
r n e

ui elines for the esign of ymmetric igenroutines,

an Iterative e nement for inear ystems

James Demmel, Jeremy Du Croz, Sven Hammarling and Dan Sorensen

March 1988

stract

This note summarizes the numerical and software issues which arise in designing the LAPACK

subroutines for the symmetric eigenproblem, the singular value decomposition (SVD) and iterative

re�nement for linear systems. At the end of each chapter are a list of design questions for which we

would like feedback from the user community.

Chapter

e nes f r e e r c

enr nes n

1.1 Intro uction

This chapter discusses numerical and software design issues arising in the symmetric eigenroutines

in LAPACK. Section 2 below summarizes the three algorithms available. Section 3 lists the criteria

we will use to evaluate the algorithms. Section 4 lists the various computing environments and user

options which will impact the choice of algorithm. Sections 5 to 8 make detailed comparisons of the

three algorithms. Section 9 proposes an easy-to-use driver for the overall problem. Finally, section

10 lists design questions for which we would like feedback from the user community.

1.2 vaila le lgorithms

� R and its variations - Here we include not only the standard explicit or implicit symmetric

tridiagonal R algorithm, but variations such as T LRAT or PWK which are designed be

go faster if no eigenvectors are desired [8, p. 164f]. This includes the possibility of using

T LRAT or PWK to compute all the eigenvalues followed by inverse iteration to compute

selected eigenvectors. We will call this collection of methods R for short.

� Divide and Conquer - This algorithm has been developed by Dongarra, Sorensen and Cuppen

[12]. We will call it D C for short.

� Bisection/Multisection - Here we include not just traditional bisection based on Sturm se-

quences followed by inverse iteration for the eigenvectors, but improvements based on multi-

section (in a parallel environment), using higher order zero �nders (like EROIN) rather than

just bisection, and reorthogonalization to guarantee orthogonality of eigenvectors correspond-

ing to clustered eigenvalues. A prototype of such a code has been developed by Sameh, Lo

and Philippe at Illinois [10]. We will call it B/M for short.

1.3 Com arison Criteria

� Accuracy (including special cases, like diagonal dominance)

1

� Susceptibility to Over/under
ow

� Speed

� Storage

1. tions nvironments

� Original data dense or tridiagonal

� Serial or parallel algorithm

� Which eigenvalues, eigenvectors desired:

{ Some eigenvalues only

{ All eigenvalues only

{ Some eigenvalues and associated eigenvectors

{ All eigenvalues and eigenvectors

1. ccuracy ra eo s mong Q , C,

The accuracy achievable depends on whether the initial data is tridiagonal or dense, and on special

properties of the matrix. The usual perturbation theory says that all eigenvalues are determined

by the data to within absolute accuracy f(n)� � kAk, n = dim(A) and f(n) a modest function of

n, provided each component of the initial data is known to that absolute accuracy. In other words,

small absolute perturbations in the data cause small absolute perturbations in the eigenvalues. All

three algorithms can compute the eigenvalues to this accuracy. Unless something special is known

about the data, no more can be said. There are at least two special cases where the eigenvalues

can be determined more accurately, because a stronger perturbation theorem is true: small relative

perturbations in the data cause small relative perturbations in the eigenvalues.

� If A is tridiagonal with 0 diagonal, and all the data is known to within relative accuracy , all

the eigenvalues are determined to within relative accuracy 2n . This is equivalent to the SVD

of a bidiagonal matrix. (See LAPACK Working Note #3 [13] and [9].)

� If A is tridiagonal and diagonally dominant (de�ned below), and all the data is known to

within relative accuracy , all the eigenvalues are determined to within relative accuracy of at

most approximately n =(1�), where measures the diagonal dominance as follows: Suppose

A has diagonal entries a

1

; :::; a

n

and o�diagonal entries b

1

; :::; b

n�1

. Then � 2max

i

jb

i

j �

ja

i

� a

i 1

j

�1=2

. Note that this de�nition permits graded matrices which are not diagonally

dominant in the more traditional sense. (See [9, 13].)

There are doubtless other cases where the eigenvalues (and eigenvectors) are determined more

accurately by the data than the usual absolute bound f(n)� � kAk. As long as an algorithm de-

termines the eigenvalues with a small componentwise relative backward error (i.e. computes the

exact eigenvalues of A+ �A with j�A

ij

j � jA

ij

j), then if there is a relative perturbation theorem as

above (i.e. small relative changes in the data cause small relative changes in the eigenvalues), the

eigenvalues will be computed accurately.

2

1.5.1 riginal Data Tridiagonal

� R - If the tridiagonal has 0 diagonal, it could be changed into a bidiagonal SVD and the SVD

R used to get the eigenvalues to high relative accuracy, but this would be quite inconvenient

to check for. Work is underway to evaluate R and its variants (PWK) to see if they can

compute eigenvalues accurately for diagonally dominant tridiagonals; this is a research question

(we have no good idea as to what convergence criterion to use), so we should not count on R

for this problem. Also, R does not guarantee small componentwise backward error.

