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edriver - means that these are driver routines. W are likely to p

functionality.

e Note A- we plantouse orthogonal transformations throughout, not ¢

formations.
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SPOFA
SPOSL

SPPCO

SPPDI

SPPFA
SPPSL
SPTSL

SQRDC

SQRSL
5S1CO
5S1 DI
SSTFA
SSISL

SSPCO

5SS PDI

SSPFA
SSPSL
SSVDC

STRCO
S TRDI

STRSL

SPOTRF
SPOTRS

SPPTRF
SPPCON
SPPTRI
SPPTRF
SPPTRS
SPTS OL
S GEQRF
or

SGEQRP
S GEQRS
SSYTRF
SSYCON
SSYTRI
SSYTRF
SSYTRS

SSPTRF
SSPCON

SSPTRI

SSPTRF
SSPTRS
driver

S TRCON
S TRTRI

S TRTRS

factors asymmetric positive definite matri x.

solves the symmetric positive definite

systemAz =busing the factors computed by SPOCOor S
factors a symmetric positive definite

matrix storedinpackedformandestimates the condi
computes the determi nant and i nverse

of a symmetric positive definite matrix

using the factors computed by SPPCOor SPPFA.
factors a symmetric positive definite

matrix storedin packed form.

solves the symmetric positive definite

systemAz =b using the factors computed by SPPCOor ¢
given a positive definite tridiagonal matrix and ari
hand side will find the solution.

uses Househol der transformations to compute the QR
factorizationof annby pmatrix X. col umn pivoting
based on the 2-norms of the reduced col umns may be
performed at the users option.

applies the output of SQRDCto compute coordinate
transformations, projections, andleast squares sol
factors a symmetric matrix byelimination
withsymmetric pivoting and estimates the condition
computes the determi nant, inertiaandinverse

of asymmetric matrix using the factors fromSSI FA.
factors a symmetric matrix byelimination
withsymmetric pivoting.

solves the symmetric system

Ax =b using the factors computed by SSI FA.

factors a symmetric matrixstoredin

packed formby elimination with symmetric pivoting .
the condition of the matri x.

computes the determi nant, inertiaandinverse

of a symmetric matrix using the factors from

SSPFA, where the matrixis storedinpacked form
factors a symmetric matrixstoredin

packed formby elimination withsymmetric pivoting.
solves the symmetric system

Ax =b using the factors computed by SSPFA.

is asubroutine toreduce anbypmatrix X

by orthogonal transformations uand v to diagonal fo
estimates the conditionof atriangular matri x.
computes the determi nant and inverse of a
triangular matrix.

solves systems of the forduwl=bkb or T

where T'is atriangul ar matrix of order n.
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LT NPACK LAPACK

Function

S CHDC

S CHDD

S CHEX
SCHUD

SGBCO

5 GBDI

S GBFA

SGBSL

SGECO

5 GEDI

S GEFA
SGESL

SGTSL

SPBCO

SPBDI

SPBFA

SPBSL

SPOCO

S PODI

SSYTRF

SPOTRU

SPOTRX
SPOTRU

S GBTRF

S GBCON
S GBTRI

S GBTRF
S GBTRS
S GETRF
S GECON
S GETRI

S GETRF
S GETRS

5 GTS OL

SPBTRF
SPBCON

SPBTRF

SPBTRS

SPOTRF

SPOCON
SPOTRI

computes the Cholesky decomposition of apositive
matrix. apivoting optionallows the user toestim
condition of a positive definite matrix or deter min
of a positive semi definite matri x.

downdates an augmented Cholesky decomposition or
triangular factor of an augmented qr decompositio:
updates the Cholesky factorization

updates an augmented Cholesky decomposition of th
triangul ar part of an augmented qr decomposition.
factors a band matrix by Gaussian

elim nation andestimates the condition of the mat
computes the determi nant of a band matrix

using the factors computed by SGBCOor SGBFA.

if the inverseis needed, use SGBSL ntimes.
factors a band matrix by elimination.

solves the band system Az =b or A

using the factors computed by SGBCOor SGBFA.
factors amatrix by Gaussianelimination

and estimates the conditionof the matri x.
computes the determi nant and inverse of a matrix
using the factors computed by SGECOor SGEFA.
factors a matrix by Gaussianelimination.

solves the systemAd=&br A

using the factors computed by SGECOor SGEFA.
given a general tridiagonal matrix and aright hane
side will find the solution.

factors asymmetric positive definite

matrix storedinband formand esti mates the condi f
computes the determi nant

of a symmetric positive definite band matrix

using the factors computed by SPBCOor SPBFA.
factors asymmetric positive definite

matrix storedin band form.

solves the symmetric positive definite

band systemAx =0

using the factors computed by SPBCOor SPBFA.
factors asymmetric positive definite
matrix and esti mates the condition of the matri x.
computes the determi nant and inverse of acertain
symmetric positive definite matrix

using the factors computed by SPOCO, SPOFAor SQRD(
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SVD
TINVIT

TQL1
TQL?2

TQLRAT
TRBAKI
TRBAK3
TREDI
TRED2
TRED3
TRI DI B

TSTURM

driver

SSTEIN

SSTEQR
SSTEQR
or

SSTEDC
SSTEQR
S ORMUL
S ORMUL
SSYTRD
SSYTRD
and

S ORMUL
SSPTRD
SSTEBM
SSTEBM

and

SSTEIN

Compute the singul ar val ue decomposition
Compute the ei genvectors corresponding to given
eigenval ues of a symmetric tridiagonal matrix, usi
Compute all eigenval ues using the QL al gorithm
Compute all eigenval ues and ei genvectors using
the QL met hod;if the ei genpairs of a symmetric matr1
are desired, input the simlarity transformation
computed by TRED2

Determi ne all eigenvalues of a symmetric tridiagon
by the rational QL method

Forms the ei genvectors of areal symmetric matrix f
of that symmetric tridiagonal matrix determined b:
Forms the ei genvectors of areal symmetric matrix f
of that symmetric tridiagonal matrix determined b:
Reduce to symmetric tridiagonal formusing Househ
Reduce to symmetric tridiagonal formusing Househ
the simlarity transformationthat yields the tri
also constructed

Reduce to symmetric tridiagonal formusing
Househol der transformations; input matrix stored
Compute those ei genval ues between specified
indices using the Sturmsequence property
Compute those eigenval ues in aspecified

interval using the Sturmsequence property; the
corresponding eigenvectors are computed using the
inverseiteration
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RATQR SSTEBM Determi ne extreme ei genval ues of a symmetric trid
matrix using the QRmethod with Newton corrections

REBAK (STRSM) Given the eigenvectors of the symmetric matrix
out put by REDUCor REDUC2, compute the ei genvector
corresponding tothe original generalized eigenp

REBAKB ( STRMM) Gi ven the eigenvectors of the symmetric matrix
out put by REDUC2, compute the ei genvectors
corresponding tothe original eigenproblem ABx =.

