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Florence Deau1–3, Magali Esquibet11, Timothé Flutre12, Jared V Goldstone13, Noureddine Hamamouch14,
Tarek Hewezi15, Olivier Jaillon5–7, Claire Jubin5–7, Paola Leonetti10, Marc Magliano1–3, Tom R Maier15,
Gabriel V Markov16,17, Paul McVeigh18, Graziano Pesole19,20, Julie Poulain5–7, Marc Robinson-Rechavi21,22,
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Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed.

We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many

crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling

86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita

are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell

wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and

may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations

required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new

antiparasitic strategies.

Plant-parasitic nematodes are responsible for global agricultural losses
amounting to an estimated $157 billion annually. Although chemical
nematicides are the most reliable means of controlling root-knot
nematodes, they are increasingly being withdrawn owing to their

toxicity to humans and the environment. Novel and specific targets
are thus needed to develop new strategies against these pests.
The Southern root-knot nematode Meloidogyne incognita is able to

infect the roots of almost all cultivated plants, making it perhaps the
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most damaging of all crop pathogens1. M. incognita is an obligatory
sedentary parasite that reproduces by mitotic parthenogenesis2. Root-
knot nematodes have an intimate interaction with their hosts. Within
the host root, adult females induce the redifferentiation of root
cells into specialized ‘giant’ cells, upon which they feed continuously
(Fig. 1). M. incognita can infect Arabidopsis thaliana, making
this nematode a key model system for the understanding of
metazoan adaptations to plant parasitism3,4 (Supplementary Data,
section 1 online).
The phylum Nematoda comprises425,000 described species, many

of which are parasites of animals or plants2. As many as 10 million
species may have yet to be described. Although the model free-living
nematodes Caenorhabditis elegans and Caenorhabditis briggsae have
been the subjects of intensive study5,6, little is known about the other
members of this diverse phylum. These two free-living models will
likely not illuminate the biology of nematode parasitism (Supple-
mentary Fig. 1 online), as shown by the substantial differences
between their genome sequences and that of the human parasite
Brugia malayi7.
The genome sequence of M. incognita presented here provides

insights into the adaptations required by metazoans to successfully
parasitize and counter defenses of immunocompetent plants, and
suggests new antiparasitic strategies.

RESULTS

General features of the M. incognita genome

The M. incognita genome was sequenced using whole-genome shot-
gun strategy. Assembly with Arachne8 yielded 2,817 supercontigs,
totaling 86 Mb (Table 1; Supplementary Data, section 2; Supple-
mentary Fig. 2; Supplementary Table 1 online)—almost twice the
estimated genome size (47- to 51-Mb haploid genome)9. All-against-
all comparison of supercontigs revealed that 648 of the longest
(covering B55 Mb) consist of homologous but diverged segment
pairs (Fig. 2) that might represent former alleles (Supplementary

Data, section 2; Supplementary Figs. 3 and 4 online). About 3.35 Mb
of the assembly constitutes a third partial copy aligning with these
supercontig pairs. Average sequence divergence between the aligned
regions is B8% (Fig. 3). A combination of different processes may
explain the observed pattern in M. incognita, including polyploidy,
polysomy, aneuploidy and hybridization10,11; all are frequently asso-
ciated with asexual reproduction. These observations are consistent
with a strictly mitotic parthenogenetic reproductive mode, which can
permit homologous chromosomes to diverge considerably, as
hypothesized for bdelloid rotifers12 (Supplementary Data, section
2.2). No DNA attributable to bacterial endosymbiont genome(s)
was identified.
Noncoding DNA repeats and transposable elements represent 36%