� D C - It appears di�cult to guarantee high relative accuracy in any situation from the zero

�nder in D C.

� B/M - B/M is de�nitely the best of the three algorithms for accuracy. It can always guarantee a

tiny componentwise relative backward error independent of the data (modulo over/under
ow),

and so will compute the eigenvalues as accurately as they deserve.

1.5.2 riginal Data Dense

Unless something special is known about the data, all that can be said is that the resulting tridiagonal

is exactly similar to a matrix within a small absolute distance f(n)�kAk of the original data A. Thus

no (nonarti�cial) class of matrices is known where the eigenvalues are determined by the data to

better than absolute accuracy. Therefore, each of R, D C and B/M has the same provable error

properties: guaranteed absolute accuracy.

1.5.3 M and Monotonic Arithmetic

B/M is based on using a Sturm sequence to count the number of eigenvalues n(z) less than z for

any z. In exact arithmetic, n(z) is a monotonic step function with unit increases at the eigenvalues.

If the arithmetic is monotonic (eg. a b implies fl(a+ c) fl(b+ c), etc.), and if the inner loop of

the Sturm sequence is implemented correctly, then the computed value of n(z) is also monotonic. If

we could assume n(z) were monotonic, this might simplify the logic in an implementation of B/M;

we do not yet know if this is important. If it does turn out to be a useful simplifying assumption,

should we use it, and warn the user in the documentation?

1. ver n er o usce ti ility ra eo s mong Q ,

C,

Here we deal with tridiagonal data only, since the reduction to tridiagonal form is the same for all

three algorithms. Over/under
ow is an issue because various researchers have reported under
ow

problems with the EISPACK routines recently. Brie
y, since the current codes square and sometimes

cube the initial data, they are susceptible to over/under
ow when the data lies outside [

1=2

;

1=2

]

or sometimes [

1=3

;

1=3

] (here is the under
ow threshold and is the over
ow threshold). It

appears that this can be avoided at the cost of a few more multiplies inside the inner loop (to

avoid precomputing all the b

2

i

), and changing the shift computation. The goal would be to make

over/under
ow impossible or comparable to roundo� for initial data much closer to the full range

[;]; some safety margins at the top and bottom are acceptable, but no constant fraction (i.e. half)

of the exponent range could be excluded. Clearly, the shift should never over
ow unless the largest

eigenvalue of A itself is close to , and it should never under
ow unless the smallest eigenvalue of

A is close to or less than .

� R- The shift calculation needs to be changed to avoid squaring and sometimes cubing the

data. The inner loop of standard implicit R needs to be examined. It appears we can change

3

the inner loop of PWK (square root free R) to make it satisfactorily robust with respect

to over/under
ow, but at the cost of reinserting a square-root. Is this acceptable? Another

option is to scale the data based on the machine dependent constants and before running

the standard algorithm. Is it acceptable to do such a machine dependent scaling?

� D C- The susceptibility to over/under
ow of this algorithm is not known.

� B/M- If we avoid presquaring the o�diagonals b

i

(and so add one multiply to the inner loop),

the standard bisection algorithm can be made very robust. If we are willing to test and scale

in the innerloop based on and (machine dependent), it can be made ironclad; is this

ok? Unfortunately, the faster version of the code which uses EROIN to �nd zeros of the

determinant of the shifted matrix is extremely sensitive to over/under
ow, and would not be

reliable without scaling inside the inner loop, as is done to compute the determinant in the

LINPACK routine SGEDI. Is there an alternative to �nding zeros of the determinant (eg.

�nding zeros of the last pivot) which would eliminate the need for scaling? Or is scaling inside

the inner loop acceptable?

1. ee ra eo s mong Q , C an

We only discuss tridiagonal data here, since the reduction to tridiagonal form is the same for all

three. If the original data is dense, the time for reduction to tridiagonal form may overwhelm the

di�erences between algorithms we discuss below. This is particularly likely if eigenvalues only are

desired, since the cost of this is (n

2

) whereas the reduction costs (n

3

). Here the important

environmental features and options are:

� Serial or parallel algorithm

� Which eigenvalues, eigenvectors desired:

{ Some eigenvalues only

{ All eigenvalues only

{ Some eigenvalues and associated eigenvectors

{ All eigenvalues and eigenvectors

1. .1 Serial Algorithm

o e ei envalues onl

� R- No consistent advantage can be taken of this case.

� D C- No consistent advantage can be taken of this case.

� B/M- This is the method of choice, at least if a small enough fraction of the spectrum is desired.

EISPACK says if 25 or fewer of the eigenvalues are desired, use B/M. Exact threshold between

B/M and R will be machine dependent.

ll ei envalues onl

� R- Probably fastest, especially with the PWK variant.

� D C- Slowest, because it has to compute eigenvectors as well.

� B/M- Slower than R, but not clear if cost is more than a factor of 2, or less (will be machine

dependent).

