
LAPACK Working Note 9
A Test Matrix Generation Suite

James Demmel

Alan McKenney

Courant Institute

251 Mercer St.

New York, NY 10012, USA

March 1989

Abstract

We discuss the design and implementation of a suite of test matrix generators for testing

linear algebra software. These routines generate random matrices with certain properties

which are useful for testing linear equation solving, least squares, and eigendecomposition

software. These properties include the spectrum, symmetry, bandwidth, norm, sparsity,

conditioning (with respect to inversion or for the eigenproblem), type (real or complex),

and storage scheme (dense, packed, or banded).

1 Introduction

Testing a large numerical linear algebra library such as LAPACK [3] requires generating

many di�erent kinds of test matrices. For example, LAPACK contains linear equation

solving routines for real and complex matrices which may be symmetric, Hermitian, or non-

symmetric, banded or dense, packed or unpacked, positive de�nite or inde�nite, and so on.

Thorough testing requires test matrices with a range of condition numbers and scalings (i.e.,

with norms near the over
ow and under
ow thresholds). There are similar requirements

for testing the eigendecomposition (and singular value decomposition) routines.

To meet this need we have developed a suite of test matrix generation software, written

in standard FORTRAN 77, which generates random matrices with various controlled prop-

erties. For example, one option permits the generation of random real rectangular matrices

with singular values forming a geometric sequence between 1 and a user speci�ed condition

number, and with user speci�ed upper and lower bandwidths. Of course, not all options

can be speci�ed independently; for example, there is no known way to generate nontrivial

random nonsymmetric matrices with a given spectrum and arbitrary given upper and lower

bandwidths. The software we describe checks for consistency among the speci�ed matrix

properties. The software can also generate consistent random examples in the sense that

one can generate random matrices di�ering only in their storage scheme (dense vs. packed

vs. banded), or in the order of their rows and columns.

The three main routines we have developed are called xLATMR, xLATMS and xLATME,

where the �rst letter of each name (the `x') is either `S', `D', `C', or `Z'; for example,

\SLATMS" or \ZLATME". If the �rst letter is `S', then the matrix generated will have sin-

gle precision real (REAL) entries, if it is `D', then double precision real (DOUBLE PRECISION)

1

entries, if `C', then single precision complex (COMPLEX) entries, and if `Z', then double pre-

cision complex (DOUBLE COMPLEX) entries. If the �rst letter is `S' or `C', all
oating-point

values and variables will be single-precision; if the �rst letter is `D' or `Z', all
oating-point

values and variables will be double-precision. xLATMR generates matrices with random

o�-diagonal entries. xLATMS generates random real symmetric and complex Hermitian

matrices with given eigenvalues and bandwidth, and random nonsymmetric and complex

symmetric matrices with given singular values and bandwidth. xLATME generates random

nonsymmetric matrices with given eigenvalues and either a given Jordan form (with certain

restrictions) or given condition number for its eigenproblem. The routines can generate

output in any legal LAPACK storage scheme (dense, packed, or banded).

The rest of this paper is organized as follows: sections 2, 3, and 4 present high level

descriptions of xLATMR, xLATMS, and xLATME, respectively. Section 5 discusses naming

and semantic conventions for common arguments of the three routines. Sections 6, 7,

and 8 present the detailed calling sequence of the three routines. Finally, section 9 has

implementation notes.

All variable names and FORTRAN fragments will appear in typewriter font.

2 xLATMR | High Level Description

xLATMR generates a matrix with random o�-diagonal entries and given diagonal entries.

It is the simplest (and fastest) of the three routines in the suite, and permits no direct

control over the eigenvalues or singular values of the generated matrix. It is also fast and

space e�cient because both the time and the space required to generate a band matrix are

proportional to the number of entries inside the desired bandwidth rather than the square

of the matrix dimension; this e�ciency is not generally possible if we wish to specify the

spectrum of the resulting matrix. A high level description of its operation is as follows:

(1) Generate a matrix A with random entries. If the entries are real, they are chosen from

either (a) a uniform distribution on (0; 1), (b) a uniform distribution on (�1; 1), or

(c) a normal distribution with mean zero and variance one (normal(0; 1)), as speci�ed

by the user. If the entries are complex, either their real and imaginary parts are

independently chosen from the same distribution, which must be one of the three

distributions available for real entries, or else the entries may be chosen from a uniform

distribution on the unit disk. A may be nonsymmetric, real symmetric, complex

symmetric, or complex Hermitian.

(2) Set the diagonal of A to D (an array), where the entries of D are computed as follows

(N is the matrix dimension):

1. Input by the user.

2. D(1) = 1 and the other D(i) = 1=COND, where COND � 1 is a user input.

3. D(N) = 1=COND and the other D(i) = 1.

4. The D(i) form a geometric sequence from 1 to 1=COND.

5. The D(i) form an arithmetic sequence from 1 to 1=COND.

2

6. The D(i) are random in the range [1=COND; 1] with uniformly distributed loga-

rithms.

7. The D(i) are random with the same distribution as the other matrix entries.

In addition, each D(i) may optionally be multiplied by a random number with absolute

value 1.

