[go: up one dir, main page]

Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration

Langmuir. 2009 Feb 17;25(4):2007-12. doi: 10.1021/la8033676.

Abstract

The dispersion stability diagrams of hydrophobic boehmite nanoparticles in aqueous n-alkyltrimethylammonium bromide solutions (alkyl chain lengths 10-16) were studied over a wide range of particle and surfactant concentrations. The surfactant molecules adsorb tail-on on the particle surface, which provides the colloidal stability through electrostatic repulsion. In the stable region of each diagram, bimodal particle size distributions (50 and 500 nm) are found at lower surfactant concentration, which give way to monomodal distributions (50 nm) at higher concentration. This deagglomeration is connected with the cmc of the surfactants and can be explained by a desorption of counterions from the self-assembled surfactant layer. The desorption is caused by changes in the counterion concentration upon micellization. At low particle concentrations, the transition from the intermediate to the stable region, that is, the disappearance of the precipitate, occurs at a constant surfactant concentration. This concentration is introduced as the "critical dispersion concentration" (cdc), this being the lowest required concentration of a surfactant that is necessary to disperse the hydrophobic particles. The logarithm of the cdc shows a linear dependence on the surfactant chain length, thus a cmc-analogous behavior. The ratio cdc/cmc decreases with increasing surfactant chain length, indicating that long-chain surfactants are more efficient in dispersing nanoparticles than are their lower homologues. The existence of a system-specific critical cdc/cmc ratio, beyond which stable dispersions cannot be obtained, is proposed, which explains the disability of short-chain surfactants to disperse colloids.