[go: up one dir, main page]

Functional expression of choline transporter-like protein 1 (CTL1) in human neuroblastoma cells and its link to acetylcholine synthesis

Neurochem Int. 2011 Feb;58(3):354-65. doi: 10.1016/j.neuint.2010.12.011. Epub 2010 Dec 23.

Abstract

We examined the molecular and functional characterization of choline uptake into human neuroblastoma cell lines (SH-SY5Y: non-cholinergic and LA-N-2: cholinergic neuroblastoma), and the association between choline transport and acetylcholine (ACh) synthesis in these cells. Choline uptake was saturable and mediated by a single transport system. Removal of Na(+) from the uptake buffer strongly enhanced choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium. The increase in choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger (NHE) inhibitor. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), NHE1 and NHE5 mRNA are mainly expressed. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. ChAT mRNA was expressed at a much higher level in LA-N-2 cells than in SH-SY5Y cells. The conversion of choline to ACh was confirmed in both cells, and was enhanced in Na(+)-free conditions. These findings suggest that CTL1 is functionally expressed in both SH-SY5Y and LA-N-2 cells and is responsible for choline uptake that relies on a directed H(+) gradient as a driving force, and this transport functions in co-operation with NHE1 and NHE5. Furthermore, choline uptake through CTL1 is associated with ACh synthesis in cholinergic neuroblastoma cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / biosynthesis*
  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / metabolism*
  • Brain Neoplasms / metabolism*
  • COS Cells
  • Cell Line, Tumor
  • Chlorocebus aethiops
  • Humans
  • Neuroblastoma / metabolism*
  • Neurons / metabolism*
  • Organ Culture Techniques
  • Organic Cation Transport Proteins / genetics
  • Organic Cation Transport Proteins / metabolism*
  • Rats
  • Rats, Wistar

Substances

  • Antigens, CD
  • Organic Cation Transport Proteins
  • SLC44A1 protein, human
  • Acetylcholine