of the M. incognita genome (Supplementary Data, section 3; Supple-
mentary Figs. 5 and 6 and Supplementary Tables 2 and 3 online).
One repeat family with 283 members on 46 contigs encoded the
nematode trans-spliced leader (SL) exon, SL1, of which 258 members
were found associated with a satellite DNA13 (Supplementary Fig. 7
online). In nematodes, many mature mRNAs share this 5¢ SL exon,
and trans-splicing is also associated with resolution of polycistronic
pre-mRNAs derived from operons. We identified 1,585 candidate
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Figure 1 The parasitic life cycle of Meloidogyne incognita. Infective second-

stage juveniles (J2) penetrate the root and migrate between cells to reach

the plant vascular cylinder. The stylet (arrowhead) connected to the

esophagus is used to pierce plant cell walls, to release esophageal

secretions and to take up nutrients. Each J2 induces the dedifferentiation of

five to seven root cells into multinucleate and hypertrophied feeding cells

(*). These giant cells supply nutrients to the nematode (N). The nematode

becomes sedentary and goes through three molts (J3, J4, adult).
Occasionally, males develop and migrate out of the roots. However, it is

believed that they play no role in reproduction. The pear-shaped female

produces eggs that are released on the root surface. Embryogenesis within

the egg is followed by the first molt, generating second-stage juveniles (J2).

Scale bars, 50 mm.

Table 1 General features of the Meloidogyne incognita genome in

comparison with the genomes of B. malayi7 and C. elegans5

Features M. incognita B. malayi C. elegans

Overall

Estimated size of genome (Mb) 47–51a 90–95a 100a

Total size of assembled sequence (Mb) 86 88 100

Number of scaffolds and/or chromosomes (chr.) 2,817 8,180 6 chr.

G + C content (%) 31.4 30.5 35.4

Protein-coding regions

Number of protein-coding gene models 19,212 11,515 20,072

Protein-coding sequence (% of genome) 25.3 17.8 25.5

Maximum/average protein length

(amino acids)

5,970/354 9,420/

343

18,562/

440

Mean length of intergenic region (bp) 1,402 3,783 2,218

Gene density (genes per Mb) 223 162 228

Operon number 1,585 926 1,118

Percent of genes present in operon 19 18 14

For B. malayi a gene count ranging from 14,500 to 17,800 was inferred after inclusion
of genes in the unannotated portion of the genome7. For C. elegans the gene and protein
count is according to Wormpep database (WS183 release).
aM. incognita: flow cytometry9; B. malayi: flow cytometry and clone-based7; C. elegans
genome has been completely sequenced telomere to telomere (no gaps) and is exactly
100,291,840 bp45.
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M. incognita operons containing a total of 3,966 genes. The two
longest operons contained ten genes each and are not allelic copies
(Supplementary Table 4 online). Operons are a dynamic component
of nematode genome architecture, as different sets of genes were
operonic in M. incognita, C. elegans and B. malayi, and only one
operon was found to be strictly conserved between the three nema-
todes (Supplementary Data, section 4; Supplementary Figs. 8 and 9;
Supplementary Table 5 online).

The gene content of a plant-parasitic nematode

The genome sequence was annotated using the integrative gene
prediction platform EuGene14, specifically trained for M. incognita
(Supplementary Data, section 5; Supplementary Table 6 online). We
identified 19,212 protein-coding genes (Table 1). Due to the high
variation between allelic-like copies (Fig. 3) potentially allowing
functional divergence, all copies were considered to be different
genes. Indeed, 69% of protein sequences were o95% identical to
any other (Supplementary Table 7 and Supplementary Fig. 10
online). The protein-coding genes occupy 25.3% of the sequence at
an average density of 223 genes Mb–1, and 36% are supported by
expressed sequence tags (ESTs). InterPro protein domains were
identified in 55% of proteins and 22% were predicted to be secreted.
Comparison of domain occurrence in M. incognita with that in
C. elegans identified an increased abundance of ‘pectate lyase’,