(3) Grade A, if desired, by pre- and postmultiplying it by diagonal matrices DL and DR,

respectively. The entries of DL and DR are chosen just as the entries of D above.

(4) Permute the rows and columns of A, if desired.

(5) Set random entries of A to zero, if desired, to get a matrix with a given fraction of

zero entries.

(6) Make A a band matrix, if desired, by zeroing out its entries outside given upper and

lower bandwidths.

(7) Scale A, if desired, to have a given maximum absolute entry.

(8) Pack A, if desired. The allowable options are no packing, zeroing out the upper or

lower half (if symmetric or Hermitian), storing the upper or lower half columnwise

(if symmetric, Hermitian or triangular), using triangular band storage (upper half or

lower half, and only if the matrix is symmetric, Hermitian or triangular), and full

band storage.

If two calls to xLATMR di�er only in the desired packing, they will generate mathe-

matically equivalent matrices; this is convenient for testing routines which accept matrices

in di�erent storage schemes. If two calls to xLATMR both specify matrices with full band-

width, and di�er only in the order in which they permute the rows and columns (and

possibly in the packing), then the matrices generated will di�er only in the order of the

rows and columns, and otherwise contain the same data. This consistency (which clearly

cannot be attained for banded matrices, since permutations generally destroy any band

structure) is useful for testing linear system solvers which perform pivoting.

3 xLATMS | High Level Description

xLATMS generates either a random real symmetric or complex Hermitian matrix with

given eigenvalues and bandwidth, or a random nonsymmetric or complex symmetric matrix

with given singular values and upper and lower bandwidth. The same packing options are

available as for xLATMR. A high level description of its operation is as follows:

(1) Set the diagonal of the matrix A to D, where the entries of D can be chosen using

the same options as for xLATMR. The entries of D will be the eigenvalues (and/or

singular values) of the �nal matrix.

(2) Pre- and postmultiply A by random orthogonal matrices (if A is real) or unitary matri-

ces (if A is complex.) If A is to be (real or complex) symmetric, then the premultiplying

3

matrix is the transpose of the postmultiplying one. If A is to be Hermitian, then the

premultiplying matrix is the conjugate transpose of the postmultiplying one. Other-

wise, the pre- and postmultipying matrices are chosen independently of one another.

(3) Reduce A to have the desired bandwidth using Householder transformations.

(4) Pack A, if desired. The same options are available as for xLATMR.

For non-banded and large-bandwidth matrices, the preceding description accurately

describes the procedure actually followed. For small-bandwidth matrices, steps 2{4 are

replaced by a method which uses Givens rotations to increase the bandwidth to the desired

value, rather than generating a dense matrix and then reducing its bandwidth; this method

is described in section 9.2. To be more precise, the Givens rotation method is used, if

(a) the matrix is symmetric or Hermitian and the bandwidth (KL or KU) is less than N=2,

(b) the matrix is non-symmetric and KL+ KU < 0:3(M+ N), or

(c) the �rst dimension of the array A is less than M (only possible if the matrix is to be

stored in band storage format, i.e., PACK = `B', `Q', or `Z' | see the description of

LDA in section 5.1.)

4 xLATME | High Level Description

xLATME generates a random nonsymmetric matrix with given eigenvalues, either a given

condition number for the eigenvalues or a given Jordan form (with certain restrictions),

and a given one-sided bandwidth. Thus, for example, we can generate random Hessenberg

matrices with given eigenvalues and sensitivities; this is useful for testing QR iteration

algorithms for the nonsymmetric eigenproblem. Only dense storage is provided, since the

nonsymmetric eigenroutines only work on matrices in dense storage format; thus, xLATME

uses n2 +O(n) space and O(n3) time.

A high level description of its operation is as follows:

(1) Set the diagonal of the matrix A to D, where D is speci�ed as for xLATMR and

xLATMS.

(2) If A is real and complex conjugate pairs of eigenvalues are desired, certain pairs of

adjacent elements of D are interpreted as the real and imaginary parts of a complex

conjugate pair of eigenvalues, and A is made block diagonal with 2 by 2 blocks in the

corresponding locations. If D is input by the user, the user also speci�es which entries

are to be interpreted as real and imaginary parts of complex conjugate eigenpairs.

If D is not input by the user, the user may specify that pairs of adjacent entries be

randomly designated as either a pair of real eigenvalues or as real and imaginary parts

of an eigenpair.

(3) If the user so speci�es, the upper triangle of A is �lled with random numbers, which

are chosen with the same range of options as for xLATMR. This option may be used to

partially control the Jordan form of A as follows: if A has any multiple eigenvalues (as

4

determined by the last two steps), and the upper triangle is �lled in, then there will

be exactly one Jordan block per distinct eigenvalue; such a matrix is called defective.

If the upper triangle is not �lled in, there will only be 1 by 1 blocks in the Jordan

form, even if there are multiple eigenvalues; such a matrix is called derogatory.

