. Run the BLAS Test Programs It is not uncommon to find bugs in the
system-supported BLAS library or in the Fortran compiler if you compile the BLAS from the Fortran source code. Be-
fore proceeding to the testing of LAPACK, you should get some assurance that the BLAS are functioning correctly.
Compile the files xBLAT2F and xBLAT3F and link them to your BLAS library or libraries. Note that each program in-
cludes a special version of the error-handling routine XERBLA, which tests the error-exits from the Level 2 and 3

BLAS. On most systems this will take precedence at link-time over the standard version of XERBLA in the BLAS li-
brary. If this is not the case (the symptom will be that the program stops as soon as it tries to test an error-exit), you
must temporarily delete XERBLA from ALLBLASF and recompile the BLAS library. Each BLAS test program has a
corresponding data file xBLAT2D or xBLAT3D. Associate this file with Fortran unit number 5. The name of the out-
put file is indicated on the first line of each input file and is currently defined to be SBLAT2.SUMM for the real single-
precision Level 2 BLAS, with similar names for the other files. If necessary, edit the name of the output file to ensure
that it is valid on your system. Run the Level 2 and 3 BLAS test programs. If the runs have been successful and the
tests have passed, each run should produce a couple of pages of output; see [3] and [5] for more details. Create the LA-
PA CK Library Compile the files xLASRCF with ALLAUXF and create an object library. If you have compiled either
the S or C version, you must also compile and include the file SCLAUXF, and if you have compiled either the D or Z
version, you must also compile and include the file DZLAUXF. If you did not compile the file ALLBLASF and in-
clude it in your BLAS library as described in Section 5.2, you must compile it now and include it in your LAPACK li-
brary. Run the LAPACK Test Programs Compile the files xLATSTF and link them to your LAPACK library and your
BLAS library or libraries in that order (on some systems you may get unsatisfied external references if you specify the
libraries in the wrong order). We hav e provided two sets of input files for the LAPACK test programs, a small set con-
taining matrices up to order 10 and another larger set containing matrices up to order 129. The small test set is includ-
ed to provide a quick check of the software; it should run for at most a few minutes on a typical workstation. The larger
test set includes all of the test cases in the smaller set plus some larger matrices, at least one of which should be larger
than the vector register length. We would like you to send the results from only the larger test set to Argonne. We also
encourage you to conduct other tests of your own and inform us of any unusual results or areas for improvement. For
more information on the test programs, see Section 6. To run the small set of tests (optional): The input files for the
small set of tests are named xLATSTD. Associate the appropriate file with Fortran unit number 5. The name of the out-
put file is indicated on the first line of each input file and is currently defined to be SLATS.OUT for the real single-
precision version, with similar names for the other files. If necessary, edit the name of the output file to ensure that it is
valid on your system. Run the programs. On a Sun 3/260, these programs took from 30 seconds to 4 minutes to run.
To run the large set of tests: The input files for the large set of tests are named xLATS2D. Associate the appropriate file
with Fortran unit number 5. If you are running on a non-vector machine, edit the input files and use only the first 10
values of N and the first 2 values of NB. See Section 6.2 for more information on the test program input file. The name
of the output file is indicated on the first line of each input file and is currently defined to be SLATS.CHK for the real
single-precision version, with similar names for the other files. If necessary, edit the name of the output file to ensure
that it is valid on your system. Run the programs. On a Sun 3/260, these programs took from 10 minutes to nearly 3
hours to run. Send the output files from the large set of tests by e-mail to andersn@mcs.anl.gov Please tell us the type
of machine on which the tests were run, the compiler options that were used, and details of the BLAS library or li-
braries that you used. Run the LAPACK Timing Routines All of the timing programs call a REAL function SECOND
with no arguments, which is assumed to return the central processor time in seconds from some fixed starting time. We
have not supplied this routine, and you must provide the correct interface on your machine. (This may be simply a call
to some other timing function on your machine.) We hav e set up the timing programs to produce benchmark results
suitable for a supercomputer. This means that the timing programs may use too much memory to run on your machine.
If so, you will need to decrease the declared size of the matrices (set in the parameter NMAX) and eliminate any values
of N or LDA in the input file that exceed the new maximum. For more information on the timing programs, see Section
7. Compile the files xLATIMF, and link them to your LAPACK library and your BLAS library or libraries in that order
(on some systems you may get unsatisfied external references if you specify the libraries in the wrong order). The in-
put files for the timing programs are named xLATIMD. Associate the appropriate file with Fortran unit number 5. You
may find it necessary to edit the input files in order to change the minimum time a subroutine will be timed, currently
set at 0.1 seconds, or the values of N, currently consisting of powers of 2 from 32 to 512. For a description of the input
file and how to modify it, see Section 7.2. The output file is written to Fortran unit number 6. Associate a suitably
named file (e.g., STIME.OUT for the real single-precision version) with this unit number. Run the programs. Send the
output files by e-mail to andersn@mcs.anl.gov Please tell us the type of machine on which the tests were run, the com-
piler options that were used, and details of the BLAS library or libraries that you used. Run the BLAS Timing Pro-
grams The BLAS timing programs are also included to provide a standard of comparison for the LAPACK timing re-
sults. Compile the files xB2TIMF and xB3TIMF, and link them to your BLAS library or libraries. The input files for
the timing programs are named xB2TIMD and xB3TIMD. Associate the appropriate file with Fortran unit number 5.
The output file is written to Fortran unit number 6. Associate a suitably named file (e.g., SB2TIM.OUT) with this unit
number. Run the programs. Send the output files by e-mail to andersn@mcs.anl.gov Please tell us the type of machine
on which the tests were run, the compiler options that were used, and details of the BLAS library or libraries that you
used.