glycoside hydrolase family GH5 and pepti-
dase C48 (SUMO) domains, and fewer
chemoreceptor domains. We compared the
domain content of the M. incognita protein
set to those of C. elegans, B. malayi, Droso-
phila melanogaster and three fungi, of which
two are plant pathogens. Thirty-two domains
were detected only in M. incognita, and two
additional domains were only shared between
the two plant-pathogenic fungi andM. incog-
nita. Functions assigned to the 34 domains
specific to plant pathogens encompassed
plant cell-wall degradation and chorismate
mutase activity (see below). OrthoMCL15

clustering of the same eight proteomes sug-
gested that 52% of M. incognita predicted
proteins had no ortholog in the other species.
Among them, 1,819 proteins (of which 338
were supported by ESTs) are secreted and
lack any known domain (Supplementary
Data, section 6; Supplementary Figs. 11
and 12; Supplementary Tables 8–10 online).
The core complement of proteins in the
phylum Nematoda is relatively small:
B23% of the ortholog groups were shared
by M. incognita, C. elegans and B. malayi
(Supplementary Fig. 12b).

Identifying plant parasitism genes

Nematode proteins produced in and secreted
from specialized gland cells into the host are
likely to be important effectors of plant
parasitism4,16. We identified gene products
that might be involved in parasitic interac-
tion, particularly those that might modify
plant cell walls.
M. incognita has an unprecedented set of

61 plant cell wall–degrading, carbohydrate-active enzymes
(CAZymes). Although a few such individual CAZymes had been
identified previously in some plant-parasitic nematodes and in two
insect species4,16,17, they are absent from all other metazoans studied
to date (Table 2; Supplementary Data, section 7.1; Supplementary
Tables 11–14 online). We identified 21 cellulases and six xylanases
from family GH5, two polygalacturonases from family GH28 and 30
pectate lyases from family PL3. We also identified CAZymes not
previously reported from metazoans, including two additional plant
cell wall–degrading arabinases (family GH43) and two invertases
(family GH32). Invertases catalyze the conversion of sucrose (an
abundant disaccharide in plants) into glucose and fructose, which
can be used by M. incognita as a carbon source. We also identified a
total of 20 candidate expansins in M. incognita, which may disrupt
noncovalent bonds in plant cell walls, making the components more
accessible to plant cell wall–degrading enzymes18. This suite of plant
cell wall–degrading CAZymes, expansins and associated invertases was
probably acquired by horizontal gene transfer (HGT), as the most
similar proteins (outside plant-parasitic nematodes) were bacterial
homologs (Supplementary Table 12). M. incognita also has four
secreted chorismate mutases19, which most closely resemble bacterial
enzymes. Chorismate mutase is a key enzyme in biosynthesis of
aromatic amino acids and related products, and M. incognita may
subvert host tyrosine-dependant lignification or defense responses.
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Figure 2 Allelic-like relationships for the five largest supercontigs of the M. incognita assembly.

The five largest supercontigs are shown with plots of gene density (orange curve), conservation with

C. elegans at amino acid level (green curve) and EST density (pink curve). Blue lines represent
most similar matches at the protein level between each predicted gene on these five supercontigs

and 70 matching supercontigs.
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Overall, these genes suggest a critical role of HGT events in the
evolution of plant parasitism within root-knot nematodes.
Apart from genes restricted to M. incognita, we also identified gene

families showing substantial expansion compared to C. elegans.
Among the most notable idiosyncrasies in M. incognita, we identified
more than 20 cysteine proteases of the C48 SUMO (small ubiquitin-
like modifier) deconjugating enzyme family—four times the number
in C. elegans (Supplementary Data, section 7.2; Supplementary
Table 15 online). As some phytopathogenic bacterial virulence factors
are SUMO proteases20, the proteolysis of sumoylated host substrates
may be a general strategy used by pathogens to manipulate host plant
signal transduction. TheM. incognita genome also encodes nine serine
proteases from the S16 sub-family (Lon proteases), whereas only three
are identified in C. elegans. These proteases regulate type III protein
secretion in phytopathogenic bacteria21 and may have analogous roles
in M. incognita.
We identified orthologs to other known candidate plant-parasitic

