On a Block Implementation of Hessenberg
Multishift QR Iteration

7. Bai and J. Demmel
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012

Abstract

The usual QR algorithm for finding the eigenvalues of a Hessenberg
matrix H is based on vector-vector operations, e.g. adding a multi-
ple of one row to another. The opportunities for parallelism in such
an algorithm are limited. In this report, we describe a reorganization
of the QR algorithm to permit either matrix-vector or matrix-matrix
operations to be performed, both of which yield more efficient imple-
mentations on vector and parallel machines. The idea is to chase a k
by k bulge rather than a 1 by 1 or 2 by 2 bulge as in the standard QR
algorithm. We report our preliminary numerical experiments on the
CONVEX C-1 and CYBER 205 vector machines.

1 Introduction

The usual QR algorithm for finding the eigenvalues of a Hessenberg ma-
trix H is based on vector-vector operations, e.g. adding a multiple of one
row to another, or one column to another. The computed eigenvalues are
deflated one by one for real eigenvalues, or pair by pair for complex conju-
gate eigenvalues. The opportunities for parallelism in such an algorithm are
limited.

There are several papers proposing parallel implementations of the QR
algorithm, e.g. [Boley’86, Stewart’87, Van de Geijn’87 and Davis et al'87].
All these implementations perform vector-vector operations in their inner-
most loops.

Block Multishift QR Algorithm 2

Our approach is motivated by the availability of the Level 2 and Level
3 BLAS (Basic Linear Algebra Subroutines) for performing matrix-vector
and matrix-matrix operations efficiently on high performance machines [see
Dongarra et al'86,87]. Matrix-vector operations include matrix-vector multi-
plication, rank-1 matrix update, and solving triangular systems of equations;
matrix-matrix operations include matrix-matrix multiplication, rank-k ma-
trix update, and solving triangular systems with many right hand sides.

The vector-vector operations (Level 1 BLAS) on which the usual QR
algorithm is based can generally not be implemented as efficiently as the
larger granularity matrix-vector and matrix-matrix operations. This ineffi-
ciency is usually a result of poor memory hierarchy utilization. This leads
us to attempt to restructure the usual QR algorithm to have matrix-vector
and matrix-matrix operation inside the inner loops. Even if more floating
point operations are introduced by restructuring, the more efficient inner
loops may provide a faster overall algorithm.

In this paper, we will describe such a restructured QR algorithm. Briefly,
instead of a single or double shift providing a 1 by 1 or 2 by 2 “bulge” which
is “chased” one column at a time as in the usual QR algorithm, we will use
k simultaneous shifts, resulting in a k& by k bulge which is then chased p
columns at a time. p and k are architecture dependent parameters, which
can be tuned to optimize performance. We choose the k shifts to be the
eigenvalues of the bottom right k£ by & principal sub-matrix.

We have performed preliminary numerical tests of the algorithm on the
CONVEX C-1 and CYBER 205. Using straightforward Level 2 and Level 3
BLAS implementations, our algorithm performs better then the vectorized
usual QR algorithm (hgr from the EISPACK library [Smith’76]). When we
use optimized BLAS for these architectures and polish our codes, we expect
to get even better performance.

For simplicity, it is assumed that the reader is familiar with the sequential
QR algorithm(see [Stewart’73]). The following is an outline of the algorithm.
Let A € R™ ™, the explicitly shifted QR algorithm produces a sequence
Agp, A1, ..., of similar matrices as follows:

Ag=A

for k=1,2,...
Ap—1— g1 = Qr1Rp_1;
Ap = R 1Qp—1 + sp—11;

Block Multishift QR Algorithm 3

The scalars s_1 are called origin shifts. Qx_1 is orthogonal and Rj_1
is upper triangular. For accelerating convergence and avoiding complex
arithmetic for real matrices, the implicit double shift QR algorithm is used,
resulting in 2 by 2 bulge chasing in each QR sweep, see [Francis’61,62, Stew-
art’73].

The QR iteration has two important properties: Let us first introduce
some additional notation. Let

Qr-1=QoQ1 - Qi1

and .
Riy_1 =R 1Rp_2-- Rop.

Then from the fact A = QE_lAk—le—b it follows that

A = Qb1 A0Qr—1
or since ka—l is orthogonal

Ay — 51l = Q1 (A — sp_11) Q1.