(4) If the user so speci�es, A is premultiplied by a random matrix S and postmultiplied

by S�1. Here, S is a random dense nonsymmetric matrix whose singular values DS

may be chosen with the same options as D in xLATMR. This option may be used to

control the condition of A's eigenproblem as follows: if the upper triangle has not been

�lled in in the last step, then the most sensitive eigenvalue of A will have sensitivity

approximately equal to � � maxi jDS(i)j=mini jDS(i)j, where sensitivity means that a

perturbation of norm � in A will cause a change an eigenvalue by at most approximately

� � � [6, 2]. The approximation arises because the true sensitivity need only be within

a factor N (the dimension of A) of the condition number of SX , where X is a diagonal

matrix chosen so that the columns of SX have equal norm. In general, the columns of

S will not di�er too much in norm, so that the condition number of the eigenproblem

may indeed be approximately controlled with this approach.

(5) If the user so speci�es, either the upper or lower bandwidth (but not both) is reduced

to any positive value desired.

(6) Scale A, if desired, to have a given maximum absolute entry.

5 Common Argument Conventions

As can be seen from the last three sections, the three test matrix generators share various

arguments and argument conventions. To simplify the later description of the detailed

calling sequences, we collect those common conventions in this section. They are

1. Output matrix | M, N, A, LDA

2. Probability Distribution | DIST

3. Random Number Generator Seed | ISEED(4)

4. Symmetry | SYM

5. Diagonal Matrix Speci�cation | D, MODE, COND, DMAX, and RSIGN.

6. Bandwidths | KL, KU

7. Norm | ANORM

8. Packing Option | PACK

9. Error Flag | INFO

In addition, we follow the convention that character arguments are one character

(CHARACTER*1) and case independent. In this document we will always use upper case,

although the software recognizes lower case as well.

5

5.1 Output Matrix | M, N, A, LDA

The output matrix is A; in xLATMR and xLATMS, it has M rows and N columns. In

xLATME, where A must be square, it has N rows and columns. LDA is the leading di-

mension in the declaration of A in the calling routine; therefore within the test matrix

generator A is dimensioned as A(LDA,*). A will be REAL, COMPLEX, DOUBLE PRECISION, or

DOUBLE COMPLEX, according to whether the �rst letter of the name of the routine is `S', `D',

`C', or `Z'. LDA must be at least 1; if A is not to be stored in band format (i.e., PACK is `N',

`U', `L', `C', or `R'), then LDA must be at least M; if A is to be stored in lower band storage

format (i.e., PACK is `B'), then LDA must be at least KL + 1; if A is to be stored in upper

band storage format (i.e., PACK is `Q'), then LDA must be at least KU+1; if A is to be stored

in general band storage format (i.e., PACK is `Z'), then LDA must be at least KU+ KL+ 1. M,

N and LDA are integers, and are read-only.

5.2 Probability Distribution | DIST

DIST is a read-only CHARACTER*1 variable. If A is real (REAL or DOUBLE PRECISION), the

following options are available for DIST:

DIST = `U' | Uniform distribution on (0; 1).

DIST = `S' | Uniform distribution on (�1; 1).

DIST = `N' | Normal (0; 1).

If A is complex (COMPLEX or DOUBLE COMPLEX), the following options are available for DIST:

DIST = `U' | Both real and imaginary parts are independent and uniformly distributed

on (0; 1).

DIST = `S' | Both real and imaginary parts are independent and uniformly distributed

on (�1; 1).

DIST = `N' | Both real and imaginary parts are independent and normally distributed

with zero mean and unit variance.

DIST = `D' | The complex number is uniformly distributed inside the unit disk in the

complex plane.

5.3 Random Number Generator Seed | ISEED

ISEED is an array of 4 integers, which are the seeds of the random number generator.

The random number generator will operate identically on any machine with at least 24

bit integers, and generate a random number sequence with period 248. The sequence of

random numbers generated during an execution of xLATMR, xLATMS, or xLATME (and

thus the matrix generated) is determined by the value of ISEED on entry to the routine;

thus, to recreate a matrix previously generated by one of these routines, it is only necessary

to know the argument values used to generate it the �rst time, including the value of ISEED.

Moreover, if the matrix is recreated on a di�erent machine, it will di�er from the �rst only

due to the e�ects of round-o� and range errors. ISEED is modi�ed by the routines.

6

5.4 Symmetry | SYM

SYM is a read-only CHARACTER*1 variable. It has the following interpretations (in all cases

A may be real or complex):

SYM = `N' | Nonsymmetric.

SYM = `S' | Symmetric.

SYM = `H' | Hermitian. If A is real, then this is equivalent to SYM = `S'.

SYM = `P' | Positive semide�nite.

5.5 Diagonal Matrix Speci�cation | D, MODE, COND, DMAX, RSIGN

There are various array arguments like D which are meant to be the diagonal entries of

matrices. All of them may be computed using the options MODE and COND; only some use

DMAX and RSIGN as well. In all cases, D is an array of n REAL, DOUBLE PRECISION, COMPLEX

or DOUBLE COMPLEX numbers which may be modi�ed by the routine (n may equal either N

or M, depending on the situation). MODE is a read-only integer. COND is a read-only REAL or

DOUBLE PRECISION variable, which must be at least 1 if it is referenced. DMAX is a read-only

variable of the same type as D. RSIGN is a read-only CHARACTER*1 variable. MODE and COND

are interpreted as follows:

MODE = 0 | D is supplied on entry by the user, in which case it is not modi�ed by the

program.