nematode parasitism genes in the genome of M. incognita. As most
of these gene families are also present in animal-parasitic nematodes
and C. elegans, M. incognita members putatively involved in
parasitism were probably recruited from ancestral nematode families
(Supplementary Data, section 7.3; Supplementary Table 16 online).
Twenty-seven previously described M. incognita–restricted pioneer
genes expressed in esophageal glands22 were retrieved in the genome.
Eleven additional copies were identified; all remain Meloidogyne
spp. specific (Supplementary Data, section 7.4; Supplementary
Table 17 online). These secreted proteins of as-yet-unknown function
are likely targets for novel intervention strategies, and warrant
deeper investigation.

Protection against environmental stresses

One aspect of plant defense responses is the production of cytotoxic
oxygen radicals. However, M. incognita has fewer genes encoding

superoxide dismutases and glutathione per-
oxidases than C. elegans (Supplementary
Data, section 7.5; Supplementary Table 18
online). More striking still was the reduction
in glutathione S-transferases (GSTs) and
cytochromes P450 (CYPs), enzymes involved
in xenobiotic metabolism and protec-
tion against peroxidative damage. Whereas
C. elegans has 44 GSTs, including representa-
tives from the Omega, Sigma and Zeta
classes23, M. incognita possesses only 5
GSTs, all from the Sigma class. Sigma class
GSTs are involved in protection against oxi-
dants rather than xenobiotics. A comparable
reduction in gst genes was observed in
B. malayi7. Similarly, whereas C. elegans has
80 different cyp genes from 16 families24, only
27 full or partial cyp genes, from 8 families,
were identified in M. incognita. CYP35 and
other families of xenobiotic-metabolizing
P450s are absent from M. incognita (Supple-
mentary Data, section 7.5; Supplementary
Table 18).
We identified M. incognita orthologs of all

genes of the innate immunity signaling path-
ways of C. elegans25 except trf-1, which is part
of the Toll pathway (Supplementary Data,
section 7.5; Supplementary Table 19 online).

However, immune effectors such as lysozymes, C-type lectins and
chitinases were much less abundant inM. incognita than in C. elegans.
As previously observed in B. malayi7, entire classes of immune
effectors known from C. elegans were absent from M. incognita,
including antibacterial genes such as abf and spp26 and antifungal
genes of several classes (nlp, cnc, fip, fipr)25 (Supplementary Data,
section 7.5; Supplementary Table 19). As plant parasites embedded in
root tissues are protected from a variety of biotic and abiotic stresses,
we speculate that the reduction and specialization of chemical and
immune defense genes is a result of life in this privileged environment.
C. elegans has a broad range of unusual fucosylated N-glycan

structures compared to other metazoans27. M. incognita has
almost twice as many candidate fucosyltransferases as C. elegans
(Supplementary Data, section 7.1; Supplementary Table 14). As
suggested for animal-parasitic nematodes, multi-fucosylated struc-
tures on the surface of the nematode cuticle could help M. incognita
to evade recognition27.

Table 2 Meloidogyne incognita enzymes with predicted plant cell

wall–degrading activities, compared with those in C. elegans and

D. melanogaster

Substrate Cellulose Xylan Arabinan Pectin Other

Family GH5 (cel) GH5 (xyl) GH43 GH28 PL3 EXPN Total

M. incognita 21 6 2 2 30 20 81

C. elegans 0 0 0 0 0 0 0

D. melanogaster 0 0 0 0 0 0 0

Number of genes encoding enzymes with candidate activity on different substrate is
listed in the three selected species. GH, glycoside hydrolases; PL, polysaccharide lyases;
EXPN, expansin-like proteins, following the CAZy nomenclature (http://www.cazy.org/).
A total of nine and two cellulose-binding modules of family CBM2 (bacterial type) were
found appended to candidate expansins and cellulases, respectively.