4

o e ei envalues an associate ei envectors

Here it seems hard to rank the algorithms, because it depends strongly on what fraction of the

spectrum is desired; the best choice will be machine dependent.

� R- The algorithm computes all the eigenvalues and then uses inverse iteration with ultimate

shifts for the desired eigenvectors. This might be fast depending on the fraction of the spectrum

desired.

� D C- Probably fastest if large enough fraction of eigenpairs desired.

� B/M- Fastest if small enough fraction of eigenpairs desired (use inverse iteration plus reorthog-

onalization for eigenvectors).

ll ei envalues an ei envectors

� R- Second fastest.

� D C- Fastest.

� B/M- Slowest (hard to say how much slower than fastest).

1. .2 Parallel Algorithm

o e ei envalues onl

� R- No consistent advantage can be taken of this case.

� D C- No consistent advantage can be taken of this case.

� B/M- This is the method of choice, at least if a small enough fraction of the spectrum is

desired.

ll ei envalues onl

� R- Hard to parallelize, no advantage over serial case.

� D C- Slowest, because it has to compute eigenvectors as well.

� B/M- Fastest.

o e ei envalues an associate ei envectors

Here it seems hard to rank the algorithms, because it depends strongly on what fraction of the

spectrum is desired.

� R- Slowest.

� D C- Fastest if large enough fraction of eigenpairs desired.

� B/M- Fastest if small enough fraction of eigenpairs desired (use inverse iteration plus reorthog-

onalization for eigenvectors).

5

ll ei envalues an ei envectors

� R- Slowest.

� D C- Perhaps fastest (testing needed).

� B/M- Perhaps fastest (testing needed).

1. torage ra eo s mong Q , C, an

Here the important environmental features and options are:

� Original Data Dense or Tridiagonal

� Which eigenvalues, eigenvectors desired:

{ Some eigenvalues only

{ All eigenvalues only

{ Some eigenvalues and associated eigenvectors

{ All eigenvalues and eigenvectors

The following conclusion are tentative, and could change as the implementation details are worked

out.

1. .1 riginal Data Dense

o e ei envalues onl

All algorithms use n

2

+ (n)

ll ei envalues onl

All algorithms use n

2

+ (n)

o e ei envalues an associate ei envectors

Let the number of eigenpairs be .

� R- n

2

+ n+ lower order (eigenvalues alone followed by ultimate shifts for accumulation).

� D C- 1:5n

2

+ lower order; there is no savings for eigenpairs only. The coe�cient 1.5 is

di�cult to attain; 2 is easier.

� B/M- n

2

+ n+ lower order.

ll ei envalues an ei envectors

� R- n

2

+ lower order.

� D C- 1:5n

2

+ lower order. As before, the coe�cient 1.5 is hard to attain; 2 is easier.

� B/M- 2n

2

+ lower order (1:5n

2

if packed?).

6

1. .2 riginal Data Tridiagonal

o e ei envalues onl

(n) for all.

ll ei envalues onl

(n) for all.

o e ei envalues an associate ei envectors

� R- n+ lower order (all eigenvalues, then inverse iteration).

� D C- n

2

+ lower order (no savings for eigenvectors only).

� B/M- n+ lower order.

ll ei envalues an ei envectors

n

2

+ lower order for all.

1. ecommen ations for asy- o- se river

We propose the following underlying philosophy for the design of easy to use drivers: pick the most

accurate routine as long as the performance or storage penalty is not too large. In this case, if the

original data is tridiagonal, we would always use B/M. The largest performance penalty is when

computing all eigenvalues and eigenvectors using the serial algorithm, and it is not yet clear whether

the penalty is more or less than a factor of 2. If the original data is dense, and only eigenvalues are

desired, we again use B/M, and note that there is essentially no performance penalty because the

cost of the reduction to tridiagonal form ((n

3

)) overwhelms the cost of �nding the eigenvalues alone

((n

2

)). When eigenvectors are desired as well, the cost of the reduction is no longer overwhelming

and one is tempted to use whatever algorithm is fastest, because the reduction to tridiagonal form

destroys whatever provable accuracy advantage B/M had. Or is this argument too much like the

one which says "computing the sine of large arguments accurately is unimportant because large

arguments are probably inexact, so any value for the sine is good enough"? In other words, should

we always use the most accurate tridiagonal eigenroutine even though the reduction to tridiagonal

form probably destroys the relative accuracy of tiny eigenvalues?

1.1 Questions for the Community

This section summarizes the questions raised in previous sections.

1. Is our proposed philosophy for the design of easy-to-use drivers appropriate: use the most

accurate routine as long as the performance penalty is less than a factor of 2?

2. Should we incorporate possibly machine dependent scaling to avoid over/under
ow, especially

in the easy-to-use code?

3. Should we assume that arithmetic is monotonic if that turns out to be convenient in the

multisection code?

4. Has the cost of square root decreased su�ciently compared to division that it is no longer

necessary to have a square root free R algorithm for the sake of speed?