More about Testing A separate test program exists for each of the four data types (REAL, COMPLEX, DOUBLE PRE-
CISION, and COMPLEX*16). The program is driven by a data file that specifies
— a set $S sub n$ of values of n
— a set $S sub nb$ of values of nb (the blocksize)
— a set $S sub path$ of LAPACK path names Specified along with each LAPACK path name is either a list of test ma-
trix types to be used in testing that path or an indication that all of the types should be used. The outline of the test pro-
cedure is as follows: for nb∈ $S sub nb$

for each path name∈ $S sub path$
for n ∈ $S sub n$

for each matrix type
{Test each routine in this path}

The main test program (in the fileslats1.f in single precision in the Unix version) defines several program maximums
which can be modified if necessary. center; l l n.
Parameter DescriptionValue
_ __
NMAX Maximum value for
N*400 NIDMAX Number of
different values of N12
NNBMAX Number of differ-
ent values of NB10 * $NMAX$ must be at least $3N - 2$ to test the xGB routines and at least $2N$ to test the xSB or
xHB routines. Test Matrices and Test Ratios The test routine for each LAPACK path generates a number of different
test matrices and, for each matrix, calls the LAPACK routines in that path and computes certain test ratios to verify that
each operation has been successfully completed. Up to 12 different types of test matrices may be used:
Diagonal matrix
Upper triangular matrix
Lower triangular matrix
Banded matrix: $ kl < m /˜ 2 , ˜ ku < n /˜ 2 $
Banded matrix: $ kl < m /˜ 2 , ˜ ku > n /˜ 2 $
Banded matrix: $ kl > m /˜ 2 , ˜ ku < n /˜ 2 $
Banded matrix: $ kl > m /˜ 2 , ˜ ku > n /˜ 2 $
Random matrix with condition number = 2
Random matrix with condition number = $ sqrt { 0.1 /˜ epsilon } $
Random matrix with condition number = $ 0.1 /˜ epsilon $
Matrix scaled near underflow limit
Matrix scaled near overflow limit Here, $epsilon$ is the machine epsilon, i.e., the smallest positive floating-point num-
ber such that $ 1.0 ˜+˜ epsilon ˜!=˜ 1.0$. Upper and lower triangular matrices are valid only for routines that operate on
nonsymmetric or non-Hermitian matrices, and banded matrices are valid only for the band routines. For the LAPACK
paths that operate on systems of linear equations, each test matrix is subjected to the following tests: Factor the matrix
using xxxTRF, and compute the ratio { up 20 { || L U - A || }} over { down 20 { (sqrt { n } ˆ || A || ˆ epsilon) } } Invert
the matrix A using xxxTRI, and compute the ratio { up 20 { || I - A A sup -1 || }} over { down 20 { (sqrt { n } ˆ || A ||
ˆ || A sup -1 || ˆ epsilon)} } For banded matrices, inversion routines are not available because the inverse would be
dense. Solve the system $ A x ˆ=ˆ b $ using xxxTRS, and compute the ratios { up 20 { || b - A x || }} over { down 20 {
(|| A || ˆ || x || ˆ epsilon)} } ˜˜˜ roman{ and } ˜˜˜ { up 20 { || x - x sub * || }} over { down 20 { (|| x sub * || ˆ kappa ˆ ep-
silon)} } where $x sub *$ is the exact solution and $kappa$ is the condition number of A. If the options are avail-
able, repeat step c) with A replaced by $A sup T$ or $A sup H$. Compute the condition number using xxxCON,
and compute the product $ RCOND ˆ*ˆ kappa $. The Test Program Input File From the test program’s input file, one
can control the size of the test matrices, the block size for the blocked routines, the paths to be tested, and the matrix
types used in testing. We hav e set the options in the input files to run through all of the test paths. As an illustration,
the input file for the single-precision real test program is as follows:

′ s l a t s . chk′ NAME OF SUMMA RY OUT PUT FILE
6 UNI T NUMB E R OF SUMM ARY FILE
′ SLAT S1 . SNAP′ NAME OF SNA PSHOT OUT PUT FILE
- 1 UNI T NUMB E R OF SNAP SHOT FILE (NO T US ED IF .LT . 0)
F PUT T TO REW IND SNA PSHOT FILE AFTER EAC H RECORD.
F PUT T TO STO P ON FAI LUR ES .
T PUT T TO TES T ERRO R EX ITS .
20 . 0 THRE SHOLD VALUE OF TES T RATIO
11 NUM BER OF VA L U ES OF N
0 1 2 3 4 5 10 20 30 40129 VALUE S OF N
3 NUM BER OF VA L U ES OF NB (BLOCK SIZE)
1 8 130 VALUE S OF NB
SGE 8 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8
SGB 12 Li s t t ype s on nex t l i ne i f 0 < NTY PES < 12
SPO 6 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 6
SPP 6 Li s t t ype s on nex t l i ne i f 0 <NTY PES < 6
SPB 8 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8
SSY 6 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 6
SSP 6 Li s t t ype s on nex t l i ne i f 0 <NTY PES < 6

SSB 8 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8
SQR 8 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8

The first line directs the output to appear in a file calledslats.chk, and the program will write the output to Fortran logi-
cal unit number 6. If any of the test ratios are above a threshold value of 20., a message will be printed. Eleven values
of N and three values of the blocksize NB are specified in this example. The remaining lines of the input file spec-
ify the matrix types to be used in testing each LAPACK path name. We hav e set the options in the input file to run
through all the available tests and matrix types for each LAPACK path. For example,

SGE 8 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8

indicates that all 8 matrix types are to be tested for path SGE. We could skip testing the SGE routines by placing a 0
instead of an 8 after SGE. If more than 0 but fewer than 8 matrix types are requested, a second line is required giving
the numbers of the desired types. For example, to test the SGE path only on square matrices with small condition num-
bers, replace the line beginning with SGE with the following two lines:

SGE 1 L i s t t ype s on nex t l i ne i f 0 < NTY PES < 8 .
4

A complete list of matrix types and the tests that are performed for each LAPACK path name appears in Appendix D.
Any test that produces a ratio greater than or equal to the threshold will cause a line of information to be printed to the
output file. The first such line is preceded by a header that lists the matrix types used and the tests performed for this
path. A sample line describing a test that did not pass the threshold when the threshold was set to 1.0 is as follows:

Ma t r i x o f o r de r 10 , t yp e 2 , t e s t 7 , r a t i o = 1 . 30901

To get this information for every test, set the threshold to zero. After all the unsuccessful tests have been listed, a sum-
mary line is printed, as follows:

SGE: 2 ou t o f 392 t e s t s f a i l ed t o pa s s t he t h r e sho l d

If all the tests pass the threshold, only one line is printed:

Al l t e s t s f o r SGE pa s s ed t he t h r e sho l d (392 t e s t s r un)