REDUC SSYGST Reduce the symmetric generalized eigenproblem
Ar =ABz, where Bis positive definite tothe standa
symmetriceigenproblemusing the Cholesky factor]
of B

REDUC2 SSYGST Reduce the eigenval ue problem ABz = Az, where
both Aand Bare symmetric and either Aor Bis
positive definite tothe standard symmetric
eigenproblemusing the Cholesky factorization

RG driver Compute eigenval ues and optionally eigenvectors c
general matrix (driver routine)

RGG driver Compute eigenval ues and optionally eigenvectors c
general generalized systemAz =ABz (driver routin

RS driver Compute eigenval ues and optionally eigenvectors c
symmetric matrix (driver routine)

RSB driver Compute eigenval ues and optionally eigenvectors c
symmetric band matrix (driver routine)

RS G driver Compute eigenval ues and optionally eigenvectors c
symmetric generalized systemAz =ABx, where Ais s
Bis positive definite (driver routine)

RS GAB driver Compute eigenval ues and optionally eigenvectors c
symmetric generalized systemABx =Xz, where Ais s
Bis positive definite (driver routine)

RSGBA driver Compute eigenvalues and optionally eigenvectors c
symmetric generalized system BAx =Xz, where Ais s
Bis positive definite (driver routine)

RS M driver Compute some eigenval ues and optionally eigenvect
symmetric matrix (driver routine)

RSP driver Compute eigenval ues and optionally eigenvectors c
symmetric matrix storedinpackedform(driver rou

RST driver Compute eigenval ues and optionally eigenvectors c
symmetrictridiagonal matrix (driver routine)

RT driver Compute eigenval ues and optionally eigenvectors c
tridiagonal matrix fiemwhi>chfeor every 7 (driver ro
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HTRI B3

HTRI BK

HTRI D3
HTRI DI
I MTQL1

I MTQL?2

I MTQLV
INVIT

M NFI T
ORTBAK
ORTHES
ORTRAN

QZHES

QZI T
_I_

QZ VAL

QZVEC

CUNMUL

CUNMUL

CHPTRD

CHETRD
SSTEQR
or

SSTEDC
SSTEQR

or
SSTEDC
SSTEQR

SHSEIN
driver
S ORMUL
S GEHRD

S ORGEN

SGEQRF
SORMUL
S GGHRD
SHGEQR

STGEVC
('S TRMM)

Given eigenvectors of thereal symmetric tridiago
by HTRI D3, compute the corresponding ei genvector:
matrix

Given eigenvectors of thereal symmetric tridiago
by HTRIDI, compute the corresponding eigenvector:
matrix

Reduce to symmetric tridiagonal matrix using Hous
matrices; input matrix storedin packed form
Reduce to symmetric tridiagonal matrix using Hous
Compute ei genvalues using the implicit QL method

Compute the eigenval ues and ei genvectors using th
implicit QL method;

Compute ei genvalues using implicit QL method whil
input matrix

Compute ei genvectors corresponding togiven eigert
of an upper Hessenberg matrix, using inverseiter:
For thelinear systemAz =b, compute the singul ar
decomposition AZap5Pt he vectbr Q

Given eigenvectors of the upper Hessenberg matrix
ORTHES, compute the corresponding eigenvectors of
Reduce to upper Hessenberg formusing Househol der
Use the output of ORTHES to construct the

sim larity transformationthat generates the uppe
Hessenberg form

Reduce the generalized ei genproblemtostandard
form, where one matrixis upper Hessenberg and the
other matrixis upper triangul ar

Given the generalized ei genprobl em Az = A Bz

where Ais upper Hessenberg and Bis upper triangul
reduce Ato quasi-upper triangular formusing the
and compute the eigenval ues for the generalized
eigenproblem Az =ABxz, where Ais quasi-upper tria
and Bis upper triangle

Given the eigenvalues for the generalized
eigenproblem Ax =A Bz, where Ais quasi-upper
triangular and Bis upper triangular, compute the
corresponding eigenvectors
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6 Appendix B

6.1

EI SPACK LAPACK

LINPACK and EISEXK(unterparts

Function

BAKVEC
BALANC
BALBAK
BANDR
BANDV

BI SECT
BQR
CBABK?2
CBAL
CG

CH
CINVI T
COMBAK
COMHES
COMLR
COML R2

COMQR
COMQR2

CORTB

CORTH
ELMBAK

ELMHES
ELTRAN

FI GI
FI GI 2

HQR
HQR2

S GEBAL
SGEBAK
SSBTRD

SSTEBM

CGEBAK
CGEBAL

driver

driver
CHSEIN

Note A

Note A
Note A
Note A
CHSEQR
CUNGEN
CHSEQR
CTREVC

( CTRMM)
CUNMUL

CGEHRD
Note A

Note A
Note A

SHS EQR
SHS EQR
STREVC

('S TRMM)

Invert the balancing made by FIGI ()

Apply balancing transformations

Invert the balancing transformati on made by BALANC
Reduce to symmetric tridiagonal form

Gi ven approxi mate ei genval nes of a band matrix, use
toobtaincorresponding eigenvectors

Determi ne ei genval ues of a symmetric tridiagonal me
specified interval using Sturmsequences

Determi ne some ei genval ues using the QRmethod
Invert the balancing transformation made by CBAL ( C
Apply balancing transformations

Compute ei genvalues and optionally eigenvectors of
general matrix (driver routine)

Compute ei genvalues and optionally eigenvectors of
Hermi tian matrix (driver routimne)

Gi ven approxi mate ei genval ues, use inverse iterati
corresponding eigenvectors

Gi ven eigenvectors of upper Hessenberg matri x compt
COMHES (), compute corresponding ei genvectors of tl
matrix.

Reduce to upper Hessenberg formusing elimination
Compute using modi fied LR algorithm
Compute and eigenvectors using modi
Compute using QRal gorithm

Compute and eigenvectors using QR a

all eigenval ues
all eigenval ues
all eigenval ues
all eigenval ues

Gi ven eigenvectors of upper Hessenberg matri x compt
compute corresponding eigenvectors of original mat
Reduce to upper Hessenberg formusing Househol der n
Given eigenvectors of the upper Hessenberg matrix o
compute corresponding eigenvectors of original mat
Reduce to upper Hessenberg formusing elimination
Use the output of ELMHES to construct the similarity
transformationthat generates the upper Hessenberg
Use a balancing transformationtosymmetrize a nons
tridiagonal matrix{omwhi>pdhfer every 1

Similar to FIGI except that the balancing transform
Compute all eigenval ues using the implicit QRmetho
Compute all eigenval ues and ei genvalues and
eigenvectors using the implicit QRmethod

38



*

CALL SGEMM( °’No transpose’, ’Transpose’,

$ N-J-JB+1, JB, J -1,
$ -ONE, A( J + JB, 1 ), LDA, AC J, 1), LDA,
$ ONE, AC J + JB, J ), LDA)

Compute subdiagonal block of L.

CALL STRSM( ’Right’, ’Lower’, ’Transpose’, ’Non-unit’,

$ N-J-JB+1, JB, ONE, A(C J, J ), LDA,
$ ACJ + JB, J), LDA)
20 CONTINUE
ENDIF
GO TO 40

30 CONTINUE
INFO = INFO + J - 1

40 CONTINUE
RETURN

End of SPOTRF
END
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*

10

CALL SPOTF2( ’Upper’, JB, A( J, J ), LDA, INFO )
IF( INFO.NE.O ) GO TO 30

Update superdiagonal block.

CALL SGEMM( °’Transpose’, ’No Transpose’,
JB, N-J-JB+1,7J-1,
-0NE, AC 1, J ), LDA, AC 1, J + JB ), LDA,
ONE, AC J, J + JB ), LDA)

Compute superdiagonal block of U.

CALL STRSM( °’Left’, ’Upper’, ’Transpose’, ’Non-unit’,
JB, N-J-JB+ 1, ONE, AC J, J ), LDA,
ACJ, J+ JB), LDA)
CONTINUE
ELSE

Compute the Cholesky factorization of a symmetric matrix

stored in the lower part of the array.

DO 20 J =1, N, NB
JB = MINC NB, N - J + 1)

Update diagonal block.

CALL SSYRK( °’Lower’, ’No transpose’, JB, J - 1,
-0NE, AC J, 1 ), LDA, ONE, AC J, J ), LDA )

Factorize diagonal block and test for

non-positive-definiteness.

CALL SPOTF2( ’Lower’, JB, A( J, J ), LDA, INFO )
IF( INFO.NE.O ) GO TO 30

Update subdiagonal block.
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*

$

INFO = O

Quick return if possible.

