[go: up one dir, main page]

Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains

Viruses. 2024 Jul 31;16(8):1225. doi: 10.3390/v16081225.

Abstract

Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.

Keywords: CTH cells; CTO cells; CTP cells; PGCCs; epithelial cells; giant cell cycling; high-risk oncogenic strains; human cytomegalovirus; oncogenesis.

Publication types

  • Review

MeSH terms

  • Cell Transformation, Neoplastic*
  • Cytomegalovirus Infections* / virology
  • Cytomegalovirus* / genetics
  • Cytomegalovirus* / pathogenicity
  • Cytomegalovirus* / physiology
  • Epithelial Cells* / virology
  • Epithelial-Mesenchymal Transition*
  • Female
  • Giant Cells* / virology
  • Humans
  • Male
  • Neoplasms / virology
  • Polyploidy*