70 k80 k90 k100 k110 ksctg_117
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Figure 3 Example of two allelic-like regions in the Meloidogyne incognita assembly. Exons are

represented by red boxes and are linked together to form genes (arrows indicate the direction of

transcription). Gray boxes show assembly gaps. Highly diverged allelic genes are linked together

using blue boxes. Gene order is well conserved between the two allelic-like regions, with only minor

differences in predicted gene structure. Percentages of sequence identity at the protein level between

the two allelic-like regions are indicated.
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Core biological processes

Nuclear receptors, kinases, G-protein coupled receptors (GPCRs)
and neuropeptides encompass some of the gene products most
extensively involved in core physiological, developmental and
regulatory processes.
C. elegans has a surprisingly large number of nuclear receptors,

but curiously lacks orthologs of many nuclear receptor types
conserved in other animals28. Some of these conserved nuclear
receptors are present in B. malayi7. Among the 92 predicted nuclear
receptors in M. incognita, we identified orthologs of several known
nematode nuclear receptors, although many of the nuclear
receptors present in B. malayi and absent in C. elegans were also absent
in M. incognita (Supplementary Data, section 7.6; Supplementary
Table 20 online). Many C. elegans nuclear receptors are classified as
supplementary nuclear receptors (SupNRs), likely derived from a
hepatocyte nuclear factor-4-like ancestor29. Orthologs of SupNRs
were found in M. incognita, including a 41-member, M. incognita-
specific expansion. Fourteen SupNRs are one-to-one orthologs
between B. malayi, M. incognita and C. elegans, or conserved only
between M. incognita and C. elegans, with secondary losses in
B. malayi (Supplementary Data, section 7.6; Supplementary Fig. 13
online). Thus the expansion of SupNRs started before the

Brugia-Meloidogyne-Caenorhabditis split and has proceeded indepen-
dently in C. elegans and M. incognita.
M. incognita has 499 predicted kinases compared to 411 in

C. elegans30 and 215 in B. malayi7. The kinases were grouped into
232 OrthoMCL clusters, 24 of which contained only nematode
members, suggesting that they have nematode-specific functions.
Four kinase families contained only M. incognita and B. malayi
members, suggesting potential roles for these genes in parasitism.
Finally, 66 kinase families, containing 122 genes, appear to be
M. incognita-specific (Supplementary Data, section 7.7; Supplemen-
tary Table 21 online). Seven percent (1,280) of all C. elegans genes are
predicted to encode GPCRs that play crucial roles in chemosensation.
These C. elegans genes have been divided into three serpentine
receptor superfamilies and five solo families31. M. incognita has only
108 GPCR genes and these derive from two of the three serpentine
receptor superfamilies and one of the solo families. TheseM. incognita
chemosensory genes are commonly found as duplicates clustered on
the genome, as observed in C. elegans (Supplementary Data, section
7.8; Supplementary Fig. 14; Supplementary Table 22 online).
Neuropeptide diversity is remarkably high in nematodes, given the

structural simplicity of their nervous systems. C. elegans has 28
Phe-Met-Arg-Phe-amide-like peptide (flp) and 35 neuropeptide-like
protein (nlp) genes encoding B200 distinct neuropeptides32.
The identified neuropeptide complement of M. incognita is smaller:
19 flp genes and 21 nlp genes. However, two flp genes, Mi-flp-30 and
Mi-flp-31, encode neuropeptides that have not been identified in
C. elegans, suggesting that they could fulfill functions specific to a
phytoparasitic lifestyle (Supplementary Data, section 7.9; Supple-
mentary Table 23 online).
The XX-XO sex determination pathway in C. elegans is intimately