IF( N.EQ.0 ) RETURN
IF( ( .NOT.LSAME( UPLO , ’U’ ) ).AND.
( .NOT.LSAME( UPLO , ’L’ ) ) ) THEN

INFO = -1

ELSE IF( N.LT.O )THEN
INFO = -2

ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = -4

END IF

IF( INFO.NE.O )THEN
CALL XERBLA( ’SPOTRF’, -INFO )
RETURN

END IF

Determine the block size for this environment.

CALL ENVIR( ’Get’, NB )
IF( NB.EQ.1 ) NB = N

IF( LSAME( UPLO, U’ ) )THEN

Compute the Cholesky factorization of a symmetric matrix

stored in the upper part of the array.

DO 10 J =1, N, NB
JB = MINC NB, N - J + 1)

Update diagonal block.

CALL SSYRK( °’Upper’ , ’Transpose’, JB, J - 1,
-0NE, AC 1, J ), LDA, ONE, AC J, J ), LDA )

Factorize diagonal block and test for

non-positive-definiteness.

35



LDA

INFO

On entry, A specifies the array which contains the matrix
being factored.

On exit, the array A is overwritten by the

Cholesky factorization. The factorization can be written as
either A = L*L’ where L is a lower triangular matrix

or as A = U’*U where U is an upper triangular matrix.

INTEGER.

On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program.

LDA must be at least max( 1, N ).

Unchanged on exit.

INTEGER.

On exit, a value of 0 indicates a normal return.

A positive value K indicates that the leading minor of

order K is not positive definite, which is an error
condition that causes the subroutine to end.

A negative value, say -K, indicates the K-th argument has an

illegal value.

. Parameters
REAL

ONE

PARAMETER ( ONE = 1.0E+0 )

. Local scalars

INTEGER J, JB, NB

. External functions

LOGICAL LSAME
EXTERNAL LSAME

. External subroutines ..

EXTERNAL ENVIR, SGEMM, SPOTF2, SSYRK, STRSM, XERBLA

. Intrinsic functions ..

INTRINSIC MAX, MIN

. Executable Statements ..

Test the input parameters.
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5.2 SKOTRF

SUBROUTINE SPOTRF( UPLO, N, A, LDA, INFO )

*
* -- LAPACK routine --
* Argonne National Laboratory
* September 14, 1988
*
* .. Scalar arguments

CHARACTER*1 UPLO

INTEGER N, LDA, INFO
*
* .. Array arguments

REAL AC LDA, * )
*

* Purpose

% =======
*

* SPOTRF computes the Cholesky factorization of a symmetric

* positive definite matrix A.

* This is the Level 3 BLAS version of the algorithm, reducing NB
* columns at a time.

*

* Arguments

% =========
*

* UPLO - CHARACTERx*1.

* On entry, UPLO specifies whether the upper or lower

* triangular part of the symmetric matrix A is stored.

* UPLO = ’U’ or ’u’ The upper triangle of A is stored.
* UPLO = L’ or ’1’ The lower triangle of A is stored.
* Unchanged on exit.

*

* N - INTEGER.

* On entry, N specifies the number of columns of the matrix
* A . N must be at least zero.

* Unchanged on exit.

*

x A - REAL array of DIMENSION ( LDA, N ).
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40 CONTINUE
RETURN

End of SGETRF
END
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IF( IP.NE.I )
$ CALL SSWAP( JB, AC I, J ), LDA, A(C IP, J ), LDA )
10 CONTINUE

Compute superdiagonal block of U.

CALL STRSM( ’Left’, ’Lower’, ’No transpose’, ’Unit’, J - 1,
$ JB, ONE, A, LDA, AC 1, J ), LDA )

Update diagonal and subdiagonal blocks.

CALL SGEMM( ’No transpose’, ’No transpose’, M - J + 1, IJB,
$ J -1, -ONE, ACJ, 1 ), LDA, AC 1, J ), LDA, ONE,
$ ACJ, J ), LDA )

Factorize diagonal and subdiagonal blocks and test for exact

singularity.

CALL SGETF2( M - J + 1, JB, AC J, J ), LDA, IPIV( J ), INFO )
DO20I =1J, J+JB-1
IPIV( I ) =J -1+ IPIV(I)
20 CONTINUE
IF( INFO.EQ.O ) THEN

Apply interchanges to previous blocks.

DO30I=J,J+JB-1
IP = IPIV( I )
IF( IP.NE.I )
$ CALL SSWAP( J - 1, AC I, 1), LDA, AC IP, 1 ), LDA)
30 CONTINUE
ELSE

If INFO is not zero, a zero pivot was found in SGETF2.

Correct the index returned from SGETF2 and go on.

INFO = INFO + J - 1
ENDIF
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EXTERNAL ENVIR, SGEMM, SGETF2, SSWAP, STRSM, XERBLA
. Intrinsic functions ..

INTRINSIC MAX, MIN

. Executable Statements ..

Gaussian elimination with partial pivoting

Test the input parameters.

INFO = O

Quick return if possible.

IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
IF( M.LT.O )THEN

INFO = -1

ELSE IF( N.LT.O )THEN
INFO = -2

ELSE IF( LDA.LT.MAX( 1, M ) )THEN
INFO = -4

END IF

IF( INFO.NE.O )THEN
CALL XERBLA( ’SGETRF’, -INFO )
RETURN

END IF

Determine the block size for this environment.

CALL ENVIR( ’Get’, NB )
IF( NB.EQ.1 ) NB = N

DO 40 J =1, N, NB
JB=MIN(N-J+ 1, NB )

Apply previous interchanges to current block.

DO 10 I =1, J -1
IP = IPIV( I )
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LDA

IPIV

INFO

- INTEGER.

On entry, N specifies the number of columns of the matrix
A . N must be at least zero.

Unchanged on exit.

REAL array of DIMENSION ( LDA, N ).

On entry, A specifies the array which contains the matrix
being factored.

On exit, the array A is overwritten by the

LU factorization. The factorization can be written as

A = L*U where L is a product of permutation and unit lower

triangular matrices and U is an upper triangular matrix.

INTEGER.

On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program.

LDA must be at least max( 1, M ).

Unchanged on exit.

INTEGER array of DIMENSION ( M ).

On exit, the array IPIV contains the pivot indices.

INTEGER.

On exit, a value of 0 indicates a normal return; a positive
value, say K, indicates that U(X,K) = 0.0 exactly.

This is not an error condition for this subroutine, but it
does indicate that SGETRS or SGETRI will divide by zero

if called. Use routine SGECON for a reliable indication of
singularity.

A negative value, say -K, indicates the Kth argument has an

illegal value.

. Parameters
REAL ONE
PARAMETER ( ONE = 1.0E+0 )

. Local scalars

INTEGER I, IP, J, JB, NB

. External subroutines ..
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5 Appendix A

W include here prototype code for t wo LAPACKroutines. This code is in
to showthe typical style and structure of LAPACKroutines. Other v
particul ar routines are possible, and we make no claimthat the vari:
give the best performance.

Inadditionto Level 3 BLAS, each routine calls an unblocked versi o
rithm(subroutines SGETF2 and SPOTF2).

51 SGEIF

SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )

*
* -- LAPACK routine --
* Argonne National Laboratory
* September 14, 1988
*
* .. Scalar arguments
INTEGER M, N, LDA, INFO
* .. Array arguments
INTEGER IPIV( * )
REAL AC LDA, * )
*

* Purpose

% =======
*

* SGETRF computes the LU factorization of a general m-by-n

* matrix A, using partial pivoting with row interchanges.

* This is the Level 3 BLAS version of the algorithm, reducing NB
* columns at a time.

*

* Arguments

% =========
*

* M - INTEGER.

* On entry, M specifies the number of rows of the matrix
* A . M must be at least zero.

* Unchanged on exit.

*
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torecord entry points and addresses as there is in the general SCHEI
Moreover, all of the code will be in Fortran. Since there will on th
four possibilities for different subroutines executing in parallel v
algorithm, a simple exami nation of cases will suflice to decide which s
executed withrespect toa given process descriptor.