Denote
IR = (A= soI)(A—s11) - (A— sp_11).

Our QR algorithm, which we call block multishift QR, depends on the
following two well-known facts about QR iteration:

Fact 1: Qu_1R;_1 =) see [Stewart’73].

Fact 2: Let A be an unreduced upper Hessenberg matrix, and suppose
that it is transformed by an orthogonal matrix W into WT AW, which is also
an unreduced upper Hessenberg matrix. Then if the first column of W is

given by w; = ﬁw%k), where W%k) is the first column of II%)| the resulting
T

matrix is identical to the kth matrix generated by shifted QR iteration, i.e.
Ay = WTAW | see [Francis’61].

Fact 1 reveals the connection between the QR iteration and the power
method applied to II(*). Fact 2 is a restatement of a theorem from [Fran-
ics’61] in more modern terminology. It is usually called the ¢ implicit Q"
theorem as presented in [Stewart’73, Golub and Van Loan’83, Paige’87].
Taken together, they show that if we can compute just the first column
W%k) of I®) | A;, can be computed directly from Ay by finding an orthogo-
nal W such that ‘(/V)TAW is upper Hessenberg and the first column of W is
k

proportional to m;

Block Multishift QR Algorithm 4

The rest of this paper is organized as follows. In section 2, we describe
the implicit multishift QR algorithm. Then, in sections 3 to 6, more de-
tails about the implementation of the algorithm, such as the choice of the
shifts, determining the first column of the II*)| k by k bulge chasing and the
convergence criterion are presented. Preliminary numerical tests of the algo-
rithm on the CONVEX C-1 and CYBER 205 vector machines are reported
in section 7. Finally, we discuss future work.

2 The Implicit Multishift QR Algorithm

The usual explicit or implicit QR algorithm uses 1 or 2 shifts to compute
Aj or Ay from Ag = A. If we assume k shifts {u; le are available, we will
show that the following algorithm computes Ay directly from Ay.

1. Find the first column ng) of TI*) | where
T*) = (Ao — 1) (Ao — pal) -+ (Ao — i),

2. Determine a Householder transformation P = I — ululT such that

P17T Ek) =0oe€q.
where e; is the first column of the identity matrix I.
3. Premultiply and postmultiply A by P;

P AyP, = B.

4. Reduce B to upper Hessenberg form
Py_1+-PyBPy---P,_1 = P AyP,_1 = By.

where]5n_1 =P P,---P,_1,and for ¢ > 1, P; is a Householder matrix
chosen to zero out rows i + 1 through min(i + k,n) of column i — 1.

We will show that B1 = Ai. To see this, note that W%k) is a vector
with the last n — k — 1 elements zero, since {Ag — u;l} is a set of upper

Hessenberg matrices. Then Householder matrix P; transforms W](Lk) to oej.

Block Multishift QR Algorithm 5

After P; pre- and post-multiplies Ag , it is easy to see that B is an upper
Hessenberg matrix with a k£ by k bulge, e.g. forn =9,k =3

[X |[X |[X X X

[X [X X X X

[X X X X X

X X X X X

X X X X X X

X X X X X X X
X X X X X X X X

X X X X X X X X X
Z

X X X X X X X X X

Then a sequence of Householder transformations P; are used to reduce B
to upper Hessenberg form. After each application P;(-)P;, the k by k bulge
moves one step down the subdiagonal; this is called “chasing”. It is easy to
see that)

Pn_lel = Plel.

Since P; is determined by the first column of H(k)7 we know that By = A
by Fact 2.

The above algorithm defines a single QR sweep. Then we take Aj as
Ag to start another sweep. Now we will consider how to choose k shifts
simultaneously, how to efficiently compute the first column of II*), and how
to chase the k by k bulge of B. All of these problems will be discussed in
detail in the following sections.

3 Multishift Schemes

How to choose k shifts {1;}¥_; in a QR sweep is one of the basic problems of
the algorithm. The motivation of using multishifts rather than 1 or 2 shifts
is to deflate a small submatrix, presumably about k by k. The prospective
shifting schemes are as follows:

S1. k eigenvalues of the k x k trailing principle submatrix.

S2. The k diagonal elements of the k X k trailing principle submatrix.

S3. p1 =p2 = ... = pp = Ann-

S4. w1 = po = ... = g = the eigenvalue of the k£ x k trailing principle
matrix that is nearest to ay .