Note that if any of the specifications in the input file are invalid, a diagnostic message will be printed to the output file
and none of the tests will be run. More about Timing A separate timing program also exists for each of the four data
types (REAL, COMPLEX, DOUBLE PRECISION, and COMPLEX*16). The program is driven by a data file that
specifies
— a set $S sub n$ of values of n
— a set $S sub nb$ of values of nb (the blocksize)
— a set $S sub k$ of values of k (the half-bandwidth)
— a set $S sub lda$ of values of LDA (the leading dimension)
— a set $S sub path$ of LAPACK path names Specified along with each LAPACK path name is a list of requests that
tells whether or not to time each routine in that path. The general outline of the timing procedure is as follows (not all
options are applicable for each path name): for each relevant value of $UPLO$

for LDA ∈ $S sub lda$
for k ∈ $S sub k$

for each path name∈ $S sub path$
for n ∈ $S sub n$

for nb∈ $S sub nb$
{Time the blocked routines in this path}

{Time the unblocked routines in this path}
Results over all relevant values of n and nb for each path name are collected in a table and printed to standard out-
put. The main timing program (in the filestime.fin single-precision) defines several program maximums that can be
modified if necessary. center; l l n.
Parameter DescriptionValue
_ __
NMAX Maximum value for
N, NB, or K*512
LDAMAX Maximum value for
LDA 544 MAXVAL Maxi-
mum number of values of N, NB, or K12
MXNLDA Maximum number
of values of LDA12 * $NMAX$ must be at least $3K + 1$ to test the xGB routines and at least $2K + 2$ to test the
xSB or xHB routines. Timing Matrices and Results The timing programs have their own matrix generator that supplies
computed, rather than random, matrices for timing. Computed matrices are used because they can be generated more
quickly than random matrices, and the call to the matrix generator is inside the timing loop. The user specifies a mini-
mum time for which each routine should run and the computation is repeated if necessary until this time is used. In or-
der to prevent inflated performance due to a matrix remaining in the cache from one iteration to the next, we regenerate

the matrix before each call to the LAPACK routine in the timing loop. The time for generating the matrix at each itera-
tion is subtracted from the total time. The performance of the LAPACK routines is reported in megaflops. Since this
measure of speed is relative to the architecture and the specific implementation of the BLAS, calls are always made to
the matrix-vector multiply routine xGEMV and the matrix-matrix multiply routine xGEMM to provide a standard for
comparison. The Timing Program Input File From the timing program’s input file, one can control the order of the test
matrices, the block size for the blocked routines, the bandwidth for the banded routines, the leading dimension of the
work arrays, and the individual routines to be timed. We hav e set the options in the input files to run through all the
timing paths. As an illustration, the input file for the single-precision real timing program is as follows:

Da t a fi l e f o r t imi ng p r og r amf o r t he REA L LA PAC K r ou t i ne s
5 Numb e r o f va l ue s o f N (o r de r , ma x imum 12)
32 64 128 256 512 Th e va l ue s o f N (max imum i s NMA X)
5 Numb e r o f va l ue s o f NB (b lock s i ze , max imum 12)
1 2 8 16 32 The va l ue s o f NB (ma x imum i s NMA X)
5 Numb e r o f va l ue s o f K (bandw i d t h , ma x imum 12)
31 63 127 255 511 Th e va l ue s o f K (max imum i s NMA X)
2 Numb e r o f va l ue s o f LDA (ma x imum 12)
512 513 Th e va l ue s o f LDA (ma x imum i s LDAMA X)
0 . 1 Mi n imum t ime (repe a t t he r ou t i ne i f nece s s a r y)
SGE T T T T Pu t T t o t ime : TR F TR S TR I CON
SGB T T T TRF TRS CON
SPO T T T T TRF TRS TRI CON
SPP T T T T TRF TRS TRI CON
SPB T T T TRF TRS CON
SSY T T T T TRF TRS TRI CON
SSP T T T T TRF TRS TRI CON
SSB T T T TRF TRS CON
SGEQR T T QRF QRS
STR T TRI
STP T TRI

The first 10 lines of this file are read using list-directed input, so the spacing of the numbers on a line is not significant.
The lines beginning with SGE specify the routines to be timed. The first 6 characters are reserved for the path name,
which should begin in column 1, and the first few nonblank characters to the right of the path name determine whether
a routine will be timed, where ‘T’ or ‘t’ means Time this routine. The list of suffixes on the right-hand part of the line
is not read. The output is in the form of a table which shows the megaflop rates for each routine over all values of N.
For blocked routines, the table has one line for each different block size NB. For the solve routines, the table has one
line for each of four different numbers of right-hand sides: 1, 2, N/2, and N. Separate tables are generated for dif-
ferent values of LDA and K, and also for upper triangular and lower triangular storage in the symmetric and Her-
mitian cases.