Preferably a loop-based mechanismwill be employed to get the gene
work subroutines executing inparallel. Critical sections will be co
synchronization prim tive is available on the given machine. A sim
(“lockon” and “lockoff”) are sufficient for this purpose but other equi s
mi ght be used in their place. In keeping with the discussion of works
there will be no use of named common as was done in SCHEDULE. Instead f
shared work space will be passed as parameters and shared through cal

needed.

4.8 Mixed Ianguage Rrogrammng
LAPACKwill be codedin Fortran77 and desi gned to be called fromFortr

However, we hope to gain experience of calling LAPACKfromother pro
guages, for example Cor Ada, and to be able to give advice about it in t

documentation.
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Some LAPACKroutines will also require access to values related to
numbers onthe machine, inorder toavoidoverflowor underflowby suitab
values, BIG(the largest “safe” number in the machine) and TINY (the
“safe” number in the machine) will be made available by a numeric enqu
the relati ve machine precision, TINYcan be computed inareliable ma
way, but Bl Gecan not. Instead, the portable version will return a cons
as 1.0E4+35 for BIGthat is safe for most known machines. This value cou
correspond to whatever machine is being used. The only disadvantage
value thanthe machine could permit will be that scalingis performed s
than strictly necessary. In additiontothe relative machine precisi

radix will also be made available, computed ina machine independent

4.7 PBovisionfor Brallel Becution

The l oop-based aspect of parallelismis generally straightforward.
currently give adequate support to the concept of loop-based parall
invoking this withinthe Level 3 BLAS and perhaps also withinthe Leve
following the activities of the Parall ¢l widmphuhangb&enufmofr28d by

computer vendors, software developers, national laboratories, and u:
technical informationandto document agreements on constructs for pr
applications for shared memory parallel processors. The Forumis pl ar
proposal for parallel Fortranconstructs by the end of the summer.

In all the cases we are aware of when loop-based parallelismis in
level, subsequent invocations at alower level of anestedloop are eit
queued to ensure a correct parallel execution as long as the machine
mechani sms are used. Therefore, we do not expect to suffer fromthe prc
with auser invoking parallelismat alevel that is above acall toan L
depends upon BLAS that also invoke parallelism.

Several of the algorithms we intend to implement will require more
parallelism These algorithms will rely upon the] smenphanfiesdmS CHEDUL
toinvoke parallelism W refer|therrtadmirntod ¢ @ and i deas used in t
remainder of this section. The simplifications to SCHEDULE will inc
in the layers of subroutine calls between the act of placing a proce
computational graph andits subsequent execution. It will alsorepla
that were constructed for general use with ones that are specific to t1
will reduce overheadinvolved with special cases anderror checking t
general case but not in the specific algorithms that will arise in LAP
generic “work” routines specific toeach algorithmwhichwill receive

toidentify andinvoke a process by decoding integer arguments. There
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block size. This raises a dificulty since the block size will vary in ¢
and inany case will not be known by the user. Our proposal insuch case
user tosupply a workarrayof length lw, say, where [ wis also passed as
routine, and [ wis as large as is convenient; the routine can then comj
and use nbmazr as an upper limit on the block size. Thus the block size
thanoptimal i f insufficient workspace has been provided, but our presen
that speedis comparativel yinsensitive to variations in blockssize ¢

on either side of the opti mum.

4.5 Aray Agumarts

Al'l array arguments will be declared as assumed-size arrays (last dimn
REAL A(LDA,*), W(x)

This has t wo advantages over declarations as adjustable arrays such
REAL A(LDA,N), W(N)

¢ The routines canbe called with N=0, without contraveningthe Fort

e For 2-dimensional arrays, the corresponding actual argument can
element of a 2-di mensional arrayinthe calling program, again wif
the standard.

There is one restriction of standard Fortran which we prefer not t«
not affect the way in which LAPACKroutines are called, but does affect
LAPACKroutines, when lower level routines such as the Level 3 BLAS a
standard requires that if a 2-dimensional arrayis declared as A(LDA
array passed must be at least LDAelements long. This implies a cont
standardif the actual argument is anelement of the last column of the
program, say A(I,N) withI >1. W knowof onlyone compiler whichis cap
this contravention. Rather thanintroduce special code tohandle such

the lower level routines will be compiled without these checks being j

4.6 Nmarical mchine-dependenci es

Many LAPACKroutines will require the value of therelative machine pre
to make this available through an enquiry function where the val ue ca:
reliable portable manner (or if aninstaller desires, aspecific val ue
W prefer explicit reference toanenquiry function, rather than atte:

value in-line wherever it is needed, orrelying ontests suchas TEST.]I
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routine will be designed sothat the blocksize can be specified by the
the effects of varying the block size can be studied.

On many machine architectures (for example, most scalar machines
processor vector machines), block al gorithms offer no advantage over a
Ablock al gorithmexecuted with block size equal to 1 would have the s
the unblocked version of the same algorithm, but would be ineflici ent be
calls to Level 3 BLAS, where calls to Level 1 or 2 BLAS would be suffici ent
al gorithms (for example, SGETRF and SPOTRF in Appendi x A), setting t
ton(or greater), where nis the order of the matrix, has the effect of
the unblocked version (the whole matrixis treated as asingle block)
algorithms (for example, those described in Wrking Note #2), this is
have a consistent convention, we shall ensure (by special code) that a
execution of an effici ent unblocked versionof eachblock al gorithm

Hi therto we have envisaged routines working with a fixed block size
vary fromone installation to another, possibly alsofromone routine
sophisticated strategy is to allowthe blocksize to vary dynamicall:
the algorithm- for example, allowing the block size toincrease in o
constant the size of submatrices passed to Level 3 BLAS matrices. W p
whet her or not dynami ¢ blocking woul d offer significant benefits in perf
that i mplementing it would involve hardly any extra complicationint
elaborate procedure would be required to determi ne a good dynami ¢ bl ¢

each machimne [ 11

4.4 Workspace

Many LAPACKroutines will require workspace. W do not think that the
automatic workspace allocation devised by Fdxf otat heaRdrSclhirlyrar[y22
is suitable for LAPACK. It invol ves the use of a shared label ed COMMO
is likely tocause difliculties on multi-tasking machines, and requires
usage i f the user wishes touse more thanthe default amount of workspa

Therefore workarrays will need to be passed as arguments to LAPACK
shortage of memory is not likely to be a serious constraint on the m
LAPACKis primarily targeted, we think it reasonable for aroutine to
equivalent toseveral vectors of length n, where nis the order of the
designroutines to use more thanthe mi ni mimpossible amount of wor ks
icantlyimproves their performance. However, we stalell amentlswor ks pac
unless absolutely necessary.

Anumber of routines implementing block algorithms will require wc

toholdone block of columns of the matrix, that is, workspace of sizen
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CALL SPOTRF (’Upper triangle’, . . . )

The significant initial character may be in upper or lower case.

It will be permissible for the problemdi mensions to be passed as z
the computation (or part of it) will be skipped. (See alsosection?b. 5
will be regarded as anerror.

Each 2-di mensional array argument will be i mmedi ately followed in
byits leading di mension, whose name will have the formLD<array-name

Al'l documented routines will have a diagnostic argument I NFO. (See

4.2 Fror-handing

The di agnostic argument INFOwill indicate the success or failure of t

¢ INFO=0: successful termi nation
e INFO<O0: illegal value of argument - no computation performed

¢ INFO>0: failure inthe course of computation

All documented routines will check that i nput arguments such as N,
mtted val ues, even if the same checks are repeated by lower level 1o
that any error-message canname the routine that the user called, rath
routine that he may be unaware of .

If anillegal value of the i-th argument is detected, the routine w
handling routi ne XERBLA and then set INFO=—;. XERBLA has the same spe
as in the Level 2 and Level 3 BLAS: its 1st argument is the name of the
and its 2nd argument is the number of the argument with anillegal va
implementation of XERBLA prints a message and stops, but this is open
by installers.