S5. Compute k + 1 eigenvalues of the bottom k£ + 1 by k+ 1 matrix, and
pick k of them closest to the last set of k shifts, see [Kahan’88].

Block Multishift QR Algorithm 6

The scheme S1 is a generalization of the double shift QR scheme. The
schemes S2 and S3 can be regarded as the generalized Rayleigh shifts. The
scheme S4 generalizes Wilkinson’s shift. All the schemes were numerically
tested using MATLAB. The test results eliminated the schemes S2 and S3 as
noncompetitive. The schemes S1 and S4 are competitive for small matrices,
but for large matrices (e.g., larger than 100), the scheme S1 is more efficient.

Kahan claims the scheme S5 raises the order of convergence, and makes
cycling much less likely. But our preliminary tests for scheme S5 have not
shown much benefit over scheme S1. More analysis is necessary for this
scheme.

In practice, we will always take k even to avoid complex arithmetic and
simplify the logic. It is well-known that to find all eigenvalues of a k x k
real matrix using standard QR, about 8k3 flops are necessary, see [Golub
and Van Loan’83].

4 Determining the First Column of II(%)
We recall that II%) is defined as
I® = (A= I) (A= pol) - (A=).

or

W = (A = D) (A = g d) - (A =),

since the (A — p;I) commute. It is easy to see that II%®) is a lower banded
matrix, with lower bandwidth k& + 1 because A is upper Hessenberg. A
trivial way to compute the first column ﬂ%k) = II®e¢; is to use matrix-
vector multiplications directly to form the first column of II®); this takes
%k‘g’ + O(k?) flops, if we assume that all shifts are real. But this would be
rather susceptible to overflow and underflow. Thus, after each multiplication
by (A — p;I), we must rescale the resulting vectors to have approximately
unit norm, since we only need the direction of the final vector, no essential
information is lost.

5 Block k£ by £ Bulge Chasing

JFrom section 2, we see that chasing the k by k bulge is the core of the
algorithm. Of course, instead of using Givens rotations to chase 1 by 1
or 2 by 2 bulges as in the usual QR algorithm, we can use Householder

Block Multishift QR Algorithm 7

transformations to chase a k by k bulge column by column. We will see that
this leads to an algorithm with matrix-vector (Level 2 BLAS) operations
in the inner loop. But since our purpose in developing the multishift QR
algorithm is to make the computation rich in matrix-matrix operations, we
can do block chasing. The idea is to partition the matrix by columns into
n/p blocks:

B = (B1, B, ..., By)

where each B; has roughly p columns, and then chase the bulge block by
block, p columns at a time. At each block, we aggregate the Householder
transformations and apply them in a blocked fashion.

The process with p = 1 can be described as follows: At the ith step, the
bulge has been chased to ith column. e.g. for n = 9, at the 3th step, the
matrix is of the form

X
X

X X X

[X [X |[X X X X X
[X X X X X X X
[X X X X X X X
X X X X X X X
X X X X X X X X

X X X X X X X X X
X X X X X X X X X

i From the ith column of the reduced matrix B;, we can construct the House-
holder transformation P; = I —u;ul, (|| u; ||= v/2) to “chase” the bulge from
the ith column to the (i + 1)-st column. Applying P; to the matrix B; can
be expressed as a rank-2 update (Level 2 BLAS):

Bi-i—l = PszPz = (I — uzulT)BZ(I — uiuT)

i
T T
= B; —uv, —wu;

where
T
Y = Bz Us,
zi = DBju,
T
v = Y — (Zi uz)uu

w; = Zz;

Block Multishift QR Algorithm 8

In the process, B is repeatly modified. At each stage, the matrix is
updated by a rank-2 matrix, and only k + 2 rows and k + 2 columns of the
matrix are changed. To achieve better memory utilization, we can aggregate
a sequence of transformations, say p of them, so that the matrix is updated
by a rank 2p matrix, and so (p+ k+ 1) rows and (p+ k + 1) columns of the
matrix will be updated simultaneously. This works as follows: Let us start
from By = B for simplicity. Instead of explicitly updating the matrix with
a rank two change, we only form the second column of Bs, say 62, i.e.