linked to the dosage compensation pathway33.M. incognita reproduces
exclusively by mitotic parthenogenesis, and males do not contribute
genetically to production of offspring11. M. incognita also displays an
environmental influence on sex determination: under less favorable
environmental conditions far more males are produced. These males
can arise due to sex reversal34 and intersexual forms can be produced.
M. incognita homologs of at least one member of each step of the
C. elegans sex determination cascade were identified, including sdc-1
from the dosage compensation pathway, tra-1, tra-3 and fem-2 from
the sex determination pathway itself, and also downstream genes such
as mag-1 (which represses male-promoting genes) and mab-23 (which
controls male differentiation and behavior). In addition, a large family
(B35 genes) of M. incognita secreted proteins, similar to the C2H2
zinc finger motif–containing tra-1 from C. elegans, was identified
(Supplementary Data, section 7.10; Supplementary Table 24 online).
It is therefore possible that M. incognita uses a similar genetic system
for sex determination, but with the male pathway also modulated in
response to environmental cues.
Taken together, these comparative analyses of genes, underpinning

important traits, highlight the huge biodiversity in the phylum
Nematoda. Idiosyncrasies identified in M. incognita may account for
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Figure 4 RNAi pathway and lethal targets. (a) Comparison of the RNAi

pathway genes of C. elegans and M. incognita. A gray background indicates

that at least one homologous gene was found in M. incognita, and a white

background indicates that no homologous gene was found in M. incognita.

(b) Distribution of orthologs to C. elegans lethal RNAi genes (Ce, black)

between M. incognita (Mi, red), C. briggsae and B. malayi (Cb & Bm, green),

D. melanogaster and three fungi, N. crassa, G. zea and M. grisea (Dm & 3

fungi, gray) using OrthoMCL. A yellow background indicates 148 nematode-
only gene clusters.
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its parasitic lifestyle and lead to the development of new control
strategies directed against plant-parasitic nematodes.

RNA interference and lethal phenotypes

RNA interference (RNAi) is a promising technology for the functional
analysis of parasitic nematode genes. RNAi can be induced in
M. incognita by feeding, with variable silencing efficiencies depending
on the gene target35,36. M. incognita has many genes of the C. elegans
RNAi pathway, including components of the amplification complex
(ego-1, rrf-1, rrf-2 and rrf-3). However, we found no homologs
of sid-1, sid-2, rsd-2 and rsd-6, which are genes involved in
systemic RNAi and double-stranded RNA spreading to surrounding
cells (Fig. 4, Supplementary Data, section 7.11; Supplementary
Table 25 online). These genes are also absent from B. malayi7 and
Haemonchus contortus37, suggesting that systematic RNAi may
spread through the action of novel or poorly conserved factors. We
retrieved 2,958 C. elegans genes having a lethal RNAi phenotype
and searched for orthologs in M. incognita. Among the 1,083
OrthoMCL families identified, 148 (containing 344 M. incognita
genes) appear to be nematode specific (Supplementary Data, section
7.12). Because of their lethal RNAi phenotype and distinctive sequence
properties, these genes provide an attractive set of new antiparasite
drug targets.

DISCUSSION

The genome of M. incognita has many traits that render it particularly
attractive for studying the fundamentals of plant parasitism in the
Nematoda. One remarkable feature is that most of the genome is
composed of pairs of homologous segments that may denote former
diverged alleles. This suggests thatM. incognita is evolving without sex
toward effective haploidy through the Meselson effect38–40. As the
M. incognita genome is the first one sequenced and assembled for a
strictly parthenogenetic species, we expect that its comparison with
sexual nematode genomes will shed light on mechanisms leading to its
peculiar structure. Functional divergence between ancient alleles of
genes involved in the host-parasite interface could explain the extre-
mely wide host range and geographic distribution of this polyphagous
nematode. Analysis of the gene content ofM. incognita revealed a suite
of plant cell wall–degrading enzymes, which has no equivalent in any
animal studied to date. The striking similarity of these enzymes to
bacterial homologs suggests that these genes were acquired by multiple
HGT events. Just as many instances of bacterial HGT involve sets of
genes implicated in adaptations to new hosts or food sources, the
candidate HGT events in M. incognita involve genes with potential
roles in interactions with hosts. The alternative hypothesis—that these
genes were acquired vertically from a common ancestor of bacteria
and nematodes and lost in most eukaryote lineages—appears less
parsimonious. Other singularities encompass M. incognita-restricted
secreted proteins or lineage-specific expansions and/or reductions that
may play roles in host-parasite interaction.
Transcriptional profiling, proteomic analysis and high through-