7

5. In B/M, is there an alternative to �nding the zeros of the determinant which is less susceptible

to over/under
ow?

8

Chapter

e nes f r e nes

n

2.1 Intro uction

This note discusses numerical and software design issues arising in the singular value decomposition

eigenroutines in LAPACK. Many of the issues are similar to the ones arising in the symmetric

eigenproblem. Section 2 below summarizes the three algorithms available. Section 3 discusses

the criteria we will use to evaluate the algorithms. Section 4 discusses the various computing

environments and user options which will impact the choice of algorithm. Sections 5 to 8 make

detailed comparisons of the three algorithms. Section 9 proposes an easy-to-use driver for the

overall problem. Finally, section 10 lists design questions for which we would like feedback from the

user community.

2.2 vaila le lgorithms

� R and its variations - Here we refer to the variation of R discussed in LAPACK Working

Note #3 [13], which is a new algorithm guaranteed to �nd all the singular values of a bidiagonal

matrix to full working precision independent of their magnitudes. This includes the possibility

of �rst �nding the singular values and then using inverse iteration to �nd selected singular

vectors. We call this algorithm R for short.

� Divide and Conquer - This algorithm is similar to the Dongarra/Sorensen/Cuppen algorithm

for the symmetric tridiagonal eigenproblem. It has been developed by Jessup and Sorensen

[11]. We call it D C for short.

� Bisection/Multisection - This algorithm is similar to the algorithm for the symmetric tridiago-

nal eigenproblem developed by Sameh, Lo and Philippe [10]. It uses the fact the the bidiagonal

singular value problem can be converted into a symmetric tridiagonal eigenproblem with zero

diagonal.

9

2.3 Com arison Criteria

� Accuracy

� Susceptibility to Over/under
ow

� Speed

� Storage

2. tions nvironments

� Original data dense or bidiagonal

� Serial or parallel algorithm

� Which singular values, singular vectors desired:

{ Some singular values only

{ All singular values only

{ Some singular values and associated (left and/or right) singular vectors

{ All singular values and (left and/or right) singular vectors ("decomposition" or "factor-

ization", as in LINPACK)

2. ccuracy ra eo s mong Q , C,

The accuracy achievable depends on whether the initial data is bidiagonal or dense. The usual

perturbation theory says that all singular values are determined by the data to within absolute

accuracy f(n)� � kAk, n = dim(A) and f(n) a modest function of n, provided each component of

the initial data is known to that absolute accuracy. In other words, small absolute perturbations

in the data cause small absolute perturbations in the singular values. All three algorithms can

compute the singular values to this accuracy. If the data is bidiagonal, more can be done because a

stronger perturbation theorem is true: small relative perturbations in the data cause small relative

perturbations in the singular values. As for the singular vectors, the usual perturbation bound is

of the form f(n)�=absolute gap, where absolute gap is the absolute di�erence minj�

i

� �

i�1

j=�

1

between the corresponding singular value sigma

i

and its nearest neighbor (scaled by the matrix

norm sigma

1

); any of the algorithms can compute the singular vectors to this accuracy from dense

or bidiagonal data. When the data is bidiagonal, the singular vectors appear to be determined more

accurately: we conjecture that the perturbation bound may be improved to f(n)�=relative gap,

where relative gap is the relative distance minj�

i

� �

i�1

j=�

i

between the corresponding singular

value sigma

i

and its nearest neighbor. It appears the variant of R discussed below can attain this

accuracy (we have an outline of a proof; see section 10 of LAPACK working note #3). For example,

if a 3 by 3 matrix has singular values 1, 2 �10

�100

, 10

�100

, then the conventional SVD computes the

singular vectors corresponding to the smaller two singular values with relative precision on the order

�10

100

, i.e. probably none. The new algorithm, however, appears to compute them all to precision

�. For futher discussion see [13].

10

2.5.1 riginal Data idiagonal

� R- The variant of R in LAPACK working note #3 ("implicit zero-shift R") can compute

all the singular values to full relative precision. We conjecture that with a somewhat more

conservative stopping criteria (which would make the algorithm somewhat slower - how much

we don't know) the singular vectors can also be computed very accurately as described above.

� D C- It appears di�cult to guarantee high relative accuracy in any situation from the zero

�nder in D C.

� B/M- B/M can also compute all the singular values to guaranteed high relative accuracy. It

is unclear how accurately we can compute the singular vectors via inverse iteration (certainly

to within the conventional error bound, but perhaps not to the conjectured higher one).

2.5.2 riginal Data Dense

Unless something special is known about the data, all that can be said is that the resulting bidiagonal

is exactly orthogonally equivalent to a matrix within a small absolute distance f(n)�kAk of the

original data A. Thus no (nonarti�cial) class of matrices is known where the singular values are

determined by the data to better than absolute accuracy. Therefore, each of R, D C and B/M

has the same provable error properties: guaranteed absolute accuracy.

2.5.3 M and Monotonic Arithmetic

This issue is identical to the case of the symmetric tridiagonal eigenproblem.