MODE = 1 | D(1) is set to 1 and the other D(i) are set to 1/COND.

MODE = 2 | D(N) is set to 1/COND and the other D(i) are set to 1.

MODE = 3 | D(i) is set to COND�(i�1)=(n�1), i.e., a geometric sequence ranging from 1 to

1/COND.

MODE = 4 | D(i) is set to 1� (i� 1)=(n� 1) � (1� 1=COND), i.e., an arithmetic sequence

ranging from 1 to 1=COND.

MODE = 5 | Each D(i) is an independent random number in the range from 1=COND

to 1 with a uniformly distributed logarithm. This guarantees that the ratio

maxi D(i)=mini D(i) is close to COND.

MODE = 6 | Each D(i) is an independent random number with distribution DIST.

If MODE < 0, the meaning is the same as for jMODEj, except that the order of the entries

of D(i) is reversed. Thus, if 1 � MODE � 4, the D(i) range from 1 down to 1=COND, and if

�4 � MODE � �1, the D(i) range from 1=COND up to 1.

If DMAX is speci�ed as well, each D is scaled by DMAX=maxi jD(i)j, so that the maximum

absolute entry is jDMAXj. Note that DMAX may be negative (or complex).

If RSIGN is speci�ed, it has the following meaning:

7

RSIGN = `F' | D is unchanged.

RSIGN = `T' | If D is real, each D(i) is multiplied by +1 or �1 with a .5 probability. If

D is complex, each D(i) is multiplied by an independent random number r uniformly

distributed on the unit circle (thus r has unit absolute value).

5.6 Bandwidths | KL, KU

KL and KU are read-only integers, specifying the lower and upper bandwidths, respectively.

Thus, if KL= 0 (or KU= 0), the matrix is upper (or lower) triangular. If KL= 1 (or KU= 1),

the matrix is upper (or lower) Hessenberg. If KL � M� 1 (or KU � N� 1), the matrix is full

below (or above) the diagonal. If A is speci�ed to be symmetric or Hermitian, then KL must

equal KU.

5.7 Norm | ANORM

This read-only REAL or DOUBLE PRECISION variable speci�es the maximum absolute entry

of the output A matrix. If ANORM is zero or positive, A will be scaled so that the largest

absolute entry is ANORM. If it is negative, A will not be scaled.

5.8 Packing Option | PACK

This read-only CHARACTER*1 variable speci�es the storage scheme of the output A matrix.

All storage schemes in LAPACK (which includes all storage schemes in LINPACK [1] and

the BLAS [5, 4]) are accounted for. In this section we list the options and describe these

storage schemes. PACK is interpreted as follows:

PACK = `N' | No packing (i.e., dense storage of all entries).

PACK = `U' | Zero out all the subdiagonal entries, but store A in dense format. This is

allowed only if A is symmetric or Hermitian.

PACK = `L' | Zero out all the superdiagonal entries, but store A in dense format. This

is allowed only if A is symmetric or Hermitian.

PACK = `C' | Store the upper triangle columnwise. This is allowed only if A is symmetric,

Hermitian or upper triangular. This is a packed format, requiring about half the space

of dense storage.

PACK = `R' | Store the lower triangle columnwise. This is allowed only if A is symmetric,

Hermitian or lower triangular. This is a packed format, requiring about half the space

of dense storage.

PACK = `B' | Store the lower triangle in band storage format. This is allowed only if A is

symmetric, Hermitian, or lower triangular. To illustrate this storage scheme, suppose

8

the original matrix is 2
66666664

11 12 13 0 0 0

21 22 23 24 0 0

31 32 33 34 35 0

0 42 43 44 45 46

0 0 53 54 55 56

0 0 0 64 65 66

3
77777775

(5:1)

, where we have labeled each nonzero entry by its concatenated indices. In lower band

format this matrix would be stored as2
64 11 22 33 44 55 66

21 32 43 54 65 0

31 42 53 64 0 0

3
75 (5:2)

. Thus, the columns of the band storage format correspond to columns of the original

matrix, and rows of the band storage format correspond to diagonals of the original

matrix. This is true for the PACK = `Q' and PACK = `Z' options below as well.

PACK = `Q' | Store the upper triangle in band storage format This is allowed only if A

is symmetric, Hermitian, or upper triangular. To illustrate, the matrix in (5.1) would

be stored as 2
64 0 0 13 24 35 46

0 12 23 34 45 56

11 22 33 44 55 66

3
75 (5:3)

.

PACK = `Z' | Store the matrix in band storage format. To illustrate, the matrix in (5.1)

would be stored as 2
666664

0 0 13 24 35 46

0 12 23 34 45 56

11 22 33 44 55 66

21 32 43 54 65 0

31 42 53 64 0 0

3
777775 (5:4)

.

5.9 Error Flag | INFO

Following the convention used in LAPACK, the variable INFO will be set to zero to indicate

successful completion. A negative value of INFO on return means that argument number

�INFO in the calling sequence in incorrect; in this case the comments in the front of the

program explain the error in more detail. If INFO is positive on return, then a numerical

or other error was encountered during execution; again the comments at the front of the

routines describe the situation in more detail.

