[go: up one dir, main page]

Role of endothelium-derived hyperpolarizing factor in human forearm circulation

Hypertension. 2003 Nov;42(5):919-24. doi: 10.1161/01.HYP.0000097548.92665.16. Epub 2003 Oct 13.

Abstract

Endothelium-derived hyperpolarizing factor (EDHF) contributes to endothelium-dependent relaxation of isolated arteries, but it is not known whether this also occurs in the case of humans in vivo. The present study examined the role of EDHF in human forearm circulation. Forearm blood flow (FBF) was measured by strain-gauge plethysmography in 31 healthy, normal subjects (mean+/-SE age, 23+/-2 years; 24 men and 7 women). After oral administration of aspirin (486 mg), we infused NG-monomethyl-L-arginine (8 micromol/min for 5 minutes) into the brachial artery. We used tetraethylammonium chloride (TEA, 1 mg/min for 20 minutes), a KCa channel blocker, as an EDHF inhibitor, and nicorandil as a direct K+ channel opener. TEA significantly reduced FBF (P<0.05) but did not change systemic arterial blood pressure. Furthermore, TEA significantly inhibited the FBF increase in response to substance P (0.8, 1.6, 3.2, and 6.4 ng/min, n=8) and bradykinin (12.5, 25, 50, and 100 ng/min, n=8; both P<0.001), whereas it did not affect the FBF increase in response to acetylcholine (4, 8, 16, and 32 microg/min, n=8), sodium nitroprusside (0.4, 0.8, 1.6, and 3.2 microg/min, n=8), or nicorandil (0.128, 0.256, 0.512, and 1.024 mg/min, n=8). These results suggest that EDHF contributes substantially to basal forearm vascular resistance, as well as to forearm vasodilatation evoked by substance P and bradykinin in humans in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / administration & dosage
  • Acetylcholine / pharmacology
  • Adult
  • Biological Factors / antagonists & inhibitors
  • Biological Factors / physiology*
  • Bradykinin / administration & dosage
  • Bradykinin / pharmacology
  • Female
  • Forearm / blood supply
  • Humans
  • Infusions, Intra-Arterial
  • Male
  • Nicorandil / administration & dosage
  • Nicorandil / pharmacology
  • Nitroprusside / administration & dosage
  • Nitroprusside / pharmacology
  • Potassium Channel Blockers / administration & dosage
  • Potassium Channel Blockers / pharmacology
  • Regional Blood Flow
  • Substance P / administration & dosage
  • Substance P / pharmacology
  • Tetraethylammonium / administration & dosage
  • Tetraethylammonium / pharmacology
  • Vascular Resistance
  • Vasodilation*
  • Vasodilator Agents / administration & dosage
  • Vasodilator Agents / pharmacology

Substances

  • Biological Factors
  • Potassium Channel Blockers
  • Vasodilator Agents
  • endothelium-dependent hyperpolarization factor
  • Nitroprusside
  • Nicorandil
  • Substance P
  • Tetraethylammonium
  • Acetylcholine
  • Bradykinin