Appendix A. LAPACK Routines In this appendix, we review the subroutine naming scheme for LAPACK as described
in [1] and indicate by means of a table which subroutines are included in this initial release. Each subroutine name in
LAPACK is a coded specification of the computation done by the subroutine. All names consist of six characters in the
form TXXYYY. The first letter, T, indicates the matrix data type as follows: l l .
S REAL
D DOUBLE PRECI-
SION C COMPLEX
Z COMPLEX*16 or
DOUBLE COMPLEX (if available) The next two letters, XX, indicate the type of matrix. In this release, we include
subroutines covering only a subset of the total collection of matrix types to be provided in LAPACK. Most of these
two-letter codes apply to both real and complex routines; a few apply specifically to one or the other, as indicated be-
low: l l . GE general
(i.e., unsymmetric, in some cases rectangular)
GB general band
PO symmetric or Her-
mitian positive definite
PP symmetric or Her-
mitian positive definite, packed storage
PB symmetric or Her-
mitian positive definite band
SY symmetric (i.e., in-
definite) SP symmet-
ric, packed storage
SB symmetric band
HE (complex) Hermi-
tian (i.e., indefinite)
HP (complex) Hermi-
tian, packed storage
HB (complex) Hermi-
tian band OR (real) or-
thogonal UN (complex)
unitary TR triangular
TP triangular, packed
storage The last three characters, YYY, indicate the computation done by a particular subroutine. Included in this re-
lease are subroutines to perform the following computations: l l .
TRF perform a triangu-
lar factorization (LU, Cholesky, etc.)
TF2 unblocked triangu-
lar factorization, if TRF is blocked
TRS solve systems of
linear equations (based on triangular factorization)
TRI compute inverse
(based on triangular factorization)
TI2 unblocked compu-
tation of inverse, if TRI is blocked
CON estimate condition
number QRF perform the
QR factorization without pivoting
QR2 unblocked version
of QRF QRS solve linear
least squares problems (based on QR factorization)
GNC T{ generate a real
orthogonal or complex unitary matrix as a product of Householder matrices, where each Householder vector is stored in
a column of the matrix T}
GC2 unblocked version
of GNC MLC T{ multi-
ply a matrix by a real orthogonal or complex unitary matrix by applying a product of Householder matrices, where each
Householder vector is stored in a column of the matrix T}
MC2 unblocked version
of MLC Given these definitions, the following table indicates the LAPACK subroutines provided in this release: center
tab(,); l c c c c c c c c c c c .

, , , , , ,HE,HP,HB,UN, ,
,GE,GB,PO,PP,PB,SY,SP,SB,OR,TR,TP TRF,×,×,×,×,×,×,×,×, , , TF2,×, ,×, ,×, , , , , ,TRS,×,×,×,×,×,×,×,×, , , TRI,×,

,×,×, ,×,×, , ,×,× TI2, , , , , , , , , ,×, CON,×,×,×,×,×,×,×,×, , , QRF,×, , , , , , , , , ,QR2,×, , , , , , , , , ,QRS,×, , , , , , , , , ,
GNC, , , , , , , , ,×, , GC2, , , , , , , , ,×, , MLC, , , , , , , , ,×, , MC2, , , , , , , , ,×, ,

Appendix B. LAPACK Auxiliary Routines This appendix lists all of the auxiliary routines (except for the BLAS) that
are called from the LAPACK routines. On the tape, these routines reside in the directory LAPACK/SRC for Unix users
or in the files xxLAUXF and xLASRCF for non-Unix users. Except as indicated, routines specified with an underscore
as the first character are available in all four precisions (S, D, C, and Z).