82 = by — v§2)u1 — u§2)w1,

where v§2), u§2) are the second elements of the vector v; and uq. From 132
we can compute us, and construct ys and zo as follows:

yo = (B1—uvi —wiui)us,

z9 = (B1— ulvlT — wlulT)uQ.
We then explicitly form Bj as follows:

By = By — ulvlT — wlurlr — u2v2T — u)gu;F
= Bi — (u1,u2)(vi,v2)T — (wi,ws)(ur, ug)”
= B —UV,f —WyUy.

We can continue the process and in general find for a rank-2p updating:
Bpy1= By — UV, = W,U,) .

e.g. starting from the matrix in (1) with p = 2, after the first block updating
the matrix looks like

X
X

X X X

[X [X |[X X X X X
[X [X X X X X X
[X X X X X X X
X X X X X X X
X X X X X X X X

X X X X X X X X X
X X X X X X X X X

These considerations may be summed up in the following algorithm,

where the jth column of a matrix X, is denoted by z; or X ,ij), a submatrix

Block Multishift QR Algorithm 9

composed of the ith to jth columns of matrix X is denoted by X ,gi:j), and
(4:5)

x,. 7’ denotes a sub-vector composed by the ith to jth components of vector
Tf.

Algorithm 1(Bulge Chasing). Let A be an upper Hessenberg matrix
with a k by k bulge. This algorithm chases the bulge to reduce A to upper
Hessenberg form. In particular, to reduce a full real general matrix to upper
Hessenberg form, choose k = n — 2. p is the block size.

N =(n—2)/p; N is the number of the blocks.
fori=1,..,N; outer loop.
s=({—1)p+1; sis the first column index in each block.
for j=s,..,s+p—1; inner loop.
g=s+mod(j —1,p) + 1;
kq=q+k—1,;
bj = bqkq Z (i qu) —i—u(’) (qer))7
compute j such that (I (1Y)b = ojeq;
let uj = (0,...,0,4;,0,...,0)T; Where @j occupies the gth
to kgth components of u;.
y; = (B o UZ(Sijl)W(55j*1)T o VVI(S:jil)Ul(S:jil)T)TUj;
_ (B _ U(Sij—l)vz(&j—l)T _ I/Vl(szj_l)Ul(S:j_l)T)Uj;
UJ =Y - I(Z]Tuj)ujy
Wj = zj — 2(yg)t

U9
VE(]) = vj;
VVI(J) = wj;

end of j loop
B=B-UVT -wWUl;
end of [loop

Note that by choosing £ = n — 2, the above algorithm reduces a dense
matrix to upper Hessenberg form. Thus, QR iteration and reduction to
Hessenberg form can be thought of as special cases of the same general
algorithm.

Thus restructuring QR to chase a k by k bulge p columns at a time lets us
use Level 3 BLAS in the innermost loop of the algorithm. The aggregation
idea was proposed in [Dongarra et al.’87], which showed how to reduce a full
matrix to upper Hessenberg form.

Block Multishift QR Algorithm 10

Counting the floating-point operations reveals that if we chase the k by
k bulge one column at a time (p = 1), one sweep costs 2kn? flops. k sweeps
of the usual single shift QR or k/2 sweeps of the usual double shift QR al-
gorithm also cost approximately 2kn? flops. In aggregating transformations
to perform the block chasing, additional work is required to form y; and z;.
The additional work amounts to:

(k + %p)nQ + O(n).

Note that we use matrix-vector operations (Level BLAS 2) in the j loop for
computing y; and z;, and matrix-matrix operations (Level 3 BLAS) for the
[loop updating. Thus, the new algorithm must have an execution rate at
least % + 4z times as great as the standard algorithm in order to have a
speed up (assuming approximately equal convergence rates).

6 Convergence Criterion

We recall that in the standard QR algorithm, the convergence test first looks
for a negligible subdiagonal element to set to zero and deflate a submatrix
(called deflation technique I), and then looks for two small consecutive sub-
diagonal elements whose product is negligible (called deflation technique II).
The QR iteration then works on the smaller submatrices. The approximate
eigenvalues are computed one by one for real eigenvalues, or pair by pair for
complex conjugate eigenvalues.

The motivation of multishift QR iteration is to deflate several eigenvalues
simultaneously, i.e. to find a negligible subdiagonal element near subdiago-
nal n — k rather than n—1 or n —2 as in standard QR iteration. If a deflated
submatrix has dimension smaller than some ny (which depends on k), we
will simply use standard QR (hgr from EISPACK) to compute its eigenval-
ues. Thus the algorithm is a hybrid of the standard and block multishift
QR algorithms.