W do not propose tocall any error-handling routine such as XERBLA
with INFO>0.

4.3 (Qoice of Block Size

Routines whichimplement block algorithms will need to obtaina val ue
froman enquiry routine. Determi ning optimal, or near optimal, bloc
environments is amajor research topic for the LAPACKproject. The opt
depend on several factors, such as the architecture of the machine, t
problem, and the current state of the system (for example, the cache

or the number of processors available). In the preliminary phase of

23



3.3

For

fee

4

4.1

Questiors for the (ormmity

convenience we summarize here those questions on which we woul dpar

dback:

Shoul d we provide the facility to work witheither the upper or the
symmetric matrix (see3.1.3)7If the answeris yes, should we provi ¢

inroutines for the symmetric eigenvalue problem(see 3.2.1)7

Shoul d we provide a backward Cholesky factorizationinstead of, o1

native to, the usual Cholesky factorization, if it is significantl

Have we provided suffici ent facilities for computing or updating QR
torizations (see3.1.13)7

Shoul d we provide routines for systems of equati ons withother kin
ture, for example; block tridiagonal, almost block di agonal (“sta
Our feeling at this stateis that we should not, or at least that w
any work on them In some cases (e.g. for symmetric positive-def
systems), it may be possible for us toillustrate howroutines to
built out of other LAPACKcomponents.

Aspects of Software Design

Design of Giling Sequences

Arguments of an LAPACKroutine will appear in the following order:

arguments specifying options
problemdi mensions

array or scalar arguments defining the input data; some of themmay

by resul ts
other array or scalar arguments returning resul ts
work arrays (and associated array di mensions)

di agnostic argument I NFO

The examples in Appendi x Aillustrate what this ordering implies in

Arguments specifying options will usually be CHARACTER*1 argumen
Level 2 and Level 3 BLAS. They have the advantage that alonger charact

passed as the actual argument, making the calling programmore readab
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3.2.5 Unsymmtric geamalizel agaproblem

The routines in this group deal with square matrix pencils (A, B) in

triangular; a QR-factorization of Bcan be used to achieve this formi

S GGHRD
SHGEQR

STGEVC
SHGEI N

5 GGBAL
5 GGBAK
STGS EN
STGSNA
STGSYL
STGEXC

Notes:

reduce a pencil (A, B) toone in which Ais upper Hessenberg
all or part of generalized Schur factorizationof amatrix
(A,B) in whichAis upper Hessenberg

eigenvectors of apencil (A, B)inwhichAis upper quasi-tr
selected eigenvectors of amatrix pencil (A, B) inwhichAi
byinverseiteration

bal ance a matrix pencil

backtransformeigenvectors tothose of a pencil balanced b
computes or estimates conditionnumbers associated with a
subspace

computes or estimates conditionnumbers associated withe
eigenval ue-eigenvector pair.

solve triangul ar generalized Syl vester equation
exchange adjacent di agonal elements or blocks of a pencil |
Ais upper quasi-triangul ar

eaprototype for STGEXCis the subroutine EXCHQZ of Van Dooren [ 20

e for SGGBAL see Warld [ 21

¢ STGSYL will solve the equation AX+YB=C,DX+YF =F when A, B, C an
Dare upper triangul ar or quasi-triangular. This routine will be

and STGS NA.

326 Geawdizd signlar vdwe pdlan

STGSJA all or part of generalized SVDof a pair of triangular matrice
singul ar values, and optionally vectors, using Jacobi’s methc

Notes:

etocompute the GSVDof a pair of rectangul ar matrices, it is assume

will be proceeded by a call of SGGQRP (see 3.1.14).

e STGSJAwill take triangular Aand Band return orthogonal U, V, Q,
and di agonal Cand S, such that UAQ=CR, VBQ=SR. Ris overwritten on

It requires workspace for extra copies of both Aand B.
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323 Sipla We pdean

SGEBRD
STRBRD
SGBBRD
SBDS QR

SBDSDC
SBDSIN

SBDSBM
SBDSVU

Notes:

reduce artectangul ar matrix to upper bidiagonal form

reduce an upper triangular matrix to upper bidiagonal form
reduce a band matrix to upper bidiagonal form

all or part of singul ar value factorization of upper bidiagor
matrix, by QRal gorithm

singul ar value factorization of upper bidiagonal matrix
using a di vide-and-conquer algorithm

selected singul ar vectors of upper bidiagonal matrix, byinv
selected singul ar val ues of upper bidiagonal matrix, by bise
singul ar val ues and vectors of rank-1 update of upper bidiagc

e F'or reduction to bidiagonal form, two paths are provided: either
by SGEBRD, or QR-factorization by SGEQRF followed by reduction o
triangular factor by STRBRD.

Ablock algorithmfor SGEBRDis discussed in Wrking Note #2.

Al gorithms andrelatedissues concerning SBDSVF, SBDSDC, SBDSIN a:

are discussedin Wrking Note #3 and in Chapter 2 of Working Note

¢ SGBBRD will reduce a band matrix to bidiagonal formwhile preser:

structure, using sequences of plane rotations inasimlar manner
corresponds tothe EISPACKroutine BANDR).

324  Symdricdinte gredized dgrpddem

SSYGST
SSPGST
SSBGST
SDBEBM

Notes:

reduce problemto standard form

as SSYGSTusing packed storage

as SSYGST for band matrices

Szyld’s bisection/Rayleigh quotient algorithmfor band matr

¢ SSBGSTwill be based on the algorithihof Crawford [ 19

eto backtransformeigenvectors of the standard problemto those o
problemuse STRSMafter reduction by SSYGST, or STPSV after red
SSPGST.
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322 Umynsnc dgndwe pdeam

S GEHRD
SHS EQR
STREVC
SHSEI N
SGEBAL
SGEBAK
STRSEN

STRSNA

STRSYL
STREXC

Notes:

reduce unsymmetric matrix to upper Hessenberg form

all or part of Schur factorizationof upper Hessenberg matri x
eigenvectors of upper quasi-triangul ar matrix

selected ei genvectors of upper Hessenberg matri x, by inverse
balance an unsymmetric matrix
backtransformeigenvectors tothose of the matrix balanced b
computes or estimates condition numbers associated with
asingle invariant subspace

computes or estimates condition numbers associated with

all eigenval ue-eigenvector pairs

solve quasi-triangular Sylvester equation

exchange adjacent di agonal elements or blocks of upper
quasi-triangul ar matrix

a block algorithmfor SGEHRDis describedin Wrking Note #2.

e block QRmet hods are being investigated for SHSEQR

STREVCwill have options tocompute either left or right ei genvect

ea prototype for STREXCis the algorithm &éeStutwarNg[and Parlett

[ 1]5.

STRSEN will require the user to specify the eigenvalues which de

invariant subspace. W expect tobase this routine on}the methods

STRSNAwill be based on the al gorithmof Chan, Fe] dmancomd Parlett

puting the sensitivities of the eigenval ues, and on| tfhoermet hods o

estimating the conditionnumbers of the eigenvectors.