6 xLATMR | Detailed Calling Sequence

Here is the speci�cation of the calling sequence of xLATMR:

9

SUBROUTINE xLATMR(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,

$ RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER,

$ CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM,

$ PACK, A, LDA, IWORK, INFO)

*

* .. Scalar arguments ..

*

CHARACTER*1 DIST, SYM, RSIGN, GRADE, PIVTNG, PACK

INTEGER MODE, MODEL, MODER, KL, KU, M, N, LDA, INFO

type1 COND, CONDL, CONDR, SPARSE, ANORM, DMAX

type2 DMAX

*

* .. Array arguments ..

*

INTEGER ISEED(4), IPIVOT(*), IWORK(*)

type2 D(*), DL(*), DR(*), A(LDA, *)

Here, type1 and type2 are de�ned as follows:

Type of output matrix A x in xLATMR type1 type2

REAL S REAL REAL

DOUBLE PRECISION D DOUBLE PRECISION DOUBLE PRECISION

COMPLEX C REAL COMPLEX

DOUBLE COMPLEX Z DOUBLE PRECISION DOUBLE COMPLEX

Many of the arguments were described in the last section, so we only describe the new

ones and variations here.

6.1 Grading | GRADE, DL, MODEL, CONDL, DR, MODER, CONDR

GRADE is a read-only CHARACTER*1 variable which speci�es if the matrix A is to be pre- or

postmultiplied by diagonal matrices with diagonal entries DL and DR, respectively.

GRADE = `N' | No grading.

GRADE = `L' | A is premultiplied by diag(DL). This is allowed only if A is nonsymmetric.

GRADE = `R' | A is postmultiplied by diag(DR). This is allowed only if A is nonsymmetric.

GRADE = `B' | A is premultiplied by diag(DL) and postmultiplied by diag(DR). This is

allowed only if A is nonsymmetric.

GRADE = `S' | A is pre- and postmultiplied by diag(DL). This is allowed only if A is

symmetric or nonsymmetric, but not complex Hermitian.

GRADE = `H' | A is premultiplied by diag(DL) and postmultiplied by the complex con-

jugate of diag(DL). This is allowed only if A is nonsymmetric or Hermitian, but not

complex symmetric.

10

GRADE = `E' | A is premultiplied by diag(DL) and postmultiplied by the inverse of

diag(DL). This is allowed only if A is nonsymmetric. This preserves the original

eigenvalues.

DL is speci�ed by MODEL and CONDL just as D is speci�ed by MODE and COND. DR is speci�ed

by MODER and CONDR the same way.

6.2 Pivoting | PIVTNG and IPIVOT

PIVTNG is a read-only CHARACTER*1 variable which speci�es how the rows and columns of

A are to be permuted. IPIVOT is a read-only integer array which speci�ed the order itself.

PIVTNG is interpreted as follows:

PIVTNG = `N' | No pivoting.

PIVTNG = `L' | Left or row pivoting. A must be nonsymmetric.

PIVTNG = `R' | Right or column pivoting. A must be nonsymmetric.

PIVTNG = `B' or `F' | Both or Full pivoting, i.e., on both sides. A must be square.

The IPIVOT array speci�es the permutation used. After the basic matrix is generated,

the rows, columns, or both are permuted. If, say, row pivoting is selected, xLATMR starts

with the last row and interchanges the M-th and IPIVOT(M)-th rows, then moves to the

next to last row, interchanging the (M � 1)-st and the IPIVOT(M � 1)-st rows, and so on.

In terms of `2-cycles', the permutation is (1 IPIVOT(1)) (2 IPIVOT(2)) : : : (M IPIVOT(M))

where the rightmost cycle is applied �rst. This is the inverse of the e�ect of pivoting in

LINPACK or LAPACK. The idea is that factoring (with pivoting) an identity matrix which

has been inverse-pivoted in this way should result in a pivot vector output from LAPACK

or LINPACK identical to IPIVOT.

6.3 Sparsifying | SPARSE

This read-only real variable must be between 0 and 1, inclusive. For each matrix entry an

independent random variable r uniformly distributed on (0; 1) is generated and compared

to SPARSE. If r > SPARSE, the matrix entry is unchanged, but if r � SPARSE, the matrix

entry is set to zero (preserving symmetry if the matrix is symmetric or Hermitian). Thus,

on average a fraction SPARSE of the entries will be set to zero. If SPARSE = 0, no entries

will be set to zero.

6.4 Workspace | IWORK

This integer workspace arraymust have dimension as large as IPIVOT, if IPIVOT is referenced

(PIVTNG 6= `N').

11

7 xLATMS | Detailed Calling Sequence

Here is the speci�cation of the calling sequence for xLATMS:

SUBROUTINE xLATMS(M, N, DIST, ISEED, SYM, D, MODE, COND,

$ DMAX, KL, KU, PACK, A, LDA, WORK, INFO)

*

* .. Scalar arguments ..

*

CHARACTER*1 DIST, SYM, PACK

INTEGER MODE, KL, KU, M, N, LDA, INFO

type1 COND, DMAX

*

* .. Array arguments ..