Experience with MATLAB indicates that deflation technique II intro-
duces extra flops and data movement exceeding the benefit of the faster
convergence, so we have chosen not to implement it in our code (although
it is retained in hgr, which our code calls).

Block Multishift QR Algorithm 11

7 Numerical Tests

Numerical tests of the block multishift QR iteration were carried out on
the CONVEX C-1 computer at Courant Institute, New York University
and CYBER 205 at John von Neumann National Supercomputer Center.
The CONVEX has a vector architecture with register to register operations
and pipelined functional units, and has a cycle time of 100 ns which results
in a theoretical peak performance of 10 MFLOPS for simple operations
and 20 MFLOPS for compound add/multiply operations assuming 64-bit
arithmetic. The memory is managed on a fixed-size page basis. There is a
FORTRAN vectorizing compiler. CONVEX rates their machine as 1/6 of
the CRAY 1-S in speed.

The Control Data Corporation CYBER, 205 is a vector computer like
the Cray-1, but does not contain vector registers. Hence any data to be
processed is transferred directly from memory to the designated vector func-
tional unit and back to memory. The cycle time of the CYBER 205 is 20
nsec. Vector units may run in parallel under certain circumstances.

All the codes of block implementation of reduction to upper Hessenberg
form (in short: sgehrd) and multishift QR iteration (in short: shsegr) for
Hessenberg form are written in standard Fortran 77, with as many matrix-
vector(Level 2 BLAS) and matrix-matrix(Level 3 BLAS) operations as pos-
sible in order to exploit the memory hierarchy.

For the test results reported on the CONVEX in this paper we used
VECLIB, a collection of FORTRAN-callable subprograms providing basic
mathematical software including the BLAS. We use the —O2 option in the
CONVEX FORTRAN compiler fc to perform machine-independent local
and global optimizations plus vectorization.

On CYBER 205, we have so far programmed all the BLAS codes our-
selves in Fortran, and so expect future performance improvements.

The parameters k, p; and po denote the number of shifts in each QR
sweep and block sizes for Hessenberg reduction and bulge chasing, (see [Don-
garra et al.’87] for details on the Hessenberg reduction algorithm). As stated
in section 3, the k shifts are chosen as the k eigenvalues of the k x k trailing
principle submatrix. So for £ = 2 and p; = p» = 1, our algorithm can be
regarded as the “standard” implicit double shift QR iteration.

Our preliminary experiments are based on the following classes of ma-

Block Multishift QR Algorithm 12

trices (each matrix entry chosen independently as follows):

normal : standard normal distribution with mean 0, variance 1
J=1,1] : uniform distribution on [—1,1]
.0,1] : uniform distribution on [0, 1]

The sizes of the test matrices range from 100 up to 400. The timing in
seconds for finding all eigenvalues and no eigenvectors of full real matrices
by EISPACK orthes and hgr, and sgehrd(p;) and shseqr(k,p2) in 64 bit
precision on the CONVEX are listed in Table 1 and 2, where the EISPACK
codes are also optimized using the —O2 compiler option. We see from Table
2 that the block multishift QR algorithm is about 20% to 45% faster than
the EISPACK codes. We expect that shseqr with more careful coding would
be better. Evidence for this is shown in that the shseqr with optimal choices
of the parameters k, p; and po is 2 to 4 times faster than shseqr with k = 2,
p1 = p2 = 1, which should be equivalent to the “standard QR”.

n | matrices | orthes | sgehrd(p1) | speedup
timing | timing
200 | [0,1] 7.30 | 2.83(12) 2.58
200 | [-1,1] 6.93 | 3.03(12) 2.29
200 | normal 7.53 2.85(12) 2.54
256 | [0,1] 14.35 | 5.90(8) 2.43
256 | normal | 14.90 | 5.55(8) 2.68
300 | [0,1] 22.45 | 8.87(12) 2.53
300 | [1,1] 23.00 | 8.78(12) 2.62
300 | normal | 21.95 | 8.58(12) 2.56
400 | [-1,1] 52.13 | 19.75(12) | 2.64
400 | normal | 50.85 | 19.88(12) | 2.56

