[go: up one dir, main page]

Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies

J Hazard Mater. 2011 Jan 30;185(2-3):1177-86. doi: 10.1016/j.jhazmat.2010.10.029. Epub 2010 Oct 15.

Abstract

A novel nano-adsorbent, carboxymethyl-β-cyclodextrin modified Fe(3)O(4) nanoparticles (CMCD-MNPs) is fabricated for removal of copper ions from aqueous solution by grafting CM-β-CD onto the magnetite surface via carbodiimide method. The characteristics results of FTIR, TEM, TGA and XPS show that CM-β-CD is grafted onto Fe(3)O(4) nanoparticles. The grafted CM-β-CD on the Fe(3)O(4) nanoparticles contributes to an enhancement of the adsorption capacity because of the strong abilities of the multiple hydroxyl and carboxyl groups in CM-β-CD to adsorb metal ions. The adsorption of Cu(2+) onto CMCD-MNPs is found to be dependent on pH and temperature. Adsorption equilibrium is achieved in 30 min and the adsorption kinetics of Cu(2+) is found to follow a pseudo-second-order kinetic model. Equilibrium data for Cu(2+) adsorption are fitted well by Langmuir isotherm model. The maximum adsorption capacity for Cu(2+) ions is estimated to be 47.2mg/g at 25 °C. Furthermore, thermodynamic parameters reveal the feasibility, spontaneity and exothermic nature of the adsorption process. FTIR and XPS reveal that Cu(2+) adsorption onto CMCD-MNPs mainly involves the oxygen atoms in CM-β-CD to form surface-complexes. In addition, the copper ions can be desorbed from CMCD-MNPs by citric acid solution with 96.2% desorption efficiency and the CMCD-MNPs exhibit good recyclability.

MeSH terms

  • Adsorption
  • Copper / chemistry
  • Copper / isolation & purification*
  • Kinetics
  • Magnetics*
  • Microscopy, Electron, Transmission
  • Nanoparticles*
  • Spectroscopy, Fourier Transform Infrared
  • Thermogravimetry
  • beta-Cyclodextrins / chemistry*

Substances

  • beta-Cyclodextrins
  • carboxymethyl-beta-cyclodextrin
  • Copper