*

INTEGER ISEED(4)

type1 D(*),

type2 A(LDA, *), WORK(*)

Here, type1 and type2 are de�ned just as for xLATMR. As before, we only describe the

arguments which were not completely described in section 5.

7.1 Symmetry | SYM

The use of SYM depends on whether A is real or complex. If A is real then

SYM = `N' means that A is nonsymmetric and the vector D, as determined by MODE, COND

and DMAX, determines its singular values.

SYM = `P' means that A is positive semide�nite and the vector D, as determined by MODE,

COND and DMAX, determines its eigenvalues; in this case the eigenvalues will be non-

negative (unless the user inputs negative eigenvalues in D with MODE = 0).

SYM = `S' or `H' means that A is symmetric and the vector D, as determined by MODE,

COND, and DMAX. determines the eigenvalues. In addition, when MODE 6= 0, each entry

of D is multiplied at random by either +1 or �1. Thus A will have both positive

and negative eigenvalues (unless the user inputs eigenvalues of all one sign in D with

MODE = 0).

If A is complex then

SYM = `N' means that A is nonsymmetric and the vector D, as determined by MODE, COND

and DMAX, determines the singular values.

SYM = `P' means that A is positive semide�nite and the vector D, as determined by MODE,

COND and DMAX, determines its eigenvalues; in this case the eigenvalues will be non-

negative (unless the user inputs negative eigenvalues in D with MODE = 0).

12

SYM = `S' means that A is complex symmetric and the vector D, as determined by MODE,

COND and DMAX, determines the singular values.

SYM = `H' means that A is Hermitian the vector D, as determined by MODE, COND, and DMAX

determines the eigenvalues. In addition, when MODE 6= 0, each entry of D is multiplied

at random by either +1 or �1. Thus A will have both positive and negative eigenvalues

(unless the user inputs eigenvalues of all one sign in D with MODE = 0).

7.2 Workspace | WORK

The array WORK, which has the same type as A, must be dimensioned at least 3 �max(M; N).

It is modi�ed by the program.

8 xLATME | Detailed Calling Sequence

Here is the speci�cation of the calling sequence for xLATME:

SUBROUTINE xLATME(N, DIST, ISEED, D, MODE, COND, DMAX, EI,

$ RSIGN, UPPER, SIM, DS, MODES, CONDS,

$ KL, KU, ANORM, A, LDA, WORK, INFO)

*

* .. Scalar arguments ..

*

CHARACTER*1 DIST, RSIGN, UPPER, SIM, EI

INTEGER MODE, MODES, KL, KU, N, LDA, INFO

type1 COND, CONDS, ANORM

type2 DMAX

*

* .. Array arguments ..

*

INTEGER ISEED(4)

type1 DS(*)

type2 D(*), A(LDA, *), WORK(*)

Here, type1 and type2 are determined just as for xLATMR and xLATMS. As before,

we only discuss the arguments not completely described in section in section 5.

8.1 Eigenvalues | D, MODE, COND, DMAX, RSIGN, EI

These variables determine the eigenvalues of A. Their interpretations depend on whether A

is real or complex.

If A is real, the eigenvalues are determined as follows. Recall that a real matrix either

has real eigenvalues or complex eigenvalues appearing in complex conjugate pairs. D is

�rst computed from MODE, COND, DMAX and RSIGN as described in section 5. In order to

get complex conjugate eigenvalue, the following additional computations are done when

MODE = 0 or MODE = 5.

13

When MODE = 0, both D and the array EI of CHARACTER*1 variables must be supplied

by the user; EI speci�es which entries of D are real eigenvalues, and which are the real and

imaginary parts of a pair of complex conjugate eigenvalue. If EI(1) = ` ' (a blank), then

all D(i) are taken to be real eigenvalues. Otherwise, all entries EI(i) must either be `R' (for

real part) or `I' (for imaginary part). Each `I' must follow an `R'; thus if EI(i) = `R' and

EI(i+ 1) = `I', then D(i) is the real part and D(i + 1) is the imaginary part of a complex

conjugate pair of eigenvalue. The assembly of A is begun by putting 1 by 1 blocks D(i)

corresponding to real eigenvalues and 2 by 2 blocks"
D(i) D(i+1)

�D(i+1) D(i)

#
; (8:5)

which have complex conjugate eigenvalues D(i)� { � D(i+ 1), on the diagonal of A. When

MODE 6= 0, EI is ignored.

When MODE = 5, complex conjugate pairs of eigenvalues are obtained as follows. For

each adjacent pair (D(2i � 1); D(2i)) of entries of D, an independent random number r is

chosen which has takes the values �1 with probability .5. If r = +1, the pair is treated as

two real eigenvalues, and if r = �1, the pair is treated as the real and imaginary parts of a

complex conjugate pair of eigenvalues, and incorporated into A as in (8.5).

When A is complex, the eigenvalues are determined as follows. D is �rst computed from

MODE, COND, DMAX as described in section 5. Then, if RSIGN= `T', and MODE is neither 0

(input by the user) nor �6 (random with distribution DIST), each D(i) is multiplied by an

independent random complex number r uniformly distributed on the unit circle. These D(i)

are the eigenvalues; EI is ignored.