Table 1. Reduction timing on CONVEX C-1

Block Multishift QR Algorithm 13

n | matrices | hgr | timing | shseqr | timing(k,p2) | speedup
iter. | (sec) iter. (sec)
200 [0,1] 342 | 15.65 44 13.02(18,6) 1.20
200 [—1,1} 372 | 15.83 40 11.90(18,7) 1.33
200 | normal 386 | 17.03 50 15.78(18,6) 1.20
256 | [0,1] 478 [3073 | 87 | 26.34(12,6) 1.17
256 | normal 481 | 31.47 70 21.45(14,6) 1.47
300 [071] 559 | 47.15 106 38.53(12,6) 1.22
300 | [-1,1] 551 | 46.22 | 100 | 35.15(12,6) 1.31
300 | normal 573 | 46.67 104 36.54(12,6) 1.28
400 | [-1,1] 702 | 96.65 122 69.68(14,6) 1.39
400 | normal 711 | 97.27 127 75.15(14,6) 1.29

Table 2. QR iteration timing on CONVEX C-1

The timing costs on CYBER 205 in 32-bit arithmetic of reduction to
upper Hessenberg form and QR iteration are listed in Tables 3 and 4 respec-
tively. The last column of the tables are the speedups. We beat EISPACK
by a factor 8-14 in reduction to Hessenberg form and a factor 1.7-2.6 in QR
iteration.

Block Multishift QR Algorithm

n | matrices | orthes | shseqr(pi) | speedup
timing | timing
200 | [0,1] 481 | 0.58(12) | 8.2
200 [—1,1] 4.80 0.58(12) 8.28
200 | normal | 4.80 0.59(12) | 8.14
256 | [0,1] 1050 | 1.01(8) | 10.40
956 | normal | 10.50 | 0.99(8) | 10.60
300 | [0,1] 17.21 | 1.46(12) | 11.79
300 [—1,1] 17.19 1.44(12) 11.93
400 [—1,1] 42.07 2.92(12) 14.41
400 | normal 42.65 2.88(12) 14.81

Table 3. Reduction timing on Cyber 205

14

Block Multishift QR Algorithm 15

n | matrices | hgr shseqr(k,p2) | speedup
timing | timing

200 | [0,1] 15.63 | 9.21(18,6) | 1.70
200 | [-1,1] 17.23 | 7.25(18,7) | 2.38
200 | normal | 17.62 | 8.78(18,6) | 2.01

256 | [0,1] 29.81 | 17.50(12,6) | 1.70
256 | normal | 34.75 | 14.28(14,6) | 2.43

300 | [0,1] 45.11 | 23.94(12,6) | 1.88
300 | [-1,1] 45.26 | 23.26(12,6) | 1.94
400 | [-1,1] 132.31 | 50.71(14,6) | 2.61

400 | normal 127.46 | 51.53(14,6) | 2.47

Table 4. QR iteration timing on Cyber 205

(From our preliminary numerical tests, we make the following remarks.
Much analysis remains to be done.

Remark 1: In our test examples, the shseqr produces the same eigen-
values as the EISPACK codes to at least ten decimal places even for very
ill-conditioned eigenproblems. Shseqr is, of course, backward stable.

Remark 2: In table 1, the parameters k£ and p; and ps are chosen by
local optimization. For example, let matrix A be 128 x 128 having entries
chosen independently from the uniform distribution on [0,1]. Using shseqr,
we first fix parameter po and vary k to find the £ minimizing the running
time (Figure 1). Then for this locally optimal k, we vary ps to minimize
the running time (Figure 2). How to characterize the optimal parameters k
and ps is still not very clear. We expect these parameters to be machine-
dependent, depending on the number of vector registers, cache size etc.