Special subroutines: l l .
ENVIR Determine the
block size SMACHR Single-
precision routine for computing machine parameters
DMACHR Double-precision
routine for computing machine parameters
XERBLA Error handler for
LAPACK routines

Special functions: l l l.
LSAME LOGICALT{ Re-
turns .TRUE. if two characters are the same regardless of case T}
LSAMEN LOGICALT{ Re-
turns .TRUE. if two character strings are the same regardless of case T}
R1MACH REALReturns sin-
gle-precision machine parameters
D1MACH DOUBLE PRECI-
SIONReturns double-precision machine parameters

Functions for computing norms: l l .
_LANGE General matrix
_LANGB General band ma-
trix _LANSY Symmetric ma-
trix _LANSP Symmetric
packed matrix
_LANSB Symmetric band
matrix _LANHE (complex)
Hermitian matrix
_LANHP (complex) Hermi-
tian packed matrix
_LANHB (complex) Hermi-
tian band matrix
_LANTR Trapezoidal matrix
_LANTP Triangular packed
matrix _LANTB Triangular
band matrix _LANHS Upper
Hessenberg matrix

Pseudo-BLAS2 routines used with complex symmetric matrices l l .
_SYMV (complex) Sym-
metric matrix times vector
_SPMV (complex) Sym-
metric packed matrix times vector
_SBMV (complex) Sym-
metric band matrix times vector
_SYR (complex) Sym-
metric rank-1 update
_SPR (complex) Sym-
metric rank-1 update of a packed matrix

Other LAPACK auxiliary routines: l l .
_LACGV (complex) Conju-
gate a complex vector
_LACON Estimate the norm
of a matrix for use in condition estimation
_LACPY Copy a matrix to
another matrix _LAE2 T{
Compute eigenvalues of a 2 x 2 real symmetric or complex Hermitian matrix T}
_LAEV2 T{ Compute eigen-
values and eigenvectors of a real symmetric or complex Hermitian 2 x 2 matrix T}
_LAPY2 (real) Compute
square root of X**2 + Y**2
_LAPY3 (real) Compute
square root of X**2 + Y**2 + Z**2

_LARF Multiply by a
Householder matrix
_LARFB Multiply by a block
Householder matrix
_LARFG Generate a House-
holder matrix _LARFT Ac-
cumulate a block Householder matrix
_LASSQ Compute a scaled
sum of squares of the elements of a vector
_LAULM Compute the prod-
uct U*L (blocked version)
_LAUL2 Unblocked version
of _LAULM _LAUUM Com-
pute the product U*U’ or L’*L (blocked version)
_LAUU2 Unblocked version
of _LAUUM _LAVHE (com-
plex) Multiply a vector by a matrix that has been factored by _HETRF
_LAVHP (complex) Multiply
a vector by a matrix that has been factored by _HPTRF
_LAVHB (complex) Multiply
a vector by a matrix that has been factored by _HBTRF
_LAVSY Multiply a vector
by a matrix that has been factored by _SYTRF
_LAVSP Multiply a vector
by a matrix that has been factored by _SPTRF
_LAVSB Multiply a vector
by a matrix that has been factored by _SBTRF
_LAZRO Initialize a rectan-
gular matrix (usually to zero)
_SYM22 T{ Compute eigen-
values and eigenvectors of a complex symmetric 2 x 2 matrix T}

SCSUM1 Sum absolute val-
ues of a complex vector (used by CLACON)
ICMAX1 Find the index of
element whose real part has max. abs. value (used by CLACON)
DZSUM1 Sum absolute val-
ues of a complex*16 vector (used by ZLACON)
IZMAX1 Find the index of
element whose real part has max. abs. value (used by ZLACON)

Appendix C. BLAS Quick Reference

.

.