8.2 Jordan Form | UPPER

If UPPER = `T', the upper triangle of A (above the eigenvalues in the 1 by 1 and 2 by 2

diagonal blocks) is �lled in with random numbers from distribution DIST. This means there

will be exactly one Jordan block per distinct eigenvalue. If UPPER= `F', the upper triangular

is left zero. Thus A's Jordan form will only have 1 by 1 blocks, even if the eigenvalues are

multiple.

8.3 Similarity Transform | SIM, DS, MODES, CONDS

If SIM = `T', then A is premultiplied by S and postmultiplied by S�1, where S = U �

diag(DS) � V , U and V are random orthogonal (or unitary) matrices, and DS is constructed

from MODES and CONDS just as D is constructed from MODE and COND (see section 5). If

SIM = `F', this pre- and postmultiplication is not performed. The condition number � �

maxi jDS(i)j=mini jDS(i)j of S approximately determines the sensitivity of A's eigenproblem,

as described in section 4.

8.4 Bandwidth | KL, KU

As before, KL is the lower bandwidth and KU is the upper bandwidth. However, at most one

of them may be less than N � 1, i.e., less than full bandwidth, and both must be positive.

This is because no way is known to generate nontrivial random nonsymmetric matrices

14

with �xed spectrum and arbitrary bandwidth. If a triangular matrix (KL = 0 or KU = 0) is

desired, set SIM = `F' so that no multiplication by S and S�1 is performed.

8.5 Workspace | WORK

The array WORK, which has the same type as A, must be dimensioned at least 3 � N. It is

modi�ed by the program.

9 Implementation Notes

9.1 Generating Random Orthogonal and Unitary Matrices

We use a method developed by Stewart [7], which we just outline here. The following

pseudocode shows how to postmultiply a given matrix A by a random orthogonal (unitary)

matrix U :

for i = 2 to n

� generate a vector v with i entries each of which is an independent normal (0; 1)

random real (complex) number.

� let x be an n-vector whose �rst n� i entries are zero and the remainder equal v.

� Let H be an n by n Householder transformation which reduces the vector x to

one whose only nonzero entry is at location n � i+ 1.

� apply the Householder transformation to A : A AH

endfor

for i = 1 to n

� multiply the i-th column of A by an independent real (complex) random number

which equals �1 with probability .5 (is uniformly distributed on the unit circle)

endfor

Thus, U is represented as a product of random Householder transformations and a

random diagonal orthogonal (unitary) matrix. The random orthogonal (unitary) matrix

generated is distributed according to Haar measure [7], which is analogous to the uniform

distribution. In other words, if U is a set of orthogonal (unitary) matrices with probability

�, then the sets P �U and U � P , where P is any �xed orthogonal (unitary) matrix, also

have probability �.

The subroutine, xLAROR, also permits premultiplication U � A, as well as U � A � UT

and U �A � U� (conjugate transpose).

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 x x x x x x

2 x x x x x x

3 x x x x x x c

4 d x x x x x x

5 x x x x x x

6 x x x x x x

7 x x x x x x

8 x x x x x a

9 b x x x x x

10 x x x x x

11 x x x x x

: : : : : : : : : : : : :

Figure 1: Adding a diagonal to an upper triangular band matrix.

9.2 Generating Band Matrices using Givens Rotations

The method described in section 3 for generating a band matrix with speci�ed singular

values or eigenvalues requires O(n3) time and O(n2) storage, since it �rst generates a dense

matrix and then uses Householder transformations to eliminate nonzero entries outside of

the bandwidth, column by column or row by row. The other method that we use in the

code adds successive o�-diagonals by using Givens rotations; this method requires O(n2k)

time to generate an n � n matrix of bandwidth k and no more storage than is needed to

store the �nal matrix. We �rst describe the method as applied to an upper-triangular band

matrix, and then describe how the method is extended to deal with symmetric, Hermitian,

non-symmetric, and rectangular matrices.

To generate an upper-triangular band matrix using Givens rotations, we start with a

diagonal matrix of singular values. We then apply a random Givens rotation to the �rst two

rows; this makes the (1; 2) and (2; 1) entries non-zero, assuming the �rst two singular values

are non-zero. We then apply a suitably chosen Givens rotation to the �rst two columns to

make the (2; 1) entry zero; if the �rst two singular values di�er, the (1; 2) entry will remain

non-zero. We next apply a random Givens rotation to the second and third rows; this makes

the (2; 3) and (3; 2) entries non-zero, so we rotate the second and third columns to make

the (3; 2) entry zero but the (1; 3) entry non-zero, we rotate the �rst two rows to make

this entry zero but the (2; 1) entry non-zero, which we eliminate by rotating the �rst two

columns. Proceeding in this way, we �ll in the �rst o�-diagonal. The same procedure �lls

in the second, and so on. Figure 1 shows the rotations used when �lling in the eighth entry

on the �fth o�-diagonal: a is the entry being �lled in by the random Givens rotation, b is

the unwanted entry �lled in by the random rotation and eliminated by the next rotation, c

is �lled in when b is eliminated, d is �lled in when c is eliminated, but eliminating d �lls

in no new entries.