2. ver n er o usce ti ility ra eo s mong Q ,

C,

This issue is identical to the case of the symmetric tridiagonal eigenproblem.

2. ee ra eo s mong Q , C an

We only discuss bidiagonal data here, since the reduction to bidiagonal form is the same for all

three. If the original data is dense, the time for reduction to bidiagonal form may overwhelm the

di�erences between algorithms we discuss below. This is particularly likely if singular values only

are desired, since the cost of this is (n

2

) whereas the reduction costs (n

3

). Here the important

environmental features and options are:

� Serial or parallel algorithm

� Which singular values, singular vectors desired:

{ Some singular values only

{ All singular values only

{ Some singular values and associated singular vectors

{ All singular values and singular vectors

The analysis is identical to the case of the symmetric tridiagonal eigenproblem.

11

2. torage ra eo s mong Q , C, an

Here the important environmental features and options are:

� Original Data Dense or Bidiagonal

� Which singular values, singular vectors desired:

{ Some singular values only

{ All singular values only

{ Some singular values and associated singular vectors

{ All singular values and singular vectors

In all cases the analysis is similar to the case of the symmetric tridiagonal eigenproblem, except

that separate storage is needed for right and left transformations and singular vectors. This is a

tentative conclusion that might change as the details of the implementation are worked out.

2. ecommen ations for asy- o- se river

The underlying philosophy is to pick the most accurate routine as long as the performance or

storage penalty is not too large. If the algorithm is serial and all or most singular values (and

possibly vectors) are needed, use R. If singular vectors are desired, use the more conservative (and

somewhat slower) stopping criterion discussed in section 10 of LAPACK working note #3. If the

algorithm is serial and only a few singular values (and possibly vectors) are needed, use B/M. If the

algorithm is parallel, use B/M. This should combine nearly highest speed and accuracy in all cases.

2.1 Questions for the Community

The questions pertinent to the SVD are essentially the same as for the symmetric eigenproblem of

the last chapter:

1. Is our proposed philosophy for the design of easy-to-use drivers appropriate: use the most

accurate routine as long as the performance penalty is less than a factor of 2?

2. Should we incorporate possibly machine dependent scaling to avoid over/under
ow, especially

in the easy-to-use code?

3. Should we assume that arithmetic is monotonic if that turns out to be convenient in the

multisection code?

4. In B/M, is there an alternative to �nding the zeros of the determinant which is less susceptible

to over/under
ow?

12

Chapter

e nes f r er e

e ne en n n n

s n n

3.1 ac groun

There are two general techniques for computing error bounds for solutions of linear systems. The �rst

is based on computing the backward error !, estimating the condition number �, and multiplying

them to get an error bound !��. The second technique is based on iterative re�nement with extended

precision (usually double precision) residual calculations, and examining the convergence rate.

3.1.1 Techniques based on bac ward error and condition estimation

This method is the most
exible of the two, and described in some detail in [1]. We outline the idea

here. Given an approximate solution x̂ to the linear system Ax = b, we seek the backward error, i.e.

the size ! of the smallest �A and �b such that

(A+ �A)x̂ = b+ �b:

To �nd !, we need to specify norms for �A and �b; ! will depend on this choice of norm. Here we

will be as
exible as possible, and choose a di�erent scaling for each entry of �A and �b as follows:

Let E be a nonnegative matrix and f a nonnegative vector. Then the norm of �A and �b with

respect to E and f is denoted k(�A; �b)k

E;f

and de�ned as the smallest ! such that

j�A

ij

j � !E

ij

and j�b

i

j � !f

i

for all i; j

For example, if E

ij

= kAk

1

and f

i

= kbk

1

, then this corresponds essentially to the usual normwise

or Wilkinson backward error. If we choose E

ij

= jA

ij

j and f

i

= jb

i

j, then this corresponds to

a componentwise relative backward error discussed in [4,5,6]. This backward error maintains the

sparsity structure of A and b, since if A

ij

= 0, �A

ij

must equal zero, and similarly for �b

i

. Thus it

is a signi�cantly more stringent backward error measure than the normwise one.

13

It turns out that it costs just two matrix-vector multiplies to compute !:

! = max

i

jAx̂� bj

i

(Ejx̂j+ f)

i

(here jx̂j denotes the vector of absolute entries of x̂; similarly, jAj denote the matrix of absolute

entries of A). Thus it is quite cheap to compute ! for an arbitrary backward error, making it

suitable either for error estimation or as a stopping criterion for iterative re�nement.

The reason the componentwise relative backward error is interesting is the following theorem of

Skeel [5]:

Theorem: If A is not too ill-conditioned, and if the components of the vector jAj � jxj do not vary

too much in magnitude, then one step of iterative re�nement guarantees that the componentwise

relative backward error is on the order of machine precision. This is true even if the residuals are

computed in single precision.