Appendix D. Matrix Types and Tests Performed for Each LAPACK Path

_GE routines: tab(%); c | l cw(0.5i) l | l | l n | l cw(0.5i) l | l | l .
%Matrix types% % %Real test ratios%Complex test ratios _%_% %_%_%_ 1%Diagonal% %1%$ { up 20 { || L U - A
|| }} over { down 75 { (sqrt { n } || A || ˆ epsilon) } }$%$ { up 20 { || L U - A || }} over { down 75 { (sqrt { n } || A || ˆ
epsilon) } }$ 2%Upper triangular% %2%$ { up 20 { || I - A A sup -1 || }} over { down 75 { (sqrt { n } || A || || A sup
-1 || ˆ epsilon)} } $%$ { up 20 { || I - A A sup -1 || }} over { down 75 { (sqrt { n } || A || || A sup -1 || ˆ epsilon)} } $
3%Lower triangular% %3%$ { up 20 { || b - A x || }} over { down 75 { (|| A || || x || êpsilon)} } $%$ { up 20 { || b - A
x || }} over { down 75 { (|| A || || x || êpsilon)} } $ 4%$ kappa $ = 2% %4%$ { up 20 { || x - x sub * || }} over { down
75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon
)} } $ 5%$ kappa $ = $ sqrt { 0.1 /˜ epsilon } $% %5%${ up 20 { || b - A sup T x || }} over { down 75 { (|| A sup T || ||
x || ˆ epsilon)} } $%${ up 20 { || b - A sup T x || }} over { down 75 { (|| A sup T || || x || ˆ epsilon)} } $ 6%$ kappa $ =
$ 0.1 /˜ epsilon $% %6%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $%$ { up 20
{ || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $ 7%Scaled near underflow% %7%$ RCOND
ˆ*ˆ kappa $%$ { up 20 { || b - A sup H x || }} over { down 75 { (|| A sup H || || x || ˆ epsilon)} } $ 8%Scaled near over-
flow% %8% %$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $ n l cw(0.5i) l | l | l .
% % %9% %$ RCOND ˆ*ˆ kappa $ where the system to be solved is $A x ˆ=ˆ b$ and $ x sub * $ is the exact solution,
$ A sup -1 b$ $x $ is the computed solution n is the order of the matrix A $epsilon$ is the machine epsilon $kap-
pa$ is the condition number of A $RCOND$ is the computed estimate of $ 1 / kappa $

_GB routines: tab(%); c | l cw(0.5i) c | l | l n | l cw(0.5i) n | l | l .
%Matrix types% % %Real test ratios%Complex test ratios _%_% %_%_%_ 1%Diagonal% %1%$ { up 20 { || L U - A
|| }} over { down 75 { (sqrt { n } || A || ˆ epsilon) } }$%$ { up 20 { || L U - A || }} over { down 75 { (sqrt { n } || A || ˆ
epsilon) } }$ 2%Upper triangular% %2%$ { up 20 { || b - A x || }} over { down 75 { (|| A || || x || ˆepsilon)} } $%$ {
up 20 { || b - A x || }} over { down 75 { (|| A || || x ||êpsilon)} } $ 3%Lower triangular% %3%$ { up 20 { || x - x sub
* || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub *
|| ˆ kappa ˆ epsilon)} } $ 4%Band: $ KL < M /˜ 2 , ˜ KU < n /˜ 2 $%%4%${ up 20 { || b - A sup T x || }} over { down
75 { (|| A sup T || || x || ˆ epsilon)} } $%${ up 20 { || b - A sup T x || }} over { down 75 { (|| A sup T || || x || ˆ epsilon)}
} $ 5%Band: $ KL < M /˜ 2 , ˜ KU > n /˜ 2 $% %5%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kap-
pa ˆ epsilon)} } $%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $ 6%Band: $ KL
> M /˜ 2 , ˜ KU < n /˜ 2 $%%6%$ RCOND ˆ*ˆ kappa $%${ up 20 { || b - A sup H x || }} over { down 75 { (|| A sup H
|| || x || ˆ epsilon)} } $ 7%Band: $ KL > M /˜ 2 , ˜ KU > n /˜ 2 $%%7% %$ { up 20 { || x - x sub * || }} over { down 75
{ (|| x sub * || ˆ kappa ˆ epsilon)} } $ 8%$ kappa $ = 2% %8% %$ RCOND ˆ*ˆ kappa $ n | l cw(0.5i) n l l . 9%$
kappa $ = $ sqrt { 0.1 /˜ epsilon } $% % % % 10%$ kappa $ = $ 0.1 /˜ epsilon $% % % % 11%Scaled near underflow%
% % % 12%Scaled near overflow% % % %