STRSYL will solve the equation AX+ XB = (C when A and B are both u

triangul ar or quasi-triangular. This routine will be needed by STE

Block al gorithms are being investigated by Kagstrdém[ 18
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Notes:

e The routines for unsymmetric problems allowthe Schur factorizati

with aseparate routine for computing ei genvectors of the triangu

e For backtransformation of ei genvectors, either the Level 3 BLAS 1
or STRSMor the routine SORMUL can be called as appropriate; hence

specifically for backtransformation have been proposed (except af

woul d users prefer the calls tobe packagedintospecific back-trans

321 Symdric dgnd e pdlan

SSYTRD
SSPTRD
SSBTRD
SSTEQR
SSTEDC

SSTEIN
SSTEBM

SSTEVU

SSBEBM

Notes:

reduce symmetric matrix totridiagonal form

reduce symmetric matrixinpackedstorage totridiagonal for
reduce symmetric band matrix to tridiagonal form

all eigenvalues and optionally all eigenvectors of symmetric
tridiagonal matrix, using QRalgorithm

all eigenvalues and ei genvectors of symmetric tridiagonal ma
using a di vide-and-conquer algorithm

selected eigenvectors of symmetric tridiagonal matrix, by in
selected ei genval ues of symmetric tridiagonal matrix, by
bisection/multisection

eigenval ues and ei genvectors of rank-1 update of symmetric
tridiagonal matrix

eigenval ues of symmetric banded matrix using Szyld’s
algorithm

e Ablock algorithmfor SSYTRDis describedin Wrking Note #2

e W are considering the possibility of allowing SSYTRD, SSPTRD anc¢

work with either the upper or lower triangle of the symmetric mat:

the val ue of an option argument UPLO.

e [ssues concerned withthe choice of method for SSTEQR, SSTEDC and S
discussedinchapter 1 of Working Note #4. Resolution of those iss

result inadifferent structure of routines fromthat proposed here

SSTEINis intended for computing ei genvectors byinverseiteratio

eigenval ues which have already been computed by SSTEQR or SSTEBM

etoformthe orthogonal matrix used for the reductionin SSYTRD, us:

eto back-transformeigenvectors computed by SSTEQR or SSTEDC or S

those of anoriginal symmetric matrix, use SORMUL.
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SGERQF is intended primarily for factorizing an m by-n matri x wi
[0: Rl Qwhere Ris upper triangular. Thisis neededinsomeapplica
optimi zation, and also as afirst stepincomputingthe SVDof an m b
m<n. Ablock algorithmanal ogous tothat for SGEQRF can be used.

e STZRQF will factorize an m by-n upper trapezoidal matrix with m<
where Ris upper triangular. This is needed to compute the compl
factorizationof arank-deficient matri x and hence to obtain the mi
tion of rank-deficient linear least squares problemj (oee Lawson a
details).

¢ SGEQRS may provide only the straightforward solution of a full-r
squares problem, that is, not necessarilyall of the functions prov
routine SQRSL. Other functions providedby SQRSL can be obtained by
of SORMUL.

e SORMUL will have options to conlpht B@Br GQf or gi ven B (over -
writing the result on B).

¢ SORGENwill allowthe factor ina QRfactorizationto be formed e:
e Both SORMUL and SORGEN can use block al gorithms.

¢ SGEQRUwill performa low-rank update of a QRfactorilzzation, i.e.
QR.

e Note that other updates of QR factorization can be obtained fro
SPOTRU and SPOTRX (see 3.1.3).

31.14 Geasdizd QR Fadaiztin

SGGQRP generalized QRfactorizationof apair of rectangul ar matric
(pivotingis necessary)

Notes:

e SGGQRP will compute a generalized QRfactorizatioh.as defined by Pz

3.2 Egemal ve Roblemn

This sectionof LAPACKis concerned withcomputingeigenval ues andei ge
val ues and singular vectors, of standard and generalized problems. 11
facilities of EISPACKas well as many newones, with the routines bei:
systematically thanin EI SPACK.
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2.performCholesky factorization and solvelinear equations

3.solvelinear equations using the factorizationfroma previous

The LI NPACKroutine SPTSL only performs option 2 but the other opt

providedat little extra cost incomplexity.

e SMISOLis envisagedas i mplementingthe same al gorithms as SPTSOL,
vectorizationover the systems of equations. This requirement is c
P.D.E. 5.

31.13 QR fadaiztian and rd ated ratives

SGEQRF QR factorizationof arectangul ar matrix wi thout pivoting

SGEQRP as SGEQRF but wi th column interchanges

SGERQF RQfactorizationof arectangul ar matri x

STZRQF RQfactorizationof an upper trapezoidal matrix

SGEQRS solve linear least squares problemafter factorization by
SGEQRF or SGEQPR

SORGEN generate leading col umns of an orthogonal matrix whichis def
as a product of Househol der matrices

SORMUL mul tiply arectangul ar matrix by an orthogonal matrix which i
defined as a product of Househol der matrices

SGEQRU rank-kupdate of a QRfactorization

Notes:

e Block algorithms for SGEQRF have been described by Bl schof and V
Wal ker][,9and Schreiber and vhn Loan [ 10

e Twodistinect routines SGEQRP and SGEQRF are proposed: one with, an
out, the facility for column interchanges. The argument list for
good deal simpler thanthat of SGEQRP. SGEQRFis envisaged as a modt
primarily be used as a component in algorithms such as the singul a
sitionandthe generalized eigenval ue problem, whereas SGEQRP wil

for solvinglinear least squares probl ems.

elt is not possible toimplement a block algorithmfor SGEQRP if ar
interchanges are to be allowed. However, we will investigate the p
safeguardedlocal pivotingstrategy propussienglimmBeschafidelsionl y
withinthe current block provided that this is acceptable. W will

anoptiontospecifyeither global pivoting or this local pivoting
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31.10 Triagla bad wirices

STBTRS solve systems of linear equations
STBRFS compute error bound
STBCON estimate condition number

Notes (see also 3.1.8 where relevant):

e These routines will use the same storage scheme as the TBroutine

BLAS.
31.11 Gewd tridegrdl mnces

SGTSOL Solvelinear equations

SGTTRF LU-factorization withrowinterchanges

SGTTRS solvelinear equations after factorization by SGITTRF

SGTRFS refine solution computed by SGTTRF, with optional error bound
SGTCON estimate (or compute?) condition number

SGTEQU equilibrate matrix

Notes:

¢ SGTSOLis similar tothe LI NPACKroutine SGTSL: it sol ves the syste:
directly and does not save full details of the factorization; it
storage and speed than successive calls to SGI'TRF and SGTTRS.

¢ SGTCON may use Higham’ s results on computing condition numbers of

matrices [H
31.12 Symric pritivedirnte tridagyal wrices

SPTSOL solve linear equations

SPTTRF Cholesky factorization

SPTTRS solvelinear equations after factorizationby SPTTRF

SPTRFS refine solution computed by SPTTRF, wi th optional error bound

SPTCON estimate (or compute?) condition number

SPTEQU equilibrate matrix

SMISOL as SPTSOL but for multiple systems of equations each withits
own right hand side

Notes (see also 3.1.11 where relevant):

¢ SPTSOL will have options to:

l.performCholesky factorization
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31.7 Symdric inHirite wrices, pdked staage

SSPTRF Bunch-Parlett factorization

SSPTRS solvelinear equations, after factorizationby SSPTRF
SSPTRI compute inverse, after factorizationby SSPTRF

SSPRFS refine solution computed by SSPTRS, with optional error bound:
SSPCON estimate condition number, after factorization by SSPTRF
SSPTRU low-rank update of a Bunch- Parlett factorization

SSPEQU equilibrate matrix

Notes: See 3.1.6 and 3.1.4 whererelevant.
31.8 Triapla wrices

STRTRS solvelinear equations
STRTRI compute inverse

STRRFS compute error bound
STRCON estimate condition number

Notes:

e These routines will handle either an upper or alower triangul ar m

the val ue of an option argument UPLO.
e STRTRS will be little more than aninterface tothe Level 3 BLAS rc

with the additionof atest for singularity.

31.9 Trapla wnces, poked stasge

STPTRS solve systems of linear equati ons
STPTRI compute inverse

STPRFS compute error bound

STPCON estimate condition number

Notes (see also 3.1.8 where relevant):

e These routines will use the same packedstorage scheme as the Level

packing by col umn.
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31.5 Syn#ric pritive-dinte band watrices

SPBTRF Cholesky-factorization

SPBTRS solution of linear equations, after factorization by SPBTRF
SPBRFS refine solution computed by SPBTRS, with optional error bound
SPBCON estimate condition number, after factorization by SPBTRF
SPBEQU equilibrate matrix

Notes (See also 3.1.3 where relevant):

e The routines inthis group use the same storage scheme when UPLO =]
routines in LI NPACK, with the obvious extension when UPLO=°L".