Note that this theorem violates the conventional wisdom that it is not worth doing iterative

re�nement unless the residuals are computed to higher than single precision. The assumption about

the components of jAj � jxjmay be violated if both A and b are sparse, so in practice we must sacri�ce

the sparsity structure of �b by occasionally permitting f

i

to be larger than jb

i

j. However in practice

we can always guarantee that �A has the same sparsity structure as A; see [1] for details. Thus, it

is quite worthwhile to do a single step of iterative re�nement with single precision residuals.

Corresponding to the backward error ! which depends on E and f is a condition number which

also depends on E and f . Suppose Ax = b and (A+ �A)(x+ �x) = b+ �b. We de�ne the condition

number of the system Ax = b with respect to E and f as

�

E;f

(A; b) � lim sup

�A! 0

�b ! 0

k�xk

1

=kxk

1

k(�A; �b)k

E;f

=

k jA

�1

j � (E � jxj+ f)k

1

kxk

1

:

Since the true solution x is usually unknown, we must approximate this condition number somehow.

One way is to substitute the computed solution x̂ for x. The other way is to use an x which

maximizes the condition number. For the normwise backward error, this yields the usual condition

number � = kAk

1

� kA

�1

k

1

, and for the componentwise relative backward error, this yields � =

k jA

�1

j � jAj k

1

. Either way, an approximate error bound is obtained by multiplying the backward

error ! by the condition number �:

k�xk

1

kxk

1

� � � !

The advantage of using k jA

�1

j � jAj k

1

over the more conventional kAk

1

� kA

�1

k

1

is that it is

no larger, and sometimes much smaller, especially if A is badly row-scaled (note that k jA

�1

j � jAj k

1

is independent of the row-scaling of A). In other words, one step of iterative re�nement tends to

correct poor row scaling [6]. Therefore, the error estimate � � ! may be much smaller using the

componentwise relative backward error and condition number after one step of iterative re�nement

than using the normwise backward error and condition number [1].

To be useful, it is necessary to be able to estimate the condition number cheaply. It turns out

to be inexpensive to get reliable estimates of �

E;F

(A; b) for any E and f , based on an estimator in

[2,3] for estimating the one-norm or in�nity-norm of a matrix B given the ability to quickly form

Bx or B

T

x for any vector x; when B = A

�1

and the LU factors of A are available, this is indeed

inexpensive. The idea is as follows:

k jA

�1

j(Ejx̂j+ f) k

1

= k jA

�1

jg k

1

where g = Ejx̂j+ f can be computed with a single matrix-vector multiply. Similarly

k jA

�1

j � jAj k

1

= k jA

�1

j � jAj � e k

1

= k jA

�1

j � g k

1

14

where e is the column vector of all ones and g = jAje can be computed with a single matrix-vector

multiply. In any event, we need to be able to estimate k jA

�1

jg k

1

where g is a nonnegative vector.

We can do this using the estimator in [2,3] as follows: Let G = diag(g

1

; :::; g

n

). Then g = Ge and

k jA

�1

j � g k

1

= k jA

�1

j �Ge k

1

= k jA

�1

j �G k

1

= k jA

�1

Gj k

1

= kA

�1

G k

1

:

Thus, to use [2,3] we need to be able to multiply by A

�1

G (and its transpose) which is easy since G

is diagonal and we have the LU factors of A.

3.1.2 Techniques based on Iterative Re�nement with Extended Precision

Residuals

This is a standard technique suggested by Wilkinson. If the residuals are computed to double

precision, then each step of iterative re�nement should increase the accuracy of the computed solution

by a factor of approximately � � kAk � kA

�1

k. Letting x

i

denote the solution after i steps of iterative

re�nement, this implies kx

i

� x

i�1

k=(�kx

i

k) should be an estimate of kAk � kA

�1

k, and that after x

i

stops changing, it has converged to the correct solution. Unfortunately, this is not always reliable

because iterative re�nement can appear to converge even though the solution is completely wrong ifA

is su�ciently ill-conditioned. Also, the estimate of kAk�kA

�1

kmay be too high or too low. Indeed, in

[7] Wilkinson recommends against using this method without an independent condition estimator.

Nonetheless, iterative re�nement with extended precision residuals is an important technique for

improving the accuracy of a computed solution.

3.2 esign Issues for Iterative e nement an Con ition

stimation in C

3.2.1 Equilibration

A common technique to improve the conditioning of A is to scale its rows and/or columns by pre-

and/or postmultiplying A by nonsingular diagonal matrices. Single sided scaling (i.e. replacing A

by DA or AD with D diagonal and nonsingular) to make the rows (or columns) of A have equal

norm can be shown to reduce the condition number (with respect to the 2-norm) to within a factor

of n

1=2

of the minimal over all diagonal D. If A is symmetric positive de�nite, symmetric scaling

DAD to make the diagonals of A all equal reduces the condition number to within a factor of n

of minimal. It is not as well understood how to do two-sided scaling D

1

AD

2

; in general current

algorithms attempt to make the rows and columns of D

1

AD

2

have nearly equal norms. No such

code currently exists in LINPACK; should one be added? Note that one step of iterative re�nement

with single precision residuals tends to automatically row-scale in a nearly optimal way.

