[go: up one dir, main page]

Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem

Appl Opt. 1996 Aug 20;35(24):4850-62. doi: 10.1364/AO.35.004850.

Abstract

The upwelling radiance field beneath the ocean surface and the emerging radiance field are not generally isotropic. Their bidirectional structure depends on the illumination conditions (the Sun's position in particular) and on the optical properties of the water body. In oceanic case 1 waters, these properties can be related, for each wavelength λ, to the chlorophyll (Chl) concentration. We aim to quantify systematically the variations of spectral radiances that emerge from an ocean with varying Chl when we change the geometric conditions, namely, the zenith-Sun angle, the viewing angle, and the azimuth difference between the solar and observational vertical planes. The consequences of these important variations on the interpretation of marine signals, as detected by a satelliteborne ocean color sensor, are analyzed. In particular, the derivation of radiometric quantities, such as R (λ), the spectral reflectance, or [ L(w)(λ)](N), the normalized water-leaving radiance that is free from directional effects, is examined, as well as the retrieval of Chl. We propose a practical method that is based on the use of precomputed lookup tables to provide values of the f/Q ratio in all the necessary conditions[ f relates (R(λ) to the backscattering and absorption coefficients, whereas Q is the ratio of upwelling irradiance to any upwelling radiance]. The f/Q ratio, besides being dependent on the geometric configuration (the three angles mentioned above), also varies with λ and with the bio-optical state, conveniently depicted by Chl. Because Chl is one of the entries for the lookup table, it has to be derived at the beginning of the process, before the radiometric quantities R(λ) or [L(W)(λ)](N) can be produced. The determination of Chl can be made through an iterative process, computationally fast, using the information at two wavelengths. In this attempt to remove the bidirectional effect, the commonly accepted view relative to the data-processing strategy is somewhat modified, i.e., reversed, as the Chl index becomes a prerequisite parameter that must be identified prior to the derivation of the fundamental radiometric quantities at all wavelengths.