31.6 SyndncinHinte mrices

SSYTRF Bunch - Parlett factorization

SSYTRS solve linear equations, after factorizationby SSYTRF
SSYTRI compute inverse, after factorizationby SSYTRF

SSTRFS refine solution computed by SSYTRS, with optional error bound
SSYCON estimate condition number, after factorizationby SSYTRF
SSYTRU low-rank update of a Bunch- Parlett factorization

SSYEQU equilibrate matrix

Notes:

e Because of the need for di agonal pivoting in the Bunch-Parlett fa
not seemto be possible to develop a block algorithmfor SSYTRF, h
scope for using Level 2 BLAS.

e W areinvestigating the possibility of combiningintothe single

functions of the LI NPACKroutines SSIFA and SCHDC.

e Here al so we are considering the possibility of working witheithe

triangle.

¢ SSYTRUcorresponds tothe routine SPOTRU, but applied toasymmetr

factorization.
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e Prototype code for one possible variant of SPOTRFis presented in

e For SPOTRF, just as for SGETRF, more than one vari ant of the block al

be derived. W will investigate the performance of different varia

¢ SPOTRUcorresponds tothe LI NPACKroutines SCHUDand SCHDD, wi thth
ence that it allows arank- kmodificationwith&i>1. Indowndating, t
may have to be performed as a sequence of rank-1 downdates to main
Note that these matrices can also be regarded as updating the tria

QR factorization.

¢ SPOTRX corresponds to the LI NPACKroutine SCHEX. It also can be re
updating the triangular factor of a QRfactorizationandallows su

be updated by the addition or deletion of a col umn.
31.4 Syn#ric pritivedfirite mrices in poked staage

SPPTRF Cholesky factorization

SPPTRS solvelinear equations, after factorization by SPPTRF
SPPTRI compute inverse, after factorization by SPPTRF

SPPRFS refine soluti on computed by SPPTRS, with optional error bound
SPPCON estimate condition number, after factorizationby SPPTRF
SPPTRU low-rank update or downdate of a Cholesky factorization
SPPTRX permute col umns of a Cholesky factorization

SPPEQU equilibrate matrix

Notes (See also 3.1.3 where relevant):

e The routines inthis group will call only Level 2 BLAS, not Level 3.
BLAS do not cater for packed storage.

e The routines will use the same packed storage scheme as the Level
is, if UPLO=°U", the upper triangle is packed sequentially by cc
conventionusedin LINPACK, andis equi valent topackingthel ower t
if UPLO="L", thelower triangleis packedsequentiallybycolumn (-
to packing the upper triangle by rows).

12



31.2

Geawmd bl mrices

SGBTRF LU-factorization withrowinterchanges

SGBTRS solvelinear equations, after factorization by SGBTRF
SGBRFS refine solution computed by SGBTRF, with optional error bound
SGBCON estimate condition number, after factorization by SGBTRF
SGBEQU equilibrate matrix

Notes (see also 3.1.1 where relevant):

31.3

The routines in this group will use the same storage scheme as the
LI NPACK, that is, di agonals of the matrixarestoredinrows of the a

of the matrix are storedincolumns of the array.

Synetric pritive-dofirite mwnices

SPOTRF Cholesky factorization

SPOTRS solve linear equations, after factorization by SPOTRF
SPOTRI compute inverse, after factorization by SPOTRF

SPORFS refine solution computed by SPOTRS, with optional error bound
SPOCON estimate condition number, after factorizationby SPOTRF
SPOTRU low-rank update or downdate of a Cholesky factorization
SPOTRX permute col umns of a Cholesky factorization

SPOEQU equilibrate matrix

Notes:

W are considering the possibility of providing all the routines
an option parameter UPLO. If UPLO =°“U", the upper triangle of th
matrix must be suplied and the matrix wi 'I,besfan tldiNPACKad I/

UPLO =“L’, the lower triangle will be supplied, and tfhe matrix fa
as in EISPACK(routines REDUC and REDUC2). Would this additional

be useful? or wouldit be an unwel come complication?

W are also considering the possibility of providing “backward” (
tions U&nd L, as well as the conventional “forward” factorizations
that a backwardfactorizationis significantly faster onsome machi
investigate this. If thereis asignificant advantageinperforman
either of the backward factorizations as an optional alternati v
or eveninstead of them? (The LINPACKroutines SSIFAalready uses

factorization for symmetricindefinite matrices.)

Block algorithms for SPOTRF, SPOTRS and SPOTRI are straightforwar
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31.1

Geawmd mrices

SGETRF LU-factorizationwithrowinterchanges

SGETRS solve linear equations, after factorizationby SGETRF
SGETRI compute inverse, after factorization by SGETRF

SGERFS refine solution computed by SGETRS, with optional error bound
SGECON estimate condition number, after factorization by SGETRF
SGEEQU equilibrate matrix

Notes:

Block algorithms for SGETRF, SGETRS and SGETRI are straightforwar

For SGETRF more than one variant of the block algorithmcan be der
tending to block algorithms the anal ysis of DongarrralHustavson a

performance of the di fferent variants will be investigated.
Prototype code for one possible variant of SGETRFis presentedin

SGETRFwill factorize arectangular matrix (sothat thefactor L ma;
This additional flexibilityis occasionallyuseful; alsoablocked
requires an unblocked version of the algorithmto factorize arec

The other routines inthis group workonly withsquare matrices.
SGETRS will sol ve AX ="K o BA

For SGETRI two methods are possible: eithendt8'boympallkslto

STRTRI and then to formtheir'dradactt® compuited¥a call to

STRTRI and then tosolve for Xthe eqtulatTha IXat+&r methodis used
inthe LI NPACKroutine SGEDI andis likely tobe faster, but requir.

one block of col umns .

For SGEEQU we envisage options for rowscaling, column scalingor r
scaling. For the last option we are investigating the scaling alg

Reid] and al so cheaper alternatives.
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3 Organization of Foutines and Choice of Algorithms

Inthis section we describe the functions of the routines, and the inte
them; and gi ve notes on the choice of algorithms. For simplicity we de¢
for red, siide pedsimmmrices aly( routi ne names beginning with S).

For convenience we di vide the routines intotwosections

eroutines associated with the solution of systems of linear equat
some routines for solving linear least problems. These are cent
standard non-iterative factorizations (LU, Cholesky, QR), and co:
LI NPACK.

eroutines associated with the solution of eigenval ue problems (i:1
problems and singular value problems). These are centered on an i

for computing ei genvalues, and correspond roughly to EI SPACK.

The di visionis not clear cut: some routines inthe first section also
eigenval ue problems; and linear least squares problems may be sol ved

the first section (using QRfactorization) or by routines inthe seconc

3.1 PRutines for Sol ving Ii near Kyntiors

This section of LAPACKis concerned with the solution of systems of
AX=B. Similar groups of routines will be provided for diflerent type
and these are describedinthe followingsubsections. The overall str
of LI NPACK.

This sectionalsocontains routines basedonthe QRfactorization fc
squares probl ems.