3.2.2 Extended Precision Residual Accumulation

There are several di�culties with incorporating extended precision residual accumulation in a library.

The �rst is that twice working precision is not available in a machine independent way, or sometimes

not available at all: mixed precision BLAS implementations are not universally available, nor are

quadruple and double complex arithmetic. Second, e�cient residual computation would require a

work vector to store the residual (in order to use a column-oriented algorithm); thus if both single

and double precision residual accumulation are to be provided, either di�erent subroutine names are

required, or else both single and double precision work vectors would have to be passed, one of which

would be ignored. The �rst solution is di�cult because the limitation of 6 character subroutine

names already makes naming di�cult, and the second solution makes the calling sequence more

complicated. Finally, as discussed in section 1.2, this is not a reliable method for error estimation

15

in the absence of an independent condition estimator. Therefore we propose not to include iterative

re�nement with extended precision residual accumulation as a standard part of LAPACK, although

we will indicate how it could be written in terms of other subroutines in the library.

3.2.3 Easy-to-use Driver

There are two obvious possibilities for an easy to use driver, one corresponding to the choice of

Wilkinson or normwise backward error, and the other corresponding to componentwise relative

backward error. Either one would work as follows:

1. Do iterative re�nement with a convergence criterion such as:

Repeat until !

i

< n� or !

i

=!

i�1

> :5.

In other words, we perform iterative re�nement until the backward error is less than n� or

no longer decreases by at least a factor of 2. Variations on this include changing n� to � or

some other value (as in [1]), or adding a maximum iteration count (as it stands, the number of

iterations could be as large as the number of bits in the fraction of the
oating point format,

although this is highly unlikely).

2. Estimate the condition number �. Actually, we would report 1=� to the user, since the recip-

rocal is zero (rather than in�nity) for an exactly singular matrix.

3. Compute the relative error bound � � ! and return it to the user. If this would over
ow (or

just be greater than 1), return 1. Also return the �nal residual vector to the user.

The major question is which measure of backward error should be used. The normwise measure is

most robust in that it is essentially guaranteed to be small ("Gaussian elimination produces a small

residual") even without iterative re�nement. But this means iterative re�nement would seldom be

done, and even if it were the possible bene�ts would not be re
ected in the condition number and

error bound returned to the user (implicitly improved row scaling and smaller condition number, a

tiny componentwise relative backward error). Alternatively, the componentwise relative backward

error would re
ect these bene�ts, but if A and b are sparse then ! may never be small, even if the

solution is quite accurate.

A compromise would be to use E = jAj (componentwise relative error in A) and f

i

= kbk

(normwise error in b). This has worked well in practice on di�cult sparse problems [1], although it

does not always give the tightest error bound. One somewhat unpleasant feature of this backward

error measure is that it is not row-scaling independent. (Another alternative, where f

i

is chosen

dynamically depending on the computation, is discussed in [1]).

A �nal possibility is to provide all three backward error measures and to make the user choose

one of them; this is probably too complicated for the easy-to-use driver.

Presuming we choose exactly one backward error measure to be used by the easy-to-use driver,

we propose the following calling sequence for it:

SGESVE(TRANS, N, A, LDA, AF, LDAF, IPIV, B, X, R, E, RCOND, INFO)

CHARACTER*1 TRANS

INTEGER N, LDA, LDFA, IPIV(*), INFO

REAL A(LDA,*), AF(LDFA,*), B(*), X(*), E, RCOND

C

C ARGUMENTS

C TRANS - CHARACTER*1

C SPECIFIES FORM OF EQUATION TO SOLVE

C IF TRANS = 'N' OR 'n', SOLVE A*X=B

16

C IF TRANS = 'T' OR 't' OR 'C' OR 'c', SOLVE A'*X=B

C UNCHANGED ON EXIT

C N - INTEGER - NUMBER OF ROWS AND COLUMNS OF A AND AF,

C NUMBER OF ROWS OF B, R AND X

C N MUST BE AT LEAST 0, UNCHANGED ON EXIT

C A - REAL ARRAY OF DIMENSION (LDA,*)

C COEFFICIENT ARRAY, UNCHANGED ON OUTPUT

C LDA - INTEGER - LEADING DIMENSION OF A, UNCHANGED ON EXIT,

C MUST BE AT LEAST MAX(1,N)

C AF - REAL ARRAY OF DIMENSION (LDAF,*)