put RNAi strategies are in progress and will lead to a deeper under-
standing of the processes by which a nematode causes plant
disease. Combining such knowledge with functional genomic data
from the model host plant A. thaliana should provide new insights
into the intimate molecular dialog governing plant-nematode
interactions and allow the further development of target-specific
strategies to limit crop damage. Through the use of comparative
genomics, the availability of free-living, animal- and plant-parasitic
nematode genomes should provide new insights into parasitism and
niche adaptation.

METHODS
Strain and DNA extraction. We used the M. incognita strain ‘Morelos’ from

the root-knot nematode collection held at INRA (Institut National de la

Recherche Agronomique) Sophia Antipolis, France. Nematode eggs were

collected in a sterile manner from tomato roots and checked for the presence

of plant material contaminants. DNA was extracted as described in Supple-

mentary Methods, section 8.1 online.

Genome sequencing and assembly. We obtained paired-end sequences from

plasmid and BAC libraries with the Sanger dideoxynucleotide technology on

ABI3730xl DNA analyzers. The 1,000,873 individual reads were assembled in

2,817 supercontigs using Arachne8 (Supplementary Methods, section 8.2;

Supplementary Table 26 online).

Genome structure, operons and noncoding elements. The assembled genome

was searched for repetitive and non-coding elements. Scaffolds were aligned to

determine pairs and triplets of allelic-like regions. Gene positions along

scaffolds were used to predict clusters of genes forming putative operons

(Supplementary Methods, section 8.3–8.7).

Prediction of protein coding genes. Gene predictions were performed

using EuGene14, optimized for M. incognita models and tested on a data

set of 230 nonredundant, full-length cDNAs. Translation starts and splice

sites were predicted by SpliceMachine41. Available M. incognita ESTs were

aligned on the genome using GenomeThreader42. Similarities to C. elegans

and other species’ protein, genome and EST sequences were identified using

BLAST43. Repetitive sequences were masked using RepeatMasker (http://

repeatmasker.org/, Supplementary Methods, section 8.8; Supplementary

Fig. 15 online).

Automatic functional annotation. Protein domains were searched with Inter-

proScan44. We also submitted proteins from seven additional species to the

same InterproScan search. We included three other nematodes (C. elegans,

C. briggsae and B. malayi), the fruitfly (D. melanogaster) and three fungi

(Magnaporthe grisea, Gibberella zea and Neurospora crassa). To identify clusters

of orthologous genes betweenM. incognita and the seven additional species, we

used OrthoMCL15 (Supplementary Methods, section 8.9).

Expert functional annotation. The collection of predicted protein coding

genes was manually annotated by a consortium of laboratories. Each laboratory

focused on a particular process or gene family relevant to the different aspects

of M. incognita biology. Patterns of presence and/or absence and expansion

and/or reduction in comparison to C. elegans, and other species were

examined. The quality of predicted genes was manually checked and a

functional annotation was proposed accordingly (Supplementary Methods,

sections 8.10–8.20). A genome browser and additional information on the

project are available from http://meloidogyne.toulouse.inra.fr/.

Accession codes. The 9,538 contigs resulting from the Meloidogyne incognita

genome assembly and annotation were deposited in the EMBL/Genbank/DDBJ

databases under accession numbers CABB01000001–CABB01009538.

Note: Supplementary information is available on the Nature Biotechnology website.
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