_PO, _PP, _SY, _SP, _HE, and _HP routines: (for Hermitian matrices, replace $U sup T$ by $U sup H$) tab(%); c | l
cw(0.5i) n | l n | l cw(0.5i) n | l .
%Matrix types% % %Test ratios _%_% %_%_ 1%Diagonal% %1%$ { up 20 { || U sup T U - A || }} over { down 75 {
(sqrt { n } || A || ˆ epsilon) } }$ 2%$ kappa $ = 2% %2%$ { up 20 { || I - A A sup -1 || }} over { down 75 { (sqrt { n }
|| A || || A sup -1 || ˆ epsilon)} } $ 3%$ kappa $ = $ sqrt { 0.1 /˜ epsilon } $% %3%$ { up 20 { || b - A x || }} over {
down 75 { (|| A || || x || ˆ epsilon)} } $ 4%$ kappa $ = $ 0.1 /˜ epsilon $% %4%$ { up 20 { || x - x sub * || }} over {
down 75 { (|| x sub * || ˆ kappa ˆ epsilon)} } $ 5%Scaled near underflow% %5%$ RCOND ˆ*ˆ kappa $ 6%Scaled near
overflow% %6%T{ 6-10: like 1-5 but the lower triangle of A is stored T}

_PB, _SB, and _HB routines: (for Hermitian matrices, replace $U sup T$ by $U sup H$) tab(%); c | l cw(0.5i) n | l n | l
cw(0.5i) n | l .
%Matrix types% % %Test ratios _%_% %_%_ 1%Diagonal% %1%$ { up 20 { || U sup T U - A || }} over { down 75 {
(sqrt { n } || A || ˆ epsilon) } }$ 2%$ kappa $ = 2% %2%$ { up 20 { || b - A x || }} over { down 75 { (|| A || || x || ˆ ep-
silon)} } $ 3%$ kappa $ = $ sqrt { 0.1 /˜ epsilon } $% %3%$ { up 20 { || x - x sub * || }} over { down 75 { (|| x sub * ||
ˆ kappa ˆ epsilon)} } $ 4%$ kappa $ = $ 0.1 /˜ epsilon $% %4%$ RCOND ˆ*ˆ kappa $ 5%Scaled near underflow%
%5%T{ 5- 8: like 1-4 but the lower triangle of A is stored T} n | l cw(0.5i) n l . 6%Scaled near overflow% % %

Appendix E. Example of SECOND Timing Function for Unix Systems This appendix presents an example of the rou-
tine SECOND for Unix-based machines. It calls the C routinemclockwhich in turn calls the system routinetimes.

r ea l f un c t i on s econd (t)
c
c t h i s r ou t i ne wi l l ga t he r t he us e r t ime f o r a p r oce s s .
c i t ha s a r e so l u t i on o f 1 / 60 o f a s econd
c and us e s t he un i x c p r og r am t ime s .
c s ee t he un i x manua l f o r de t a i l s .
c r epo r t s t ime i n s econd s .
c

i t ime = mc l ock (i)
s econd = flo a t (i t ime) / 60 .

c
c t h i s st a t eme n t i s he r e t o bump t he t ime by a b i t
c i n ca s e t he i n t e r va l wa s t oo sma l l .
c

s econd = s econd + s econd*1 . 0e - 6
r e t u r n
end

l ong mc l ock_ ()
{
l ong bu f [4] ;
t ime s (bu f) ;
r e t u r n (bu f [0]) ;
}

References

C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen,LAPACK Working
Note #5: Provisional Contents, Argonne National Laboratory, ANL-88-38, September 1988. J. Dongarra, J. Du Croz,
I. Duff, and S. Hammarling,A Set of Level 3 Basic Linear Algebra Subprograms, Argonne National Laboratory, ANL-
MCS-P88-1, August 1988. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling,A Set of Level 3 Basic Linear Algebra
Subprograms: Model Implementation and Test Programs, Argonne National Laboratory, ANL-MCS-TM-119, June
1988. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, An Extended Set of Fortran Basic Linear Algebra Sub-
programs,ACM Trans. Math. Soft., 14, 1:1-17, March 1988. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson,
An Extended Set of Fortran Basic Linear Algebra Subprograms: Model Implementation and Test Programs,ACM
Tr ans. Math. Soft., 14, 1:18-32, March 1988. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic Linear
Algebra Subprograms for Fortran Usage,ACM Trans. Math. Soft., 5, 3:308-323, September 1979.