A pseudo-code description of the method for generating an n�n upper-triangular matrix

A of bandwidth k from a diagonal matrix of singular values is as follows:

16

For each o�-diagonal j = 1; : : : ; k

For each entry i = 1; : : : ; n� 1

� Apply a random Givens rotation to rows i and i+1. If i � n�k, this makes

Ai;i+j non-zero.

� Apply a Givens rotation to columns i and i+ 1 to eliminate Ai+1;i.

� Continue applying row and column rotations to \chase" the unwanted entry

up to and o� of the upper-left end of the matrix.

Note that we rotate through rows n � 1 and n, even though no new entry on the upper

diagonal is �lled in thereby. This insures that the last two columns will be mixed, so that

the last column need not be zero, even if the last singular value is zero.

The method for generating an m � n upper trapezoidal (i.e., m > n) band matrix

di�ers from the preceding only in that the column rotations must continue through column

min(m + j; n), to insure that columns m + 1; : : : ;min(m+ k; n) are not always zero. The

pseudo-code description is then:

For each o�-diagonal j = 1; : : : ; k

For each entry i = 1; : : : ;min(m+ j; n)� 1

if i < m then:

� Apply a random Givens rotation to rows i and i + 1. If i � n � k, this

makes Ai;i+j non-zero.

� Apply a Givens rotation to columns i and i+ 1 to eliminate Ai+1;i.

else:

� Apply a random Givens rotation to columns i and i+ 1.

end if:

� Continue applying row and column rotations to \chase" the unwanted entry

up to and o� of the upper-left end of the matrix.

Lower-triangular and lower-trapezoidal band matrices are generated by the transpose of

the method described so far. A general band matrix, m � n, with upper bandwidth k and

lower bandwidth ` is generated by:

(1) generating an upper-triangular/-trapezoidal matrix with the desired upper bandwidth,

then

(2) adding lower diagonals. Adding the lower diagonals di�ers from the procedure for

generating a lower-triangular/-trapezoidal matrix only in that after the randomGivens

rotation applied to columns i and i + 1, the next Givens rotation, which eliminates

the unwanted element in the upper triangle, is applied, not to rows i and i + 1, but

to rows i� k and i� k + 1.

Symmetric and Hermitian matrices are generated by the same method as for upper-

triangular matrices, except that each Givens rotation must be applied from both the left

and (if Hermitian, then conjugated) from the right. The lower triangle is not explicitly

17

computed, since it is just a copy of the upper; if the lower triangle is desired, the code

copies it from the upper. Some care must be taken with the �rst sub-diagonal, since there

is a stage where the Givens rotation has been applied from one side but not yet from the

other when one element on the sub-diagonal is not equal to the corresponding element on

the super-diagonal.

The method as described so far generates each diagonal starting from the top left, and

we therefore call it the \top-down" version; the code also includes a corresponding \bottom-

up" version as well. The \top-down" version is used if the �rst eigen- or signular value is

larger than the last, otherwise the \bottom-up" version is used. We originally believed that

this choice of version would reduce the e�ect of rounding error on small eigen- and singular

values when the original, diagonal matrix is graded, but experiments have not shown any

clear, consistent di�erence. It does have the advantage that if the order of the singular or

eigenvalues is reversed, and the same random seed is used to start o� with each time, then

the resulting generated matrix is the same as the originally generated matrix with the order

of the rows and of the columns reversed.

9.3 Accuracy Limitations

Any option which requires multiplication by orthogonal, unitary or other dense matrices

within the test suite will introduce rounding errors which may obscure tiny eigenvalues or

singular values. In particular, if � is the machine precision, then the true eigenvalues or

singular values of the A computed by xLATMS will di�er from their prescribed values by as

much as O(� kAk) (kAk is the largest absolute eigenvalue or singular value). In particular,

tiny eigenvalues or singular values may have large absolute errors. This e�ect is even more

pronounced in the case of xLATME, since eigenvalues of a nonsymmetric matrix may be

extremely sensitive to perturbations, as discussed in section 4. In fact, if the matrix is

chosen to have all zero eigenvalues, UPPER = `T' so there is just one Jordan block, and SIM

= `T' so that there is pre- and postmultiplication by dense matrices, the true eigenvalues

may be as large as O(�1=n), where n is the dimension. This sensitivity is inherent in the

problem [6].

18

References

[1] J. Bunch, J. Dongarra, C. Moler, and G. W. Stewart. LINPACK User's Guide. SIAM,

Philadelphia, PA, 1979.

[2] J. Demmel. On condition numbers and the distance to the nearest ill-posed problem.

Numerische Mathematik, 51(3):251{289, July 1987.

[3] J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen.

Prospectus for the development of a linear algebra library for high-performance comput-

ers. Mathematics and Computer Science Division Report ANL/MCS-TM-97, Argonne

National Laboratory, Argonne, IL, September 1987.

[4] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A proposal for a set of level 3

basic linear algebra subprograms. SIGNUM Newsletter, 22(3):2{14, February 1987.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of fortran

basic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):1{

17, March 1988.

[6] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, MD, 1983.

[7] G. W. Stewart. On e�cient generation of random orthogonal matrices with an appli-

cation to condition estimation. SIAM Journal of Numerical Analysis, 17(3):403{409,

1980.

19