The following remarks apply toall groups of routines inthis chapte

¢ The routines for solvinglinear equations (TRSroutines) will all

hand sides (withthe possible exception of routines for tridiagon

e F'or further discussionof theroutines foriterativerefinement and

(RFS and CONroutines), see Chapter 3 of Working Note #4.

e The routines for conditionestimation will all use Higham's versi ¢
[ . The CONroutines mentioned here will all call Higham’ s al gori

estimate the notTimof A



HRD
TRD
BRD
EQR
EDC
EIN
EVC
EBM
EVU
S QR

S DC

SBM
SVU
STA
SEN
SNA
SYL
EXC
BAL
BAK

GST

GE GB GG HS HG TR TG SY SP SB ST BD DB

X X
X X X
X X X
X X X
X
X X X
X X
X X X
X
X
X
X
X
X
X
X X
X X
X X
X X
X X
X X



The following tables indicate which combinations of the codes XX an
aged. The first table covers routines which are primarily associated
systems of linear equations and are listedin Section3.1. The second
which are primarily associated witheigenvalue problems and are liste

donot list the complex counterparts of SYand SP. )

GE GB GT PO PP PB PT MI' SY SP TR TP TB TZ OR GG

TRF x X X X X X b b b

TRS x b b b b b b b X X X X

RFS x b b b b b b X X X X X

TRI X X X X b b b

CON «x b b b b b b X X X X X

S OL X X X

TRU b b X X

TRX X b

EQU x b b b b b X X X

QRP x X
QRF  x

RQF x X

QRS x

QRU x

GEN X
MUL X



QRF
QRP
QRS
QRU

RFS

RQF
SBM
SDC
SEN

SIN

STA

SNA
S OL

SQR

SVU
SYL
TRD
TRF
TRI

TRS
TRU

TRX

QR-factorization without pivoting

QR-factorization with pivoting

solutionof linear least squares problems, following QRfactc
update QR-factorization

refine initial approxi mate solutionreturned by TRS routines,
with optional error bound

RQ-factorization

compute selected singular values, by bisection/multisection
all singular values and vectors, using a di vide-and-conquer a
conditionnumber (sensitivity) of aninvariant subspace

selected singular vectors (assuming singul ar values are know
by inverseiteration

computes singul ar values and optionally singul ar values usin

(needed by GSVD)
conditionnumbers (sensitivities) of all eigenvalue-eigenve
solution of linear equations

compute singul ar val ues and, optionally, singul ar vectors,
using QRal gorithm

rank-1 update of singul ar val ue decomposition

s equation

solve Syl vester
reduction tosymmetric tridiagonal form

triangular factorization (LU, Cholesky, etc)

compute inverse (based ontriangular factorization)
solution of linear equations (basedon triangular factorizat

update or downdate triangul ar factorization

exchange rows and columns in triangul ar factorization



BAK
BAL

BRD
CON
EBM
EDC

EIN

EQR

EQU
EVC
EVU
EXC

GEN

GST

HRD

back-transformati on of eigenvectors after bal ancing
balance a matrix or matrices (for eigenval ue computation)
reduction to bidiagonal form

estimate condition number

selected eigenval ues, by bisection/multisection

all ei genval ues and ei genvectors, using a di vide and conquer
selected eigenvectors (assuming eigenval ues are known), by i

all eigenval ues and, optionally, Schur factorization or eige
using QRalgorithm

equilibrate matrix (for solving linear equations)
eigenvectors fromSchur factorization

rank-1 update of ei genval ue decomposition
exchange eigenvalues (in Schur factorization)

generate areal orthogonal or complex unitary matrix (as a pro
Househol der matrices)

reduce symmetric-definite generalized eigenval ue
problemto standard form

reduction toupper Hessenberg form

mul tiply a matrix by real orthogonal or complex unitary matri
aproduct of Househol der matrices)



PT symmetric or Hermi tian positive definite tridiagonal
SB (real) symmetric band

SP (real) symmetric, packedstorage

ST (real) symmetric tridiagonal

SY (real) symmetric

TB triangular band

TG triangular matrices, generalized problem

TP triangular, packedstorage

TR triangular (or insome cases quasi-triangular)

TZ trapezoidal

UN (complex) unitary

The precise meani ng of some of these codes may become clearer in the
of proposed routines in Section 3.
The final letters YYYindicate the computati ondone by aparticular s

Section 3 may make the meaning of some of the codes more clear.



Note that the last is not standard Fortran but is available in many F
machines where double precision computationis usual.

The next twoletters, XX, indicate the type of matrix (insome cases
most significant matrix). Most of these two-letter codes apply to bot

routines; afewapply specificall y toone or the other, and this is indi

BD bidiagonal

DB generalized banded symmetric or Hermi tian positive definite
GB general band

GE general (i.e. unsymmetric, insome cases rectangul ar)
GG general matrices, generalized problem

GT general tridiagonal

HB (complex) Hermi tian band

HE (complex) Hermi tian

HG Hessenberg matrix, generalized problem

HP (complex) Hermi tian, packedstorage

HS Hessenberg

MI' as PTbut for multiple systems of equations

OR (real) orthogonal

PB symmetric or Hermi ti an positive definite band

PO symmetric or Hermi tian positive definite

PP symmetric or Hermi tian positive definite, packedstorage



of algorithms. Section 4 discusses aspects of software design. Spec:
routines are presentedin Appendi x A. Appendi x Bshows howthe functi
and EI SPACKroutines would be covered (withafewexceptions) by LAPAC

The contents of this workingnote are poisialland are likely to be modi fi
extent inthelight of comment and experience. W are publishing our pl
order to give people anearly opportunity to offer suggestions, critiec
software. Some questions on which we would particularly welcome feec
the end of Sections 3 and 4.

2 Naming Scheme

Asubroutine nami ng scheme has been designed, similar instyletothat
[2 and later for the]LenvdlL&v[ed 3 BLASThe foll owing principles influen
the design:

ethe names should be as mnemoni ¢ and systematic as possible within

constraints of standard Fortran 77 6-character names.

ethe names shouldindicate the functionof the routines rather than

(except inafewcases where we plantoprovide more thanone al gori

task).

e there should be no clashes with names already used in EI SPACK, LID
BLAS.

W have tried to make the computati onal routines as modul ar as possi
ineither LI NPACKor EI SPACK. The reasons for this are:

e when the areas covered by LI NPACKand EI SPACKare combined, there i

ably greater scope for sharing common features.

e the routines in LAPACK, based on block al gorithms, are likely toi:
plex code than LI NPACKor EI SPACK, and hence there are stronger re
duplicate it.

Each subroutine name is a coded specification of the computation don
tine. All names consist of sixletters inthe formTXXYYY. The first 1 e

the matrix data type as foll ows:

S REAL

D DOUBLE PRECI SI ON

C COMPLEX

Z COMPLEX*16 or DOUBLE COMPLEX (if available)



LAPACK Working Note #5 Provisional Contents

Chris Bischof, James Demmel, Jack Dongarra, Jeremy Du Croz,
Anne Greenbaum, Sven Hammarling, and Danny Sorensen

ABSTRACT
This note outlines the proposed computational routines in LAPACK. Tt «
scheme for the routines, enumerates the individual routines, include
algorithms and discusses aspects of software design. The contents of ¢

and may be modified inthelight of comment and experience.

1 Overview

LAPACKis pl anned tobe acollectionof Fortran77subroutines for the ar
of various systems of simul taneous linear algebraic equations, lineau
and matrix eigenval ue probl ems .

The subroutines are intended to be transportable and effici ent acros
computing environments, with special emphasis on modern high-perfor
For more about the background, moti vati on and design goals of LAPACK, s
tus |1

Our planis that LAPACKshould include two broad categories of routi
distinction mayinsome cases be blurred):

amtaiad raties, each performing a distinct algorithmic task, such as p
form ng an LUfactorization, reducing amatrix to Hessenberg form, or
of a bidiagonal matri x.

diver ratives, each of which solves a complete problem, using a series of
computational routines and possibly some additional code, for exampl]
of linear equations with one or many right hand sides, or computing a
optionally eigenvectors of asymmetric matri x.

Driver routines are provided in EI SPACK ( RG, RGG, RS and so on); th
suchroutines in LI NPACKhas often been criticized.

This waking mte dasses the captaiad ratives aly At this stage
of the project we feel that it is more i mportant to design and devel op
routines.

Section 2 of this working note describes the nami ng scheme for ther

lists the proposed routines and contains notes on the structure of th



ABSTRACT

This noteoutlines the provisional contents of LAPACK. It describes an
routines, enumerates the individual routines, andincludes notes ont

and aspects of software design.
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