Remark 3: By ’iter’, we mean the total number of QR sweeps to find all
eigenvalues. In general, it is seen that the more shifts used, the fewer QR

Block Multishift QR Algorithm

Figure 1: The timing cost depending on k, ps =4

Figure 2: The timing cost depending on po, k = 14

16

Block Multishift QR Algorithm 17

sweeps are necessary. The Eispack QR routine hgr takes about 2n sweeps
to find all eigenvalues, but shseqr takes only about %n sweeps. We observe
empirically that in shseqr, after several QR sweeps, a small subdiagonal
element appears near the position n — k, i.e. a submatrix of approximate
size k X k is split out, so we can find its eigenvalues directly by calling Eispack
QR algorithm. For example, for a 300 x 300 [-1, 1] uniformly distributed
matrix, using shseqr with k = 26 and po = 4, the number of QR sweeps and
corresponded size of the deflated submatrix blocks are shown in Table 5:

iter |31 2 (|11 |5 |44 5|44 |3]3]|14

block | 26 | 22 | 3| 10| 26 | 26 | 24 | 26 | 26 | 25 | 26 | 25 | 35

Table 5

This is what we expected. More tests and analysis will be needed to
see whether this is true in more general cases. We still need to analyze the
asymptotic convergence rate of the algorithm.

Remark 4: If we can consistently deflate & by k subblocks as suggested
in Remark 3, this could be used to design a parallel divide and conquer
scheme.

Remark 5: The shseqr with scheme S4 (cf. Section 3) took about double
the time of shseqr with shift scheme S1.

8 Future Work

This is the first report of work in progress. Future work will include optimiz-
ing our shseqr codes, numerical tests on CRAY and Alliant FX/8 machines,
and finding optimal parameters k, p; and py for different size matrices and
specific machine architectures. The asymptotic convergence rate as a func-
tion of the multishift number k& will be discussed in detail (see [Watkins’88]),
The final version of this code will be a part of the LAPACK linear algebra
library (see [J. Demmel et al’ 87]).

Block Multishift QR Algorithm 18

9 Acknowledgements

The first author acknowledges the financial support of DARPA | grant F49620-
87-C0065, and the second author the support of NSF, grant ASC-8715728.
The second author is also a Presidential Young Investigator.

References

[1] D. Boley, Solving the Generalized Eigenvalue Problem on a Synchronous
Linear Processor Array, Parallel Computing 3, pp.152-166,1986

[2] G. J. Davis, R. E. Funderlic and G. A. Geist, A Hypercube Implemen-
tation of the Implicit Double Shift QR Algorithm, Hypercube Multipro-
cessors’87, M. T. Heath ed. STAM publisher, 1987.

[3] J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling
and D. Sorensen, Prospectus for the Development of a Linear Algebra
Library for High-Performance Computers, Argonne National Labora-
tory, ANL-MCS-TM-97, September, 1987.

[4] J. J. Dongarra, J. Du Croz, S. Hammarling and R. J. Hanson, An
Ezxtended Set of the Fortran Basic Linear Algebra Subprograms. ANL-
MCS-TM 41, 1986.

[5] J. J. Dongarra, J. Du Croz, I. Duff and S. Hammarling, A Proposal
for a Set of Level 8 Basic Linear Algebra Subprograms, ANL-MCS-TM
88,April 1987.

[6] J.J. Dongarra, S. J. Hammarling, and D. C. Sorensen, LAPACK Work-
ing Notes # 2:Block Reduction to Condensed Forms for Figenvalue
Computations, Mathematics and Computer Science Division, Argonne
National Lab, Sep. 1987

[7] J. G. F. Francis, The QR Transformation - A Unitary Analogue to the
LR Transformation, Computer J. 4(1961/1962), pp.265-271 and 332-
345.

[8] R. A. van de Geijn, Implementation the QR-Algorithm on an Array of
Processors, Univ. of Maryland, Dept. of Computer Science Technical
Report CS-TR-1897, August 1987.

Block Multishift QR Algorithm 19

[9] G. H. Golub and C. Van Loan, Matriz Computations, The Johns Hop-
kins University Press, Baltimore, 1983.

[10] C. C. Paige, The Gatlinburg X Meeting talk, October 1987.
[11] W. Kahan, private communication, April,1988.

[12] B. T. Smith, J. M. Boyle, Y. Ikebe, V. C. Klema and C. B. Moler, Ma-
triz Figensystem Routines: EISPACK Guide, 2nd ed. Springer-Verlag,
New York, 1970.

[13] G. W. Stewart, Introduction to Matriz Computations, Academic Press,
New York, 1973.

[14] G. W. Stewart, A Parallel Implementation of the QR-algorithm, Paral-
lel Computing 5(1987), pp.187-196.

[15] D. Watkins, On the GR Algorithms for the Eigenvalue Problem. Pre-
sented at the NATO Advanced Study Institute, 1988.