C CONTAINS LU FACTORIZATION OF A ON EXIT

C LDAF - INTEGER - LEADING DIMENSION OF AF, UNCHANGED ON EXIT

C IPIV - INTEGER ARRAY OF DIMENSION (*), NEEDS TO BE

C AT LEAST MAX(1,N), CONTAINS PIVOT INFORMATION FOR

C LU FACTORIZATION ON EXIT

C B - REAL ARRAY OF DIMENSION (N), CONTAINS RIGHT HAND SIDE,

C UNCHANGED ON EXIT

C X - REAL ARRAY OF DIMENSION (N), CONTAINS SOLUTION ON EXIT

C R - REAL ARRAY OF DIMENSION (N), CONTAINS RESIDUAL A*X-B

C ON EXIT

C E - REAL - CONTAINS RELATIVE ERROR BOUND FOR X ON EXIT

C RCOND - REAL - CONTAINS RECIPROCAL OF ESTIMATED CONDITION NUMBER

C OF A ON EXIT

C INFO - INTEGER -

C IF INFO=0 ON EXIT, NORMAL TERMINATION

C IF INFO .GT. 0 ON EXIT, POINTS TO FIRST ZERO PIVOT

C IN U

C

There is also a version for multiple right hand sides:

SGESME(TRANS, N, NRHS, A, LDA, AF, LDFA, IPIV, B, LDB,

+ X, LDX, R, LDR, E, RCOND, INFO)

C E - REAL ARRAY OF DIMENSION (NRHS), ON EXIT CONTAINS RELATIVE

C ERROR BOUND FOR EACH RIGHT HAND SIDE

with the extra parameters LDB, LDX and LDR for the leading dimensions of B, X and R, and

NRHS for the number of right hand sides (columns of B, X, and R).

3.2.4 User Supplied Measure of Uncertainly in the Data

Many users know or can estimate the accuracy !

user

to which their data is known. In such cases

a more relevant error bound than ! � � (! is the backward error determined by the code) would be

!

user

��. Should the easy-to-use driver have an argument for !

user

and return the product !

user

�� in

another argument? If so, how should !

user

be measured (normwise, componentwise relative, other)?

3.2.5 Test for Singularity During Triangular Factorization

We propose to have no test for singularity during triangular factorization, completing the factoriza-

tion even if A has a completely zero column or row. The resulting factorization may still be of use

to the user, even if it is not useful for iterative re�nement.

17

3.3 Questions for the Community

This section summarizes the design questions raised in the previous sections.

1. Should an equilibration routine be included in the library? Which options should it allow

(one-sided left or right, two-sided, symmetric)?

2. Should iterative re�nement with double (or extended) precision residual calculation be left to

the user?

3. Which backward error measure should be used in the easy-to-use driver (normwise, compo-

nentwise relative, a compromise between the two, user's choice of one of the three, other)?

4. Should the easy-to-use driver accept a user-supplied measure !

user

of the uncertainty in the

data and compute an error bound !

user

�� based on it rather than the backward error ! of the

algorithm? If so, with respect to which backward error measure should !

user

be measured?

5. Is it appropriate not to test for singularity during the factorization?

18

Chapter 4

eferences

1. M. Arioli, J. Demmel, I. Du�, "Solving Sparse Linear Systems with Sparse Backward Error,"

Harwell Laboratory, Computer Science and Systems Division, Report CSS 214, March 1988

2. W. Hager, "Condition Estimators," SIAM J. Sci. Stat. Comp. 5, (1984), p. 311-316

3. N. Higham, "Fortran codes for estimating the one-norm of a real or complex matrix, with

applications to condition estimation," Numerical Analysis Report No. 135, U. of Manchester,

England, 1987

4. W. Oettli, W. Prager, "Compatibility of approximate solution of linear equations with given

error bounds for coe�cients and right-hand sides," Numer. Math. 6, (1964) p. 405-409

5. R. Skeel, "Iterative re�nement implies numerical stability for Gaussian elimination," Math.

Comp. 35, (1980) p. 817-832

6. R. Skeel, "Scaling for numerical stability in Gaussian elimination," J. ACM 26, (1979) p.

494-526

7. J. Wilkinson, "Rounding Errors in Algebraic Processes," Prentice Hall, 1964

8. B. Parlett, "The Symmetric Eigenproblem," Prentice-Hall, 1980

9. W. Kahan, "Accurate eigenvalues of a symmetric tridiagonal matrix," Technical Report No.

CS41, Computer Science Dept., Stanford University, July 22 1966 (revised June 1968)

10. S-S. Lo, B. Phillipe, A. Sameh, "A multiprocessor algorithm for the symmetric tridiagonal

eigenproblem," SIAM J. Sci. Stat. Comp., Vol. 8, No. 2, March 1987, pp s155-165

11. E. R. Jessup and D. C. Sorsensen, "A Parallel Algorithm for Computing the Singular Value

Decomposition of a Matrix," Technical Memorandum No. 102, Mathematics and Computer

Science Division, Argonne National Lab, December 1987

12. J. Dongarra and D. Sorensen, "A fully parallel algorithm for the symmetric eigenproblem,"

SIAM J. Sci. Stat. Comp. 8, pp. 139-154, 1987

13. J. Demmel and W. Kahan, "LAPACK Working Note #3: Computing Small Singular Values

of Bidiagonal Matrices With Guaranteed Relative Accuracy," Mathematics and Computer

Science Division, Argonne National Lab, March 1988

19

