[go: up one dir, main page]

Comparative Study of Dietary Flavonoids with Different Structures as α-Glucosidase Inhibitors and Insulin Sensitizers

J Agric Food Chem. 2019 Sep 18;67(37):10521-10533. doi: 10.1021/acs.jafc.9b04943. Epub 2019 Sep 10.

Abstract

This work was designed to comparatively investigate 27 dietary flavonoids that act as α-glucosidase inhibitors and insulin sensitizers. On the basis of the results of an in vitro experiment of α-glucosidase inhibition, myricetin (IC50 = 11.63 ± 0.36 μM) possessed the strongest inhibitory effect, followed by apigenin-7-O-glucoside (IC50 = 22.80 ± 0.24 μM) and fisetin (IC50 = 46.39 ± 0.34 μM). A three-dimensional quantitative structure-activity relationship model of α-glucosidase inhibitors with good predictive capability [comparative molecular field analysis, q2 = 0.529, optimum number of components (ONC) = 10, R2 = 0.996, F = 250.843, standard error of estimation (SEE) = 0.064, and two descriptors; comparative similarity index analysis, q2 = 0.515, ONC = 10, R2 = 0.997, F = 348.301, SEE = 0.054, and four descriptors] was established and indicated that meta positions of ring B favored bulky and minor, electron-withdrawing, and hydrogen bond donor groups. The presence of electron-donating and hydrogen bond acceptor groups at position 4' of ring B could improve α-glucosidase activity. Position 3 of ring C favored minor, electron-donating, and hydrogen bond donor groups, whereas position 7 of ring A favored bulky and hydrogen bond acceptor groups. Molecular docking screened five flavonoids (baicalein, isorhamnetin-3-O-rutinoside, apigenin-7-O-glucoside, kaempferol-7-O-β-glucoside, and cyanidin-3-O-glucoside) that can act as insulin sensitizers and form strong combinations with four key protein targets involved in the insulin signaling pathway. Apigenin-7-O-glucoside (60 μM) can effectively improve insulin resistance, and glucose uptake increased by approximately 73.06% relative to the model group of insulin-resistant HepG2 cells. Therefore, apigenin-7-O-glucoside might serve as the most effective α-glucosidase inhibitor and insulin sensitizer. This work may guide diabetes patients to improve their condition through dietary therapy.

Keywords: blood glucose; dietary flavonoids; insulin resistance; molecular docking; structure−activity relationship.

Publication types

  • Comparative Study

MeSH terms

  • Flavonoids / chemistry*
  • Flavonoids / metabolism
  • Flavonoids / pharmacology
  • Glycoside Hydrolase Inhibitors / chemistry*
  • Glycoside Hydrolase Inhibitors / metabolism
  • Glycoside Hydrolase Inhibitors / pharmacology
  • Hep G2 Cells
  • Humans
  • Insulin / metabolism*
  • Molecular Docking Simulation
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism
  • alpha-Glucosidases / chemistry
  • alpha-Glucosidases / metabolism

Substances

  • Flavonoids
  • Glycoside Hydrolase Inhibitors
  • Insulin
  • Saccharomyces cerevisiae Proteins
  • alpha-Glucosidases